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TRANSFER OPERATORS ACTING ON ZYGMUND FUNCTIONS

VIVIANE BALADI, YUNPING JIANG, AND OSCAR E. LANFORD III

Abstract. We obtain a formula for the essential spectral radius ρess of
transfer-type operators associated with families of C1+δ diffeomorphisms of
the line and Zygmund, or Hölder, weights acting on Banach spaces of Zyg-
mund (respectively Hölder) functions. In the uniformly contracting case the
essential spectral radius is strictly smaller than the spectral radius when the
weights are positive.

1. Introduction

During the last decade, a generalised theory of Fredholm determinants has been
obtained using tools from statistical mechanics, often in a dynamical setting. Typ-
ically, one considers
• a transformation f , with finitely or countably many inverse branches, of a

metric space M to itself,
• a weight g : M → C;

and one defines the associated transfer operator

Lϕ(z) =
∑

f(w)=z

g(w)ϕ(w)

acting on a Banach space of functions ϕ : M → C. Transfer operators are use-
ful in the study of “interesting” invariant measures for f . They sometimes arise
in a surprising fashion: It has been proved that the period-doubling renormal-
ization spectrum is exactly the spectrum of a suitably defined transfer operator
(see e.g. Jiang-Morita-Sullivan [6]). Transfer operators are usually bounded but
non-compact; however, it has been possible in many cases to compute an upper
bound, or even an exact value for the essential spectral radius ρess of L. This is
the first step towards a generalised Fredholm theory. The second step is to in-
troduce a generalised Fredholm determinant, which is often closely connected to
weighted dynamical zeta functions (see Section 5). One then shows under suitable
assumptions that the determinant is an analytic function in a subset of the complex
plane, or that the zeta function is meromorphic in some domain, where its zeroes
(respectively poles) describe exactly the spectrum of L outside of a disc of radius
r ≥ ρess.
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This program has been successfully carried out in an Axiom A framework with
various degrees of smoothness (Hölder, analytic, differentiable: see Parry-Pollicott
[12]; and Rugh [18] for more recent developments), for families of contractions
on finite dimensional manifolds and Ck+α smoothness, 0 ≤ k ≤ ω, 0 ≤ α ≤ 1
(Ruelle [15, 16], Fried [4]). In dimension one, one may consider test functions of
bounded variation (see Ruelle [17] and references therein, Baladi-Ruelle [1]), and
under Markov-type assumptions also Ck Banach spaces (Collet-Isola [2]).

One Banach space which had not yet been investigated in this context is the space
Z(I) of Zygmund functions on an interval or circle I (see Section 2 for definitions).
The space Z(I), which has been much used in dynamical systems in recent years,
notably in Sullivan’s analysis of renormalisation (Sullivan [19]), is interesting not
only because Λ1 ( Z ( Λα for all 0 < α < 1, where Λα denotes the space
of α-Hölder functions (Λ1 = Lip(I)) but also because it arises in the study of
quasiconformal mappings and Teichmüller theory, as we explain now.

Let I denote the circle R/Z, and choose three points p1 < p2 < p3 in I. A
homeomorphism h of I fixing pi for i = 1, 2, and 3 is called quasisymmetric if

||h||qs = sup
x∈I;x+t,x−t∈I

|h(x+ t)− h(x)|
|h(x)− h(x− t)| <∞ .

Let T be the set of all orientation preserving quasisymmetric homeomorphisms of I
which fix pi for i = 1, 2, 3, endowed with the distance d(h1, h2) = log ||h1 ◦h−1

2 ||qs.
The set T with distance d is a model for universal Teichmüller space (see Lehto
[9]). For a fixed quasisymmetric homeomorphism h0 in T , the right composition
Rh0(h) = h ◦ h0 acting on T is a continuous map, and sends a neighborhood of the
identity to a neighborhood of h0. This makes T into a homogeneous space. It is
also known that T is a complex manifold (see Gardiner [5], Lehto [9]). Thus T has
a tangent space at the identity, which is also the tangent space at any point h0.
This tangent space is a Banach space of continuous vector fields φ(x)d/dx defined
on I, and, when factored by the two-dimensional subspace of affine functions, can
be identified with Z(I), the Zygmund function space (Reimann [14]). Therefore a
transfer operator L acting on Z(I) can be viewed as acting on the tangent space
of universal Teichmüller space. It is hoped that the knowledge of the spectral
properties of such operators may be applied to the study of Teichmüller theory.
An especially interesting case is when L is the tangent map DR to some nonlinear
operator R acting on universal Teichmüller space.

In this paper, we carry out the first step towards a generalised Fredholm de-
terminant theory on Zygmund spaces: We obtain an exact formula (Theorem 1)
for the essential spectral radius of transfer operators L acting on Z(I), or Λα for
0 < α ≤ 1 (the Λα case was treated by Lanford [8]), and under additional as-
sumptions a strict inequality between the essential spectral and the spectral radii.
Section 2 contains definitions and results on the essential spectral radius. To obtain
the essential spectral radius, we prove an upper bound in Section 3, and a lower
bound in Section 4 (our method to get the lower bound differs from the one used
by Pollicott [13] and Collet-Isola [2], but is similar to the one applied by Keller [7]).
Section 5 contains results on the spectral radius and two conjectures on the second
part of the program mentioned above.

V.B. and Y.J. are grateful to J. Dodziuk and F. Gardiner for very useful remarks.
O.E.L. thanks A. Davies for suggesting the approach used in the proof of the lower
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bound. Y.J. is grateful to FIM/ETH Zürich for its kind hospitality and support
during an invitation which made the present work possible.

2. Definitions and statement of results

Throughout, I denotes a compact interval (minor modifications yield results for
I = R/Z), and C > 0 a generic constant (in particular we admit identities such as
C = 2C).

