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WHEN DO THE UPPER KURATOWSKI TOPOLOGY

(HOMEOMORPHICALLY, SCOTT TOPOLOGY)
AND THE CO-COMPACT TOPOLOGY COINCIDE?

SZYMON DOLECKI, GABRIELE H. GRECO, AND ALOJZY LECHICKI

Abstract. A topology is called consonant if the corresponding upper Kura-

towski topology on closed sets coincides with the co-compact topology, equiv-

alently if each Scott open set is compactly generated. It is proved that Cech-

complete topologies are consonant and that consonance is not preserved by

passage to G^-sets, quotient maps and finite products. However, in the class of

the regular spaces, the product of a consonant topology and of a locally compact

topology is consonant. The latter fact enables us to characterize the topologies

generated by some T-convergences.

1. Introduction

Let t be topology on a set X . A filter y on F(t) (the family of all T-closed

subsets of X) upper Kuratowski convergences to Aq e F(t) , if

[1.1) r\clr[\\A\cA

The limit limT. &~ is the set of all the elements F(t) to which <!?" converges

in the above sense. Accordingly, we have defined a convergence x* on F(t) .

Given a convergence ¿j on a set Y, a subset 38 of Y is ^-closed if for every

filter & on 38 (38 e &), limi y c 38. The family of all ¿¡-closed sets
generates a topology (induced by ¿J on Y) which we denote Fdj. In particular,

Ft* is the finest topology on F(t) for which Aq £ limr. y implies that every

T*-open set containing A0 belongs to !?. We call it the upper Kuratowski

topology (with respect to t) . We identify each topology with the corresponding

convergence: a filter converges to y if it contains every (open) neighborhood

of y. A convergence is said to be topological if it is equal to the topology it
induces.

The co-compact topology x° on F(t) has the family

(1.2) {A£F(x):Af)K = 0},
-
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where K ranges over t-compact subsets of X, for a base of open sets. It is

well known and easy to see that in general x* is finer than x°. Since t° is a

topology, Ft* is finer than x°.

We say that a topology x is consonant, if the corresponding upper Kuratowski

and co-compact topologies coincide (Tx* = x°) ; in the opposite case x is called
dissonant.

1.1. Theorem. Let x be a Hausdorff topology. The following assertions are

equivalent: (i) the convergence x* is topological; (ii) x* = x° ; (iii) x is locally
compact.

It is well known and straightforward that (iii) implies (ii). Of course, (ii)

entails (i). That (i) implies (iii) follows from the theory of continuous lattices.

In [18] D. Scott introduces the topology (later called the Scott topology) in-

duced on a complete lattice by the convergence

(1.3) **V7V*
Fi9r

He defines a continuous lattice as a complete lattice for which the above con-

vergence is topological. It follows that the complete lattice tfx of T-open sets

is continuous if and only if for every x and each U £ (fT(x), the set of x-

open sets that contain x, there is W £ (fT(x) such that each open cover of U

admits a finite subfamily that covers W. K. H. Hofmann and J. D. Lawson

[14] call such topologies x core-compact1 and show explicitly the above rela-

tionship ([5,16] for Hausdorff topologies). For Hausdorff spaces this condition

is tantamount to the local compactness of x.

In the lattice F(t) (considered with < equal to d) (1.3) amounts to the

upper Kuratowski convergence (1.1). Therefore F(t) is continuous if and only

if the upper Kuratowski convergence is topological. Consequently, Theorem 1.1

is a consequence of the just quoted results [18, 14, 5, 16].

A proof of Theorem 1.1 may be also deduced from those of the theorems by

G. Choquet [4] and E. Lowen-Colebunders [17] that characterize the topologic-

ity of the Kuratowski convergence (called sometimes the Kuratowski-Painlevé

convergence [23]). A filter &~ on F(t) Kuratowski converges to Ao £ F(t) ,

if, besides (1.1), for every x £ A0 and every neighbourhood Q of x, there

is F £ S1' such that Af) Q ^ 0 for each A e F. The latter condition com-

bined with that of convergence in the co-compact topology amounts to the Fell
topology [23].

This paper is devoted to the study of consonance. Primarily it explores phe-

nomena that are not embraced by Theorem 1.1 shedding light on the outskirts

of the theorem of Choquet and Lowen-Colebunders. Although we do not adopt

a lattice theoretic approach, our results may contribute to the knowledge of a

class of lattices broader than that of continuous lattices.

It turns out that r*-open sets may be characterized in terms of r-compact

families of sets. Denote cfT(A) = {Oec?T: A c 0} and cfT(sf) = (J„6V cfT(A).

A family sf =cfz(s/) is said to be compact if for every S ccfT,

(1.4) \J^es/^^(\3>\<œand\J^e^).

'Core-compact topologies have been called differently by different authors: hereditarily locally

compactoid in [10], semi-locally bounded by J. R. Isbell [16], quasi locally compact by A. S. Ward

[20], "condition C " by B. J. Day and G. M. Kelly [5].
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Such families are considered by Day and Kelly [5], J. R. Isbell [16] and,
stable under finite intersections, by P. Wilker [21]. It follows from [18] that a

subset of cfx is Scott open if and only if it is a T-compact family. For a family

& of subsets of X, we denote j% = {^\C7: G e S?} . Consequently a family

i/ C F(t) is open in the upper Kuratowski topology if and only if &c = cfx(&c)

and &C is T-compact (Theorem 3.1).

A family si =tfx(srf) is said to be compactly generated [21] whenever

(1.5) V    3 K£ÏÏx,cfx(K)csf ,
A€J&KCA

where Jfx stands for the set of all T-compact subsets of X.

