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GEOMETRY OF STRICTLY CONVEX DOMAINS
AND AN APPLICATION TO THE UNIFORM ESTIMATE

OF THE d -PROBLEM

TEN-GING CHEN

Abstract. In this paper, we construct a nice defining function p for a bounded

smooth strictly convex domain ÎÎ in R" with explicit gradient and Hessian

estimates near the boundary 9Í2 of Í2 . From the approach, we deduce that

any two normals through d SI do not intersect in any tubular neighborhood of

dSl with radius which is less than ^ , where K is the maximum principal

curvature of ÔÎ2 . Finally, we apply such p to obtain an explicit upper bound

of the constant Cq in the Henkin's estimate ||-Hn/||/_°°(£î) < Qill/llL^tn) of

the d-problem on strictly convex domains Í2 in C" .

n   t0. Introduction

Given a_bounded smooth domain Q c C", one would like to solve the
following d -problem:

Let / = V"    f dz~ be a smooth (0, 1 )-
(0.1) ¿*Jr>lJi     J

form and 9-closed on ii, i.e., df = 0.

Does du = f hold for some u e C°°(n) ?
In fact, it is well known that (0.1) can always be solved for any pseudoconvex

domain Q in C" without any boundary restrictions on Q [7, p. 87]. Therefore,

we may restrict ourself to the category of pseudoconvex domains Q, and ask

further:

(0.2) If / 6 L[0 1}(Q), i.e., a (0, l)-form with coefficients in LP(Çi), and df =

0, where 1 < p < oo, then can one solve (0.1) with the following inequality:

IMIlo(îî) ^ Qîll/llz/(n),
where Cq is a constant independent of / ?

For bounded pseudoconvex domains, this is known for p — 2 [6, p. 107] and

Cq. = \fe~-R, where R is the diameter of Cl and e = 2.71828... the natural
exponential. For p = oo, Sibony [12, p. 239] proved
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(0.3) There exists a bounded, smooth pseudoconvex domain Q in C3 and a

smooth d-closed (0, l)-form / on Q which is continuous on Q such that

any solution of du- f must satisfy ||«||jr,°°(n) = oo.

Therefore, (0.2) fails for p = oo. In general, (0.2) holds in the case of

bounded, smooth strongly pseudoconvex domains Q in any Stein manifold [8,

p. 302]. Of particular interest is the case of p = oo in C" ; the solution in this

case was first given by Grauert-Lieb [4] and Henkin [5] independently in 1970.

We are mainly interested in Henkin's solution in this paper because it has the

virtue of being more explicit.

Henkin's method first constructs an integral representation formula for a

solution Hçif of du = f and proceeds to make estimates of the integral to

arrive at the inequality ||Z7íí/||¿°°(íí) < Cc.||/||¿°o(c.). More precisely, he proved

(0.4) Integral representation for the 9-problem [5]. Let / € Cff X)(Q) and

df = 0 on Q. Then the function,

(Haf)(z) = / /(£) A Hx(z, Ç; X) - / f(Q A H2(z, C),

where Hx(z, Ç, X) and H2(z, Q are some definite differential forms con-

structed by Henkin, satisfies

(i) Haf £ C°°(fi) and d(Haf) = / on Q.
(ii) ||ZZfi/||Loo(Q) < Cq|I/||¿..»(n), where Cq is a constant independent of /.

Now, a natural question arises: namely, how does the constant Cq depend

on the domain? Since Henkin's construction involves many noneffective steps,

it seems difficult to make explicit this dependence of Cq on Q. However, in

the case of a strictly convex domain Q in C", by studying the geometry of

strictly convex domains, we can find an upper bound for Cq. which turns out

to be dependent only on n , dia(Q), vol(Q) and the maximum and minimum

principal curvatures of dQ,.
There are two sections in this paper. In §1, we define convexity of dQ in

terms of the second fundamental form of dQ and study the geometry of strictly

convex domains. If v is the unit outward normal of dQ, K the maximum

principal curvature of dQ and 0 < p < ^ , then we apply a result of J. Rauch

(1.1) and the Rauch comparison theorem (1.6) to prove the following result

(1.2):

(0.5) The restriction of the exponential map of the normal bundle over dQ to

T(n) is a diffeomorphism onto T(p) , where f(p) = {(p, -tv(p))\p £ dQ, t £

[0, p.]} and T(p) = {x £ Q\ dist(x, dQ) < ß} .

