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SMOOTH SETS FOR A BOREL EQUIVALENCE RELATION

CARLOS E. UZCÁTEGUI A.

Abstract. We study some properties of smooth Borel sets with respect to a

Borel equivalence relation, showing some analogies with the collection of count-

able sets from a descriptive set theoretic point of view. We found what can be

seen as an analog of the hyperarithmetic points in the context of smooth sets.

We generalize a theorem of Weiss from Z-actions to actions by arbitrary count-

able groups. We show that the cr-ideal of closed smooth sets is n{  non-Borel.

1. Introduction

The study of Borel equivalence relations have received recently considerable

attention from the descriptive set theoretic standpoint (see [6], [11], [3] and the

references therein). In this paper we will present some results about smooth sets,

a notion of smallness naturally associated with an equivalence relation. Smooth

sets are a generalization of wandering sets, which appear in ergodic theory in
the study of the action of an homeomorphism over a Polish space ([16]). These

collections of negligible sets ("small" sets like measure zero sets or meager sets)

form a er-ideal and they occur quite naturally in many areas of mathematics.

One such er-ideal that has been studied quite well in descriptive set theory (and

became a sort of a paradigm) is the cr-ideal of countable sets. Smooth sets

have some properties similar to those of the collection of countable sets, in

particular, several of its features can be deduced by analyzing the collection of

compact smooth sets. The study of a a-ideal / by looking at the compact sets

in / has been the focus of much work since the discovery of the connection of

some problems in harmonic analysis (about set of uniqueness) with the structure

of er-ideals of compact sets (see for instance [12] and [14]).

Let us recall the definition of smooth sets ([6]). Let X be a Polish space
(i.e., a complete separable metric space). An equivalence relation E over X
is called Borel if E is a Borel set as a subset of X x X and it is said to be
smooth if it admits a countable Borel separating family, i.e., a collection (A„)
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of ^-invariant Borel subsets of X such that for all x, y e X

xEy if and only if V« (x e A„ <-> y e A„).

A Borel equivalence relation is smooth if it admits definable invariants, that

is, one can assign in a Borel way to each equivalence class an invariant (an

element of some Polish space, [6]). The best case would be when the invariant

is an element of the equivalence class itself, i.e., when there is a Borel transversal

(but this is not always the case). Given an arbitrary Borel equivalence relation

E on X, a set A ç X is called E-smooth if there is a Borel set B D A such

that the restriction of E to B is a smooth equivalence relation. The collection

of .E-smooth sets forms a cr-ideal and thus they will be considered "small" sets.

A fundamental result in Borel equivalence relations is the Glimm-Effros type

dichotomy theorem proved by Harrington, Kechris and Louveau ([6]), which

characterizes the smooth Borel equivalence relations and thus the Borel smooth

sets.
This paper is organized as follows: In §2 we show an extension to analytic sets

of the Glimm-Effros type dichotomy theorem (Theorem 2.3). In order to follow

the proofs of some of the results on this section, the reader must be familiar with

the Harrington-Kechris-Louveau paper (they heavily use the tools of effective

descriptive set theory, especially the Gandy-Harrington topology). Theorem 2.3

can be considered as an analog of the perfect set theorem in the context of

smoothness. We present what can be seen as an analog of the hyperarithmetic

reals (see Theorem 2.7 (iii) and Theorem 4.7). Theorem 2.3 will also provide the

basic representation of Ej smooth sets as the common null sets for the family

of E-ergodic non-atomic measures. In particular, it says that smoothness for

£} sets is a notion concentrated on closed sets, i.e., a EJ set A is smooth if and

only if every closed subset of A is smooth. In general, we called a set sparse

if every closed subset of it is smooth. Every smooth set is sparse. However,

a result of Kechris and Becker shows that not every co-analytic sparse set is

smooth. We will present the proof of this result in §3.

In §4 we will look at the particular case of a countable equivalence relation

(i.e., one all of whose equivalence classes are countable). We generalize a theo-

rem of Weiss ([16]) (which characterizes smooth equivalence relations induced

by the action of an homeomorphism) to the case of a countable Borel equiva-

lence relation. We show that in general smooth sets are not necessarily of first

category.

Since smoothness for analytic sets is concentrated on closed sets we will look

in §5 at the a-ideal of closed smooth sets . Following ideas from [14] and [18]

we will show that it is a strongly calibrated, locally non-Borel, nj   er-ideal.