In view of (1.2), & c F(t) is open in the co-compact topology if and only

if &c = tfx{f§c) and ^ is compactly generated.

Consequently, a topology x is consonant if and only if each t-compact family

srf with sf =tfx(stf) is compactly generated.
Many convergences on spaces of closed sets have been studied in the litera-

ture. The upper Kuratowski convergence and the co-compact topology have an

especially important place among them.

The upper Kuratowski convergence formalizes the concept of closedness of

multivalued functions that plays a fundamental role in stability questions of

analysis and optimization; on the other hand, the upper Kuratowski convergence

is the continuous convergence (with respect to the Sierpiñski topology), that is

the coarsest convergence that makes continuous the natural coupling between

points and continuous mappings. In this particular case one identifies each

subset A of X with a function / valued in Y = {0, 1} to the effect that

A = {x £ X: f(x) = 0} . Now, consider the Sierpiñski topology on Y = {0, 1}

(its open sets are 0, {0, 1} and {1}). Then continuous functions from X to

Y correspond to closed subsets of X and the resulting continuous convergence

is equal to the upper Kuratowski convergence.

The co-compact topology is an instance of uniform convergence on compact

sets whose role in functional analysis is well known to be fundamental. In fact,
with the Sierpiñski topology on Y = {0, 1} the compact-open topology on the

set of all continuous functions from X to Y becomes the co-compact topology.

Therefore, the problem of consonance is a special case of the following gen-

eral problem of the theory of continuous convergence and compact-open topolo-

gies: when is the compact-open topology the maximal "proper topology" on the

set of the continuous functions? Indeed, the topologization of the continuous

convergence is (almost by definition) the finest proper topology [2].
Our results provide a better understanding of T-convergence (another exam-

ple of continuous convergences), a theory conceived by E. De Giorgi and T.

Franzoni to cope with problems of calculus of variation [6], [7], of statistics

(Wijsman [22]) and of other areas of mathematics.

We shall see that Cech-complete topologies (e.g., completely metrizable

topologies, the Niemytzki plane) are consonant, but that consonance is not

hereditary with respect to C7¿ subspaces. However, consonance is hereditary

with respect to closed and also hereditary with respect to open subspaces. Con-

sonance turns out to be preserved neither by finite products nor by quotient

maps. Challenging questions are open: whether metric spaces are consonant

(for example, the set of rational numbers with the natural topology) or, more
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generally, whether regular A-topologies are consonant (for example, the Sorgen-

frey line). An example of a A-topology which is dissonant but not regular is the

radial topology of the plane (Section 5).

Studying consonance of topological spaces which are, a priori, either Haus-

dorff or completely regular does not make it easier to understand our results

and, certainly, does not simplify their proofs. Therefore, in the sequel we do

not assume any separation axioms for the underlying topologies.2 Consequently,

throughout this paper, compact sets are not assumed to be Hausdorff. There-

fore, all the compact sets (hence, not necessarily Hausdorff) take part in the

definition of co-compact topology; verify the consonance of the topology on the

real line generated by the sets of the form ] - oo, r[ to see the importance of

that assumption. All other topological notions which are not explicitly redefined

in this paper are the usual ones [12]. Thus regular spaces and locally compact

spaces are assumed to be Hausdorff and Cech-complete spaces are assumed to

be completely regular. However, we shall include occasional footnotes to clarify

of the role of axioms of separation.

2. Notions of compactness

As we have mentioned the topology Tx* may be characterized in terms of

t-compact families of sets. We shall first proceed to a review of some notions

related to compactness (see [5, 16, 19, 21] as well as [10] and its bibliographical

comments).

Let sé and 38 be families of subsets of X. We write sé #38 whenever,

for every A £ sé and B £38 , Af\B / 0 . This amounts to sé c 38* (and to

38 c sé*) where 38* = {H c X: H C\ B ¿ 0 for each B £38} is the grill of
38 [4].

A family 2 is x-compactoid (resp. x-compact) if, for every filter & on X

such that %#2 , adhT5? / 0 (resp. adhT^ e 2*), where adhTS? = f]G€S. clxG.
These notions reduce to those of the relative compactness of a set D (if x is

regular) and (resp.) to the compactness if we specialize 2 = {D}.3

Dually, 2 is a compactoid (resp. compact) family if and only if, for every

family S of open sets such that Uge^ Q = X (resp. Uq6^ Ö3Ö for some

D £ 2), there exists Do £ 2 and a finite subfamily of S, say Qx, ... , Qn ,

such that lj"=i Qn ? Do .
For compactoid filters on regular topological spaces, we recall the following

proposition [10].

2.1. Proposition. 4 A filter & is compactoid if and only if adh 2? is compact
and every open set O D adh & belongs to &.

It is very important to remember that compact families need not be filters;

for example every family of compact sets is a compact family.

It is clear that a family 2 is compact if and only if tfx(2) is compact. For

2Of course, the resulting Kuratowski and co-compact topologies are not Hausdorff, except for

X = 0.

3Compact filters appear in [10], compact filters of open sets in [21] by P. Wilker and compact

families of open sets in [5, 16] under different names; compactoid filters may be found under a

different name in [19] by F. Topsoe as well as in [ 10] and in some earlier papers of the authors.

4The proposition holds also in the case where the required regularity does not include the Haus-

dorff property.
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compact filters on Hausdorff topological spaces, we have a useful characteriza-

tion.

