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REAL ANALYSIS RELATED TO
THE MONGE-AMPÈRE EQUATION

LUIS A. CAFFARELLI AND CRISTIAN E. GUTIÉRREZ

Abstract. In this paper we consider a family of convex sets in Rn, F =
{S(x, t)}, x ∈ Rn, t > 0, satisfying certain axioms of affine invariance, and
a Borel measure µ satisfying a doubling condition with respect to the fam-
ily F . The axioms are modelled on the properties of the solutions of the real
Monge-Ampère equation. The purpose of the paper is to show a variant of
the Calderón-Zygmund decomposition in terms of the members of F . This is
achieved by showing first a Besicovitch-type covering lemma for the family F
and then using the doubling property of the measure µ. The decomposition
is motivated by the study of the properties of the linearized Monge-Ampère
equation. We show certain applications to maximal functions, and we prove a
John and Nirenberg-type inequality for functions with bounded mean oscilla-
tion with respect to F .

1. Introduction

The properties of the solutions of strictly elliptic partial differential equations in
Rn are described in terms of the geometry determined by the euclidean balls and
the Lebesgue measure. The connection between the geometry, the measure and the
strict ellipticity is contained in the equation

detD2(
|x|2
2

) = 1,

i.e., the Lebesgue measure can be viewed as the Monge-Ampère measure given by
a paraboloid, and the balls in Rn are the sets where the paraboloid is smaller than
an affine function. In addition, the Laplacian can be viewed as the linearization
of the Monge-Ampère equation. In other words, euclidean balls, Lebesgue measure
and Laplacian are all implicitly contained and related in the equation above. This
phenomenon can be naturally generalized in the following way. Suppose we have a
convex function φ in Rn and we generate the Monge-Ampère measure

(1-1) detD2φ = µ.

We look at the geometry given by the sets defined as follows: given a point x ∈ Rn

let `(y) be a supporting hyperplane of φ at the point (x, φ(x)), and given t > 0 we
define the set

S(x, t) = Sφ(x, t) = {y ∈ Rn : φ(y) < `(y) + t}.
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These sets are obtained by projecting on Rn the points on the graph of φ that
are below a supporting hyperplane lifted in t. We shall call these sets sections.
They are convex sets and can in principle give a very degenerate geometry, in the
sense that they can become very narrow in certain directions as t becomes small.
In fact, this is the case when φ contains lines in its graph. These degeneracies can
be avoided by assuming the following doubling property on the measure µ: there
exists a constant C > 0 such that

(1-2) µ(S(x, t)) ≤ C µ(
1

2
S(x, t)),

for every section S(x, t), where 1
2 S(x, t) denotes the 1

2 -dilation of the set S(x, t)
with respect to its center of mass. In fact, it is proved in [Ca2] that if µ satisfies the
doubling condition above, then the graph of φ does not contain lines, and the sets
S(x, t) are of a size that can be controlled by euclidean balls when these sets are
re-scaled by using affine transformations. This is true in an essential way because
the equation (1-1) is invariant under affine transformations. On the other hand, if
one looks at the linearization of the equation (1-1) then the equation obtained is
in general not strictly elliptic, but it is elliptic and in non-divergence form. More
precisely, if one considers for a function u(x) the detD2(φ + tu), it is easy to see
that

detD2(φ+ tu) = detD2φ+ t trace
(
ΦD2u

)
+ ...+ tn detD2u,

where Φ = (Φ)ij is the matrix of the cofactors of D2φ. The coefficient of the linear
term in this expansion is called the linearization of the equation (1-1) and it will
be denoted by Lφu, i.e.,

Lφu = trace
(
ΦD2u

)
.

Since D2φ is positive semidefinite, the matrix Φ = (Φ)ij is also positive semidefinite
and consequently the operator Lφ is elliptic, possibly degenerate. In other words,
the linear operator Lφ plays the role of a Laplacian associated with the equation
(1-1).

Our purpose is to study the properties of the solutions of Lφu = 0, and we shall
show that they can be naturally described in terms of the sections S(x, t) defined
above and the measure µ. In particular, a Harnack’s inequality holds in terms of
the sections S(x, t). The first step in this study is to determine the properties of
the sections defined above under the hypothesis (1-2). Some of these properties
have been established in [Ca2]. The study of the properties of the solutions of the
pde above is based in a fundamental way in a variant of the Calderón-Zygmund
decomposition in terms of the sections S(x, t). The purpose of this paper is to
describe this decomposition and show some applications to real analysis. The proof
of the Harnack inequality will be the subject of a forthcoming paper.

The point of view taken in this paper is axiomatic: we assume that an abstract
family of convex sets S(x, t) is given and they satisfy certain properties. Basically,
all we ask from this family is that when one section S0 is renormalized to be equiv-
alent to a ball, all those smaller sections that intersect S0 deteriorate polynomially,
i.e., the space is locally isotropic after renormalization. From these properties we
shall prove a Calderón-Zygmund decomposition of open sets in Rn in which the
classical cubes are replaced by the given family. This decomposition has indepen-
dent interest and this is the reason we presented it separately. In the particular
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case of having sets coming from the equation (1-1), the decomposition plays a key
role in the proof of Harnack’s inequality for non-negative solutions of Lφu = 0. In
fact, it is to used to show that the distribution function (at altitude t) of a super
solution decays like a negative power of t, see [Ca1], Lemma 6 for the elliptic case.