Zygmund functions. The Zygmund space Z on I (Zygmund [20]) is the complex
vector space of continuous (or, equivalently, locally bounded) functions ϕ : I → C
such that

Z(ϕ) = sup
x∈I

t>0:x±t∈I

|Z(ϕ, x, t)| <∞,

where Z(ϕ, x, t) = (ϕ(x+ t) + ϕ(x− t)− 2ϕ(x))/t. The vector space Z becomes a
Banach space when endowed with the norm ‖ϕ‖Z = max(supI |ϕ|, Z(ϕ)).

For 0 < α ≤ 1, let Λα denote the space of α-Hölder functions, i.e. functions
ϕ : I → C satisfying

|ϕ|α = sup
x6=y∈I

|ϕ(x)− ϕ(y)|
|x− y|α <∞ .

In particular, Λ1 is the space of Lipschitz functions. Each Λα is a Banach space
for the norm ‖ϕ‖α = max(supI |ϕ|, |ϕ|α); Z⊂

6=
Λα for 0 < α < 1; and Λ1⊂

6=
Z. (For

a proof of the second assertion, see e.g. de Melo-van Strien [10, p. 293]; for an
example showing that Λ1 6= Z, see the remark following the proof of Lemma 1.)
We shall also consider the Banach space B of bounded functions on I endowed with
the supremum norm.

Note that the norms ‖ϕ‖Z,α = max(supI |ϕ|, Z(ϕ), |ϕ|α) for 0 < α < 1 on Z are
all equivalent with the norm ‖ · ‖Z . (Indeed, for each 0 ≤ α < 1 the space Z is a
Banach space for the norm ‖·‖Z,α; the open mapping theorem may then be applied
to the identity maps (Z, ‖ · ‖Z,α)→ (Z, ‖ · ‖Z).) In other words, for each 0 ≤ α < 1,
there is a constant K = K(α) such that

|ϕ|α ≤ K(α) (sup |ϕ|+ Z(ϕ)) , ∀ϕ ∈ Z .

The following key lemma may be proved by direct computation:

Zygmund derivation of a product. For all ϕ,ψ in Z(I), x ∈ I, and t > 0,

(2.1)
Z(ϕψ, x, t) = ϕ(x)Z(ψ, x, t) + ψ(x)Z(ϕ, x, t)

+ t ·∆+(ϕ, x, t)∆+(ψ, x, t) + t ·∆−(ϕ, x, t)∆−(ψ, x, t) ,

where ∆+(υ, x, t) = (υ(x+ t)− υ(x))/t and ∆−(υ, x, t) = (υ(x)− υ(x− t))/t.

The following result is also useful (the constant 1/2 is not optimal):

Skewed Zygmund bound. For all ϕ ∈ Z, x, y ∈ I, 0 < t < 1,

∣∣((1− t)ϕ(x) + tϕ(y)
)
− ϕ((1− t)x+ ty)

∣∣ ≤ 1
2
Z(ϕ)|x− y|.
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Proof of the skewed Zygmund bound. Fix x and y. There is nothing to prove if
Z(ϕ) = 0. Otherwise, by subtracting off an affine function, making an affine change
of variables, and multiplying by a constant, we can reduce to the case x = 0, y = 1,
ϕ(0) = ϕ(1) = 0, Z(ϕ) = 4. We then have∣∣∣∣12ϕ(u) +

1
2
ϕ(v)− ϕ(

1
2
u+

1
2
v)
∣∣∣∣ ≤ |u− v|,

and we want to prove that |ϕ(t)| ≤ 2 for 0 ≤ t ≤ 1. By continuity, it is enough to
prove the desired bound for t a dyadic rational. We will construct recursively an
increasing sequence of bounds γn such that |ϕ(t)| ≤ γn for t of the form j

2n .
We start with γ1 = 1. For the induction step, it is evidently enough to consider

t =
2j + 1
2n+1

=
1
2
j

2n
+

1
2
j + 1

2n
.

By the induction hypothesis, ϕ( j
2n ) ≤ γn and ϕ( j+1

2n ) ≤ γn; by the Zygmund
condition ∣∣∣∣ϕ(t)−

(1
2
ϕ(

j

2n
) +

1
2
ϕ(
j + 1

2n
)
)∣∣∣∣ ≤ 1

2n
.

Hence, the bound holds inductively if we set γn+1 = γn+ 1
2n , and, since limn→∞ γn

= 2, the assertion follows. �
The transfer operator. The basic data entering into the definition of the transfer
operator are a dynamical system and a weight. Let I be a finite or countable set
and 0 ≤ δ < 1. The dynamical system here is a family of C1+δ diffeomorphisms,
fi : I → Ji, for i ∈ I, where the intervals Ji ⊂ I have disjoint interiors. We assume
further that supi ‖f ′i‖δ <∞, in particular λ := 1/ supi,x |f ′i(x)| > 0.

The weight is a family of functions gi : I → C, i ∈ I. Such a family gi is called
summably bounded if sup Σ|g| =

∑
i sup |gi| <∞.

A summably bounded family is called summably Λα if |g|Σα =
∑
i |gi|α < ∞ for

some 0 < α ≤ 1; it is called summably Zygmund if Z(g)Σ =
∑
i Z(gi) <∞.

Define formally the transfer operator L associated with the families fi and gi,
and acting on functions ϕ : I → C, by

(2.2) Lϕ(x) =
∑
i∈I

gi(x)ϕ(fi(x)) .

A typical example is when the fi are the finitely many inverse branches of a piece-
wise expanding, piecewise surjective interval map f , or the finitely many inverse
branches of a one-dimensional hyperbolic repeller, and gi = |f ′i |.

The following lemma is a “warm-up”:

Lemma 1. The linear operator L is bounded when acting on B (respectively Λα,
for any 0 < α ≤ 1) if the family gi is summably bounded (respectively summably Λα)
and δ ≥ 0; the operator L is bounded when acting on Z if the family is summably
Zygmund and δ > 0.