2.2. Proposition. A filter 9 is compact if and only if j/ is compactoid and

adh^ = (~)GGg.G. In particular, if a filter & is compact, then adh,f is compact

and c?(adh&) = cf(g').5

3. Criterion for consonance

Both the upper Kuratowski convergence and the co-compact topology may

be described with the aid of reduced filters. If & is a filter on 2X (or on

some subset of 2X), then the reduced filter \^\ is the filter on X generated

by the family {\JA€FA: F e^}. Accordingly, A e limT. & if and only if A
is T-closed and adhT|J?~| c A . Moreover, A e limT° & if and only if, for each

compact set K disjoint from (the r-closed set) A, there exists H e \9"\ with
Hr\K = 0.

Although the following theorem is a consequence of a description of Scott

open sets [18, 5], we provide here an alternative proof. Note that this theorem

answers partially a question of R. Arens and J. Dugundji [2] concerning the char-

acterization of open sets of continuous convergences in terms of the underlying
topologies. For a given family sé of subsets of X, let séc = {Ac : A ese}.

3.1. Theorem. A subset sé of F(t) is open in the upper Kuratowski topology

Ft* ifand only if séc isa x-compact family such that cfx(séc) = séc.

Proof. Let sé be T*-open. Then séc is composed of T-open sets. Moreover if

A e sé and B is a T-closed set included in A, then B e sé . Consequently,

@xWc) = see • Suppose that séc is not T-compact. Then, there exists a filter

g'onl such that &#séc and adhTJ* 0 (séc)*. Since adhT,f is T-closed, the
latter means that adhT,f e sé . Let & be the filter on F(t) generated by the

family {B e F(r): B c clxG}G&$. Then adhT.f e limT. 3r and since sé is
a T*-open neighborhood of adhT^, one has sé £ &". In other words, there

exists Go £ & such that clTC7o £ sé . On the other hand, Z?#séc : for every

G e & and every A e sé , G <£ A . Therefore clTG g sé for each G £ &, a
contradiction.

Conversely, suppose that séc is a T-compact family fulfilling tfx(séc) = séc.

Hence if D is a T-closed subset of an element of sé , then D £sé . Let &~ be

a filter on F(x)\sé . If H is an element of the reduced filter \9~\, then there is

F £ & such that \}A^F A c H. Therefore clx(H) & sé , since otherwise each

closed subset of it would belong to sé and thus &~ would be a subfamily of

sé contrary to the assumption. As a result, clx(H) e (séc)* , because otherwise

there would be A e sé such that Ac n clx(H) = 0. Consequently, since the

elements of séc are T-open, \^\#jéc. By compactness, adhT|J?"| € (séc)* ; hence

adnx\3r\£sé proving that F(x)\sé is T*-closed.    o

Theorem 3.1 entails the following characterization of the closed sets for the

upper Kuratowski topology.

3.2. Corollary. A subset 38 of F(t) is closed in the upper Kuratowski topology

Tx* if and only if the following properties hold:

5In the class of regular spaces (not necessarily Hausdorff) a filter & is compactoid if and only

if the filter 9 is compact, where 1>  denotes the filter generated by {clG: Cçf} [10].
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(3.1) if B e 38 and B' D B is x-closed, then B' £38;
(3.2) for every family (Q(), of x-open sets such that \Ji Q¡ £ 38*, there is a

finite subfamily Qu , Qh ,... , Qin such that (JLi ßf* e ^* ■

Proof. Let 38 c F(t) . Set sé = F(x)\38. Observe that (3.1) holds if and
only if cfx(séc) = séc or, equivalently, if and only if séc = cf(38*). Since

(3.2) amounts to compactness of 38*, the statement follows from Theorem
3.1, because an open set G is in 38* if and only if Gc <£ 38 ; hence Gc £ séc.

o

We remark that 38 c F(t) is closed in the co-compact topology if and only

if (3.1) holds and for every T-open set Q £ 38* there exists a T-compact

set K c Q such that K £ 38* . Indeed, from the definition of the co-compact

topology, 38 is closed if and only if B £ 38 provided that, for every T-compact

set K disjoint from B, there exists in 38 a (T-closed) set A disjoint from K.

By transposing the above statement, we infer that cf(K) c 38*, but since tf (K)

is a T-compact filter and 38 consists of T-closed sets, K £ 38*. Hence, in view

of (3.2) one readily sees again that locally compact topologies are consonant.6
From Theorem 3.1 and Corollary 3.2 we infer that the sets of the form

(cfx(2))c (resp. 2* n F(t)) , where 2 is a T-compact family, are all the open

(resp. closed) sets in the upper Kuratowski topology.

It is straightforward that the sets of the form (cfx(X))c (resp. X* n F(t)) ,

where 3? is a family of T-compact sets, are all the open (resp. closed) sets

in the co-compact topology. Consequently, we have the following criterion for

consonance:

3.3. Theorem. A topology is consonant if and only if, for every compact family

2, there exists a family 3£ of compact sets such that cf(2) = cf(JÍ). In other

words, a topology is consonant if and only if for every nonempty compact family
2 with 0 £ 2 and for every Q £ cf(2), there exists a compact set K c Q
such that c?(K) c cf(2).

We observe that if 2 is a compact filter, then by Proposition 2.2 the compact

set adh2 is such that cf(2) = cf(adh2). Consequently, in the problem of

deciding whether a given (Hausdorff) topology is consonant, we deal only with

compact families that are not filters.

Notice that if the underlying topology is regular, then it is consonant if and

only if every compact family 2 = cf(2) contains a compact filter. Indeed, if

the topology is consonant and 2 is compact, then 2 = Ujtgjr cf(K) for some

family J? of nonvoid compact sets; the necessity follows, because each cf(K)

is a compact filter. Conversely, let 2 = tf(2) be a compact family and let

£>o € 2 . Let sé = cf({D £ 2: D c Do}). Then sé is a compact family with
sé = tf(sé) and by our assumption, there is a compact filter & c sé . In view

of Proposition 2.1 and by regularity, the compact filter cf (adh &) is included in

W ; hence cf(adh&) c sé c 2 and adhf c D0 . This proves the consonance.