The paper is organized as follows. In §2, we define the class of sets we shall
work with and postulate their properties. In §3, we prove a Besicovitch-type cov-
ering lemma; this lemma is purely geometric and with no reference to measure.
In §4, we introduce a doubling measure on the sections given in §2 and prove the
decomposition. In §5 and §6, we show certain applications of the decomposition to
maximal functions, and we prove a John and Nirenberg-type exponential inequality
for functions in a BMO space defined in terms of the sections.

2. Properties of the sections and the main result

In order to motivate and postulate the properties of the class of convex sets
which we are going to work with, we begin by mentioning a geometric lemma due
to Fritz John: Let S be a convex set in Rn with non-empty interior, and let E be
the ellipsoid of minimum volume containing S whose center is the center of mass
of S. There exists a constant α(n) depending only on dimension such that

α(n)E ⊂ S ⊂ E,

where α(n)E means the α(n)-dilation of E with respect to its center.
Since E is an ellipsoid, there is an affine transformation T such that T (E) =

B(0, 1). In other words, this lemma says that every convex set S with non-empty
interior is ”similar” to the unit ball at certain scale, i.e., there exists an affine
transformation T such that

B(0, α(n)) ⊂ T (S) ⊂ B(0, 1).

Given a convex set S with non-empty interior, the set T (S) shall be called a
normalization of S, and T shall be called an affine transformation that normalizes
S.

The equation (1-1) is invariant by affine transformations of determinant 1. In
fact, if T : Rn → Rn is an affine transformation, i.e., Tx = Ax + b where A is an
n× n real matrix and b ∈ Rn, and for λ > 0 we set

ψ(y) = φλ(Ty)

where φ satisfies (1-1), then ψλ satisfies the equation

Mψλ(y) = det(D2ψλ)(y) =
1

λn
(detT )2µ(Ty) = µ̄(y).

If µ satisfies (1-2), then by the definition of section it can be shown that the new
measure µ̄ is doubling with respect to the sections of ψ, i.e.,

(2-1) µ̄(Sψ(x, t)) ≤ C µ̄(
1

2
Sψ(x, t)),
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with the same constant as in (1-2). Moreover, the sections of φ and ψλ are related
in the following way. If h(x, y) is a supporting hyperplane to φ at the point x, then

h̃(T−1x, y) = λ−1 h(x, Ty)

is a supporting hyperplane to ψλ at the point T−1x. This implies that the sections
of φ and ψλ are related by the the following useful formula:

T−1(Sφ(x, t)) = Sψλ(T−1x, λt).

We may rewrite this formula in the following way: if T : Rn → Rn is an affine
transformation and we set

ψλ(y) =
1

λ
φ(T−1y),

then

(2-2) T (Sφ(x, t)) = Sψλ(Tx, λt).

In particular, this formula says that a normalization of a section corresponds to
a normalization of the equation (1-1). In other words, if we normalize a section of
φ, we then a obtain section corresponding to another solution of an equation of the
form (1-1). These facts and the properties of the sections S(x, t) proved in [Ca2]
lead us to consider a general family of convex sets with the following properties.

For each x ∈ Rn we have a one-parameter family of open and bounded convex
sets denoted by S(x, t), t > 0, S(x, t) ⊂ S(x, t′), for t ≤ t′, which shall be called
sections, and satisfy:
(A) There exist constants K1,K2,K3 and ε1, ε2, all positive, and with the follow-

ing property:
given two sections S(x0, t0), S(x, t) with t ≤ t0 such that

S(x0, t0) ∩ S(x, t) 6= ∅,

and given T an affine transformation that ”normalizes” S(x0, t0), i.e.,

B(0, 1/n) ⊂ T (S(x0, t0)) ⊂ B(0, 1),

there exists z ∈ B(0,K3) depending on S(x0, t0) and S(x, t), such that

B(z,K2

(
t

t0

)ε2
) ⊂ T (S(x, t)) ⊂ B(z,K1

(
t

t0

)ε1
),

and

Tx ∈ B(z,
1

2
K2

(
t

t0

)ε2
).

Here B(x, t) denotes the euclidean ball centered at the point x with radius t.
(B) There exists a constant δ > 0 such that given a section S(x, t) and y /∈ S(x, t),

if T is an affine transformation that ”normalizes” S(x, t), then

B(T (y), εδ) ∩ T (S(x, (1− ε)t)) = ∅,

for any 0 < ε < 1.
(C)

⋂
t>0 S(x, t) = {x} and

⋃
t>0 S(x, t) = Rn.
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Condition (A) can be phrased in the following way: if two sections intersect,
then if we normalize the ”larger” of the two, the other one looks like a ball with
proportional radius at the scale in which the ”larger” is normalized.

In addition, we assume that a Borel measure µ finite on compact sets is given,
µ (Rn) = +∞, and satisfies the following doubling property with respect to the
parameter:

(2-3) µ (S(x, 2t)) ≤ C µ (S(x, t)) .

In the case that the sections S(x, t) are coming from the Monge-Ampère equation
then condition (2-3) is implied by (1-2).

