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EXTREMAL PROBLEMS AND SYMMETRIZATION

FOR PLANE RING DOMAINS

A. YU. SOLYNIN AND M. VUORINEN

Abstract. We show that Teichmüller’s classical lower bound for the capacity
of a ring domain, obtained by circular symmetrization, can be replaced by an
explicit one which is almost always better. The proof is based on a duplication
formula for the solution of an associated extremal problem. Some inequalities
are obtained for conformal invariants.

1. Introduction

Extremal problems for ring domains have been studied by many authors [T], [S],
[G], [K], [HLM], [V2], and applications to geometric function theory are given in [A],
[LV], [V1]. An important extremal problem is that of finding lower bounds for the
capacities of ring domains. O. Teichmüller [T] applied the circular symmetrization
method to derive a sharp lower bound for this problem. We refer the reader to
[B], [D] for recent surveys of various applications of symmetrization techniques to
function-theoretic problems.

The lower bounds given by the circular symmetrization method for the capacities
of ring domains are sharp in a sense that will be explained below. We show in this
paper that these estimates can, nevertheless, be replaced by new inequalities which
are better than the symmetrization lower bounds except in the rare (symmetric)
case when this lower bound already equals the value of the capacity. We are next
going to formulate some of our main theorems and to give a brief survey of earlier
results. For this purpose we first introduce some necessary notation.

For a pair (E,F ) of disjoint compact sets E, F in C = R2
(such a pair is usually

called a condenser) let cap(E,F ) denote the conformal capacity of (E,F ). For
distinct points a1, a2, a3, a4 ∈ C, let

p(a1, a2; a3, a4) = inf
E,F

cap(E,F ),(1.1)

where the infimum is taken over all pairs (E,F ) of disjoint continua with a1, a2 ∈
E, a3, a4 ∈ F . For z ∈ C \ {0, 1} let

p(z) = p(0, 1; z,∞).(1.2)

O. Teichmüller [T, p. 169] suggested the problem of finding the exact value of p(z) in
terms of well-known functions. M. Schiffer [S] solved the problem and showed that
the extremal continua for the extremal problem (1.2) are images of linear sets under
an elliptic function. Further results describing some properties of the extremal sets
E and F in (1.2) appear in [K, Ch. 5]. The conformal invariance of cap(E,F )

Received by the editors November 18, 1994 and, in revised form, May 2, 1995.
1991 Mathematics Subject Classification. Primary 30C85; Secondary 31A15.

c©1996 American Mathematical Society

4095



4096 A. YU. SOLYNIN AND M. VUORINEN

implies that p(z) depends only on |z| and |z − 1|. The circular symmetrization
lower bound of Teichmüller yields the estimate

p(z) ≥ p(1 + |z − 1|) = τ(|z − 1|),(1.3)

where τ is an explicit function (cf. Section 2), with equality when Im{z} =
0,Re{z} > 1. We shall show in Theorem 1.8 that an inequality better than (1.3)
holds. Note that this better inequality also depends on |z|. It is shown in [LV, p.
57, Theorem 1.2] that inequality (1.3), together with the square root map, yields
another inequality well-suited to certain situations. In our notation this result reads

p(z) ≥ τ(A8(z)), A(z) = (s+
√
s2 − 1)1/2, s = |z|+ |z − 1|,(1.4)

with equality if Re{z} = 1
2 . We shall use the same notation A(z) in the sequel.

We next show how information about the level curves of p(z) would lead to
immediate improvements of (1.3) and (1.4). Assume now that z is fixed, p(z) = c,
and that x(z) is the point of intersection of the level curve {w ∈ C : p(w) = c} with
the interval (1,∞). Then

p(z) = p(x(z)) = τ(|x(z) − 1|),

because the points z and x(z) are both on the same level curve. Even though there
is an explicit formula for p(z) in [K, p. 192] (see Theorem 3.5 below), there is no
well-known explicit formula for the distance |x(z)− 1| in terms of |z| and |z − 1|.