4. Sufficient conditions for consonance

We have seen that locally compact topologies are consonant. We are going

to extend this result to Cech-complete topologies. A topology is Cech-complete

6Actually it is sufficient that every point of the topological space admit a base of compact

neighborhoods.
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if it is the restriction of a compact topology to a G g -subset. We recall that a

topology is Cech-complete if and only if it is completely regular and there exists

a sequence (38„)„ of open covers of the underlying space such that, whenever

&~ is a family of closed sets with the finite intersection property such that for

every n,&' V\38n ¿ 0, then H^V 0 [12].7

4.1. Theorem. 8 Cech-complete topologies are consonant.

Proof. Let (38„)n be a sequence of covers from the definition of Cech-

completeness. Let 2 be a nonempty compact family such that 0^2 and

let Qo £ tf(2) be an open set. Since Cech-complete topologies are regular,

the family of the nonempty open sets A such that there is B £ 33x with

cl A c B n Qo is an open cover of Qo ; thus by compactness of 2, there
exists a nonempty open set Qx £ cf(2) and a finite subfamily of 38x, say

B\,B\, ... ,Bxkr such that clQi Ç Qo and Qx C U*ii Bl ■ Similarly, we can
construct a sequence Q2, 03 > • • • Qn ■ ■ ■ of nonempty open sets such that, for

every n,Qn £ tf(2), clQn+i c Qn and Qn is a a subset of a finite union

of elements of 33n . Now, let & be the filter base on X composed by the

sets Qn . It is clear that adh & c Qo = U„ Qn ■ Every ultrafilter ^ finer than

9 contains an element from every 38n . Therefore, by Cech-completeness, ^

converges (this amounts to the compactoidness of &). Using this fact and

Proposition 2.1 (or by a direct argument) we have that the adherence adh^ is

compact and that for every open set O that includes adh &, there exists n for

which QncO. By Theorem 3.1, this shows consonance,    o

Theorem 4.1 might suggest that consonance would be hereditary for G¿ sub-

spaces. This however is not the case; in Example 7.2 we shall see a regular

dissonant topology which is the restriction of a consonant topology to a G¿
subspace.

There are consonant regular topologies which are not Cech-complete, as we

shall see later. A completely metrizable topology is Cech-complete, hence con-

sonant. We do not know whether metrizable topologies (e.g. the usual topology

of the set of rational numbers) are constant.

Cech-complete topologies are A-topologies. The only dissonant regular

topologies we know are not A-topologies. The radial topology (see Section 5) is

a dissonant A-topology which is not regular (if the dimension of the underlying

vector space exceeds 1).

Let us observe that

4.2. Proposition. Consonance is hereditary with respect to open subspaces and

with respect to closed subspaces.

Proof. Let F be a subset of a consonant topology on X. Let 2 be an arbitrary

compact family on  Y.  Then 2 is a compact family on X and thus there

7 Let 3? be a family of closed subsets of a Cech-complete space, which has the finite intersection

property, and let & denote the filter generated by ß? . Clearly, adh.f = f)He^ H . 9 is compact

(or, equivalently, compactoid; see Proposition 2.2) if and only if, for every n, & contains an

element which is subset of a finite union of elements of SSn . In particular, if, for every n, %?

contains sets included in some element of 3ën , then 'S is compact.

8Call quasi-Cech-complete a topology which admits a sequence (3Sn)n of open covers having

the same property of Cech-complete topologies. Regular (not necessarily Hausdorff) quasi-Cech-

complete topologies are consonant. The proof of Theorem 4.1 works also in this case.
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exists a family J? of compact subsets of X for which cfx(2) = rfx(3?),

where tfx refers to open sets of X. 1st case: Y is open. Since a subset of

Y is compact (resp. open) in Y if and only if it is compact (resp. open) in

X, cfY(2) = tfY(3£ n 2X). Hence Y is consonant. 2nd case: Y is closed.
Since 2 is a family of subsets of Y, tfY(2) = cfx(2) C\Y, where for every

family of sets sé, se n Y := {An Y: A £ sé}. Moreover, it is clear that
^(J)nyc^y(Jny). On the other hand, since Y is closed, one has
that cfx(3?) n Y d cfY(JT n Y). Hence by cfx(2) = cfx(3?), one obtains
cfY(2) =cfY(Jf nY). As the elements of ^ n Y are compact, this shows the

consonance of Y .    o

A point of a topological space is called a local compactness point (LC-point)

if it admits a neighborhood base composed of compact sets.

Recall that a topology x is said to be a kx -topology if x e clT^ implies the
existence of a compact set K such that x 6 clx(Ac\K) [3]. Recall as well that a

topology is hemicompact if there exists a sequence of compact sets cofinal in the
family of all compact sets ordered by inclusion [12]. One can easily prove that

the co-compact topology x° is first-countable if and only if all the T-open sets

are hemicompact. Without using the criterion of consonance (Theorem 3.3) we

will prove the following

4.3. Theorem. Every Hausdorff kx-topology in which all open sets are hemi-

compact is consonant.

Proof. Since hemicompactness of T-open sets implies that co-compact topology

is first-countable, in order to prove the consonance it is enough to show that

t*-closed sets are sequentially closed in the co-compact topology which amounts

to verifying that the convergence induced on sequences of T-closed sets by the
co-compact topology is finer than the upper Kuratowski convergence. Let A be

a T-closed set and let (A„)n be a sequence of T-closed sets which converges to

A in the co-compact topology. We need to prove that V\nclx(\Jm>nAm) c A .