The main result of this paper is the following decomposition.

Theorem. Let S(x, t) be an abstract family of sections satisfying properties (A),
(B) and (C). Let A be a bounded open subset of Rn, and 0 < δ < 1. There exists
a countable family of sections {Sk = S(xk, tk)}∞k=1, xk ∈ A, and tk ≤ M with the
following properties:

(a) δ
C1
≤ µ(Sk ∩A)

µ(Sk)
≤ δ, C1 > 0 depending only on C in (2-3).

(b) A ⊂
⋃
k Sk.

(c) µ(A) ≤ δ0 µ(
⋃∞

1 Sk), where δ0 = δ0(δ, C2) < 1, and C2 is a constant depend-
ing only on the parameters in (2-3), (A) and (B), and dimension.

(d) If τ > 0 is sufficently small and Sτk = S(xk, (1− τ)tk), then

∞∑
k=1

χS(xk,(1−τ)tk)(x) ≤ K log
1

τ
,

where K is a constant depending only on the constants in (A) and (B).

Remark. By the example (b) in §8.8, page 40 of [St], there exists an absolutely
continuous doubling measure (with respect to euclidean balls in Rn) µ = f dx,
where f vanishes on a set of positive measure. Therefore, the theorem above cannot
hold for arbitrary bounded measurable sets A.

3. A Besicovitch-type covering lemma for sections

It is well-known that the Besicovitch covering lemma does not hold for general
families of convex sets. However, for the convex sets S(x, t) we have the following
lemma.

Lemma 1. Let A ⊂ Rn be a bounded set. Suppose that for each x ∈ A a section
S(x, t) is given such that t is bounded by a fixed number M. Let us denote by F
the family of all these sections. Then there exists a countable subfamily of F ,
{S(xk, tk)}∞k=1, with the following properties:

(i) A ⊂
⋃∞
k=1 S(xk, tk).

(ii) xk /∈
⋃
j<k S(xj , tj), ∀k ≥ 2.

(iii) For ε > 0 small (smallness depending only on the constants in (A) and (B))
we have that the family

Fε = {S(xk, (1− ε)tk)}∞k=1
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has bounded overlaps; more precisely

∞∑
k=1

χS(xk,(1−ε)tk)(x) ≤ K log
1

ε
,

where K is a constant depending only the constants in (A) and (B); χE
denotes the characteristic function of the set E.

Proof. We may assume M = sup{t : S(x, t) ∈ F}. Let

F0 = {S(x, t) :
M

2
< t ≤M, S(x, t) ∈ F},

and

A0 = {x : S(x, t) ∈ F0}.

Pick S(x1, t1) ∈ F0 such that t1 > 3
4M. Then either A0 \ S(x1, t1) = ∅ or

A0 \ S(x1, t1) 6= ∅. In the first case, A0 ⊂ S(x1, t1) and we stop. In the second
case, the set

{t : S(x, t) ∈ F0 and x ∈ A0 \ S(x1, t1)}

is non-empty and let α2 denote its supremum. Pick t2 in this set such that α2 ≥ t2 >
3
4α2 and let S(x2, t2) be the corresponding section. We then have x2 /∈ S(x1, t1)

and t1 >
3
4M ≥

3
4α2 >

3
4 t2. Again, we have either A0 \ (S(x1, t1)∪S(x2, t2)) = ∅ or

A0 \ (S(x1, t1) ∪ S(x2, t2)) 6= ∅. In the first case, we have A0 ⊂ S(x1, t1) ∪ S(x2, t2)
and we stop. In the second case, we continue the process. In general, for the
jth-stage we pick tj such that αj ≥ tj > 3

4αj where

αj = sup{t : S(x, t) ∈ F0 and x ∈ A0 \
⋃
i<j

S(xi, ti)},

and select S(xj , tj). We have ti > (3
4 )j−itj for j > i. Continuing in this way we

construct a family, possibly infinite, which we denote by

F ′0 = {S(x0
k, t

0
k)}∞k=1

with

x0
j ∈ A0 \

⋃
i<j

S(x0
i , t

0
i ).

We now consider the family F1 = {S(x, t) : M4 < t ≤ M
2 }. Let

A1 = {x : S(x, t) ∈ F1 and x /∈
∞⋃
i=1

S(x0
i , t

0
i )}.

We repeat the construction above for the set A1 obtaining a family of sections
denoted by

F ′1 = {S(x1
i , t

1
i )}∞i=1.
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We continue this process and in the kth-stage we consider the family Fk = {S(x, t) :
M

2k+1 < t ≤ M
2k } and the set

Ak = {x : S(x, t) ∈ Fk and x /∈
⋃

sections previously selected}.

In the same way as before we obtain a family of sections denoted by

F ′k = {S(xki , t
k
i )}∞i=1.

Obviously, each section S(xki , t
k
i ) in the generation F ′k has the property that

M

2k+1
< tki ≤

M

2k
.

We claim that the collection of all the sections in all generations F ′k, k ≥ 0, is
the family that satisfies the conclusions of Lemma 1.

To show (i), we shall first prove that each generation F ′k has overlapping bounded
by a constant depending only on the parameters in (A), and independent of k and
M . Second, we shall deduce from this that each generationF ′k has a finite number of
members; in particular, by relabeling the members of F ′k we obtain (ii). This implies
that the process in the construction of F ′k stopped at some point and therefore all
the points of Ak are covered by the union of F ′k. Consequently, (i) follows.