Most of the results presented in this paper are part of my Ph.D. thesis. I

would like to thank my adviser Dr. Alexander Kechris for his guidance and

patience. I would also like to thank the anonymous referee for his (her) helpful

comments.
■

2. Smooth sets

First we will define some basic concepts and state some basic facts. Our

notation is standard as in [15] and all descriptive set theoretic concepts not

defined in this paper can be found in Moschovakis' book. Let I bea Polish
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space (i.e., a complete separable metric space), since we work with effective

methods we ask that X is recursively presented ([15]). l\ denotes the analytic

sets, nj the co-analytic sets and A¡ the Borel sets. The corresponding effective

point-classes are denoted respectively by Zj, nj and A}. E will always denote

a Borel equivalence relation on X. [x]e or sometimes Ex will denote the in-

equivalence class of x. [A]E is the saturation of A, i.e., [A]e = {y e X :

3x £ A(xEy)} . A set A is called ^-invariant (or just invariant, if there is no

confusion about E) if A — [A]E . The restriction of E to a subset A is denoted
by E\A. Given a Aj equivalence relation E (i.e., £ asa subset of X x X is

a A} set) and A ç B, with B a H\ invariant set and A &Y\ set, then there is

a A} invariant set C with A ç C ç B . In other words, the separation theorem

holds in an invariant form for A} equivalence relations (actually it holds for

Zj equivalence relations). A proof of this can be found in [6] (Lemma 5.1).

We will use the following notation: Script capital letters will denote a countable
family of subsets of X, i.e., sf = (An), with A„ ç X for n e N. For each

collection sf we define the following equivalence relation:

xEtf y if and only if Mn(x € A„ <—► y 6 A„).

Definition 2.1. Let T be a point-class.
(i) E is Y-separated if and only if there is a countable collection sf = (An)

with each A„ e F, such that: VxVy(xEy <—► xE^ y), i.e., E = E^ .
(ii) A subset A of X is Y-separated, if and only if there is a collection sf =

(An) of E-invariant sets, with each A„ G T, and Vx e A, V> e A(xEy <—►
x Etf y). In this case we say that sf separates A .

(iii) A is called strongly Y-separated if Vx € AVy(xEy <—> xE^y) ; and
we say that sf strongly separates A .

Remark. (1) Notice that in (i), each An has to be ^-invariant (because if x e

A„ and y Ex, then xE^y. Hence y e A„).
(2) Denote by [x]^ the E& -equivalence class of x . Then sf separates A

if and only if for all x e A , [x]E nA = [x]^ n A ; and sf strongly separates

A if and only if for all x e A, [x]^ = [x]^ . We will see later that Borel

separation and strong Borel separation are equivalent notions for analytic sets

but are not equivalent for co-analytic sets.

(3) If sf = (A„) and each An is invariant then E ç E& , thus only one
direction in (ii) is not trivial.

(4) Let A e r be an invariant set and T closed under intersections, then it

is clear that A is T-separated if and only if E \A is T-separated.

As we said in the introduction, a Borel equivalence relation is called smooth

if it is Borel separated. A finite, positive Borel measure // on X is called E-

ergodic (orjustergodic) if for every /¿-measurable invariant set A, ¡i{A) = 0 or

ß(X - A) = 0. It is called E-non-atomic (or just non-atomic), if for every x G

X h{[x]e) = 0. For the restriction of an equivalence relation to a set we define

the corresponding notions as follows: A measure fi is called E\A-ergodic if

fi(X - A) = 0 and for every B ç A which is E[,4-invariant and //-measurable,

we have ß(B) = 0 or p(X - B) = 0. Notice that in this case fi(X - B) = 0 if
and only if p(A - B) = 0. A basic fact about ¿s-ergodic non-atomic measure

is that if n is such a measure, then there is no //-measurable separating family
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for E . A typical example of an equivalence relation with a non-atomic ergodic

measure is E0, which is defined on 2W by

xE0y if and only if 3w V« > m x{n) =y(n).

The usual product measure on 2W is non-atomic and £o-ergodic (the so-called

0-1 law).
One way of defining ergodic measures is through an embedding. Let E and

É be two equivalence relations on X and Y respectively. An embedding from

E into E' is a 1-1 map / : X —* Y such that for all x, y e X, xEy <—►

f(x)E'f(y). For Borel equivalence relations we define E ç É if there is a

Borel embedding of E into E'.
The fundamental result about the notion of smoothness is the following

Theorem 2.2 (Harrington, Kechris, Louveau [6]). Let X be a recursively pre-

sented perfect Polish space, E a Aj equivalence relation on X. Then exactly

one of the following holds:
(i) E has a Aj separating family sf = (An), such that the set {x, n) e A «•

x e A„ is Aj in X x co.
(ii) EqQE {via a continuous embedding).

The next theorem says, among other things, that for ZJ sets all natural vari-

ations of countable separation are equivalent.

Theorem 2.3. Let X be a recursively presented Polish space, E a Aj equivalence

relation on X, and A a Zj subset of X. The following are equivalent:

(i) There is a Aj invariant set B such that A ç B and B is strongly Aj-

separated. Moreover, the separating family sf = (A„) for B is uniformly Aj,

i.e., the set {x, n) e A <=> x e A„ is Aj in X x co.

(ii) A is strongly A\-separated.

(iii) [A]E is l\-separated.

(iv) A is l\-separated.

(v) E\A is I\-separated.
(vi) A is universally measurable separated.

(vii) E\A is universally measurable separated.

(viii) For every E-ergodic non-atomic measure p, /i(A) = 0.

(ix) For every E\A-ergodic, non-atomic measure \i, p(A) = 0.

(x) E0%E\A.

Similarly, the same equivalences hold by relativization for a L¡ set A and a

A\ equivalence relation.