Proof of Lemma 1. It follows immediately from the definitions that

sup
I
|Lϕ| ≤ sup

I
|ϕ|
∑
i∈I

sup
I
|gi| ≤ sup Σ|g| sup

I
|ϕ| .
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To bound the α-Hölder seminorm, we use |x− y| ≥ λ|fix− fiy| for all i and get

(2.3)

|Lϕ|α = sup
x,y∈I

|
∑
i gi(x)ϕ(fix)− gi(y)ϕ(fiy)|

|x− y|α

≤ sup
x,y∈I

∑
i |gi(x)(ϕ(fix)− ϕ(fiy))|+ |ϕ(fiy)(gi(x)− gi(y))|

|x− y|α

≤ sup Σ|g| |ϕ|α
λα

+ |g|Σα sup
I
|ϕ| .

For the Zygmund bound, we first note that for each x ∈ I and t > 0 with
x± t ∈ I, the Zygmund derivation formula yields for any 0 < α < 1:

(2.4)

∣∣Z(Lϕ, x, t)
∣∣ =

∣∣∣∣∑
i∈I

Z(gi · (ϕ ◦ fi), x, t)
∣∣∣∣

≤ sup Σ|g| sup
i

∣∣Z(ϕ ◦ fi, x, t)
∣∣+ ZΣ(g) sup |ϕ|+ 2

λα
|g|Σ1−α|ϕ|α .

Defining 0 < |ti| ≤ t/λ for each i ∈ I by fi(x + t) = fi(x) + ti, we observe that,
since δ > 0, there is a constant C > 0 such that for all i, and all x ∈ I, t > 0 with
x± t ∈ I,

(2.5)
|fi(x− t)− (fi(x)− ti)| = |(fi(x+ t)− fi(x))− (fi(x)− fi(x− t))|

= |f ′i(x+ u)t− f ′i(x− v)t| ≤ |f ′i |δ2δt1+δ ≤ Ct1+δ ,

where we used 0 ≤ u+ v ≤ 2t and supi |f ′i |δ <∞. For each i ∈ I, we decompose

(2.6) Z(ϕ ◦ fi, x, t) =
ti
t
Z(ϕ, fi(x), ti)−

ϕ(fi(x)− ti)− ϕ(fi(x− t))
t

= Ii + IIi .

Clearly,

(2.7) sup
i∈I
|Ii| ≤

1
λ
Z(ϕ) .

Now, using (2.5), we get for all i with IIi 6= 0:

(2.8) |IIi| ≤ C
|ϕ(fi(x)− ti)− ϕ(fi(x− t))|
|fi(x)− ti − fi(x− t)|1/(1+δ)

≤ C |ϕ|1/(1+δ) .

To finish, put (2.4) and (2.6)–(2.8) together, observing that for any (1 + δ)−1 ≤
α < 1 there is a constant K(α) with |ϕ|1/(1+δ) ≤ |ϕ|α ≤ K(α)‖ϕ‖Z , and |g|Σα ≤
K(α)ZΣ(g). �
Remark. We would like to point out that the transfer operator L acting on Z may
be unbounded if δ = 0 (even for constant weights). Indeed, it is well known that
there exist Zygmund functions ϕ and C1 diffeomorphisms f such that ϕ ◦ f is
not Zygmund. For example, let I = [−ε, ε] be a small neighbourhood of 0, let
ϕ(x) = x log |x| on I, and let f : I → f(I) ⊂ I be a C1 diffeomorphism with
f(0) = 0, f ′(x) = 1 for x ≤ 0 and f ′(x) = 1− 1/

√
| log(x)| for x > 0 (in particular,
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there is a constant C > 0 with C < f ′(x) ≤ 1 on I). To check that ϕ ◦ f is not
Zygmund, we first show, by straightforward computation, that

Z(ϕ ◦ f, 0, t) =
(
f(t)
t
− 1
)

log(t) +
f(t)
t

log
f(t)
t

, for t > 0 .

The second term on the right goes to zero as t→ 0+; the first, on the other hand,
is unbounded since(

f(t)
t
− 1
)√
| log t| = −

√
| log t|
t

∫ t

0

ds√
| log s|

→ −1 when t→ 0+.

The essential spectral radius of the transfer operator. For each n ≥ 1 and
i` ∈ I, 1 ≤ ` ≤ n, introduce the maps f (n)

~ı = fin ◦ · · · ◦ fi1 , and the weights
g

(n)
~ı (x) = gin(fin−1 · · · fi1(x)) · · · gi2(fi1(x)) · gi1(x). Note that for all n ≥ 1

Lnϕ(x) =
∑
~ı∈In

g
(n)
~ı (x)ϕ(f (n)

~ı x) .

Our main result is:

Theorem 1.
1. Assume that the family gi is summably Zygmund and that δ > 0. The essential

spectral radius ρess(L) of the operator L acting on Z is equal to

ρess(L) = lim
n→∞

[
sup
x∈I

∑
~ı∈In

|g(n)
~ı (x)| |f (n)

~ı

′
(x)|

]1/n

(in particular, the limit on the right exists).
2. If the family gi is summably Λα for some 0 < α ≤ 1, the essential spectral

radius ρess(L) of the operator L acting on Λα is equal to

ρess(L) = lim
n→∞

[
sup
x∈I

∑
~ı∈In

|g(n)
~ı (x)| |f (n)

~ı

′
(x)|α

]1/n

.

The proof of Theorem 1 is based on the following result of Nussbaum [11], which
holds for any bounded linear operator L on a Banach space:

ρess(L) = lim
n→∞

(inf{‖Ln −K‖ | K compact })1/n
.

Indeed, using the above equality and the expression of Ln as a sum over In, the
theorem will be an immediate consequence of the two following lemmas:

Lemma 2 (Upper bound). There is a universal constant C > 0 so that, for any
family fi with δ > 0 and summably Zygmund gi,

inf{‖L − K‖Z | K : Z → Z compact } ≤ C · sup
x∈I

∑
i∈I
|gi(x)| |f ′i(x)| ;

and for any family fi with δ ≥ 0 and summably Λα weights gi

inf{‖L − K‖α | K : Λα → Λα compact } ≤ C · sup
x∈I

∑
i∈I
|gi(x)| |f ′i(x)|α .
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Lemma 3 (Lower bound). For any family fi with δ > 0 and summably Zygmund
gi,

inf{‖L − K‖Z | K : Z → Z compact } ≥ sup
x∈I

∑
i∈I
|gi(x)| |f ′i(x)| .