Let us then show that each generation F ′k has bounded overlapping. Suppose
that

z0 ∈ S(xkj1 , t
k
j1) ∩ ... ∩ S(xkjN , t

k
jN ),

with S(xkji , t
k
ji) ∈ F ′k. To simplify the notation we set xkji = xi, t

k
ji = ti, and let t0

be the maximum of all these ti, 1 ≤ i ≤ N. We may assume by construction that
xl /∈ S(xi, ti) for l > i. By (A) we have that

B(zi,K2

(
ti
t0

)ε2
) ⊂ T (S(xi, ti)) ⊂ B(zi,K1

(
ti
t0

)ε1
),

and

(3-1) T (xi) ∈ B(zi,
1

2
K2

(
ti
t0

)ε2
),

for 1 ≤ i ≤ N, where T is an affine transformation that normalizes S(x0, t0). Since
M

2k+1 < ti ≤ M
2k
, this implies that

B(zi,K2

(
1

2

)ε2
) ⊂ T (S(xi, ti)) ⊂ B(zi,K1 2ε1).

Since xl /∈ S(xi, ti), we have that

T (xl) /∈ T (S(xi, ti)), l > i,

and consequently,

T (xl) /∈ B(zi,K2

(
ti
t0

)ε2
), l > i.
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This together with (3-1) implies that

(3-2) |T (xl)− T (xi)| >
1

2
K2

(
1

2

)ε2
, l > i.

Let Q be the cube in Rn with center T (z0) and edgelength 4K12ε1 . We have

T (S(xi, ti)) ⊂ Q, 1 ≤ i ≤ N. We chop the cube Q into αn congruent subcubes Q̃

with edgelength
4K12ε1

α
. If T (xi), T (xi+l) ∈ Q̃ then

|T (xi)− T (xi+l)| <
√
n

4K12ε1

α
.

If we select α large such that
√
n

4K12ε1

α
<

1

2
K2

(
1

2

)ε2
, then by (3-2) each subcube

Q̃ contains at most one T (xi). Therefore, the overlapping in each generation F ′k is at

the most αn, where α can be taken the smallest integer bigger than 8
√
n
K1

K2
2ε1+ε2 .

Let us now prove that the family F ′k = {S(xki , t
k
i )}∞i=1 is finite. We set again for

simplicity xki = xi and tki = ti. Since A is bounded and
M

2k+1
< ti ≤

M

2k
, the set Ak

is also bounded and by property (C) there exists a positive (large) constant C such

that the section S(x1, Ct1) covers Ak and Ct1 ≥
M

2k
. In particular, xi ∈ S(x1, Ct1)

and then S(xi, ti) ∩ S(x1, Ct1) 6= ∅, and ti ≤ Ct1. So, we can apply (A) to obtain

B(zi,K2

(
ti
Ct1

)ε2
) ⊂ T (S(xi, ti)) ⊂ B(zi,K1

(
ti
Ct1

)ε1
),

where T is an affine transformation that normalizes S(x1, Ct1), and |zi| ≤ K3. We
also have that

1

2C
≤ ti
Ct1
≤ 1,

and therefore

B(zi,K2

(
1

2C

)ε2
) ⊂ T (S(xi, ti)) ⊂ B(0,K1 +K3).

Since the family F ′k has overlapping bounded by αn, the family T (S(xi, ti)) also
has overlapping bounded by αn. Hence∑

i

χT (S(xi,ti))(x) ≤ αn,

which implies ∑
i

χB(zi,K2( 1
2C )ε2 )(x) ≤ αn.

Integration of this inequality over the ball B(0,K), where K = K1 +K3, yields

∑
i

ωn

(
K2

(
1

2C

)ε2)n
=
∑
i

∫
B(0,K)

χB(zi,K2( 1
2C )ε2 )(x) dx ≤ ωnαKn,
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which implies that the number of terms in the first sum is finite and we are done.
We now estimate the overlapping of sections belonging to different generations.

To this end, we need to ”shrink” the sections selected. Let 0 < ε < 1 and

(3-3) z0 ∈
⋂
i

S(xeiri , (1− ε)t
ei
ri),

where e1 < e2 < ... < ei < ..., M2−(ei+1) < teiri ≤ M2−ei , and for simplicity in
the notation we set xi = xeiri and ti = teiri . Fix i and let j > i, we shall measure
the gap between ej and ei. Let Ti be an affine transformation that normalizes the
section S(xi, ti). Since j > i, ti ≥ (1 − ε)tj and then by (A) there exists a point
zij ∈ B(0,K3) such that

B(zij ,K2

(
(1− ε)tj

ti

)ε2
) ⊂ Ti(S(xj , (1− ε)tj)) ⊂ B(zij ,K1

(
(1− ε)tj

ti

)ε1
).

By construction xj /∈ S(xi, ti). Then by (B) we have that

B(Ti(xj), ε
δ) ∩ Ti(S(xi, (1− ε)ti)) = ∅.