All the equivalences are more or less straightforward, except for (x) => (i)

which uses two results proved in [6]. As we said in the introduction we assume

that the reader is familiar with the Harrington-Kechris-Louveau paper [6]. We

will need the following lemmas.

Lemma 2.4. Let t be the Gandy-Harrington topology on X_and E the x x x-

closure of E. Let A be a Zj subset of X. If {x : Ex ¿ (£%} n A ± 0 then
E0c. E\A, via a continuous embedding.
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Proof By Lemma 5.3 of [6] {x : Ex ^ {E)x} n A ± 0, then E is meager in

(Ax A)nE. Hence the construction of the embedding from Eq into E\A can

be carried out in A.   D

Lemma 2.5. Let D = {x : Ex = {E)x}, D is a nj strongly A\-separated

invariant set. Moreover, the separating family for D is {A ç X : A is a Aj

invariant set).

Proof. First, E is a Zj equivalence relation (Lemma 5.2 of [6]). We have that

x e D if and only if v> (xEy —► x£>). Thus D is nj . Also, as E ç E,

then Z) is E-invariant (actually E-invariant). On the other hand, we know

E =~ \J{A x ~ A : A is Aj invariant set}. So, if sf = {A : A is a Aj

invariant set}, then E — ¿v • And we get: Vx e D(EX = (E)x = (¿v)^). Thus
Vx e Z> Wy(xEj^y <—► xEy), i.e., D is strongly separated by sf .   n

Proof of Theorem 2.3. Now we finish the proof of (x) => (i). Suppose (x)

holds. Then by Lemma 2.4 A ç D. By separation (Lemma 5.1 [6]) there is

a Aj invariant set B with A ç B ç D. Hence, by Lemma 2.5 B is strongly

Aj separated by sf — {A ç X : A is Aj invariant set}, sf is clearly a nj
collection, so by a separation argument (page 922, [6]) we can easily show that

there is a Aj subsequence of sf which also separates B, so (i) holds.   D

In view of this result we have

Definition 2.6. (i) Let E be a Borel equivalence relation on I. A E¡ subset

A ç X is called E-smooth if any of the equivalent conditions of Theorem 2.3
holds.

(ii) A set A C X is called E-smooth if there is a Borel smooth set B such
that A ç B .

It is clear that a subset of a smooth set is also smooth and a countable union

of smooth sets is smooth, i.e., they form a a-ideal. So, we regard smooth sets

as small sets. Every countable set is smooth and E is smooth iff X is smooth.

Other very simple smooth sets are the Borel transversals: A set A is called

an E-transversal (or just a transversal) if for all x, y e A with x =¿ y we

have x^x . It is easy to see that every Borel (even analytic) transversal is ZJ-

separated (in fact, let T be an analytic transversal, V„ be an open basis for

the topology of X and put An = [T n V„]E, then (An) is a separating family

for T). We say that a transversal T is total if its saturation [T]e is the whole
space X (in this case E is a smooth equivalence relation). The standard proof

that there is a non-Lebesgue measurable set goes by showing that the following

equivalence relation does not admit a (total) Lebesgue measurable transversal:

X is the unit interval and xEy if x - y is a rational number. In fact, this
equivalence relation is not smooth.

There is a strong similarity between the collection of countable sets and the

collection of ZJ smooth sets, which is summarized in the following:

Theorem 2.7. Let E be a Aj equivalence relation on a recursively presented
Polish space X.

(i) {Analog of the perfect set theorem for Zj sets) Let A ç X be a Zj set.
Then either A is smooth or EqQE\A (via a continuous embedding). Similarly
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the same result holds by relativization for a ZJ set A and a Aj equivalence

relation E.
(ii) The collection of ZJ smooth sets is nj on the codes of Z¡ sets.

(iii) (Analog of the hyperarithmetic reals) Let E be the x x x-closure of E,

where x is the Gandy-Harrington topology on X. Put

D = {x:Ex = (Ë)x).

Then D is a nj set and for every Zj set A, A is smooth if and only if A ç D.

Proof, (i) It follows from Theorem 2.3.
(ii) Let ^ be a Zj universal set. Then from Theorem 2.3 we have that

í¿a is smooth iff 3sf e Aj (a) Vx, y e <%a (xEy <—> x E* y).

It is easy to see that the relation above is a nj relation in a by coding sequences

of A} (a) invariants sets and using the theorem of restricted quantification (4D.3

in [15]).
(iii) It follows from Lemma 2.4 and Lemma 2.5.   D

Remark. (1) The set D is the largest strongly A ¡-separated set, in fact: Let sf =

{A : A is Aj invariant set }, B a strongly A ¡-separated set and 38 a family

of Aj-invariant sets that strongly separates B. Let D^ = {x : [x]E = [x]¿g>} ,
i.e., x e D^ if and only if for all y (x E@ y <—> xEy), and define analogously

Dtf . We saw in 2.5 that D = D^ . By definition of strong separation B ç D^ .

