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THE SPECTRUM OF THE HODGE LAPLACIAN
FOR A DEGENERATING FAMILY

OF HYPERBOLIC THREE MANIFOLDS

JOZEF DODZIUK AND JEFFREY McGOWAN

Abstract. We consider a sequence (M„)^=¡ of compact hyperbolic manifolds

converging to a complete hyperbolic manifold Mq with cusps. The Laplace

operator acting on the space of L2 differential forms on M0 has continuous

spectrum filling the half-line [0, oo). One expects therefore that the spectra

of this operator on M„ accumulate to produce the continuous spectrum of the

limiting manifold. We prove that this is the case and obtain a sharp estimate

of the rate of accumulation.

1.  INTRODUCTION

According to the cusp closing theorem of Thurston [10], every complete non-

compact three manifold Mo of constant sectional curvature -1 and of finite

volume is a limit of a sequence of compact hyperbolic manifolds Mk —► Mq .

Since Mq is not compact and its Laplacian has continuous spectrum [7], we

expect the eigenvalues of Mk to accumulate. A sharp estimate for the number

of eigenvalues of the Laplacian on functions in any interval [1, 1 + x2] was

given by Chavel and Dodziuk in [2]. For the Laplacian on forms of degree one

the accumulation rate near zero was estimated by McGowan in [8].

In this paper we extend the results of [2] and [8] to the Laplacian acting

on forms and an arbitrary interval [0, x2]. Since we are dealing with three

manifolds, the knowledge of the spectrum on functions and on forms of degree

one determines the spectrum for forms of all degrees. Moreover, since the

spectrum on functions is the same as the spectrum on exact forms of degree

one (except for the multiplicity of zero as the eigenvalue), it will suffice to study

the accumulation rate for the Laplacian restricted to coexact forms of degree

one. We define Nk(x) to be the number of the eigenvalues A of the Laplacian

restricted to coexact forms of degree one on Mk satisfying A < x2. Since the

spectrum on coexact one forms is the same as the spectrum of the Laplacian
restricted to exact two forms, Nk(x) can be defined equivalently as the number

of eigenvalues in the interval [0, x2] for the Laplacian on exact two forms.

Various estimates will be carried out either for exact two forms or for coexact

one forms depending on technical convenience.
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If Mo has q cusps, then M¿ will contain q simple, closed geodesies ylk, j =

1, ... , q, of lengths l(yJk) —> 0 and embedded tubular neighborhoods, referred

to as tubes, of yJk of radius RJk —> oc as k —► oo . The result of this paper is

that as k —> oo

(1.1) A^(x) = 2^£/?{ + C\(l).

7=1

Ox(\) stands for a bounded error whose magnitude depends on x .

The contents of the paper is as follows. In Section 2 we review the geo-

metric setting, introduce some notation, and compute the Dirichlet integral

(dco, dco) + (d*co, d*co) for a differential form of degree one on a tube. Sec-

tion 3 contains the proof of upper bounds for eigenvalues which yield a lower

bound Nk(x) >2f Y?j=\ ^i + Ox(I). The derivation of these bounds is reduced

to proving bounds for eigenvalues of certain ordinary differential equations. The

last three sections are devoted to lower bounds obtained using a general scheme

originally due to Cheeger (unpublished) and later used in [8] by the second au-

thor. We review some consequences of the min-max principle in Section 4 and

apply them to derive lower bounds for eigenvalues of the thick part of M in

Section 5. In the last section we reduce our problem to estimating eigenvalues

of the same uncoupled ordinary differential equations that appeared in Section

3 and we complete the proof of (1.1).

Throughout most of the paper we will assume that Mo has only one cusp so

that Mk contains only one short geodesic y = yk and, hence, only one tube
T = Ty of radius Rk ■ This will be done only to simplify the notation and will

not restrict the generality in any way. It will be clear from the proof that, in

the case of more than one cusp, the contributions coming from various tubes
are simply added. We will also omit the index k and write M, y, R, N for

Mk,yk,Rk, and Nk respectively.

2. The geometric setting

We consider compact hyperbolic manifolds of three dimensions, i.e. Rieman-

nian three manifolds of constant sectional curvature -1 and their degeneration.

A very readable survey of the geometry of such manifolds is contained in [5].

For a very thorough discussion of this topic see [10, Chapters 4, 5, 6].