Once we have (0.5), we can deduce the smoothness of the signed distance

function ó in T(p) easily (1.9). By modifying S further, we obtain a nat-

ural defining function p associated to Q with explicit gradient and Hessian

estimates in T(p) (1.13).
_ In §2, we write down the Henkin integral formula HQf for the solution of

du = f on a smooth bounded strictly convex domain Q in C" and give an

explicit uniform estimate ||ZZc./||¿oo(rj) < Ce. ||/||¿,oo(n) of the constant Cn . This

can be done by using the defining function p constructed in §1 and Henkin's

original ideas. A by-product of the explicit estimate (2.2) is that the stability
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of Cçi in the case of strictly convex domain can now be proved without hand-

waving. In fact, by reviewing the whole construction in this paper, we need only

p to be C3, i.e., Q is C3. Therefore, Cc¡ is stable under C3 perturbations.

1. Geometry of strictly convex domains in R"+1

Let M be a smooth compact hypersurface in R"+1 and V be the Levi-Civita

connection associated to the induced metric from the flat metric of R"+1 . Then,

for any two tangent vector fields X, Y on M, we may write

DxY = VxY + ll(X,Y)v,

where D is the flat connection on R"+1 , v is the unit outward normal vector

field on M and II is the component of Dx Y along v. The basic property

of II is that II is symmetric and C°°(A/>linear in each variable and hence
defines a tensor field on M. In particular, we can define, for each p £ M, a

bilinear map
IL : TDM x TDM —► Rp     p p

by
llp(Xp,Yp) = ll(X,Y),

where X, Y are arbitrary extensions of Xp and Yp, respectively. Thus IIP

gives rise to a symmetric bilinear form on TPM for each p £ M.

Definition. (1) II is called the second fundamental form of M. (2) The eigen-

values of llp are called the principal curvatures at p and their corresponding

eigenvectors are the principal directions.

Now, let Q be a bounded smooth domain in R"+1 in the sense that its

boundary dQ is a smooth compact hypersurf ace in R"+1 . Let the second

fundamental form of oil be II as above. This leads to:

Definition. Q is said to be (geometrically) convex if IIP is positive semidefinite

for each p £ dQ. If, in addition, ILj is positive definite for all p £ dQ, then
we say that Q is strictly convex.

Remark. The theorem (*) of Sacksteder [11, p. 610] says that the above defi-

nition is equivalent to the usual one of convexity.

Definition. A smooth real-valued function <p on R"+1 is called a defining func-

tion of Q if it satisfies the following conditions:
(1) Q = {x£Rn+x\c>(x)<0},
(2) dQ = {x£Rn+x\<p(x) = 0},

(3) d<p(x)¿0 for all x£dQ.

Remark. Any bounded smooth domain admits at least one defining function

which can be constructed by a partition of unity.
From now on, we always assume that Q is a bounded smooth strictly convex

domain in R"+1 and denote dQ by M. We use K¡(p), i = 1, 2, ... , n , to

denote the principal curvatures at p .

Let
K = max{Kj(p)\i =l,...,n,p£M}

and

k = min{Ki(p)\i = 1, ... , n, p £ M}.
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Then K and k are two positive finite numbers because M is compact.

The main goal of this section is to construct a nice defining function of the

domain Q which will play an important role in the next section.