For any family fi with δ ≥ 0 and summably Λα weights gi,

inf{‖L − K‖α | K : Λα → Λα compact } ≥ sup
x∈I

∑
i∈I
|gi(x)| |f ′i(x)|α .

The essential spectral radius of restrictions of linear operators. If the
family gi is summably Zygmund and δ > 0, it follows from Theorem 1 that the
essential spectral radius of L acting on Z(I) is the limit of its essential spectral
radii on Λα as α → 1. Moreover, if the family gi is summably Lipschitz, L has
the same essential spectral radius when acting on Λ1 or Z. Although this is hardly
surprising, we believe that part 1 of Theorem 1 cannot be easily deduced from part
2, i.e., that the Zygmund result cannot be deduced immediately from the Λα, 0 <
α ≤ 1, results: The essential spectrum of a bounded operator contains its residual
spectrum, which can be very badly behaved under restriction (see e.g. Dowson [3]).
In this respect, we recall the very well known example of the shift operator acting on
the Hilbert space `2 = {(xk)k∈Z | xk ∈ C ,

∑
k |xk|2 <∞} by (T (~x))j = xj−1, whose

spectrum is the unit circle, but which has the property that the spectrum of its
restriction to the closed invariant space of sequences {(xk)k∈Z ∈ `2 | xk = 0 , k ≤ 0}
fills the whole unit disc.

It can happen that the essential spectral radius decreases when one lets L act on
the bigger spaces Λα for α < 1 instead of Z. A simple example can be constructed
as follows: We take I = [0, 1] and the index set I to have one member 1. We then
take for f1 an analytic diffeomorphism I → I satisfying f ′′1 < 0, and having exactly
two fixed points 0 and 1, with f ′1(0) > 1 and f ′1(1) < 1. If g1 is analytic and satisfies
g1(0) = 1 and 0 ≤ g1(x) ≤ 1 for all x ∈ I, then Theorem 1 yields that the essential
spectral radius of L acting on Z or Λ1 is f ′1(0) > 1, but shrinks to f ′1(0)α when L
acts on Λα for 0 < α < 1. If sup |f ′i | ≤ 1 for all i, this shrinking phenomenon is of
course not possible.

3. The upper bound

To prove the upper bound we consider an explicit sequence of compact projec-
tions. Assuming that I = [0, 1] to fix ideas, define for integers n ≥ 1

(3.1) τ
(n)
j =

j

n
, j = 0, . . . , n,

and let P (n) be the compact operator of piecewise affine interpolation at the τ (n)
j .

(I.e., P (n)ϕ is the unique function which is affine on each interval [τ (n)
j−1, τ

(n)
j ] and

which agrees with ϕ at the points τ (n)
j .) We write Q(n) = 1−P (n), where 1 denotes

the identity operator. For simplicity, we often drop the superscript (n). We will
use the compact operators K = K(n) = L−Q(n)LQ(n).
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For each fixed n ≥ 1, it will be convenient to use the auxiliary seminorms

(3.2)

|ϕ|(n)
α = sup

0≤j≤n−1
sup

τj≤x<y≤τj+1

|ϕ(x)− ϕ(y)|
|x− y|α , for ϕ ∈ Λα(I) , 0 < α ≤ 1 ,

Z(n)(ϕ) = sup
0≤j≤n−2

sup
x∈I

t>0:x±t∈[τj ,τj+2]

|Z(ϕ, x, t)| , for ϕ ∈ Z(I) .

Obviously, |ϕ|(n)
α ≤ |ϕ|α and Z(n)(ϕ) ≤ Z(ϕ). We summarize properties of the

operators Q(n) and the seminorms | · |(n)
α and Z(n)(·):

Sublemma 4. For any n ≥ 1 and 0 < α ≤ 1:
1. sup |Q(n)ϕ| ≤ 2 sup |ϕ| and sup |Q(n)ϕ| ≤ (2n)−α|Q(n)ϕ|(n)

α , for each ϕ ∈ Λα.
2. |Q(n)ϕ|(n)

α ≤ 2|ϕ|(n)
α and |Q(n)ϕ|α ≤ 2|Q(n)ϕ|(n)

α , for each ϕ ∈ Λα.
3. Z(Q(n)ϕ) ≤ 4Z(n)(ϕ), for each ϕ ∈ Z.

Proof of Sublemma 4. Clearly, sup |Pϕ| ≤ sup |ϕ|, which yields the first bound by
the definition of Q. The other claim is immediate too, since Qϕ vanishes at the τj
and any point x is within distance at most 1/(2n) of some τj .

To prove the first bound for the α-Hölder seminorm it suffices to control P .
Consider a pair of points x < y belonging to the same interval [τj−1, τj ]. Then
(Pϕ(y)− Pϕ(x))/(y − x) = (ϕ(τj)− ϕ(τj−1))/(τj − τj−1). Therefore

(3.3)
|Pϕ(y)− Pϕ(x)|
|y − x|α =

|ϕ(τj)− ϕ(τj−1)|
|τj − τj−1|α

·
(
|y − x|
|τj − τj−1|

)1−α
≤ |ϕ|(n)

α .

To prove the second bound, write ψ = Qϕ and consider x < y. If there is some j
with τj−1 ≤ x < y ≤ τj , then we have by definition |ψ(y)− ψ(x)| ≤ |ψ|(n)

α |y − x|α.
Otherwise, there are j and k such that τj−1 ≤ x < τj ≤ τk−1 < y ≤ τk. Then, since
ψ(τj) = 0 = ψ(τk−1), we have

|ψ(y)− ψ(x)| ≤ |ψ(y)− ψ(τk−1)|+ |ψ(τj)− ψ(x)|
≤ |ψ|(n)

α

(
|y − τk−1|α + |τj − x|α

)
≤ 2|ψ|(n)

α |y − x|α .