Consequently,

εδ < |Ti(xj)− Ti(z0)|
≤ |Ti(xj)− zij |+ |zij − Ti(z0)|

≤ K1

(
(1− ε)tj

ti

)ε1
+K1

(
(1− ε)tj

ti

)ε1
≤ 2K1

(
tj
ti

)ε1
≤ 21+ε1K12(ei−ej)ε1 .

This implies that the number of terms in the intersection (3-3) is finite and

2ej−ei ≤ 21+ε1K1ε
−ε1/δ,

which clearly implies that

ej − ei ≤ C1 ln
1

ε
,

where C1 is a constant depending only on ε1, δ and K1, for all ε > 0 small, smallness
depending only on the previous constants. In particular, the number of members
in (3-3) is at the most C1 ln 1

ε . Since we have proved before that the overlapping of
members in the same generation is at most αn, property (iii) follows. The proof of
Lemma 1 is now complete.

4. The decomposition

Let A be an open bounded set in Rn and for x ∈ A consider the averages

a(λ) =
µ(S(x, λ) ∩A)

µ(S(x, λ))
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as a function of λ. The function a(λ) is continuous and satisfies a(λ)→ 0 as λ→∞,
and a(λ)→ 1 as λ→ 0.

Let 0 < δ < 1 and pick the largest λ = λx with the property that a(λ) ≥ δ and
let S(x, λ) denote the corresponding section. Let

F = {S(x, λ)}x∈A.

We then have
µ(S(x, λ) ∩A)

µ(S(x, λ))
= δ

and

(4-1)
µ(S(x, λ′) ∩A)

µ(S(x, λ′))
≤ δ

for all λ′ > λ. Since µ (Rn) = +∞, by property (C) and (2-3) we have that λx is
bounded.

The family F is too small for our purposes; we shall enlarge it and in order to
do this we prove the following lemma.

Lemma 2. Let µ be a doubling measure on the sections S(x, λ) in the sense that
there exists C > 1 such that

(4-2) µ(S(x, 2λ)) ≤ Cµ(S(x, λ)),

for all λ > 0, where C is independent of x and λ. Given ε > 0 (small) and λ > 0
there exists 1 < t ≤ 2, depending on λ and ε such that t− ε ≥ 1 and

(4-3) µ(S(x, (t − ε)λ)) ≥ (1− ε logC)µ(S(x, tλ)).

Proof. Let g(t) be the monotone increasing function defined by

g(t) = log(µ(S(x, tλ))),

and let us look at g on the interval [1, 2]. Set g(1) = log(µ(S(x, λ))) = A. Then
by (4-2) g(2) = log(µ(S(x, 2λ))) ≤ logC + g(1). Consequently, the variation of g in
[1, 2] satisfies V[1,2]g = g(2)− g(1) ≤ logC.

Given ε > 0 and small, divide the interval [1, 2] into N equal subintervals Ij
of length ε, i.e., Nε ≈ 1. At least in one of the Ij the variation of g is ≤ ε logC
because, if for each j, VIjg > ε logC, then

Nε logC <
N∑
1

VIjg = V[1,2]g ≤ logC,

a contradiction. Therefore on some Ij , say Ij = [t − ε, t], 1 < t ≤ 2, we have
g(t)− g(t− ε) ≤ ε logC, and by exponentiating this inequality we obtain

µ(S(x, (t− ε)λ)) ≥ e−ε logC µ(S(x, tλ)).
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The lemma now follows by observing that e−s ≥ 1− s, ∀s ≥ 0.

We now enlarge the members of the family F . Let ε > 0 (small) and for S(x, λ) ∈
F let 1 < t ≤ 2 be the number in Lemma 2. We set r = tλ, then (t− ε)λ = r− ε rt ≤
r − ε r2 = r(1− ε

2 ). This implies that

S(x, (t− ε)λ) ⊂ S(x, r(1− ε

2
)),

and since t− ε ≥ 1 we have

S(x, λ) ⊂ S(x, r(1− ε

2
)).

We shall work with the families

G = {S(x, r)}x∈A,

Gε = {S(x, r(1− ε

2
))}x∈A.

Note that each member of both families satisfies (4-1), and by the doubling property
δ

C1
≤ µ(S ∩A)

µ(S)
≤ δ, for S ∈ G∪Gε, where C1 depends only on the doubling constant

of µ.

Proof of the Theorem. Since the set A is bounded, we can apply Lemma 1 to
the family G obtaining a countable family of sections whose members are denoted
by Sk = S(xk, tk), k = 1, 2, .... We also consider the family whose members are
Sεk = S(xk, (1− ε

2 )tk), k = 1, 2, .... Let f be the overlapping function defined by

f(x) =

{
#{k : x ∈ Sk}, if x ∈

⋃
Sk,

1, if x /∈
⋃
Sk;

here we have made f ≥ 1 to prevent f from vanishing. Also, denote by fε(x) the
analogue overlapping function for the family of the Sεk. Hence 1 ≤ fε(x) ≤ f(x), ∀x.
We have the following formula:

χ∪Sk(x) =
1

f(x)

∞∑
1

χSk(x),

and an analogous formula for Sεk and fε. Since f(x) may be infinite in a large region,
we work with the finite family {Sk}N1 and let N →∞ at the end of the proof. Also,
by Lemma 1 we have fε(x) ≤ K log(1/ε).