But as 38 ç sf , then E& ç E& and thus D^ ç ZV . Therefore B ç D& .
(2) Recall that the collection of hyperarithmetic points, denoted by Aj (X),

has the property that for every Zj set A ç X, A is countable iff A ç Aj (X)

(see 4F.1 in [15]). This is the reason why D is called an analog of the hyper-

arithmetic points. A\(X) is a true nj set (see 4D.16 in [15]) and is equal to

\J{A : A is a countable Aj set}. These analogies suggest the following ques-

tions:

(i) Is D — \J{A : A is Aj smooth set}? Equivalently, is D the union of Zj
sets?

(ii) Is D a true nj set ?

We will show in §3 that for a countable Aj equivalence relation the answer

for (i) is yes (in fact, as a consequence of a theorem of Kechris, this is also true

for a Aj equivalence relation generated by the action of a locally compact group

of Aj automorphisms of X, see [17]). Regarding question (ii), D (for Eq) has

measure zero with respect to the standard product measure on 2<u (because this

measure is Eo-ergodic). Also every Aj point x e 2W belongs to D (since {x}

is a Aj smooth set). Then by a basis theorem (Corollary 4.2 in [10]) D cannot

be Aj, otherwise its complement would contain a A¡ point. Hence in this case

D is a true nj set and the analogy between D and the hyperarithmetic points

is quite clear.

3.   Sparse sets

We have shown (Theorem 2.7) the similarities between analytic smooth sets

and countable sets. In general, however, we cannot say the same for co-analytic

sets, as we will see next. A set is called E-sparse (or just sparse) if every closed
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subset of it is E-smooth. Sparse sets are the analog of thin sets (i.e., sets without

perfect subsets). From 2.3 we have that every smooth set is sparse and that A

is E-sparse if and only if E0 % E\A. Notice also that if A is universally

measurable (for instance co-analytic) then A is E-sparse if and only if for

every E-ergodic non-atomic measure p. in X we have p(A) = 0 (i.e, (viii) in

Theorem 2.3 holds). However it is not necessarily true that A is contained in

a Borel smooth set (i.e., (i) in Theorem 2.3 does not hold).

The following result was first proved by H. Becker [1] using Aj-determinacy.

We present a proof due to A. Kechris [13]. I would like to thank them for

allowing the presentation of their result in this paper. Let A(X) be the identity

relation on X.

Theorem 3.1 (Becker, Kechris). Consider the equivalence relation E - A(<yia) x

Eq on œa> x 2W. There is a nj subset of cow x 2W which is E-sparse but not

E-smooth. In fact, there is a nj transversal which is Borel separated but not

smooth.

Proof. Let S be ZJ and P be n{ subset of cow x (cow x 2<°) universal for

Zj and n¡ subsets of cow x 2W, respectively. Let C c cow be a n¡ set of

codes for the Borel subsets of cow x 2m, i.e., if x £ C then Sx = Px(= Dx)

and {Dx:xeC} = A\(cow x 2») . Put

x e B <=> x £ C & Dx is smooth.

By Theorem 2.7 (ii) we know that B is nj. Put next

(x, y) £ A' <=^> x £ B & (x, y) g Dx.

For each x € B we have that (A')x ^ 0, since if R is A(ûj(U) x Eo-smooth, then

for every x £ cow Rx is Eo-smooth. Let A be a nj-uniformizing subset of A'

([15]). Clearly, A is a partial transversal for A^") x 2W , i.e., if a, b £ A and

a # b then (a, b) £ A(a>w) x Eq , so A is sparse. If, towards a contradiction,

A c D where D is Borel smooth, let x £ C such that Dx — D. Then clearly

x e B . Let (x, y) £ A , so (x, y) £ Dx = D, a contradiction.

Notice that A is Borel separated, in fact let V„ , Wn be open bases for co01

and 2W respectively. Let A„im = Vn x [Wm]E . Then it is easy to check that

(An,m) is a Borel separating family for A .   □

Remark. We will see in the next section that the set A in the previous proof is

not strongly Borel separated.

Theorem 2.7 (i) is a perfect set type theorem for analytic smooth sets. The

previous result shows that such a theorem cannot be extended to co-analytic

sets. This is an essential difference between sparse sets and thin sets (recall

that a theorem of Solovay says that if there is an inaccessible cardinal then it

is consistent that every nj thin set is countable). There is another structural

property of the co-analytic thin sets that has been studied, namely the existence

of the largest nj thin set, i.e., there is a nj thin subset C\ of X such that if A

is a nj thin subset of X then A ç Ci. A theorem of Kechris (Theorem 1A-2
[7]) gives a sufficient condition for the existence of such largest thin sets with

respect to a given hereditary family of subsets of X (in our case, the family

of closed smooth sets). The two conditions are: The family has to be nj  on
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the codes of Z¡ set and it has to be nj-additive (see [7] for the definition).

Since sparse sets have measure zero with respect to the collection of non-atomic,

ergodic measures then they are nj-additive ([7]) and from Theorem 2.7 (ii) we

get that the other condition is also satisfied. Hence we have the following.

Theorem 3.2. Let E be a Aj non-smooth equivalence relation. There exists a

largest Yl\ sparse set.