We will use the following notation. For a Riemannian manifold M and an

interval /, M¡ — {p e M | i(p) e 1} , where i(p) denotes the injectivity radius

at p € M. It is consequence of the Kazhdan-Margulis theorem [6], [10] that

there exists a positive number p. such that, for every hyperbolic three manifold

M, the set M^ ^ is nonempty and connected. M(o, M] consists of finitely

many connected components which we will call tubes. They are metric tubular

neighborhoods of simple closed geodesies in M of length smaller than or equal

to 2ß. Let y be such a geodesic and let y be one of its lifts to the universal

covering M a H3. The corresponding tube T = Ty in M is obtained as

the quotient of a tubular neighborhood T of y by the cyclic group generated

by A = Ay, the deck transformation corresponding to y. We use the Fermi

coordinates (r, t, 8) in H3 based on f. r denotes the distance from y, t

is the arclength along y and 6 is the angular coordinate in the circle of unit
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vectors perpendicular to y at a point. To make a consistent choice of 6 we

choose and fix a parallel field of unit vectors perpendicular to y . In terms of

these coordinates the metric of H3 is expressed as

(2.1 ) ds2 = dr2 + cosh2 r dt2 + sinh2 rdd2,

and the deck transformation A is given by A(r, t, 6) = (r, t + l(y), 6 +a) for

some angle a. T = {p e M | d(p, y) < R}, and T — f/(Ay) is determined

up to isometry by R, a, and / = l(y). It is proved in Section 2 of [2] that

there exist universal constants Ci, c2 > 0 such that

ci < I sinh2 R < c2vol(M0).

In particular, if the volume is bounded and / approaches zero, R tends to

infinity, R~\log(7).
Recall that we are interested in a noncompact hyperbolic manifold Mo of

finite volume and a sequence of compact hyperbolic manifolds (Mj.)^ con-

verging to M0 [5, §3]. It is known [10] that vol(M^) < vol(M0).

If Mo has q cusps, we can find a positive number e < ¡u and a sequence

Sk \ 0 such that each Mk contains exactly q geodesies yk, y\, ... , yqk of
length less than or equal to e¿ and that for every k the injectivity radius at

every point of M,\ |J*=1 T, is greater than or equal to e. Let l(yJk) = l[ and

let R{ be the radius of T,. As above,
'If

A¿ = ¿log(ij+O(logvol(M0)).

Thus Mk contains exactly q tubes of radii tending to infinity when k -* oo .

These tubes become cusps in the limit. The boundary of a tube with the induced

metric is a flat torus. The tori F¿ = d T¡ are nondegenerate in the following

sense (cf. [2, Section 2] for the proof).

Lemma 2.2. There exists a universal constant k > 0 such that F¿ with its

induced metric has injectivity radius at every point greater than or equal to k .

Moreover vol(i^J) < c vol(M) for a constant c independent of k. Therefore the

tori F¿ form a relatively compact family.

We conclude this section by introducing a moving frame of one forms on the

tube T = Ty and using it for a computation of the Dirichlet integral. Consider

the forms dr, dt, d8 on M introduced above. It is clear that they descend

to well-defined forms on T. We denote the dual vector fields by -^, §-t, ^

respectively. Let

co = f dr + a,

where / is a function and a = gidt + g2dd a one form which does not

contain dr. We need to compute (dco, dco) + (d*co, d*co), where d* is the

formal adjoint of the exterior derivative and (a, ß) = fMa/\*ß is the L2 inner

product of forms a and ß . To do so we introduce the following notation. Let

Fr = {x 6 T | d(x, y) = r} be the torus at distance r from y. It is flat with

respect to the induced metric. We denoted dr, *r, Ar the exterior derivative

operator, the Hodge star operator and the Laplacian on Fr with its induced
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metric. In addition, set d* = û and let ûr be the adjoint of the exterior

derivative dr of Fr. A straightforward calculation shows that

da
dco = drf A dr + dr A — + dra,

J dr

*co = /sinh r cosh rdt Add + *ra A dr,

g
d *co = —(f sinh r cosh r) dr Adt A dd + dr *r a Adr.

or

Introduce the differential operator

Clearly, L is the formal adjoint of -d/dr with respect to the inner product

in L2 (sinh r cosh ruf r). Using the formulae above and the fact that ûrß =

- *r dr *r ß for a form of degree one on Fr we obtain the following expression

for the Dirichlet integral.

(2.3)

(dco, dco) + (ùto, ûco) = (Lf, Lf) + (j^ , ^ + (drf, drf)

+ (dra,dra) + (ûra, Va) - 2 (drf, ^\ - 2(Lf, ûra).

We remark that in an application of this formula the last two terms on the

second line will cancel, since, for forms satisfying appropriate boundary condi-

tions, the boundary terms in integration by parts with respect to r will vanish.