If t is Hausdorff, then the co-compact convergence of (An)n to A means that,

for every T-compact K,

I \

(4.1) f|clT ¡KD \J Am j cA.
n y m>n        J

Let xo be an arbitrary point belonging to f)nclx(\Jm>nAm). First case, for

every n, xo € [jm>nAm. Since K = {xo} is compact, from (4.1) it follows

that xo e A. Second case: there is «o such that, for every « > «o > *o £

An . Since Xo 6 clT(Um>„o^m), there is a compact set K such that xo €

clT(ATn \Jm>no Am), because x is a Ai-topology. As, for every n > no , xo & An,

we have that Xo 0 clx(K n A„), because clT(Ä" n A„) is included in the closed

set An . Since

x0eclr Ikd (J Am   =clT jtfn (J Am   u   (J   clt(ÄTi^OT),
y m>«o        / \ m>n        J      nc¡<m<n

we obtain that, for every n > no, xo £ clx(K n \jm>nAm). Thus, by (4.1),

Xo £ A . Therefore the sequence (A„)n   T*-converges to A .    o
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4.4.   Example. Let Í2 be the following relation on M :

ÍZ     ifrez,
ilr — <   , .     ;

\{r}    ifrgZ,

where Z is the set of all integer numbers. Denote by ¿j the quotient of the

natural topology v on I by Q. The topology ¿j is known to be a Fréchet

topology (see [12, Example 1.6.18]), hence kx . The ¿[-compact sets are the
images by fi of ^-compact sets. Therefore ¿J is hereditary hemicompact with

respect to open sets. Consequently it is consonant. We shall see in Example 7.2

that ¿J is not Cech-complete, so we could not use here Theorem 4.1.    o

5.  A DISSONANT   A-TOPOLOGY

A subset of a real vector space is closed with respect to the radial topology p

if its intersection with every straight line is closed in the usual topology of the

real line. The radial topology is Hausdorff and induces the usual topology on

every finite union of straight lines. A compact set (in particular, a convergent

sequence) in the radial topology is included in a finite union of straight lines.9

5.1. Proposition. The radial topology is dissonant provided that the dimension

of the underlying vector space is strictly greater than 1.

Proof. Because of Proposition 4.2, it is enough to show that the plane equipped

with the radial topology is dissonant. We are going to construct a sequence

(38n)n of families of /^-closed sets. A /^-closed set A belongs to 38n provided

that the elements of {x: ||x|| = \}\A are distant one from another by at least

^2 • Let 38 be the family of all /^-closed sets that contain the origin.

For each n,38n is p*-closed. Indeed, we may consider the generating sub-

family for 38n consisting of {x: ||x|| = \} from which one has removed some

points (with the distances not smaller than -^ ). Let & be a filter on this sub-

family. If xi , x2 e" adhp\S?~\, then, in particular, there is B belonging to the

subfamily such that xx,x2e'B so that if xx ^ x2 and ||xi|| = ||X2|| = \ , then

ll*l-*2||>¿.
Next we observe that f]n (Jm>„ 38n c 38 . Indeed, if B ^ 38 and B is p-

closed, then {A: ||A|| = 1} = IJJA: ||A|| = 1, [0, ¿A] c Bc}. Hence there is

n such that {A: ||A|| = 1, [0, j¡h] c Bc} infinite; therefore for each m > n,

B<L38m.
Finally, we claim that, for every p-compact set K, there exist «o and Bo £

38no such that B0 n K = 0 (equivalently, such that K & 38*0). Since K
is included in a finite union of straight lines, there are nx and a finite set

y C {A: ||A|| = ^} such that {A: ||A|| < ^} n K c \Jh&v[0,h]. Choose

«o > "i such that ^ > ^ , where d = nx inf{||A-A'||: A ̂  A' and A, A' e V} .

Then 50 = {A:||A||<i}Ve^0.
The rest of the proof follows from the following general theorem.

9If a set A is not a subset of any finite union of straight lines, then it contains an infinite subset

B that meets each straight line at most two points. Every subset of B is p-closed. Hence A is

not compact.
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5.2. Theorem. Let x be a topology. If there exist a sequence (38„)n of' x*-closed

sets and a x*-closed set 38 / F(t) such that

(5.1) f]\j38mc38
n  m>n

and for each x-compact set K £ 38*, there exists n for which K <£ 38*, then x

is dissonant.

Proof. We claim that 38 U \Jn38„ is T*-closed. In view of Corollary 3.2, we

need prove that (38 U \Jn38n)* is T-compact. Let ¿f be a family of T-open

sets such that [jQe^Q £ (38 U \Jn38n)* = 38* n {\n38*. Since 38 is x*-

closed and \JQ€S Q £ ¿%*, by Corollary 3.2 there is a finite subfamily &' of

S such that \JQ€S, Q £ 38*, which, by (5.1), is included in \}n{\m>n38„\;

hence there is «o such that \Jq€^, Q £ rim>n0 ¿%m ■ On tne other hand, since

\Z=x3Bm is r'-closed and Uö6^ß 6 (U«=Ä)* = CC=i^,by Corollary

3.2 there is a finite subfamily S" of S such that \JQe^„ Q £ lX°=i &m • Hence

lW'u?"Ö€ (&U\}n38n)* showing that (38 l>(Jn38„)* is T-compact.
Since 38 ^ F(t) (i.e. 0 £ c^1), by virtue of (5.1) we may assume that

0 & 38 U\Jn38„. The empty set belongs to the T°-closure of 38 U \Jn38n .