First of all, by examining the unit ball in R"+1 , we discover that any two

normal vectors through its boundary always focus on the origin. In other words,

no two normal vectors intersect in any tubular neighborhood of radius which

is less than 1. Since K = 1 for the unit «-sphere, this leads to the following
general question: For an Q and any positive number p < ¿ , is it still true that

no two normals through dQ intersect within the tubular neighborhood of dQ

with radius p ? Indeed, this is the case and can be derived from a theorem of

J. Rauch [10, p. 502]. Before stating his result, we first give a definition.

Definition. Let M and M' be two smooth compact hypersurf aces in R"+l

with positive-definite second fundamental forms II and II', respectively. We

say that M and M' are internally tangent at a point p £ M n M' if they are

tangent at p and have the same outward normal v at p .

(1.1) Theorem (J. Rauch). Let M and M' be as in the preceding definition,

and assume that llp > \\'p , for all p £ M, p' £ M' with v(p) — v(p'). If in
addition, M and M' are internally tangent at one point, then M lies inside

M' in the sense that M is contained in the closed bounded domain determined

by M'.

Let 0 < p < j . We Define T(p) to be the inner tubular neighborhood of

dQ with radius p, i.e. T(p) = {x £ Q|dist(x, dQ) < p}. We also define

T(p) = {(p, -tv(p))\p £ dQ, t £ [0, p]} ; then T(p) is a subset of the normal
bundle of M. With the help of (1.1), we can prove the following result.

( 1.2) Theorem. The restriction of the exponential map of the normal bundle

over M = dQ to f(p) is a diffeomorphism onto T(p). More precisely, the

map

exp : T(p) -* T(p)

defined by
exp(p, -tv(p)) = expp(-tv(p)) =p- tv(p)

is a diffeomorphism.

To prove (1.2), we first prove some lemmas.

(1.3) Lemma. S(p, q, p) c Q for all p £ M and 0 < p < ¿, where
S(p, q, p) is the n-sphere of radius p and center at q which is a point along

the inner normal direction at p such that dis\(p, q) = p.

Proof. Let M' = S(p, q, p). Then it is clear that M and M' are internally

tangent at p . Moreover, the second fundamental form of M' is j¡ times the

inner product on TPM which is larger than that of M by the choice of p.

Hence M' c Q by (1.1). This is true for all p £ M and 0 < p < ± .   Q.E.D.

Intuitively, the lemma says that we can roll a solid ball of any radius < ¿

along the inner boundary of M.

(1.4) Lemma.  S(p, q, p) D.M = {p} for all p £ M and 0 < p < ^ .

Proof. From (1.3), we know that S(p, q, p) c Q. If there is another point

p' € S(p, q, p) n M, then dist(p, q) = dist(//, q) = p . Choose any point q'



strictly convex domains 2131

Figure 1

along the ray pq such that dist(p, q') = p' and p < p' < £ . Again, by (1.1),

we have S(p, q', p') c Q. Let q" be the point such that qq" ±p'q' as Figure

1 shows.
Then

dist(>, q') = dist(p, ?) + dist(fl, q') = dist(/>', q) + dist(#, $')

> distty, p") + dist(i", ?') = dist(p', q').

This implies that dist(/?', #') < p'. Therefore, S(p, q', //') cannot stay inside

Q which contradicts (1.3).   Q.E.D.

(1.5) Corollary. No two normals through M intersect in T(p); i.e. exp is

injective on T(p).

Proof. Suppose that vp and vp< are two normals through p and p', respec-

tively. If vpnvp> = {q} with dist(p, q) = p', dist(//, q) = p" and p', p" < p,
then we have three cases:

(i) p' > p" . This implies that S(p, q, p') <£ Q^

(ii) p' < p" . This implies that S(p', q, p") £Q.
(iii) p' — p" . This implies that S(p, q, p')nM contains at least two points.

(i) and (ii) contradict (1.3) and (iii) is also impossible by (1.4). Therefore,

(1.5) is proved.   Q.E.D.