To prove the claim on the Zygmund seminorm, we first show that

(3.4) Z(n)(P (n)ϕ) ≤ Z(n)(ϕ) .

Since both P (n) and Z(n) can be built a pair of successive intervals at a time, it is
enough to consider the case n = 2, in which case we can write simply Z rather than
Z(n). By an affine change of variable, we can assume that the working interval is
[−1, 1], and, by subtracting a linear function from ϕ, then multiplying by an overall
constant, we can assume that ϕ(−1) = ϕ(1) = 1 and ϕ(0) = 0 or ϕ(0) = 1, i.e.,
P (n)ϕ(x) = |x| or P (n)ϕ(x) ≡ 0. It suffices to consider the case ϕ(0) = 0. Then,
on the one hand,

Z(ϕ) ≥ |ϕ(1) + ϕ(−1)− 2ϕ(0)| = 2,
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and, on the other hand, for t > 0,

0 ≤ |x+ t| − |x|
t

− |x| − |x− t|
t

≤ 1− (−1) = 2,

so that Z(| . |) = 2, proving (3.4).
We now show that Z(Q(n)ϕ) ≤ 4Z(n)(ϕ). Recall that Z(Q(n)ϕ) is defined as the

supremum of |Z(Q(n)ϕ, x, t)| over an appropriate set of pairs x, t; Z(n)(Q(n)ϕ) as
the supremum of the same quantity over the set of pairs such that x± t lie in the
union of some pair of successive subintervals. By (3.4), this latter supremum can
be majorized by Z(n)(P (n)ϕ) + Z(n)(ϕ) ≤ 2Z(n)(ϕ), so the asserted bound holds
when x± t lie in the union of a pair of successive intervals.

If, on the other hand, x± t do not lie in the union of two successive subintervals,
then |t| must be > 1/2n. By the skewed Zygmund bound and the fact that Q(n)(ϕ)
vanishes at the division points,

|Q(n)(ϕ)(s)| ≤ 1
2
Z(n)(ϕ)

1
n

for all relevant s,

so we can estimate

|Z(Q(n)ϕ, x, t)| ≤ 4 · 1
2
Z(n)(ϕ)

1
n
· 1
|t| ≤ 4Z(n)(ϕ),

using |t| ≥ 1/(2n). Thus, the asserted bound also holds when x ± t do not lie in
the union of two successive subintervals. �

For each fixed n ≥ 1 and each 0 < α ≤ 1, we define

β(n)
α = sup

0≤j≤n−1
sup

x,y∈[τ
(n)
j ,τ

(n)
j+1]

∑
i∈I
|gi(x)| |f ′i(y)|α .

For 0 < α ≤ 1, and large enough n, β(n)
α is arbitrarily close to

sup
x∈I

∑
i∈I
|gi(x)| |f ′i(x)|α .

The next sublemma shows the usefulness of the seminorms | · |(n)
α , Z(n)(·):

Sublemma 5. If gi is summably Λα for 0 < α ≤ 1, then for each n ≥ 1 and
ϕ ∈ Λα

|Lϕ|(n)
α ≤ |g|Σα sup |ϕ|+ β(n)

α |ϕ|α .

If gi is summably Zygmund and δ > 0, there are constants K > 0 and ε > 0,
depending only on the families fi and gi, such that for any n ≥ 1, and ϕ ∈ Z,

Z(2n)(Lϕ) ≤ K sup |ϕ|+
(
β

(n)
1 +

K

nε
)
Z(ϕ) .
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Proof of Sublemma 5. We first prove the bound on the Λα seminorm by refining
(2.3). Let ϕ ∈ Λα and τj−1 ≤ x < y ≤ τj . Then there are points zi ∈ [x, y] with

|Lϕ(y)−Lϕ(x)| ≤
∑
i∈I

(
|gi(y)− gi(x)| |ϕ(fi(y))|+ |gi(x)| |ϕ(fi(y))− ϕ(fi(x))|

)
≤ |g|Σα sup |ϕ| |x− y|α +

∑
i∈I
|gi(x)| |ϕ|α|fi(y)− fi(x)|α

=
(
|g|Σα sup |ϕ|+

∑
i∈I
|gi(x)| |f ′i(zi)|α|ϕ|α

)
|x− y|α

≤
(
|g|Σα sup |ϕ|+ β(n)

α |ϕ|α
)
|x− y|α ,

as claimed.
To prove the Zygmund bound, we fix 0 < α < 1 and consider x, x ± t in some

[τ (2n)
j , τ

(2n)
j+2 ]. We first rewrite (2.4) more carefully:

(3.5)∣∣Z(Lϕ, x, t)
∣∣ ≤∑

i∈I
|gi(x)| |Z(ϕ ◦ fi, x, t)|+ ZΣ(g) sup |ϕ|+ 2

λα

(
1
n

)ε
|g|Σ1−α+ε|ϕ|α ,

where 0 < ε < δ is such that 1 − α + ε < 1, and we used t < 1/n. To bound the
first term in the right-hand side of (3.5), we may use the decomposition (2.6) of
Z(ϕ◦fi, x, t) into Ii+IIi. Then, by definition of the ti, there are points zi ∈ [x, x+t]
so that

(3.6) Ii = f ′i(zi)Z(ϕ, fi(x), ti) .

Using again t < 1/n, we may rewrite (2.8) as

(3.7) |IIi| ≤ C
(

1
n

)ε
|ϕ| 1+ε

1+δ
.