Indeed, it amounts to K £ (38 ll(Jn38n)* , for every T-compact set K. But this

is an immediate consequence of the assumptions. Therefore, the T*-closed set

38 D\Jn38n is not T°-closed, because 0 0 38 u \}n 38n .    o

It follows from [8], [9] that if the dimension of the underlying real vector

space is strictly greater than 1, then the radial topology p is not a Fréchet

topology. Hence, from the description of /^-compact sets we deduce that p is

not a kx -topology under the dimension condition. It is more difficult to prove,

always for dimension strictly greater than 1, that p is not regular (see [15]).

It is easy to see that the radial topology is a A-topology. Recall that Hausdorff

A-topologies may be characterized as quotients of locally compact topologies

[12]. Therefore we have

5.3. Proposition. Consonance is not preserved by quotient maps.

6.  COMPACT-REPELLENT POINTS

A point Xo of a topological space (X, t) is called compact-repellent if it is

not isolated and if it is not an accumulation point of any compact set; in other

words, if for every r-compact set K, xq £ clT(A^\{xo}).

Let (F„)„ be a sequence of T-closed subsets of X. We recall the usual

definitions of upper and lower limits of (F„)„ , denoted by LsF„ and LiF„ ,

respectively. LsF„ = n„clr(Um>n ^«) • ®n tne otner hand, x € LiF„ if for

every T-neighborhood Q of x , there exists n such that, for each m > n ,Qf)

Fm ^ 0.

6.1. Theorem. A topology is dissonant if it admits a compact-repellent point xo

and a sequence (F„)„ of closed sets such that x0 0 U„ Fn ond

(6.1) LsF„ = LiFn = {x0}.

Proof. Let 38„ be the family of all the T-closed sets that include Fn and 38
the family of all the T-closed sets containing xq . These families are T*-closed,
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because each x* -limit of a filter & such that for some F £Sr, a T-closed set

C is included in A for each A £ F , includes C.
We shall see that (6.1) implies (5.1). Let ß bea T-closed set with B £

Ç\n\}m>n^n '■ there exists a subsequence (nk)k such that B £ 38„k for each

A. This amounts to B D F„k for every A . It follows that Ls F„k c B. Now

{x0} = LiF„ c LiF„k c LsF„k, so that Xq £ B and thus B £38 .

Let K be a T-compact set such that K e 38*, that is, xo e K. As Xo is

compact-repellent, A^\{xo} is also, a T-compact set. Let Qn =

({*o}uUm>„ Fm)c. As LsF„ c {x0} , we have that \Jn Qn = X\{x0} and Q„ is

open. Consequently, (Q„)n is an open increasing cover of A^\{x0} ; thus there is

«o such that K\{x0} C Q„0 and since x0 <£\JnFn, one has Kn\Jm>nQ Fm = 0 .

This means, in particular, that K g 38*o.    o

6.2. Example. One defines the Arens topology on X = (]0, l[x]0, 1[) U {xo} ,

Xo = (0, 0), as follows: every x ^ xq is isolated; Q is a neighborhood of Xo

if there exist 0 < r0 < 1 and a function /: ]0, r0[-*]0, 1[ such that

{(r, s) : 0 < s < f(r) ,0<r<r0}U {x0} C Q.

This is a completely regular topology. Since compact sets are finite, one sees that

Xo is compact-repellent. On the other hand, (F„)n defined by F„ = {^}x]0, 1[

fulfills the hypotheses of Theorem 6.1. Hence the Arens topology is dissonant.

Thus [2, Theorem 6.5] amounts to this example,    o

6.3. Example (Naturalized Arens topology). The underlying set is the same

as in the previous example 6.2. If the neighborhoods of x ^ Xo are the

neighborhoods of x in the usual topology, Q is a neighborhood of Xo if

there exist 0 < ro < I and a continuous function /: ]0, ro[—>]0, 1[ such

that {(r, s): 0 < s < f(r), 0 < r < r0} U {x0} C Q. Compact sets in this

topology are of the form {xo} U K or K, where A" is a compact subset of

]0, l[x]0, 1[ in the usual topology. Consequently, xo is compact-repellent.

On the other hand, (F„)„ defined by F„ = {¿}x]0, 1[ fulfills the hypotheses
of Theorem 6.1. Hence the naturalized Arens topology is dissonant. Observe

that the naturalized Arens topology is locally connected and that the compact-

repellent point xo is a (/¿-point because we may consider a sequence of neigh-

borhoods Qn :=]0, ¿[x]0, ¿[U{x0} to the effect that {x0} = f]„ Qn ■ Therefore
to show its dissonance one may apply also the following corollary:

6.4 Corollary. If a regular locally connected topology admits a compact-repellent

Gs-point, then it is dissonante0

Proof. If Xo is G¿ and the topology is regular, there exists a sequence (W„)„

of open sets such that cl Wn+X c W„ for each n and {xo} = f]n W„ . Let F„ =

cl Wn\W„+x . Then LsF„ c f]n cl Wn = {x0} and x0 0 U„ F„ = cl Wx\{x0}. It
suffices now to prove that Xo e Li F„ . Suppose that, on the contrary, Xo £ Li F„ :

there exist a connected neighborhood Q of xo and a subsequence (nk)k such

that Q n F„k = 0 for every A , that is, Q c F¿k = (cl W„k)c uW„k+x. Since Q

is connected and meets W„k+X, Q c W„k+X which leads to the contradiction:

Q = {xo}, but Xo is not isolated,    o

10The corollary holds also in the case where the required regularity does not include the HausdorfT

axiom.
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We shall see in the following example that there exist consonant topologies

with compact-repellent points.