We have A ⊂
⋃
k Sk and

µ(A) = µ((
⋃
Sk) ∩A) =

∫
1

f(x)

∑
k

χSk∩A(x) dµ(x)

=
∑
k

∫
1

f(x)
χSk∩A(x) dµ(x) ≤

∑
k

∫
1

fε(x)
χSk∩A(x) dµ(x).
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Also,

(4-4)

∫
1

fε(x)
χSk(x) dµ(x) =

∫
1

fε(x)
χSk∩A(x) dµ(x)+

∫
1

fε(x)
χSk\A(x) dµ(x).

Note that, µ(Sk) = µ(Sk \ A) + µ(Sk ∩ A) ≤ µ(Sk \ A) + δµ(Sk), i.e, µ(Sk \ A) ≥
(1− δ)µ(Sk). Hence,∫

1

fε(x)
χSk\A(x) dµ(x) =

1

K log(1/ε)

∫
K log(1/ε)

fε(x)
χSk\A(x) dµ(x)

≥ 1

K log(1/ε)

∫
χSk\A dµ(x) =

1

K log(1/ε)
µ(Sk \A)

≥ 1− δ
K log(1/ε)

µ(Sk) =
1− δ

K log(1/ε)

∫
χSk(x) dµ(x)

≥ 1− δ
K log(1/ε)

∫
1

fε(x)
χSk(x) dµ(x).

From this inequality and (4-4) it follows that∫
1

fε(x)
χSk∩A(x) dµ(x) ≤

(
1− 1− δ

K log(1/ε)

)∫
1

fε(x)
χSk(x) dµ(x),

and consequently

µ((
⋃
Sk) ∩A) ≤

(
1− 1− δ

K log(1/ε)

)∑
k

∫
1

fε(x)
χSk(x) dµ(x).

Now we write∫
1

fε(x)
χSk(x) dµ(x)

=

∫
1

fε(x)

{
χSk(x)− χSεk(x)

}
dµ(x) +

∫
1

fε(x)
χSεk(x) dµ(x)

≤ µ(Sk)− µ(Sεk) +

∫
1

fε(x)
χSεk(x) dµ(x)

≤ ε logC µ(Sk) +

∫
1

fε(x)
χSεk(x) dµ(x) by (4-3)

≤ ε logC

1− ε logC
µ(Sεk) +

∫
1

fε(x)
χSεk(x) dµ(x)

=
ε logC

1− ε logC
K log(1/ε)

∫
1

K log(1/ε)
χSεk(x) dµ(x) +

∫
1

fε(x)
χSεk(x) dµ(x)

≤
(

1 +
ε logC

1− ε logC
K log(1/ε)

)∫
1

fε(x)
χSεk(x) dµ(x).

By adding we obtain∑
k

∫
1

fε(x)
χSk(x) dµ(x) ≤

(
1 +

ε logC

1− ε logC
K log(1/ε)

)∫
1

fε(x)
χSεk(x) dµ(x)

=

(
1 +

ε logC

1− ε logC
K log(1/ε)

)
µ(
⋃
Sεk).
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Consequently, we obtain the inequality

(4-5) µ(A) = µ((
⋃
Sk) ∩A) ≤ θ(ε)µ(

⋃
Sεk),

where

θ(ε) =

(
1− 1− δ

K log(1/ε)

)(
1 +

ε logC

1− ε logC
K log(1/ε)

)
.

We shall show that given δ, 0 < δ < 1, there exists 0 < ε0 = ε0(δ, C,K) < 1 such
that the function θ(ε) is strictly less than 1 in the interval (0, ε0]. This together
with (4-5) implies that given 0 < δ < 1 by picking ε > 0 sufficiently small there
exists δ0 = δ0(δ,K,C), 0 < δ0 < 1, such that

µ(A) = µ((
⋃
Sk) ∩A) ≤ δ0µ(

⋃
Sεk),

which gives the desired result.
To show the property of θ, we set ε = e−t, m = logC and write

θ(e−t) = 1 +
m

1−me−t
K t e−t − 1− δ

K t
− (1− δ)m

1−me−t
e−t = 1 + γ(t).

We look for the values of t > 0 such that γ(t) < 0. These are the values for which

(4-6)
m

1−me−t
K t e−t (Kt− (1− δ)) < 1− δ.

If we pick t > 0 such that 1 −me−t > 1/2, i.e., t > log(2m), then the left-hand
side of (4-6) is bounded by 2mK t e−t (Kt− (1− δ)) . By the fast decay of the
exponential, there exists t0(δ,m,K) such that

2mK t e−t (Kt− (1− δ)) < 1− δ,

for all t > t0. Consequently, for t > max{log(2m), t0(δ,m,K)} we have γ(t) < 0.
Therefore, if 0 < ε < min{ 1

2m , e
−t0(δ,m,K)}, then θ(ε) < 1.