Setting α = (1 + ε)/(1 + δ) < 1, the bounds (3.5)–(3.7) yield a constant C > 0,
depending only on the fi, with

Z(n)(Lϕ) ≤ ZΣ(g) sup |ϕ|+ β
(n)
1 Z(ϕ)

+
(

1
n

)ε ( 2

λ
1+ε
1+δ

|g|Σ
δ· 1+ε

1+δ
+ C sup Σ|g|

)
|ϕ| 1+ε

1+δ
,

To finish the proof, we proceed as in Lemma 1 to bound the Λα seminorms. �
Proof of Lemma 2. It suffices to show that there is a universal constant C > 0 so
that for each n ≥ 1

lim sup
n→∞

‖Q(n)LQ(n)‖α ≤ C sup
x∈I

∑
i∈I
|gi(x)| |f ′i(x)|α ,

when the gi are summably Λα and δ ≥ 0, and

lim sup
n→∞

‖Q(2n)LQ(2n)‖Z ≤ C sup
x∈I

∑
i∈I
|gi(x)| |f ′i(x)| ,
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when the gi are summably Zygmund and δ > 0.
Applying Sublemma 4, we get for each ϕ ∈ Λα, n ≥ 1:

sup |Q(n)LQ(n)ϕ| ≤ C sup |LQ(n)ϕ| ≤ C
∑
i∈I

sup |gi| sup |Q(n)ϕ|

≤ C sup Σ|g| |ϕ|α
(2n)α

.

Applying again Sublemma 4, and also Sublemma 5, we get for any ϕ ∈ Λα, n ≥ 1:

|Q(n)LQ(n)ϕ|α ≤ C|LQ(n)ϕ|(n)
α ≤ C ·

(
|g|Σα sup |Q(n)ϕ|+ β(n)

α |Q(n)ϕ|α
)

≤ C ·
(
|g|Σα

|ϕ|α
(2n)α

+ β(n)
α |ϕ|α

)
.

Finally, with Sublemmas 4 and 5, we obtain for each ϕ ∈ Z(I), 0 < α < 1, and
n ≥ 1:

Z(Q(2n)LQ(2n)ϕ) ≤ CZ(2n)(LQ(2n)ϕ)

≤ C
(
K sup |Q(2n)ϕ|+ (β(n)

1 +
K

nε
)Z(Q(2n)ϕ)

)
≤ C ·

(K
nα
|ϕ|α + (β(n)

1 +
K

nε
)Z(ϕ)

)
,

where C > 0 is universal and K > 0, ε > 0 depend on the fi and gi (but not on
n). �

4. The lower bound

The idea for the argument yielding the lower bound on the Banach spaces Λα

(0 < α ≤ 1) is originally due to A. Davies (Lanford [8]). The Zygmund case can be
treated similarly, as will be shown now.

Proof of Lemma 3. To prove the Zygmund claim, we introduce the continuous
function

β1(x) =
∑
i∈I
|gi(x)| |f ′i(x)| .

Writing β̄1 = supx∈I β1(x), the first assertion of Lemma 3 is that the infimum of
‖L − K‖Z for K compact is not less than β̄1. Fix ε > 0 small. We may assume
that I is finite, since otherwise replacement of I by a large finite subset of I in the
definition of β1(x) yields a supremum arbitrarily close to β̄1. The strategy is now
to construct an infinite-dimensional subspace χε ⊂ Z(I) (with, in fact, χε ⊂ Λ1)
such that ‖Lϕ‖Z ≥ (β̄1 − ε)‖ϕ‖Z for each ϕ ∈ χε.

Then, if K is a compact operator on Z(I), there is a function ϕ ∈ χε with
‖ϕ‖Z = 1 and such that ‖Kϕ‖Z ≤ ε, and hence such that ‖(L−K)ϕ‖Z ≥ (β̄1−2ε).
Therefore the norm of L−K cannot be less than β̄1 − 3ε.

The construction of these subspaces goes as follows: We take a point x∞ where
β1(x∞) = β̄1 and choose—with some care—a sequence x1, x2, . . . of distinct points
in I converging to x∞. We then construct a sequence of functions ψ1, ψ2, . . . in
Λ1(I) such that
(P1) ‖a1ψ1 + · · · + aNψN‖Z = maxj{|aj |} for any N ≥ 1 and complex numbers

a1, . . . , aN—in particular ‖ψj‖Z = 1 for every j;
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(P2) lim supt→0 |Z(Lψj , xj , t)| = β1(xj)→ β̄1 as j →∞;
(P3) Lψj vanishes on a neighbourhood of x` for all j 6= `.

From (P2) and (P3) we get ‖L(a1ψ1 + · · ·+aNψN )‖Z ≥ max1≤j≤N{β1(xj)|aj |},
and hence, using (P1), we get for any ϕ in the linear span of ψk, ψk+1, · · ·

‖Lϕ‖Z ≥ inf
j≥k
{β1(xj)}‖ϕ‖Z .

Thus, we can take χε to be the closed linear span of the ψj ’s with j ≥ k for any
sufficiently large k = k(ε). The problem is therefore reduced to constructing (xj),
(ψj) so that (P1), (P2) and (P3) hold.

We first specify how to choose the xj ’s. For x∞ as defined above, we choose
inductively a sequence of xj ’s converging to, but distinct from, x∞, assuming fur-
thermore that the fi(xj), for i ∈ I and j ≥ 1, are distinct from each other and from
the fi(x∞). Suppose x1, . . . , xk have been chosen so that the fi(xj) for 1 ≤ j ≤ k
are distinct from each other and from the fi(x∞). We then choose a point x′k+1

near enough to x∞ so that each fi(x′k+1) is nearer to its one or two neighbours in
the set of {f`(x∞)} than any previous f`(xj) but still not in this set. (We use here
that no fi can be locally constant.) Then, by moving x′k+1 a little, and using the
fact that no two fis coincide on any non-trivial interval, we find xk+1 so that the
fi(xk+1) are distinct from each other, but so that the preceding “inequalities” still
hold. Constructed in this way, the fi(xj) for i ∈ I and j ≥ 1 are all different and
no fi(xj) is an accumulation point of the others.

Now, let φ ∈ Λ1(]− 1, 1[) be of Zygmund norm one, with compact support, and
such that

(4.1) φ(t) = |t|/2 for small t.