4. The case of a countable Borel equivalence relation

In this section we will look at the particular case of a countable Borel equiv-

alence relation, i.e., one for which every equivalence class is countable. Typical

examples are equivalence relations generated by a Borel homeomorphism (i.e.,

hyperfinite equivalence relations [3]), and more generally by the action of a

countable group of Borel homeomorphisms. The ¿r-ideal of smooth sets with

respect to a hyperfinite equivalence relation is the a-ideal generated by the

wandering sets ([16]).
For a countable Borel equivalence relation E a Borel set A is smooth iff there

is a Borel transversal for A ([2]), i.e., there is a Borel transversal T ç [A]e such

that [A]E = [T]e.
A theorem of Feldman-Moore ([5]) says that for every countable Borel equiv-

alence relation E on a Polish X there is a countable group G of Borel home-

omorphisms of X such that E = Eq , where

xEGy   if and only if g(x) = y, for some g £ G.

It is a classical fact that for every Borel subset B of X there is a Polish

topology x, extending the given topology of X, for which B is r-clopen.

Moreover, x admits a basis consisting of Borel sets with respect to the original

topology of X. Thus the Borel structures of X and (X, x) are the same. As a

corollary we get that for every countable Borel equivalence relation E there is a

Polish topology x and a countable group G of t-homeomorphisms of X such

that E = EG , t extends the original topology of X and the Borel structure of

X remains the same. These results have an effective version and the Feldman-

Moore result quoted above has an effective proof; that is to say: If E is a

Aj countable equivalence relation, then there is a countable group G of Aj

homeomorphisms of X such that E = EG . Moreover, there is a Aj relation

R(x, y, n) on X x X x co such that for all n , R„ is the graph of some g £ G.

And vice versa, for all g £ G there is n such that graph (g) = R„ . By an abuse

of the language we will say that the relation R(x, y, g) •» g(x) = y is A¡ .

Notice that in this case if Q(x) is a Aj relation, then 3g £ G Q(g(x)), V# 6

G Q(g(x)) are also Aj . In other words 3y £ [x]E Q(y) and v> £ [x]E Q(y)

are Aj .

If R(x, y, g) is a Aj representation (as above) of the action of G over X,

then there is a Polish topology x extending that on X such that every g £ G is

a T-homeomorphism and x admits a basis of Aj sets effectively enumerated.

The classical proofs of this fact can be found in [5] and [16], and for the effective

counterpart see [13] and [17]. As a corollary of this result we have
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Lemma 4.1. The collection of Aj sets forms a basis for a Polish topology x such

that every A\ set is x-clopen.

Lemma 4.2. Let E be a Aj countable equivalence relation on X, B ç X a Aj

set and G a countable group of Aj homeomorphisms of X such that E = Eg

with "g(x) = y" a Aj relation (as it was explained above). There is a Polish

topology x extending that on X such that every g £ G is a x-homeomorphism

and [B]e is x-clopen. Moreover, x admits a basis of Aj sets effectively enu-

merated.

The following definitions will play a crucial role in the sequel.

Definition 4.3. Let x be a Polish topology on X and put

P(x) = {x £ X : [x]e has an isolated point with respect to x }.

If E is generated by a single homeomorphism of (X, x), then points not in

P(x) are the recurrent points of [16]. Recall that for each countable collection

sf = (An) of E-invariant sets we have defined an equivalence relation xE^y

by
x Eg/ y if and only if Vn (x € An <—> y £ An)

and we denote the E& -equivalence classes by [xL/ .

Definition 4.4. For each countable collection sf = (A„) of E-invariant sets put

D„ = {x£X:[x]E = [xU}

i.e., x £ D^ if and only if V> (xEy <—► xE^ y).

Notice that a set B is strongly separated by sf if and only if B ç ZV • The

following result will be useful in the sequel.

Lemma 4.5. Let E be a countable equivalence relation on X, x a Polish topol-

ogy on X with basis {Wn : n £ N} such that the E-saturation of every x-open

set is x-open. Put Bn = [Wn]E and 38 =(Bn). Then P(x) = D&.

Proof. First we prove that if y 0 D¿g , then y 0 P(x). It suffices to show that if

x £ D& and x £ Wn , then \Wn n [x]E\ > 1 . This is because if y & D& and
wn n [yh # 0 , say x € W„ n [y]E , then as D<% is invariant x £ Dg¡ , and so

|^n[yJ£| = |*F„n[x]£|>l.
So, suppose x £ D^ and let y be such that x E@ y but x Zfy . Let n be

such that x £ W„ . So, in particular Wn ̂  {x} , otherwise x £ Dg§ (notice that

(X, x) can have isolated points). As y £ [Wn]E , there is w £ W„ with yEw .