3. Upper bounds

Let 0 < v\ < v2 < ■ ■ ■ —> oo be the sequence of eigenvalues of the Laplacian

on M = Mk restricted to coexact forms of degree one. We wish to derive upper

bounds for v}■, j — 1, 2, ... . Consider the space % of C°° forms of degree

one on M with supports contained in the set {x e T \ 1 < d(x, y) < R)

whose coefficients in terms of the orthonormal frame dr, dt, dd depend only

on r, and which are coexact. By Courant's min-max principle the eigenvalues

Vj are smaller than or equal to the critical values of the Rayleigh-Ritz quotient

(Aw, co)/(co, co) restricted to I?. Every form co £ % can be written as co =

f(r) dr+gi (r) dt+g2(r) dd . Since co is assumed to be coexact, its inner product

with the exterior derivative of an arbitrary function u has to vanish. Taking

the inner product with du and integrating by parts we see that f(r) has to be

constant and hence equal to zero, gi and g2 vanish outside the interval [ 1, R]

and satisfy

/R pR
gi(r)tanhrdr = 0,      /   g2(r)cothrdr = 0

since gi(r)tanhr and g2(r)cothr are /--derivatives by coexactness.

Thus for a form co e f we have (Aco, co) = (dco, dco) and

/R pR

(g[)2 t&nb rdr + 2nl(y) I   (g'2)2 cothr dr,

¡■R pR
(co, co) = 2nl(y)       g2tanhrdr + 2nl(y)       g\ cothr dr.
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Therefore the critical values of (Aco, co) on f are the union of sets of critical

values of the two Rayleigh-Ritz quotients defined below.

¡i gftanhrdr

[R(e!.)2cothrdr
(3.2) ^2to)=jiff2 cort .

J1 gfcoth rar

where the prime denotes differentiation with respect to r.

Integrating by parts in the numerator of ¿%i we see that the critical values

of ¿%i(gi) are the eigenvalues of the Sturm-Liouville problem

_tänh7(gl' tanhr)' = ß8x '     8x^ = 8i(R) = 0.

The substitution gl(r) - w(r)tanh_1/2r transforms this into

„        l+4sinh2r ...
-w-s-¿-u = pu,     u(l) = u(R) = 0.

4 sinh rcosh r

The potential (1 + 4sinh2 r)(4sinh2 rcosh2 r)_1 is integrable at infinity. By [2,

Theorem 4.1 ], the number Ki (x) of eigenvalues of this problem below the level

x2 satisfies Kx(x) = ^^^ + Ox(\) = ^f + Ox(\). Similar analysis for 3l2(x)

yields K2(x) = ^ + 0^(1), where K2(x) is the number of critical values of

âl2 below the level x2. Thus the total number of critical values ßj of ¿%i and

^2 smaller than x2 is equal to =^ + Ox(\). Since i/; < //; for all j, we see

that

(3.3) jV(x)>—-r-Qc(l).
7T

4.  HODGE THEORY AND MIN-MAX PRINCIPLE

We will have to consider manifolds with mildly singular boundaries. The

worst case will be an intersection of a number of convex sets with smooth

boundaries in H3. The Riemannian metric in every case will be the^ restriction

of a C°° metric on the ambient manifold. For such a manifold M we define

the Laplacian A = A^ on forms of degree p as an unbounded operator on the

space L2AP(M) of square integrable forms of degree p on M — M\dM. Let

AP(M) denote the space of smooth forms of degree p on M and let d and

ûc be the exterior derivative and its formal adjoint with domains

dom(d) = {coe A"(M) | dco e L2AP(M)\,

dom(#c) = {co e AP(M) \ supp(&>) is compact}.

Let d and f}c be the L2 closures of d and ûc respectively and define

AN = d o ûc + ûc o d

with the usual conventions about domains. If M has smooth boundary and co

is smooth on M, then co e dom(A/v) if and only if co satisfies the absolute

boundary conditions

(4.1 ) COnorm = 0 ,       a&Jnorm = 0
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on dM. Therefore we will say that co satisfies the absolute boundary condi-

tions if co e dom(A/v). To simplify the notation we will write A, d ,û for

AN,vo\d, ûc respectively. It will also be assumed implicitly that a form to

which an operator is applied is in the domain of this operator. For example, if

we say that a form co is an eigenform of A, we mean that co is an eigenform

and satisfies the absolute boundary conditions.

For manifolds under consideration (cf. [3], [4]) the Laplacian A is selfadjoint

and has pure point spectrum. Moreover, all familiar results of Hodge theory

hold. In particular, if k > 0 is an eigenvalue of A and 4> € AP(M) is the

corresponding eigenform, then

4>=j(d&<f> + ûd<j>),

where the two summands are orthogonal in L2AP(M) and are themselves eigen-

forms with eigenvalue k. Thus the A-eigenspace Ep (k) splits into orthogonal

direct sum
Ep(k) = Ep(k)®Ep(k)

where Epd(k) and Ep6(k)  denote spaces of all exact and coexact eigenforms

belonging to the eigenvalue k respectively.