To complete the proof of (1.2), we need the comparison theorem of E. Rauch

[13, p. 350]. For hypersurfaces in R"+1, we can simply formulate it as follows.

Let M be a smooth compact hypersurface in R"+1 , p £ M, y(t) a geodesic

in R"+1 parametrized by arc length with domain the interval [0,b], initial

point p and initial vector y(0) = -v(p), where v is the unit outward normal.

Let IIj,(0) be the second fundamental form of M in the direction y(0). Note

that this is different from our previous conventions by a sign. Assume that we

have another such setup M', p', y', v', II>.<(0) with domain of / the interval

[0,6]. Under these assumptions, we can state the comparison theorem of
Rauch as follows.

(1.6) Theorem (E. Rauch). Assume that the minimum eigenvalue of lly(o) ú

larger than the maximum eigenvalue of IIj>(0) ■ If there are no focal points on y',

then there are no focal points on y.
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In our application, M will be dQ and M' is the «-sphere with radius j ,

b = p. We adopt the previous notations. Then there are no focal points along

y' since p < ^ . Moreover, the minimum eigenvalue of IIj,(0) is ~K by the

definition of K and the eigenvalue of Ily<(0) is — ¿ . Obviously, -K > -i by

the choice of p. Therefore (1.6) implies that there are no focal points along

y. Since y can be arbitrary, we conclude that dexp is never singular on T(p)

which follows from the definition of focal point [1, p. 224]. We have therefore

proved:

(1.7) Theorem,  dexp is never singular in T(p).

Finally, the proof of (1.2) is an obvious combination of (1.5) and (1.7).

The following is an immediate consequence of (1.7).

(1.8) Corollary. Let y(s) be a geodesic through y(0) = p £ M with y(0) £
(TpM)1-. Then the focal points of M occur after y(p).

Now, we are in position to exhibit a defining function of Q. First, we define

a continuous function on R"+I as follows.

/ -dist(x,M)   ifxeQ,
d(x) = <

v  ;     I dist(x, M)       ifx^Q.

Definition.  Ô is called the signed distance function of Q.

(1.9) Proposition,  ô is smooth in T(p).

Proof. Define a function 8 on T(p) by 8(x, tv(x)) — t. Then 8 is obviously

smooth. Since exp-1 is well defined on T(p) by (1.2) and it is clear that

a = 8 o exp-1,

s    ■ +U "TV     \ r-i C T-»ö is smooth on T(p).   Q.E.D.

(1.10) Proposition.   || grad<5(jc)|| = 1 for all x £ T(p).

Proof. This follows from the exponential map preserving distance in the radial

direction and || gradö || = 1 .   Q.E.D.

So far, we have obtained a defining function Ô for Q by the very definition

of ô and (1.10) except that ô is not smooth on the whole R"+1 . But, for our

later applications, we can extend ô smoothly to R"+1 in an arbitrary way as

long as it is a defining function and coincides with ô in a small neighborhood

of T(p). We still use ô to denote such an extension.
In order that ô be useful, we have to compute the Hessian of S .

Definition. The Hessian of a real-valued, smooth function / on R"+1  is, by

definition,

D2f(X,Y)=X(Yf)-(DxY)f
for all X, Y £Rn+x.

It is well known that D2f is a symmetric bilinear form on R"+1 . Moreover,

if ex, ... , e„+x is an orthonormal basis of R"+1, then the eigenvalues of the

matrix

Hf(x) = [D2f(e¡,ej)]

are independent of the choice of ex, ... , e„+x at x .
Now, we can compute the eigenvalues of H$ in terms of the principal cur-

vatures of M = dQ. Recall that p < ¿ . We have
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(1.11) Theorem. Let xq £ T(p) and yo be the unique point in M such that

ô(xo) = - dist(xo, yo) • Then, relative to a suitable orthonormal basis in the

tangent space to yo, we have

Hô(xo)

L

Kx(y0)

I + Kx(y0)S(xo)
0

Kn(yo)

I + Kn(y0)ô(x0)

where Kx, ... , Kn are the principal curvatures of M at yo.