Clearly x Ew and xE&w. Put V = [Wn]E - {x}, then V is t-open and

V n Wn ± 0 . Thus there is m such that w £ Wm ç V n Wn , but as x E& w

then x 6 [Wm]E. Therefore for some z £ Wm zEx. Clearly x ^ z, hence

\WHr\[x]E\>\,ue., x?P(x).
Now we show that if x 6 D¿g then x £ P(x). Let x £ Dcg , then [x]E -

[xLj. and hence [x]E = {y : V«(x e Bn <-> y e Bn)}. As each Z?„ is T-open,

[x]£ is a t- G¿ set. Since [x]¿ is countable, by the Baire category theorem we

conclude that [x]E has a r-isolated point, i.e., x e P(x).   □

Notice that P(x) ç. D& is always true, without assuming that E is countable.
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Lemma 4.6. Let x be a Polish topology on X with a basis consisting of Borel

sets with respect to the original topology on X. Let G be a countable group of

x-homeomorphisms of X and E = EG. Then a x- G¿ E-invariant set H is

E-smooth if and only if H ç P(x).

Proof. Let 38 be as in Lemma 4.5. Then P(x) ç D^ . As each element of the

basis of x is Borel, we get that P(x) is strongly Borel separated.

On the other hand, suppose H is E-smooth, by a result of Effros [4] we get

that for every x £ H, [x]E is T-locally closed in H. But as H is x- Gs and

[x]E is countable, then [x]^ has a T-isolated point, i.e., x e P(x).   n

We get the following characterization of Borel smooth sets.

Theorem 4.7. Let E be a Borel countable equivalence relation on X and B a

Borel subset of X. Let xb be the Polish topology for [B]E given by Lemma 4.2.

Then B is smooth if and only if B ç P(xB) ■

Proof. Since [B]E is T^-clopen, by Lemma 4.6 [B]E is smooth if and only if

[B]E ç P(xb) ■ And by Theorem 2.3 B is smooth if and only if [B]E is smooth.
Finally observe that P(x) is an invariant set; thus B C P(xb) if and only if

[B]eQP(tb).   □

Remark. (1) Theorem 4.7 can be seen as a Borel analog of Theorem 2.7 (iii).

That is to say, for Borel smooth sets P(x) plays the same role as D does for

Zj smooth sets. We will show below that D = P(x) for some topology.

(2) On the other hand this is a generalization of a result of Weiss [16] which

says that the equivalence relation induced by an aperiodic homeomorphism is

not smooth if and only if there is a recurrent point.

(3) From this result one can easily get that every Borel E-smooth set B
admits a Borel transversal (this is a well-known result of Burgess which holds

for actions of Polish groups [2]). In fact, let {W„} be a basis for the topology

xb (as in Theorem 4.7) and define R(n, x) if and only if n is the least m (if

it exists) such that \Wm n [x]e\ = 1. It is not difficult to show that R is Borel

and clearly P(x) = 3aR. Define T by x £ T iff 3m R(m, x) & x £ Wm.
It is easy to check that T is a transversal for P(xb) and hence T n [B]e is a

transversal for [B]E.

Our next theorem answers a question raised in §2.

Theorem 4.8. Let E be a countable A{ equivalence relation on X. Let D be

the set defined on Theorem 2.7(iii) and p be the Polish topology generated by

the Aj sets given by Lemma 4.1. Then

(i) D = P(p).
(ii) D = \J{A : A is a Aj smooth set}.

Proof. Let us show first that (i) implies (ii). Let x £ D. We want to show

that there is a Aj smooth set A with x £ A. Since x 6 P(p) then [x]e

has a /^-isolated point. Let B be a Aj set such that \B n [x]^! = 1 . Put
A — {y : \B n[y]E\ = 1}. Since E is the action of a countable group and

the action is Aj (as in the hypothesis of Lemma 4.2) then A is Aj . Clearly

A ç P(p) = D, so A is smooth and x £ A .
Let sf = (An) be the collection of Aj invariant sets. It follows from the

proof of Lemma 2.5 that D = D& . For every Aj set A , [A]e is Aj. Hence

from Lemma 4.2 and Lemma 4.5 we get that D = P(p).   n
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As we have observed before, the previous theorem implies that strong Borel

separation and smoothness are equivalent.

Theorem 4.9. Let E be a Aj countable equivalence relation on X and C be

an arbitrary subset of X. Then C is smooth if and only if C is strongly Borel
separated.

Proof, (i) => (ii) is a consequence of Theorem 2.3, as Aj smooth sets are clearly

strongly Aj-separated.

(ii) =► (i). Let C be a strongly Aj-separated set. Since D is the largest Aj

separated set (see the remark after the proof of Theorem 2.7) then C CD and

from Theorem 4.8 we have that D is Borel.   D

Remark. From Theorem 3.1 we get that this result is not valid if we replace

strong separation by separation.

To finish this section we will compare smoothness and category. It is easy to

define a Borel equivalence relation for which there is a smooth dense G¿ set,

and in consequence smoothness does not necessarily imply meagerness. One
example is the following: Let F be a non- Eo-smooth Fa set of first category

(for instance, the saturation of any non-smooth closed meager set) and define

an equivalence relation E as follows:

xEy if and only if x = y or (x, y £ F& xEoy).

Then E is a countable non smooth equivalence relation. Let H = 2m - F .