For k > 0 define T: Ep(k) -+ Ep~x(k) by

T<f> = jû<p.

It is very easy to check that d o Tcf> = <fi, T o dy = y/ and that (T<f>, T<j>) =
k~x(cj>, <t>). In particular, T extends to a bounded operator defined on the L2

closure of the space of exact />forms and Tcp — y/ is the unique coexact form

on M satisfying dyi = </5
Let <j)i, (f)2, ... be a complete orthonormal set of exact eigenforms of degree

p and let 0 < ki < k2 < ■ ■ ■ be corresponding eigenvalues. Clearly, y/¡ =

k\' Tcpi is a complete orthonormal set in the space of coexact forms of degree

p - 1. Set UPI = span{0i, ... , <73,}. Our lower bounds for eigenvalues will

follow from the following simple consequences of the min-max principle.

Lemma 4.2. The eigenvalues k¡ are given by

sup{y^\<t>eS?;\{0},neAp-x(M),dn = <t>y

Proof. Let y/ = T<f) for </> = Y,aj4>j ■ Then cj) — dy/ and

(<t>,4>) _      T.a)
-IT-

Since k¡ = maxj kj, we see that

(¥,¥)      £Vö2

k¡ — sup ' ^\{0}}
ÁV, ¥)

Now observe that if <j> = dn , then r\ — i// + a for some closed form a . This

follows from the Hodge decomposition. Thus, for a fixed cf>,

(V,V) Ii",")
This finishes the proof.    D
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The following is a useful reformation of the lemma. If <t> € ^¡\{0}, dn = <¡>

and (<p, (f)) > c(n, n), then k, > c.
Another simple observation will be used repeatedly in the sequel ffi is empty

by convention).

Lemma 4.3. Suppose <p is an exact form perpendicular to ^m . Then

(4>, <i>) >km+i(y/, y/)

where y/ = T<j>.

Proof. By assumption (p = J2i>m+l ai<f>¡. Therefore, since T<p\ = k~xu(j>¡,

(y/,W)=  £ k-xa2<k-x+i(<f>,4>).   o

i>m+\

Our scheme for proving lower bounds will be as follows. We will start with

4> e S?¡ and will attempt to construct a form y/ with dyj = (j> in such a way

that we can estimate (^, (^) in terms of (<p, (p). In order to carry out the

construction and to be able to obtain good estimates we will have to impose
certain linear conditions on <j>. If /' = dim &[ is greater than the number C

of conditions imposed, then &[ will contain a nonzero form satisfying these

conditions. Thus, using Lemma 4.2 applied with i * C + 1, we obtain a lower

bound for kc+i.

5. The thick part of M

From now on M is as in the introduction; i.e. M = Mk for some pos-

itive integer k, where the compact hyperbolic manifolds Mk converge to a

finite volume manifold of sectional curvature identically equal to -1 with one

cusp. We use the method of [8] to estimate the number of eigenvalues of the

thick part of M. Recall that there exists a number e > 0 such that the in-

jectivity radius at every point of the complement of the tube is greater than or

equal to e; i.e. M\T = M(îj0O). For technical reasons we consider M' —

M\{p e T | d(p, dT) > rQ} instead of M[£>00). We recall from Section 4 that
every eigenform on a manifold with boundary, in particular on M', is assumed

to satisfy the boundary conditions (4.1).

The main result of this section is the following proposition.

Proposition 5.1. For fixed y > 0 and ro> 5e, the number of eigenvalues Uj on

exact forms on M' of degree two satisfying v¡ < y2 is bounded by a constant

a = a(y, r0). The constant is independent of k, i.e. does not depend on where

M occurs in the sequence (M^)^,.

Proof. We use the Cech-de Rham formalism as in [1, Chapter 2] and [8]. In

particular, we follow the notation of [ 1 ]. First, we have to construct a covering of

M' by open sets of known geometry. Choose a small positive number a < e/3.

We treat a as a parameter whose value will be specified later. In addition,

we adopt the convention that all constants ck , with k a positive integer, are

universal, i.e. do not depend on a , r0 or M .