Proof. The proof can be found in [3, p. 383]. The only difference is that we

have defined p in terms of the principal curvatures of M.   Q.E.D.

Remark. If xq £ M, then

-Kx(x0) 0

Hs(xo) =
0 Kn(Xo)

OJ

is nothing but the second fundamental form of M at xo with respect to the

principal directions. In general, H¿(xo) is the second fundamental form at

Xq of the hypersurface defined by ö(x) + e = 0, where 0 < e < p and e =

dist(xo, M).
In view of (1.11), the Hessian of ô degenerates in one direction. However,

we can easily modify ô so that the resulting function has positive definite Hes-

sian everywhere on T(p). Define

p(x) = ^ + S(x)
i2

Z?2

Then we have the following basic properties about p

(1.12)   Proposition.
(1) p is a smooth defining function for Q.

(2) dp(x) = 2[±+â(x)]dô(x).

(3) 2[i - p] < \\dp(x)\\ < 2 - £ for all x£ T(p).
(4) p is a strictly convex function near T(p);i.e., Hp(x) is positive definite

everywhere on T(p). In fact,

Hp(x) = 2 — + ô(x) ) Hs(x) + dô(x) ® dâ(x)

(5) For x £ T(p) and £, £ R"+1, we have

K
-P <-//„(*)(£, £)<||£|f ■

Proof. It suffices to prove (4) and (5) since the remaining parts are obvious.
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From (1.11), for x £ T(p), we have

*i00
l+Kx(y)ô(x)

Hs(x) =

0

K„(y)

l+K„(y)ô(x)
0

w.r.t. a suitable orthonormal basis {ex, ... , e„} of TyM, where y is the unique

point in M such that S(x) = - dist(x, y). An elementary computation gives

Hp(x) = 2 — + S(x) ) Hs(x) + dô(x) ® dô(x)

So, w.r.t. the basis {ex, ... , en , v}, we have

(± + ô(x))Kx(y)

l+Kx(y)ô(x)

0

Hs(x) =
(j¡+S(x))K„(y)

l+Kn(y)ô(x)

This proves (4).
For each i, we have

{^ + ö(x))Ki{y)      l+Kj(y)ô(x)

l+Ki(y)ô(x)   - l+K,(y)ô(x)
1

where we use K¡ < K in the inequality. So all the eigenvalues of Hp(x) are

bounded by 1. For the lower bound, we observe that, for all i,

1 + Ki(y)ô(x) < 1    on T(p).

Therefore,

(l + ô(x))Kj(y)
> ±+¿(x)\Ki(y)>k(±- ß

1 + Ki(y)ô(x)

This is true for all x £ T(p) and /. Moreover, k(j? - p) < ^ < 1 . Hence, the

lower bound for the eigenvalues is k(-^ - p). This implies (5).   Q.E.D.

Remark. So far, we always assume p < ^ . For later purposes, we will take p

to be of the form £ , where 0 < s < 1 and is fixed. Define m = ^ . Then (3)

and (5) of (1.12) give the following.

(1.13)   Corollary. For x £ T(p) and Ç £ R"+1, we have
(1) 2(1-S).i<||^(x)||<2.1.

(2) (1 -s)mU\\2 <\Hp(x)(^,Q<U\\2.