6.5. Example. Fix a point xo of an uncountable set X. One defines the

topology co-countable at xo as follows: every x/x0 is an isolated point and
Q is a neighborhood of xo whenever xo e Q and the complement of Q is

countable. This is a regular topology for which every G^-set is open and every

compact set is finite. We shall see that it is consonant.
Let 2 = rf(2) be a compact family. Let D e 2 be such that, for every

compact set K c D, there is A e c?(K) such that A g 2. Consequently, D

must contain Xo . Let V0 be an open neighborhood of x0 ; then, D\V0 = (J„ Kn ,

for an increasing sequence (Kn)n of finite sets. We claim that there exists an

increasing sequence of open sets (Qn)n such that, for each n, Qn e cf(Kn\j{xo})

and Q„ $.2 . Indeed, as we have assumed that, for every compact set K c D,

there is A e cf(K) such that A g 2, there is a sequence (An)n such that, for

each n, A„ e cf(K„ U {x0}) and An 0 2. Clearly Q„ = Ç]m>n Am includes

K„ U {xo} and is co-countable, hence open, because each Qn contains Xo.

Finally, Qn £ 2, as otherwise A„ would belong to 2. Since (Qn)n is an

increasing sequence of open sets out of 2 ,VX = (J„ Qn & 2 by virtue of

the compactness of 2. Then Vx is an open neighborhood of xo and D c

Vx U V0 . Since Vx n V0 is an open neighborhood of Xo, we can construct an open

neighborhood V2 of Xo suchthat V2 g 2 and öc I^U^nlo). Similarly we
can construct open sets V3, ... , Vn, ... such that, for every n > 1, xo € Vn ,

V„ & 2 and D c Vn+X U (V„ n • • • n V0). Hence, by the compactness of 2 ,

the open set V = |J„ f)m>n Vm does not belong to 2. On the other hand,

D c V and D e 2 : a contradiction. Indeed if x 0 V, then there exists a

strictly increasing sequence (nk)k such that x $. V„k for every A ; in particular,

x $. v„2 u v„x d vn2 u (K„2_i n • • • n vni n • • • n v0) d d .   o

7. Products

Clearly, if the product of two topological spaces X and Y is consonant,

then they are consonant. Conversely, the product of two consonant topologies

need not be consonant (see Example 7.2). However

7.1. Theorem. The product of a regular consonant topology with a locally com-

pact topology is consonant.

Proof. x ' Let X be equipped with a regular consonant topology and Y with

a locally compact topology. Let 2 be a compact family on X x Y such that

0 & 2 and let Q e tfx*Y(2). Pick an open cover 33 of Q such that
the projection pY(B) on Y of every element B of 38 is relatively compact

and (JB€^cIxxyB = Q. As 2 is compact, there exists a finite subfamily,

say BX,B2, ... , Bn, of 38 such that W = U"=i B¡ e cfXxY(2). Of course,

pY(W) is relatively compact in Y and clxxYW c Q. Sure enough, sé =

{B e tf(2): B c W} is a compact family on W satisfying cfw(sé) = sé .

The projection Px(¿é) is a compact family on px(W). By Proposition 4.2,

Px(W) is consonant. Consequently, since 0 0 Px(sé), there exists a nonempty

1 ' This proof works also in the case of the product of a regular (not necessarily Hausdorff) conso-

nant topology with a topology for which every point admits a base of closed compact neighborhoods.
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compact subset K of Px(W) such that cfPxtW)(K) c cfPx(W)(px(sé)). For

every H £ cfPx(w)(K), there exists AH £ sé such that H = Px(AH). The

subfamily {\J{AH: H c C,H £ cfPx{w)(K)}}C€0px{W)(K) of sé generates a

filter & on W. Since Ay(^) = cfPxiW-¡(K) and the elements of pY(&) are

subsets of the relatively compact set pY(W), the filter bases px(&) and py(&)

are compactoid, so that & is compactoid on X x F, because its projections are

compactoid [10, Theorem 5.1]. Hence, by Proposition 2.1, adh¿/ is a compact

subset of X x Y and ^xy(adh^) c cfXxY(^) ■ In view of Theorem 3.3, the

consonance is proved,    o

Now, we exhibit an example of the product of a Cech-complete topology with

a consonant topology (both being Fréchet) which is not constant.

7.2. Example. Denote by x the topology induced on X = R\{¿: 0 ^ n £ N}

by the usual topology v of R. Let t\ be the topology of Example 4.4 on Y.

We follow now Example 2.4.20 of R. Engelking [12] showing that x x ¿j is not

a A-topology. Let

Fn= (J ix£X:
k>n "-

Each Fn is x x ¿[-closed and LsF„ = LiF„ = {(0, 0)}, where 0 is the equiva-

lence class of 0 (from Example 4.4). On the other hand, if K is x x ¿j-compact,

then its projection on F\{0} is bounded, so that {(0, 0)} is compact-repellent.

Therefore we may apply Theorem 6.1 to conclude that x x ¿J is dissonant,    o

From Example 7.2 it follows, as claimed in Example 4.4, that the topology

¿j is not Cech-complete, due to the fact that the products of two (actually,

countably many) Cech-complete topologies are Cech-complete. On the other

hand, x x ¿J is the restriction to a (/¿-set of the consonant topology v x ¿j on

R x Y. Therefore we have

7.3. Proposition. Consonance is not hereditary with respect to Gg-subspaces.

8. Some T-convergences

Theorem 7.1 enables us to characterize the finest topology that is coarser
than the T-convergence of lower semicontinuous extended real valued functions.