Choose a maximal set & of points in M[e>00) with pairwise distances greater

than or equal to a .  The balls B(p, a/2), p e & , are disjoint and the balls
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PÎ(P) = {

B(p, a) cover M[£oo). We will work with the covering ^ of M' consisting

of all balls B(p, 3a), p e &>, and the set S = {p e T | d(p, dT) < r0}.
Write ^ = {Ui}i€i, where / is a finite index set. The cardinality of / can

be estimated in terms of a only since vol(M) < vol (Mb) and the balls of

radius a/2 centered at p e & are disjoint. In addition, the degree of overlap

m&xpeM'#{i e / I P e [/,-} has a universal bound independent of a. We

will also need a partition of unity {/?,} subordinate to this covering with the

property that

(5.2) \\dpiU < £.
a

Such a partition of unity can be constructed as follows. If U¡ = B(p¡, a) is a

ball, define the function p~¡ as follows.

Í 1 if peB(Pi, 2a);

p-(p)=¡   i_rffr,i>(tt,2°))    ifpG B(Pl,3a)\B(Pi,2a);

y 0 otherwise.

If Ui = S, then

1 ifpeSand¿(/7,dr)>a;

^S ifpe5and¿(/7,or)<a;

0 on M'\S.

It is clear that the supports of p¡ form a locally finite family and p¡ = ^7/ £, /5?

have the required properties.

In the course of the argument we will need information about eigenvalues for

the Laplacian on exact forms of degree two on the sets U¡, and eigenvalues for

exact forms of degree one on the intersections U¡j = U¡ n Uj. We first note

that if Ui is a ball of radius 3q in our covering, then the smallest eigenvalue

ft of the Laplacian on exact forms of degree two satisfies

5.3 ß>^
a¿

This can be seen, for example, by replacing the metric on B(p, 3a) by the

Euclidean metric on a Euclidean ball of equal radius (cf. [8, Lemma 2.2]) for

which the estimate follows by scaling. On the other hand, the shell S is quasi-

isometric (with constants controlling quasi-isometry depending only on /-n) to

T x [0, ro]. This is a consequence of (2.1 ) and of Lemma 2.2. Thus the number

of eigenvalues of S below the level z2 can be bounded by a constant depending

only on z and r0 (cf. [8, Lemma 2.2]).
Next consider double intersections U¡j. The eigenvalues on exact forms

of degree one are the same as the positive eigenvalues on functions satisfying

Neumann boundary conditions. Note that all £/, j are convex in the hyper-

bolic metric. Working in the upper half-space model of the hyperbolic space
and replacing the hyperbolic metric by the flat metric associated to standard

coordinates, we can assume that U¡, j are convex with respect to the Euclidean

metric and that the two metrics are quasi-isometric (with constants indepen-

dent of r0, a and M) (cf. Section 4.1 of [8]). It then follows from [9] that the

smallest positive eigenvalue ß of the Laplacian on U¡, / satisfies

c3
(5.4) p. > —j.
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After these preliminaries we continue the proof. Take <f> e &m . Since </> is

exact on M, its restriction <f>¡ to every U¡ is exact and there exists a unique

coexact form y/¡ on U¡ satisfying dy/¡ = 4>¡. If U¡ is a ball, we have, by

Lemma 4.3 and (5.3),

(5.5) (<pi, (j>i)Vi > %(y/i, Wi)u,,
aL

where (co, n)x denotes the inner product of forms on a manifold X.

In order to have the same inequality for U¡ = S we have to impose some

conditions on <f>. Namely, we have to require that <f>\U¡ = ¡p¡ be such that

y/j is orthogonal to all coexact eigenforms of S with eigenvalues smaller than

c2/a2 . As remarked above, the number of such eigenvalues of S is bounded

by a constant that depends only on a and r0 . In other words, after imposing

finitely many conditions, we can assume that (5.5) holds for every i.

The forms y/¡ do not define a global form on M'. Consider {y/¡} as a

Cech cochain. The obstruction to y/¡ 's being restrictions of globally defined
form is the coboundary S{y/¡} = {co¡j}, where co¡j = y/j - y/¡ on U¡j.

Clearly, dco¡j = dy/j - dy/¡ = cj>j - <f>¡■ = 0 on U¡j. Since all U¡j are
convex, cOij — dg¡tJ for a unique function g¡j perpendicular to constants in

L2(U¡ j). In view of (5.4)

(5-6) (co.j, Q)i,j)ViJ > ^(gtj, gij)uu.

The Cech coboundary S{g¡j} = {h¡jk} = {gj,k - g¡,k + Si,j} is not neces-
sarily equal to zero. However, d{h¡jk} = dó{g¡j} = S{dg¡j} = ô{cOij} =

ôô{y/i} = 0. Therefore, since all triple intersections C//j,¿ are convex, h¡jtk
are constant. Note that these constants are uniquely determined by the origi-

nal form (j>. We impose yet another set of conditions (equal in number to the

number of nonempty triple intersections) requiring that h¡jtk be zero for all

i, j, k such that U¡ DUjCiUk ^ 0 . The total number of conditions imposed so

far is finite and is determined by a and r$ only. We now use formula (8.6) of

[1] to modify y/¡. Define t, = £fc Pkgk,i and n¡■■ = y/ - dx¡. The coboundary
<5{t,} = {gij} (cf. [1, Proposition 8.5]) so that

Hli} = ¿{Vi} - Sd{x¡} = {COij} - {dgiJ} = 0.