For any γ between 0 and 1, the rescaled function γφ(t/γ) has the same properties,
and by taking γ small we can make its support and supremum norm as small as we
like. We simply construct ψj as a sum of functions ψi,j , for i ∈ I, each of which is
a rescaled φ translated to fi(xj) (up to a complex phase), i.e., has the form

ψi,j(x) = ωi,j · γi,j · φ((x− fi(xj))/γi,j),

where |ωi,j | = 1 will be chosen later, and γi,j > 0 is such that the support of ψi,j is
a subset of the interior of fi(I), and may be reduced further in Sublemma 6 below.

Now Lψj(x) is non-zero only if some fi(x) is in the support of some ψk,j . Since
we can make the supports of the ψk,j disjoint by making the γk,j small enough, for
any ` 6= j there is a neighbourhood of x` on which no fi(x) is in the support of any
ψk,j . Thus, assertion (P3) holds.

We next check that by making the γi,j sufficiently small we can guarantee that
(P1) is satisfied. To carry out the verification it is convenient to relabel our objects:
We label the pairs (i, j), i ∈ I, j ≥ 1, with a positive integer m, and we write
ξm = fi(xj). It suffices to prove the following sublemma:

Sublemma 6. Let ξm, m ≥ 1, be distinct points in I such that no ξm is an
accumulation point of the others, and let γm be a sequence of positive numbers. For
φ as defined in (4.1), we set φm(x) = ωmγmφ((x− ξm)/γm) for arbitrary |ωm| = 1.
If the γm’s are small enough, then, for any N ≥ 1, and any b1, . . . , bN ,

(4.2) ‖b1φ1 + · · ·+ bNφN‖Z = bmax = max{|bm| | 1 ≤ m ≤ N} .
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Proof of Sublemma 6. We define η = b1φ1+· · ·+bNφN and set dm = inf{|ξm−ξm′ | |
m 6= m′} > 0.

We claim that it suffices to take γm small enough so that

(4.3) φm(x) vanishes for |x− ξm| ≥ dm/4 and sup |φm| < dm/8

to get (4.2) to hold. Half of (4.2) is immediate: If we take x = ξm and t > 0 very
small, we have (since the supports of the φm are disjoint)

η(x+ t) + η(x− t)− 2η(x) = η(ξm + t) + η(ξm − t) = ωmbm · t ,

so that ‖η‖Z ≥ Z(η) ≥ |bm| for each m.
To prove the opposite inequality, we first observe that the disjointness of the

supports and the fact that sup |φm| ≤ 1 imply sup |η| ≤ bmax. To prove the corre-
sponding estimate for Z(η) we consider general x ∈ I and t > 0 with x± t ∈ I. We
need to show that

|η(x+ t) + η(x− t)− 2η(x)| ≤ tbmax .

Since Z(φm) = 1 for all m, this is immediate unless {x, x+ t, x− t} intersects the
supports of at least two different φm’s. Assume thus that x is in the support of
φm1 , x − t in the support of φm0 , and x + t in the support of φm2 , where the set
{m0,m1,m2} is not a singleton. We leave to the reader the easier case where this
set has only two elements, and suppose that m0 6= m1 6= m2. By our assumption
(4.3),

|x− t− ξm0 | ≤ dm0/4 ≤ |ξm0 − ξm1 |/4 and |x− ξm1 | ≤ dm1/4 ≤ |ξm1 − ξm0 |/4 .

Therefore

(4.4) t = |x− t− x| ≥ |ξm0 − ξm1 |/2 .

Similarly, we get t ≥ |ξm2 − ξm1 |/2. On the other hand,

|η(x)| = |bk1 ||φm1(x)| ≤ bmax sup |φm1 | ≤ bmaxdm1/8 ≤ bmax|ξm0 − ξm1 |/8 .

Analogously |η(x + t)| ≤ bmax|ξm2 − ξm1 |/8, and |η(x − t)| ≤ bmax|ξm0 − ξm1 |/8.
Finally, recalling (4.4),

|η(x± t)−η(x)| ≤ |η(x± t)|+ |η(x)| ≤ bmax

4
max(|ξm0−ξm1 |, |ξm2−ξm1 |) ≤ bmax

t

2
.

Since

|η(x+ t) + η(x− t)− 2η(x)| ≤ |η(x+ t)− η(x)|+ |η(x− t)− η(x)| ,

this ends the proof of Sublemma 6 and therefore of assertion (P1). �



1612 VIVIANE BALADI, YUNPING JIANG, AND OSCAR E. LANFORD III

Going back to the notation with pairs i ∈ I and j ≥ 1, it remains to choose the
ωi,j so that (P2) holds. To do this, we fix j and we decompose as before, using
(2.1), (2.6), and the property of the support of ψi,j :

tZ(Lψj , xj , t)

=
∑
i∈I

tigi(xj)Z(ψj , fi(xj), ti)−
∑
i∈I

gi(xj)(ψj(fi(xj)− ti)− ψj(fi(xj − t))

+
∑
i∈I

(gi(xj + t)− gi(xj))(ψj(fi(xj + t)))

+
∑
i∈I

(gi(xj)− gi(xj − t))(−ψj(fi(xj − t)))