Then H is G¿ dense E-transversal. However, for some equivalence relations

every smooth set is of first category, as we will show next.

Let G be a collection of homeomorphisms of X. We will say that G satisfies

the condition (*) if the following holds: For every open set O there exists

g £ G and x £ O such that g[0] = O and g(x) ^ x .
For instance Eo is generated by the following collection of homeomorphisms

of 2W : For each s, t £ 2" , n £ N let fSJ defined by:

t y if a = s y,

s y if a = t y,
a       otherwise.

Where Cy denotes the concatenation of t followed by y . It is clear that each

fSJ is an homeomorphism. This collection generates Eo and satisfies (*).

Lemma 4.10. Let E be an equivalence relation on X generated by a collection

G of homeomorphisms of X which satisfies condition (*). If O is an open set
and H c O is a dense (in O)   G¿ set then H is not a transversal.

Proof. By (*) there is g £ G such that g[0] '= O. Let Hi = g~l[H]. Then
ZZi is a dense G¿ subset of O and so is Hi = H\ n H. By (*) there is z £ H^

with g(z) ^ z, i.e. ZZ2 is not a transversal.   G

If E is countable and Borel, every smooth set admits a Borel transversal (see

part (3) of the remark after Theorem 4.7) and therefore we get the following:

Theorem 4.11. Let E be an equivalence relation generated by a collection G of

homeomorphisms of X which satisfies (*). Then

(i) Every E-transversal with the property ofBaire is of first category.
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(ii) If in addition G is countable and E is Borel, then every E-smooth set is

of first category.

Corollary 4.12. Every E-smooth set is of first category.

5. The ct-ideal of closed smooth sets

As we have already pointed out, Theorem 2.3 implies that the notion of

smoothness for ZJ sets is concentrated on closed sets, i.e., a Zj set A is

smooth if and only if every closed subset of A is smooth. In this section we

will present some properties of the collection of closed smooth sets.

The collection of closed subsets of X, which is denoted by Jf(X), equipped

with the Hausdorff distance is a Polish space. All the notions such as open sets,

Borel sets, analytic sets, etc., in 3f(X) will refer to the Hausdorff metric (for

more details about the topology on 3f(X) see [14] and the references given
there).

Let E be a Borel equivalence relation on a compact Polish space X and let

1(E) = {K£ 3t{X) : K is smooth with respect to E}.

It is clear that 1(E) is a cr-ideal of compact sets (i.e., the following two

properties hold: (1) If K„ £ 1(E) for all n £ co and K = \Jn Kn is closed then
K € 1(E). (2) I is hereditary, i.e., if K £ 1(E) and F C K is closed then
F £ 1(E)). There has been much interest in the study of er-ideals of compact

sets since it was discovered its connection with harmonic analysis ([12]). Many

descriptive set theoretic properties of a -ideals of compact sets have been inves-
tigated and shown to be quite interesting (see [14], [12], [9], [8], [18]). We are

interested in studying the complexity of 1(E) as well as some structural prop-

erties such as calibration, the covering property and existence of Borel basis.

One of the results of this section is that E is smooth if and only if 1(E) is

Borel. We will also look at the particular case of I(E0).

First we will recall some basic facts about a -ideals. A nj cr-ideal I satisfies

the so-called dichotomy theorem ([14]), namely either I is a true nj subset of

3f(X) or a G¿ subset. Even more, every Z¡ cr-ideal is in fact G¿ ([14]). A

cr-ideal I is strongly calibrated if for every closed set F ç X with F £ I and

every n° set H ç X x 2W such that proj(H) = F , there is a closed set K ç H
such that x)TO)(K) 0 I. We say that Bel is a basis for I if B is hereditary
and I — Ba , i.e., every K £ I is a countable union of sets in B. We say that
I has Borel basis if there is a Borel subset of 5f(X) which is a basis for I. I

is called locally non-Borel if for every closed set F g I, I n 3?(F) is not Borel.

We say that I is thin if every collection of disjoint closed sets not in I is at

most countable. These notions were introduced in [14].

Theorem 5.1. Let E be a non-smooth Aj equivalence relation on a compact

Polish space X. Then 1(E) is a strongly calibrated, locally non-Borel, non-thin

nj   a-ideal.

We will need the following lemmas.

Lemma 5.2. Let f : 2W —> X be a continuous embedding from Eo into E. For

every closed set K ç 2W
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K £ I(E0) if and only if f[K] £ 1(E).
Proof. Let K c¿ Z(Eo) and put E\ = Eo|X. By Theorem 2.3, Eo ç Ei via a
continuous embedding. But clearly Ex C E\f[K] and ç is transitive. Hence

E0QE\f[K],i.e., f[K)?I(E).
Conversely, suppose K £ I(E0) and let sf = (A„) be a separating fam-

ily of Zj sets for E0\K. Put Bn = f[An] and 38 = (Bn). We claim that
38 is a separating family for E\f[K]. In fact, as / is 1-1 we have that

Vx, y (f(x) Eg¡ f(y) <-+ x E^ y). Hence Vz, w £ f[K] (zE<%w <-► zEw).   a

Lemma 5.3. For every x £ 2W there is a continuous map f : 2W —► Jêr(2(°) such

that
(i) if y is eventually zero, then f(y) is a finite subset of [x]Ea.