This is equivalent to saying that the family {//,} consists of restrictions of a

globally defined form n such that dn = <j>.
It remains to estimate the L2 norm of n . Clearly,

(1, 1)m' <J2("i> "&)»!
«

and,for a fixed i,

Ii « r< + £ dpi8k J + llPk^k,«•
k k

Both summations above extend over the set of those indices k for which £/,- n

JJk z/z 0. We observed above that the number of such indices can be estimated

from above independently of a and ro . This observation combined with (5.2)
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and (5.6) yields

2

U, k k

(5.7) J2dPkgk,i
k

In addition,

(5.8) J^P^k
k

On the other hand, co¡j = y/j - y/¡ on Uij so that

(5-9) \\o)k,Á\ukJ< 2(||^||^ + \\y/k\\uk)-

(5.5), (5.7), (5.8) and (5.9) together yield the following estimate.

U¡ k

cè\\i\\2<U\\
2

At this point we choose the value for a so that ^ > y2, where y is as in the

statement of the proposition.
The estimate above holds provided the form <j> satisfies all the conditions

imposed in the course of the argument. The number a = a(y, ro) of these

conditions is finite and after taking m = a + 1 we can find a nonzero form in

(j) € &~m which satisfies all the conditions. The proposition now follows from

Lemma 4.2.   D

6. Analysis on the tube

In this section we do analysis on the tube to complete the proof of (1.1).

Consider the covering of M consisting of two open sets Ui = M'\dM' and

U2 = {xe T\d(x,dT)>r0- 1}.
Take an exact form <f> on M whose restriction <f>\ to Ui is orthogonal to

finite-dimensional space spanned by exact eigenforms of degree two on M' with

eigenvalues less than or equal to y2. The values of y and ro will be specified

below. We will say that a form co on the tube has coefficients that depend only

on the r variable, r = d(x, y), if and only if the coefficients with respect to

the frame dr, dt, dd depend only on r. For every r, 0 < r < R, we define

Fr to be the flat torus at distance r from y. Every differential form co on a

subset {x e T \ ri < d(x, y) < r2) of T can be decomposed as follows.

(6.1) CO — CO + CO,

where coefficients of W depend only on r and the coefficients of W are per-

pendicular in L2 to constants on every distance torus Fr. To is computed by

averaging the coefficients of co on each torus Fr. It follows that the operation

co «—>■ ZtJ, and therefore co »-> œ, commute with the Hodge star operator, exterior

derivative, its adjoint and the Laplacian. In addition,

(cö,W)Fr=0

for all r.
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By assumption and Lemma 4.3 there exists a unique coexact form of degree

one y/i on Ui such that

(6.2) dy/i=4>i=4>\Ui    and   y2(Vi, y/i)u, < (4>i, <t>i)ur

Similarly, there exists a unique coexact form y/2 such that dy/2 = (f)2 = d(j)\U2.

We will require certain additional properties of ^i and y/2 which will amount

to more conditions on <f>. Decompose 4>¡, y/¡, i = 1, 2, as in (6.1). We will

use the method of Section 5 to splice y/\ with Wî, but we have to be more

careful when treating <j>.

Consider y¡{ and y¡i first. Let h(d) be the function defined as follows.

f 0 if d < \ ;

h(d) = { 2(d-\)   ifi<x<|;

1 if d > | ;

and p(p) = h(d(p, dT) - ro + 1). ~yTi-~y/2 is closed on IJi n U2 and we require

it to be exact. Since Ui n U2 retractsjo a torus, this amounts to two additional

linear conditions on 0. Thus ~yTi - y/i = dg and we can assume without loss of

generality that g = ~g is a function perpendicular to constants on every torus

Fr c U\ n U2. We then define

1\ =T\-d(pg)

on Ui n T and
n2=Wi-d((\ - p)g)

on U2 . One checks that n¡ = r¡2 on Ui n U2 so that we obtain a form ?/ on

r such that n\U¡C\T = r¡i. As above we need to estimate the L2 norm of n .

To do this we use the following lemma.

Lemma 6.3. We have the following inequalities.

UW-WlfW: >"(R-ro+ l)ll£llü,nt/2

=   7 -   7

\\4>2\\l2>i/(R-ro+l)\m\\u2,

where u(r) is the first positive eigenvalue of the Laplacian on functions on the

torus Fr .