= Za − Zb + Zc + Zd

(we used the ti = ti,j defined by fi(xj + t) = fi(xj) + ti, and the fact that
ψj(fi(xj)) = 0 for all i). Now, since each ψj ∈ Λ1 (use e.g. #I < ∞), we
have

|ψj(fi(xj ± t))| ≤ |ψj |1|fi(xj ± t)− fi(xj)| ≤ |ψj |1|f ′i(u)|t,

for some u, by construction. Therefore, using |g|Σα < ∞, for any 0 < α < 1, we
get Zc + Zd = o(t) when t → 0. Since supΣ |g| < ∞, we get, using again ψj ∈ Λ1,
that Zb = o(t) by applying (2.5) once more (recall that δ > 0). By definition,
Z(ψj , fi(xj), u) = ωi,j + o(u) for u → 0, uniformly in i ∈ I (using #I < ∞).
Finally, ti/t = f ′i(xj + u) = f ′i(xj) + O(|u|δ) for some |u| ≤ t. Therefore, if we
choose the complex phases ωi,j properly, we find:

tZ(Lψj , xj , t) = t
∑
i∈I

ωi,jgi(xj)f ′i(xj) + o(t) = t
∑
i∈I
|gi(xj)f ′i(xj)|+ o(t) , t→ 0 ,

which gives assertion (P2) above, and thus the first claim of Lemma 3.
A simple modification of the construction in the proof yields the second claim

of Lemma 3: Instead of φ(t) = |t|/2 for small t, we take φ(t) = |t|α (assuming that
‖φ‖α = 1) and we rescale by γα(φ(t/γ)), i.e., we have

φm(x) = ωm(γm)αφ((x− ξm)/γm),

where |ωm| = 1 and the points ξm are chosen exactly as above. The scalars γm are
then chosen similarly as in Sublemma 6, condition (4.3) being naturally replaced
by

φm(x) vanishes for |x− ξm| ≥ dm/4 and sup |φm| < (dm)α/4 .

A slight variation on the above arguments (replacing the Zygmund seminorm by
| · |α, and using the decomposition (2.3) as a starting point) then yields
(P1α) ‖a1ψ1 + · · ·+ aNψN‖α = maxj{|aj |} for any N , a1, . . . , aN . In particular,

‖ψj‖α = 1 for every i;
(P2α) lim supx→xj |Lψj(x)−Lψj(xj)|/|xj −x|α = βIα(xj)→ β̄Iα as j →∞ (we set

βIα(x) =
∑
i∈I |gi(x)| |f ′i(x)|α and β̄Iα = supx∈I βIα(x));

(P3α) Lψj vanishes on a neighbourhood of x` for all j 6= `. �
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5. The spectral radius and two conjectures

In this section, it is convenient to use the notation Lg instead of L. We have the
following result (the statements for Λα and B were obtained previously by Ruelle
[15, 16]):

Theorem 2. If the family gi is summably bounded, then the spectral radius of L|g|
acting on B is equal to

eP := lim
n→∞

(
sup
x∈I

∑
~ı∈In

|g(n)
~ı (x)|

)1/n

,

and the spectral radius of Lg on B is bounded above by eP .
If the gi are summably Zygmund and δ > 0, respectively Λα and δ ≥ 0, the

spectral radius of L|g| acting on Z (respectively Λα) is equal to max(eP , ρess(L|g|)),
and the spectral radius of Lg acting on Z, respectively Λα, is bounded above by
max(eP , ρess(L|g|)).

Under the additional assumption that λ > 1, Theorem 2 together with Theorem
1 yields that ρess(L|g|) is strictly smaller than the spectral radius of L|g| (except
when both vanish) acting on Z (respectively Λα).

Proof. Since en(P−ε) ≤ supLn|g|ψ ≤ en(P+ε) for ψ ≡ 1, ε > 0, and n ≥ n(ε), the
proof of Theorem 2 for the Banach space B is an immediate consequence of the spec-
tral radius formula together with the easy inequality sup |Lngϕ| ≤ sup |ϕ| supLn|g|ψ,
for all ϕ ∈ B.

For the other Banach spaces, use the definition of the essential spectral radius.�
Maximal eigenfunctions, zeta functions, and two conjectures. In this sub-
section, we assume throughout that λ > 1.

Consider L|g| acting on Λα: When our family fi consists of the finitely many
inverse branches of a (mixing) map f : I → I, it is known that eP is the only point
in the spectrum of modulus eP , that it is a simple eigenvalue, and that L|g| admits
a positive maximal eigenfunction ϕ (i.e., L|g|ϕ = ePϕ). Finally, P is the topological
pressure of log |g| and f . For all these results, and a theory of equilibrium states,
see Ruelle [15], where it was proven that the essential spectral radius of Lg acting
on Λα is not bigger than eP /λα, a result which follows from our Theorem 1, part
2. By Theorem 1, part 1, the essential spectral radius of L|g| acting on Z is smaller
than eP /λ < eP . Since each eigenfunction of L|g| in Z is also an eigenfunction
in Λα, the eigenvalue eP is the unique point in the spectrum with modulus eP ,
and it is simple with a positive eigenfunction ϕ ∈ Z. The case of countably many
branches can be treated similarly.

In Ruelle [15, 16] and Fried [4], zeta functions associated with Λα (for 0 < α ≤ 1)
systems of finitely or countably many branches fi and weights gi were studied (in
a slightly different setting—in particular the dimension was not limited to one). In
our case, the zeta function is defined by

ζg(z) = exp
∑
n≥1

zn

n

∑
~ı∈In

x : f
(n)
~ı (x)=x

n−1∏
k=0

gik+1(fik · · · fi1)(x) .
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The poles ω of ζg(z) in the disc of radius λαe−P (where the function was shown to
be meromorphic) were proved to be in bijection with the eigenvalues ν = 1/ω of
Lg acting on Λα of modulus > eP /λα.

For summably Λα weights g, we conjecture that ζg(z) is meromorphic in the disc
of radius ρ−1

ess(Lg), where ρess(Lg) is given by part 2 of Theorem 1, and that its
poles there are the inverses of the Λα-eigenvalues of Lg of modulus > ρess(Lg).

Also, if g is summably Zygmund and δ > 0, we conjecture that ζg(z) is mero-
morphic in the disc of radius ρ−1

ess(Lg) for Lg acting on Z(I), and that its poles
there are in bijection ω = 1/ν with the eigenvalues of Lg : Z(I)→ Z(I) of modulus
> ρess(Lg).

The Λα conjectures do not immediately imply the Zygmund one, since Z is a
strict subset of

⋂
α<1 Λα. The proof of these two conjectures would complete the

second part of the program described in the introduction.
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