(ii) if y is not eventually zero, then f(y) is a non-smooth closed set (with

respect to Eo).

In other words, there is a continuous reduction of {a £ 2W : a is eventually

zero} into the collection of finite subsets of [x]Eo and ~ /(Eo) ■  /" particular
/(£0) is not G¿ .

Proof. Consider the following function:

f(y) = {a£2w:\/n (y(n) = 0 -> a(n) = x(n))}.

Clearly if y is eventually zero, then (i) holds. On the other hand if y has

infinite many l's, then f(a) is a perfect set. Let g : 2e0 —» 2W be the canonical

bijection of 2W onto f(y). It is not difficult to see that g is actually an

embedding from Eo into Eo\f(y), i.e., for all a, ß £ 2W , aEoß if and only

if g(a)Eog(ß) (just observe that if T is the tree of f(y) and some sequence

in T of length n splits, then every sequence in T of length n splits).

Finally, to see that / is continuous, let for each 5 € 2<co

As', = (a € 2m : V« < lh(s) (s(n) = 0 =>■ a(n) = x(n))},

each As is closed and if t < s, then As ç At. We have that f(y) — f)nAy^n

and also that for every 5 e 2<w

f(y) nNSTÍ0    if and only if   V« < lh(s)(s(n) = 0 => y(n) = x(n))

which easily implies that / is continuous. Since {a £ 2a : a is eventually zero }

is countable and dense then by the Baire category theorem /(Eo) is not G¿ .   D

Proof of Theorem 5.1. It is clear that 1(E) is a cr-ideal and since the smooth

sets are the common null sets of all E-ergodic, non-atomic measures on X,

by a standard capacitability argument (see for instance, [18], page 126) we get

that 1(E) is strongly calibrated. A similar argument as in the proof of (ii) in

Theorem 2.7 shows that 1(E) is nj.
First, notice that from the dichotomy theorem for er-ideals ([14]) and 5.3 we

get that /(E0) is not Borel. To see that 1(E) is locally not Borel let K £ 5?(X),
we then have that

I(E)r\Jf(K) = {F £ JT(K) :  F is E-smooth}= I(E\K).

From Lemma 5.2 we get that /(Eo) is not Borel if and only if I(E\K) is not

Borel.
Finally, to show that 1(E) is not thin, clearly it is enough to show that

for Eq. Let / be a cr-ideal, a result of [18] (Theorem 2.5) says that if every



2038 C. E. UZCATEGUI A

set in / is meager and / is thin then there is a dense G§ set G such that

5?(G) ç /. From Corollary 4.12 every Eo-smooth set is meager, so /(Eo)

cannot be thin.   □

As a corollary of Lemma 5.3 we get the following

Corollary 5.4. Let E be a non-smooth Borel equivalence relation on X, then

(i) If J ç /(Eo) is a dense a-ideal, then J is not Z¡.
(ii) If J ç 1(E) is a a-ideal such that for every x £ X {x} £ J, then J is

not Zj.

Proof, (ii) follows from (i), because if / : 2W —► X is an embedding witnessing

that E is not smooth and J ç 1(E) is a cr-ideal containing all singletons, then

J* = f~l[J] is a dense cr-ideal and it is contained in /(Eo) (by Lemma 5.2).

(i) Let J be as in the hypothesis of (i). Every ZJ cr-ideal is actually Gg

([14]). Hence if suffices to show that J is not Gs . Suppose toward a contra-

diction that J ç /(E0) is a Gs dense cr-ideal. Let H = {x £ 2W : {x} e J},
H is a G¿ dense set. Let G be a countable collection of homeomorphisms of

2W generating Eo . Put H* = f]geG g[H], //* is an invariant dense Gs subset

of H. Let x £ H*, for every yEox , we have {y} £ J . But from Lemma 5.3,

such J cannot be a Gs set, a contradiction,   d

From Theorem 5.1 we get the following characterization of a smooth Borel

equivalence relation.

Corollary 5.5. Let E be a Borel equivalence relation on X. Then E is smooth

if and only if 1(E) is Borel.

Remark. (1) Corollary 5.4 (ii) above is the best possible in the following sense:

We have seen in §3 that there is a non-smooth Borel equivalence relation E

and a dense Gs set H which is E-smooth. Clearly 5f(H) is a Borel dense

subideal of 1(E).
(2) Kechris ([9]) has proved that the a-ideal of closed sets of extended

uniqueness also satisfies this hereditary property but even in a stronger form,

i.e., for every perfect set M of restricted multiplicity the a-ideal (To nJif(M)

has no dense Zj subideals. We do not know if this holds for /(Eo).

Another structural property that has been studied in the context of cr-ideals

of compact sets is the so called covering property (see [8], [18]). This is a quite

strong property and there are few known cr-ideals that have it. Theorem 3.1

suggests that 1(E) does not have the covering property. We will address this

question in a forthcoming paper.
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