5. The maximal function

We define the following maximal function:

Mf(x) = sup
λ>0

1

µ (S(x, λ))

∫
S(x,λ)

|f(y)| dµ(y),

and we shall show that Mf is of weak-type 1-1 with respect to the measure µ, i.e.,
there exists a constant C > 0 such that

µ{x : Mf(x) > s} ≤ C

s

∫
Rn

|f(y)| dµ(y),

for all s > 0 and any f ∈ L1(Rn, dµ).
In order to apply Lemma 1, we truncate the maximal function by setting

MBf(x) = sup
B>λ>0

1

µ (S(x, λ))

∫
S(x,λ)

|f(y)| dµ(y),
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where B > 0, and consider the set

As = {|x| ≤ m : MBf(x) > s}.
Given x ∈ As there exists S(x, λ) such that λ < B and

1

µ (S(x, λ))

∫
S(x,λ)

|f(y)| dµ(y) > s,

and we call F the family of these sections. Given ε > 0, proceeding as in the
argument after the proof of Lemma 2 we shall enlarge the family F ; i.e., given
S(x, λ) ∈ F by Lemma 2 there exists t = t(x, λ, ε) such that t − ε ≥ 1, 1 < t ≤ 2.
We let r = tλ and consider the family F ′ = {S(x, r)}. Note that

(5-1) S(x, λ) ⊂ S(x, (t− ε)λ) ⊂ S(x, (1− ε

2
)r) ⊂ S(x, r).

Also, S(x, (1− ε
2 )r) ⊂ S(x, 2λ), and then by the doubling property µ

(
S(x, (1− ε

2 )r)
)

≤ C1µ (S(x, λ)) . By Lemma 1, we can select a countable subfamily of F ′ denoted
by {S(xk, rk)}∞k=1, such that As ⊂

⋃
k S(xk, rk) and by doubling we have

(5-2) µ (As) ≤
∑
k

µ (S(xk, rk)) ≤ C
∑
k

µ
(
S(xk, (1−

ε

2
)rk)

)
.

Now note that by (5-1)

s <
1

µ (S(x, λ))

∫
S(x,λ)

|f(y)| dµ(y)

≤
µ
(
S(x, (1− ε

2 )r)
)

µ (S(x, λ))

1

µ
(
S(x, (1− ε

2 )r)
) ∫

S(x,(1− ε2 )r)

|f(y)| dµ(y)

≤ µ (S(x, 2λ))

µ (S(x, λ))

1

µ
(
S(x, (1− ε

2 )r)
) ∫

S(x,(1− ε2 )r)

|f(y)| dµ(y)

≤ C1
1

µ
(
S(x, (1− ε

2 )r)
) ∫

S(x,(1− ε2 )r)

|f(y)| dµ(y).

This applied to (5-2) yields

µ (As) ≤
C

s

∑
k

∫
S(xk,(1− ε2 )rk)

|f(y)| dµ(y) ≤
K log 1

ε

s

∫
Rn

|f(y)| dµ(y),

by Lemma 1.
By first letting m→∞ and then B →∞, the weak-type 1-1 of M follows.

6. The space BMO

Let f be a real-valued function defined on Rn. We say that f ∈ BMO if there
exists a constant C > 0 such that

(6-1)
1

µ(S)

∫
S

|f(x)−mS(f)| dµ(x) ≤ C,

for every section S. Here

mS(f) =
1

µ(S)

∫
S

f(x) dµ(x).

The ”norm” of f in BMO is the smallest constant in C appearing in (6-1), and it
is denoted by ‖f‖∗. We shall show the following variant of the John and Nirenberg
lemma.
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Lemma 3. There exist positive constants C1, C2 which depend only on the measure
µ such that for every f ∈ BMO and continuous we have

1

µ(S)

∫
S

exp

(
C1
|f(x)−mS(f)|

‖f‖∗

)
dµ(x) ≤ C2,

for every section S.

Proof. We may assume that ‖f‖∗ = 1. We shall show that there exist positive
numbers ε0 < 1 and M depending only on the measure µ such that

(6-2) µ{x ∈ S : |f(x)−mS(f)| > t} ≤ ε0 µ{x ∈ S : |f(x)−mS(f)| > t−M},

for every section S and every t > M. Let us fix a section S and set

A = {x ∈ S : |f(x) −mS(f)| > t}, B = {x ∈ S : |f(x)−mS(f)| > t−M}.

Let 0 < δ < 1 and {S(xk, tk)}∞k=1 be the decomposition of the set A given by
the theorem in §1. We recall that

(1) There exists c1 > 0, depending only on the doubling constant of µ such that

δ

c1
<
µ (Sk ∩A)

µ(Sk)
≤ δ.

(2) A ⊂
⋃∞
k=1 Sk.

(3) For 0 < τ sufficiently small the family Sτk = Sk(xk, (1− τ)tk), k = 1, ..., has
bounded overlaps, i.e., ∑

k

χSτk (x) ≤ K log
1

τ
,

and
δ

c2
<
µ (Sτk ∩A)

µ(Sτk )
≤ δ,

where c2 depends only on the doubling constant of µ.
Pick ε > 0 sufficiently small such that

ε ≤ min{ δ
c1
,
δ

c2
} < δ ≤ 1− ε.

Then we have

ε <
µ (Sk ∩A)

µ(Sk)
,
µ (Sτk ∩A)

µ(Sτk )
< 1− ε.

We claim that

(6-3)
µ (Sτk ∩B)

µ(Sτk )
> 1− ε

2
∀k ≥ 1.