Note that the behavior of the function v(r) is described in Lemma 3.9 of

[2]. v(r) is decreasing and

(6.4) v(r) > c7e2{R-r).

In the argument below we will fix the value of r0 so that v(R - ro + 1) >

C7^2(r0-i) > yi ^Ye defej- ^e proof of the lemma and proceed with the estimate.

On T\U2,n = y/[ and we have good control over the norm of y/i , and hence

of yTi , by assumption. On the overlap £A n U2

1 = m = W+ g dp - (1 - p)W\- Wl),

and
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on U2\Ui . Thus

W\2UinUl < cs(\m\\2u2 + llWllty, + \\g\\uinu2)-

Using this, the first inequality in Lemma 6.3 and (6.4) we see that

\\i\\2utnu2 < ^(fiwni, + \m\\2v2)-

Recall that we have fixed r0 so that u(R-r0+ 1) > y2. We combine the second
inequality in Lemma 6.3 and (6.2) to get

C9y2H,|lU2<lK + llllli,
This, together with (6.5), implies that

(6.6) Cioy2\\l\\2U2 < H0IIÍ, + \\Wu2 < 2II0IIÍ, + IllrW

To complete the proof of the estimate above we need to prove Lemma 6.3.

ProofofLemma 6.3. Since yï\-~y72 = dg and g is perpendicular to constants

on every torus Fr, the first inequality follows as in [2, (3.8)]. The point here is

that the torus Fr shrinks at a definite rate as it recedes from the boundary of

the tube, i.e. as r decreases.

To prove the second inequality, recall that y/i is coexact and 4>2 = dy/i.

In particular, the normal component of y/i on the boundary of U2 vanishes.

Therefore, if we write ~y/i as y/i = fdr + a, / = 0 on dU2. We now use (2.3)

to estimate (dy/i, dy/i)u2. The last two terms in (2.3) cancel, and all other

terms are nonnegative. Integration by parts along Fr shows that

(^,^)uI = (dfi,dfi)u2
> (drf, drf)U2 + (dra, dra)U2 + (Wa,-dra)U2

= (ArWi,f2z)U2.

Since Fr is a two-dimensional surface, the nonzero eigenvalues for forms and

functions on it are equal, i.e. the first positive eigenvalue of the Laplacian Ar

on forms of degree one on Fr is equal to v(r). Since v(r) is increasing (cf.

[2, Lemma 3.9]), (Ar^, Wi)u2 > v(R - r0 + 1)(?2, Wt)u2 which proves the
lemma.   D

Finally, we construct a form k on U2 with coefficients depending only on

r which is an extension of ~yl\ to C2 and satisfies dx = 4>. The forms y/{, <t3

can be written on Ui n T as follows.

(6.7) -yTi= fdr + bidt + b2dd,

(6.8) ~4> = axdr Adt + a2dr Add.

Therefore

(6.9) b'i = a¡

on U\ n T, i.e. for r e [R - r0, r].
We extend b¡ to the interval [0, R - r0] so that these equations continue to

hold. The extension is given for r > 0 by

/R-r0 at(p)dp.
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We then set

k m h(r)f(r) dr + bx(r) dt + b2(r) dd

with a cut-off function h(r) equal to one for r < R - r0, equal to zero for
r>R-rQ+l and linear in [R-rQ+l, R-r0]. Obviously die = 4> on U2\y .
We have to check that k belongs to the domain of d, i.e. that it is in L2 and its
distributional derivative is equal to <\>. There is no difficulty with bi dt since it

is smooth on T\y and continuous on T. However \\dd\\00 = 0(\/r) for small
r. If we require that

rR-r0

2
1—     ^V j

(6.10) /        a2(p)dp = b2(R-r0),
Jo

then b2(r) - O(r) for small r so that b2(r)dd is bounded and has bounded

exterior derivative a2 dr A dd on  T\y.   This is sufficient regularity for our

purposes. We add (6.10) to our list of conditions on <fi.

We still need to estimate the L2 norm of k , i.e.

2nl /       b\tanhpdp + 2nl /       b2coth pdp
Jo Jo

in terms of the L2 norm of dK = 4>, i.e.

fR-ro fR-r0
2nl (b[)2 tanh p dp+ 2n I /       (b'2)2cothpdp.

Jo Jo

What we need are the following inequalities.

(6.11, jrw«*><p>x

(6,2, CapÜSfíí^,
L    ° b2 coth p dpJO 2 r    r

where x is the parameter in (1.1). Note that the expressions on the left-hand

sides are the Rayleigh-Ritz quotients (3.1) and (3.2).