This convergence plays a fundamental role for the stability of the sets of minima
[6], [7]. Let T be a topology on a set X and denote by C_(t) the set of all

functions /:I-<R which are lower T-semicontinuous with respect the usual

topology on R. Let &~ be a filter on C_(t) . It T(x)-converges to fo £ C_(t)

if, for each xq £ X,

(8.1) sup    sup inf inf f(x) >fo(x0),
Q€sK(x0)F£?-feFx£Q

where JVx(xo) stands for the family of all neighborhoods of xo in x. Consider

now the lower uniform-on-compact-sets topology of lower semicontinuous func-

tions: a filter y on C_(t) converges to fo £ C-(x) for this topology if, for

every T-compact set K,

(8.2) sup inf inf/ > inf fo,
F€^f€F  K K

4M"-!}'
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where inf/c / = infxeK f(x). We denote this topology on C_(t) by rf(T).

If /: X —> R, then the epigraph of / is defined by

epi/ = {(x, r) £ X x R: f(x) < r}.

Let Epi(r) be the set of all the epigraphs of lower T-semicontinuous functions.

Denote by u+ the topology on R consisting of all open intervals of the form

]-oo,a[. One readily sees that F(txi/+) = Epi(r) c F(xxu) and that (xxu+)*

is the restriction of (x x v)* to Epi(r).

It is well known that r(T)-convergence of lower semicontinuous functions

amounts to the upper Kuratowski convergence (x x v)* of their epigraphs.

Therefore

8.1. Proposition. The mappingepi from (C_(t), T(t)) onto (Epi(r), (xxu+)*)

is a convergence homeomorphism.12

Moreover, if x is a regular topology, then we have

8.2. Proposition. The mapping epi from (C_(t), Tc(t)) onto (Epi(r),

(t x u+)°) is a homeomorphism.

Proof. The sets

(8.3) i/eC_(T): inf/>rl ,

where K is T-compact and r is a real number, constitute a subbase of open

sets for Tc(x). The images of the sets (8.3) by the mapping epi are

(8.4) {A e¥(xxu+):An(Kx]-oo, r]) = 0}.

They are (t x ^+)°-open, because ] - oo, r] is v+ -compact. Hence epi is con-

tinuous. To complete the proof it is enough to show that the sets of the form

(8.4) constitute a subbase of open sets for (t x v+)°. To this end, consider

(8.5) {epi/:/€C_(T),epl/n// = 0},

where H is a (t x i/+)-compact set. This is an element of a base of (t x

v+)°. Fix a function fo such that epi To belongs to (8.5). For every (x, 5) 0

epi/), there exist a neighborhood Q of x and r > s such that epi/ n (ßx

]-oo, r]) = 0 . Since the projection px(H) of H is a compact regular subspace

of (X, x), there is a P £ ¿K(x), P c Q such that P npx(H) is compact.

The sets intT(F n Px(H))x] - 00, r[ form an open cover of the compact set

H, because epi/) is (t x i/+)-closed. Consequently, there are a finite number

of T-compact sets Kx, K2, ... , Km and of real numbers rx,r2, ... ,rm such

that H c \J¡Ln(KiX] - 00, r¿]) and epi/0 n (K,x] - 00, r¡]) = 0 for each
i = 1, 2, ... , m . Therefore

m

epi foe f|{epi/:/e C_(t), epi/0 n (K¡x] - 00, r,])}
;=1

C {epi/: / e C_(t) , epi/n H = 0}.

Since the sets of the form ]-oo, r] are compact in u+ , the proof is complete,   o

Denote by TT(x) the finest topology coarser than the convergence T(t) (i.e.

TY(x) is a topology on C_(t) whose closed sets are the closed sets for T(t)) .

l2An injective mapping h from a convergence space onto another convergence space is a con-

vergence homeomorphism if x e lim.^" if and only if h(x) e lim h{9~).
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8.3. Theorem. Let x be a regular topologyP Then the topologies TY(x) and

Tc(x) coincide if and only if x is constant.

Proof. In view of Propositions 8.1 and 8.2 it is enough to show that x x v+ is

consonant if and only if x is consonant. If x x i/+ is consonant, it is obvious

that t is consonant. Conversely, let x be consonant and let 38 c F(t x u+)

be an arbitrary (t x i/+)*-closed set. We claim that 38 is (x x i/+)°-closed.

Set W = {F e ¥(x x v): 3B€<%B c F}. Observe that 38* = W* and that
epi/n (ßx]r, s[) ^ 0 amounts to epi/n (ßx] - oo, s[) ^ 0, for every ßc

X, f e C-(x) and for every pair r, s of real numbers. Consequently, since 38*

is a (t x i/+)-compact family, W* is also a (t x z/)-compact family. Therefore,

by Corollary 3.2, W is (t x z/)*-closed. As (t x v) is consonant (see Theorem

7.1), the family W is (t x v)°-closed. Finally, to show that 38 is (x x v+)°-

closed, take an arbitrary fo £ C-(x) such that epi/ 0 38 . By the definition

of W, we have that epi/) £ W . As W is (ix iv)°-closed, there is a (t x in-
compact (hence (t x i/+)-compact) set H such that epi/ n H = 0 and W n

{F £ F(t x u) : F n H = 0} = 0 . Therefore 38 is (x x z/+)°-closed.    o

Now, we shall see that the convergence F(x) and the topology rc(T) are
instances of continuous convergence and compact-open topology, respectively.

Let v- denote the topology on R consisting of all intervals of the form

]a, -oo] and let C(t, ï>_) be the set of all functions /: X -> R which are

continuous when R is equipped with V- . Observe that C(t, vJ) = C_(t) and

that the convergence T(t) is the coarsest convergence Ç on C_(t) for which the

canonical coupling14 ( ,): (X, t)x(C_(t), Q -* (R> ̂ -) is jointly continuous.

Therefore T(t) is the continuous convergence on C(t,F_). On the other hand,

one readily sees that the lower uniform-on-compact-sets topology Tc(x) is the
compact-open topology on C(x,V-).
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