Let us denote g(x) = f(x)−mS(f) and note that (6-3) is equivalent to

(6-4)
µ (Sτk ∩ {x ∈ S : |g(x)| ≤ t−M})

µ(Sτk )
≤ ε

2
.
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Suppose by contradiction that the claim is false. Then there exists m such that

(6-5)
µ (Sτm ∩ {x ∈ S : |g(x)| ≤ t−M})

µ(Sτm)
>
ε

2
.

Note that for any section S′ we have g(x) −mS′(g) = f(x) −mS′(f) and conse-
quently, ‖g‖∗ ≤ ‖f‖∗ = 1.

Let

ḡm =
1

µ(Sτm)

∫
Sτm

g(x) dµ(x).

We have the following possible cases:
(a) t− M

2 ≤ |ḡm| < t.

(b) t−M < |ḡm| < t− M
2 .

(c) |ḡm| > t.
(d) |ḡm| < t−M.

In the first case we have

1 ≥ 1

µ(Sτm)

∫
Sτm

|g(x)− ḡm| dµ(x)

≥ 1

µ(Sτm)

∫
Sτm∩{x∈S:|g(x)|≤t−M}

||g(x)| − |ḡm|| dµ(x)

≥ M

2

µ (Sτm ∩ {x ∈ S : |g(x)| ≤ t−M})
µ(Sτm)

≥ M

2

ε

2
,

by (6-5). In the second case we have

1 ≥ 1

µ(Sτm)

∫
Sτm

|g(x)− ḡm| dµ(x) ≥ 1

µ(Sτm)

∫
Sτm∩A

||g(x)| − |ḡm|| dµ(x)

≥ M

2

µ (Sτm ∩A)

µ(Sτm)

≥ M

2
ε,

by property (3) of the decomposition. In case (c) we have

1 ≥ 1

µ(Sτm)

∫
Sτm

|g(x)− ḡm| dµ(x)

≥ 1

µ(Sτm)

∫
Sτm∩{x∈S:|g(x)|≤t−M}

||g(x)| − |ḡm|| dµ(x)

≥Mµ (Sτm ∩ {x ∈ S : |g(x)| ≤ t−M})
µ(Sτm)

≥M ε

2
,
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by (6-5). Finally, in case (d) we have

1 ≥ 1

µ(Sτm)

∫
Sτm

|g(x)− ḡm| dµ(x) ≥ 1

µ(Sτm)

∫
Sτm∩A

||g(x)| − |ḡm|| dµ(x)

≥Mµ (Sτm ∩A)

µ(Sτm)

≥Mε,

again by property (3) of the decomposition. Therefore, if M is sufficiently large
(depending only on the size of ε) we get a contradiction which shows that the
inequality (6-5) is impossible. This proves the claim.

We now write

µ (Sτk ∩B) = µ (Sτk ∩ {x ∈ S : t−M < |g(x)| ≤ t}) + µ (Sτk ∩A) .

Hence, by (6-3) and the choice of ε we obtain(
1− ε

2

)
µ(Sτk ) < µ (Sτk ∩ {x ∈ S : t−M < |g(x)| ≤ t}) + (1− ε)µ(Sτk ),

i.e.,

µ (Sτk ∩ {x ∈ S : t−M < |g(x)| ≤ t}) > ε

2
µ(Sτk ).

By adding the last inequality over k, using Theorem 1 and the bounded overlaps
we obtain

K log
1

τ
(µ ({x ∈ S : |g(x)| > t−M})− µ ({x ∈ S : |g(x)| > t}))

= K log
1

τ
µ ({x ∈ S : t−M < |g(x)| ≤ t})

≥
∑
k

µ (Sτk ∩ {x ∈ S : t−M < |g(x)| ≤ t})

>
ε

2

∑
k

µ(Sτk ) ≥ ε

2
µ

( ∞⋃
k=1

Sτk

)
≥ ε

2
δ−1
0 µ(A).

Hence,
µ(A) ≤ ε0µ(B),

with ε0 =
(

1 + ε
2

(
δ0K log 1

τ

)−1
)−1

.

The inequality (6-2) implies that

(6-6) µ ({x ∈ S : |g(x)| > M + kM}) ≤ εk0µ ({x ∈ S : |g(x)| > M}) ≤ εk0µ (S) ,

for k = 0, 1, ....
We write∫
S

exp (α|g(x)|) dµ(x) = α

∫ ∞
0

eαtµ ({x ∈ S : |g(x)| > t}) dt

= α

∫ M

0

eαtµ ({x ∈ S : |g(x)| > t}) dt

+ α

∫ ∞
M

eαtµ ({x ∈ S : |g(x)| > t}) dt = I + II.
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The integral I is clearly bounded by Cµ(S). To estimate II we write

II = eαM
∫ ∞

0

eαtµ ({x ∈ S : |g(x)| > M + t}) dt

= eαM
∞∑
k=0

∫ (k+1)M

kM

eαtµ ({x ∈ S : |g(x)| > M + t}) dt

≤M e2αM
∞∑
k=0

eαkMµ ({x ∈ S : |g(x)| > M + kM})

≤M e2αM
∞∑
k=0

eαkM εk0µ (S) .

Since ε0 < 1, ε0 = e−λ0 with λ0 > 0, by taking α < λ0 the series converges and we
obtain the lemma.
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