This of course can be true only after imposing additional conditions. To see

what kind and how many conditions are needed we investigate the quadratic

forms defined by the numerators of the Rayleigh-Ritz quotients above. Formal

integration by parts yields two ordinary differential operators

Liu-—(u'tanhr)',     L2v —-—(v'cothr)'
tanhr cothr

already considered in Section 3. We will investigate the spectra of these op-

erators for appropriate boundary conditions. To simplify matters we impose

two additional conditions on 4> ■ Namely we require that b¡(R - ro) = 0 for
/ = 1, 2. r = 0 is a regular singular point for both L¡ and L2 . We consider

the two operators separately. Classical analysis (Frobenius series) shows that

L\ is in the limit circle case, i.e. the equation Liu = 0 has two linearly inde-

pendent solutions which are in L2 (tanh rdr). One of these is bounded near

r = 0 while the other has a logarithmic singularity. Since in our case bi is

bounded, we study the eigenvalue problem

(6.13) Lxu = vu,     u(R-r0) = 0,     u(r) = 0(1) near 0.
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The second operator turns out to be in the limit point case, i.e. up to a

multiplicative factor there is only one L2(coth rdr) solution of the equation

L2v = 0. All L2 solutions are 0(r2) at zero. Thus, the appropriate eigenvalue

problem for L2 is

(6.14) L2v = ßv,    v(R-r0) = 0,    v = 0(r2) near 0.

We use the substitutions u = tanh~x l2 rf for Li and v - coth~1/2rg for L2

to transform the two Sturm-Liouville problems to a standard form. The two

problems become

„     l+4sinh2r
(/r.,. -f-■ ,2/0 ,   f=vf,     f(R-r0) = 0,
(6.15) sinh (2r)

/=0(r'/2)nearO,

and

4 cosh2 r - 1

i2(2r)   '

g = 0(r3/2) nearO,

,, ,,, -g' + ^—r2-^—g = ßg,    g(R-r0) = 0,
(6.16) sinh2(2r)

respectively.

The first of these problems has discrete spectrum since according to [ 11, 5.12]

this is true for any choice of selfadjoint boundary conditions in the limit circle

case. The second problem has discrete spectrum as well since the potential

(4cosh2r- l)/sinh2(2r) tends to positive infinity at 0 (cf. [11, 5.15]). This
shows that the singular point at r = 0 causes no difficulties. In particular, each

of the two problems admits a complete orthonormal system of eigenfunctions

and all consequences of the min-max characterization of eigenvalues hold. For

example, it is easy to show using Dirichlet-Neumann bracketing that for large R

the number of eigenvalues of either problem in the interval [0, x2] differs by a

finite number bounded independently of R from the number of eigenvalues in

[0, x2] of the Dirichlet problem for the same operator on [1, R-ro]. Theorem

4.1 of [2] applies therefore to (6.15) and (6.16) so that the number of eigenvalues

below x2 for either problem is equal to xR/n + 0^(1).

Now, if the form cf> considered at the outset is such that the coefficients bi

and b2 determined by it are perpendicular in appropriate weighted L2 spaces to

all eigenfunctions with eigenvalues in [0, x2) of (6.13) and (6.14) respectively,

then both (6.11) and (6.12) hold. This follows from variational characterization

of the eigenvalues of the two Sturm-Liouville problems and is equivalent to

(6.17) x2(k, k)UAUi < (4>, 0)i/2\t/,.

We have thus constructed a form y/ of degree one on M which satisfies

dy/ — (f>. To recapitulate

i//\Ui\U2 = y/\,    y/\U2 = n + K.

By construction, n = r¡ and k = k . Since the summands in (6.1 ) are orthogonal

on every torus Fr, n and k are orthogonal to each other in L2AX(U2). Set

y = 2xmax{l, c1~01/'2}, where Cio is the constant appearing in (6.6). It follows

from (6.2) that

x2(y/\, V\)ut\U2 < \(<t>\ , 4>\)ur
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Similarly, (6.6) implies that

X2(l, l)u2 < {(H)u, +($,l>)u2\Vr

From the definition of k and (6.2) we obtain

, 1
Xl(K, /c)c/,nC/2 < ^(<t>, </>)[/,-

Adding the three inequalities above to (6.17) we get

x2(y/, >//)m < (4>, 4>)m-

The number of linear conditions C which we had to impose during the con-

struction was 2xR/n up to a bounded error which depends on x but not on

R. We apply Lemma 4.2 with m = C + 1 to conclude that kc+i > x2. This
proves that

x R
N(x)<2— + Ox(\)

K

which together with (3.3) yields (1.1).
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