We have completed the construction of a defining function for Q and have
estimated its gradient and Hessian in terms of the maximum and minimum

eigenvalues of the second fundamental form of dQ.
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2. An application to the uniform estimate of the ö-problem

Let Q be a smooth, bounded strictly convex domain in C" , n>2, and

f(z) = J2fj(z)dzj£C^x)(Q),

i.e., a enclosed (0, l)-form which is defined and smooth near Q. From [2, 5],

Henkin's solution of d u = / on Q is given by

(Hnf)(z) = —¿— f M) A co'(n) A 0,(0
(2 i\ nw\n) 7öi2x[o,i]

ntV(n) Ja

for z e Í2, where

W(C) = ö?Cl A---Ai/Ç„,

1 = (r¡x, ... ,r¡n),    u = (ux, ... ,un),    v = (vx, ... , vn),

r\j = Xuj + (l- X)Vj,        X £ [0, 1], ; = 1, ... , «,

co''M = ¿(- ! V+1»7 dnxA---AdrjjA--Adn„,

y=i

M7 —  ir _ z|2 ' J — l , ■■■ , H,

-iöp(C) .    .

o(z,c) = ¿^(z,-o)
7-1

and satisfies

d(Haf)(z) = f(z) on Q,     ||flh/Hi~(n) < Cn||/|kcc(n).

The constant Cq depends, of course, on the domain only. However, the

explicit estimate of Crj in general seems impossible as we mention in §0. For a

strictly convex domain, (2.1) involves the first and second order derivatives of

p and we already have the estimates of dp(Q and HP(Q obtained in §1. So
we will be able to compute Cçi explicitly in terms of the geometric invariants

of Q. In fact, we have

(2.2) Theorem. Let Q be a bounded smooth strictly convex domain in C",

n > 2, f £ Cq3 !)(fl) and df =0 on Q. Then Henkin's solution defined in

(2.1) satisfies

l|tfn/IU~(n) < 7^-[CxRco2n-X + C2 vol(öQ) + C3u)2B-3]||/IU-(n) >
CXC02n-X

where C, = Cx(n, K), C2 = C2(n, s, R,k, K), C3 = C3(n,s,k,K), 0 <
s < I, R = diameter ofQ, aj2«-i = voK^2""1), w2«-3 = voltS2"-3), k and
K are the minimum and maximum principal curvatures of dQ, respectively.

The complete proof of (2.2) and the explicit expressions of Cx, C2 and Cj

can be found in [2].  Here, we only sketch its main idea: To get the explicit
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Jdí

estimate, the main step is to estimate the Henkin kernel. With the help of the

explicit estimates of dp(x) and Hp(x) (1.13) and a series of calculations [2],
we end up with the following inequality:

l|/WllL~(n) < (2* + C(n, K) • /)||/||z.ao(n),

where R = dia(Q), K is the maximum principal curvature of dQ, C(n, K) is

a constant depending on n , K and

The next step is to analyze the integrand in I and get upper bounds for I

according to the position of z in Q. The difficult part is when z approaches

dQ. In this case, we are forced to consider a small ball B(z\ r) around z

where r = s2/l6nK and 0 < 5 < 1. Again following Henkin's ideas and (1.13),
we can define explicitly 2« real-valued functions tx, ... , t2„ on B(z; r) and

show that, with the choice of r, (tx, ... , t2n) defines a new coordinate system

on B(z; r). So, we can work on this new coordinate system and get an upper

bound for I, thereby completing the proof of (2.2).

By the Ascoli-Arzela theorem and the diagonalization process, we can remove

the condition of / being continuous on Q and obtain the following result.

(2.3) Theorem. Let Q be a bounded smooth strictly convex domain in C",

n > 2, f £ C{q !j(Q) and df = 0 on Q. Then there exists a function u £

C°°(Q) such that

du = f onQ   and   ||u||¿.oo(n) < CQ\\f\\L^(a),

where Cq is the constant defined in (2.2).

Finally, a remark we should make is that, in the case of strongly pseudocon-

vex domains, the proof of (2.3) must employ a stability result which is not so

obvious to obtain [9, p. 409 and the references there]. Roughly speaking, it says

that the constant Crj cannot change too much under smooth perturbation of

the domain, and hence the limit process can go through. In our case, not only

do we get an explicit constant, but we also prove the stability result in the case

of strictly convex domains.
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