Although this problem about the level sets of p(z) is unsolved, there are some
explicit curves on which the values of p(z) are monotone. We shall see below that
some quadratic curves and the Cassini oval have this monotone property; we shall
formulate the resulting explicit bounds for p(z), which follow from the fact that we
can give explicitly the point of intersection of these curves with the interval (1,∞).

Throughout this paper we use the following notation:

Ia = {z = x+ iy : x > a, y > 0}.

1.5. Theorem. (1) For r ∈ (0,∞), p(1 + reiϕ) is an increasing function of ϕ on
(0, π).

(2) Let L be an arc of an ellipse in I1/2, with foci at 0 and 1, or an arc of a
hyperbola in I1/2 with the same foci. If z moves on L so that y increases, then p(z)
decreases. In particular, we have

p(z) ≤ τ(
1

2
(|z|+ |z − 1| − 1)).

The monotone property in Theorem 1.5 (1), due to G. V. Kuz′mina [K, p. 206],
easily implies (1.3). Theorem 1.5 (2) was proved in [SO1], where monotone proper-
ties on the arcs of a Euclidean or hyperbolic ellipse and hyperbola were established
for two nonoverlapping domains on the Riemann sphere or in the hyperbolic plane.

The upper bound in Theorem 1.5 (2) blows up if |z|+ |z−1| = 1, while p(z) <∞
for all z ∈ C \ {0, 1}. The next theorem provides a bound for p(z) which is always
finite and thus corrects this flaw in Theorem 1.5 (2).

1.6. Theorem. For all z ∈ C \ {0, 1},

p(z) ≤ τ
(

((
√
|z|+

√
|z − 1|)A(z)− 1)2

4(
√
|z|+

√
|z − 1|)A(z)

)
.
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One of our methods is the following functional identity for p(z). Note that some
of the above results could be combined with this formula to provide an alternative,
possibly better, result. Our proof of this identity is geometric.

1.7. Theorem. For z ∈ C\{0, 1}, z ∈ I1/2, the following functional identity holds:

p(z) = 2p(w4), w =
√
z +
√
z − 1.

Here the branches of the square roots are chosen so that 0 < arg
√
z < π/2 and

0 < arg
√
z − 1 < π when z ∈ I1/2.

We shall refer to the functional identity in Theorem 1.7 as a duplication formula.
We shall apply this duplication formula to prove Theorem 1.8 below.

We now define, for given s > 0, the following two arcs of algebraic plane curves:

L(s) = {w ∈ I1/2 : 2A2(w)
√
|w||w − 1| = s}

= {w ∈ I1/2 : 4
√
|w||w − 1||w − 1

2
+
√
w(w − 1)| = s},

CO(s) = {w ∈ I1/2 : |w||w − 1| = s}.
The equivalence of these two definitions of L(s) can be checked by routine cal-

culations. Of course, CO(s) is an arc of the Cassini oval.

1.8. Theorem. For given z ∈ C \ {0, 1}, define positive numbers

t = 2
√
|z||z − 1|A2(z) and t1 = |z||z − 1|

so that z ∈ L(t), z ∈ CO(t1). Then p(z) decreases as z moves on L(t) or CO(t1)
so that Re{z} increases. Furthermore, for z ∈ C \ {0, 1},

p(z) ≥ p(1 + x0) = 2τ(2t) ≥ τ(x1) ≥ τ(|z − 1|),(1)

where x0 = (1/2)(((1 + t)/
√

1 + 2t)− 1), x1 = (1/2)(
√

1 + 4t1 − 1). Next,

p(z) ≤ τ(x2) + 4/τ(x2), x2 =
1 +
√

1− t2
1−
√

1− t2
(2)

for |z| ≤ 1/2 or |z − 1| ≤ 1/2, and

p(z) ≤ 2τ(2t− 1)(3)

for |z| ≥ 1/2 and |z − 1| ≥ 1/2. Equality occurs in (1) if z = Re{z} > 1 or
z = Re{z} < 0, in (2) if z = Re{z} ∈ (0, 1), and in (3) if z = Re{z} = 1/2.

The quadruple 0, 1, z,∞ determines in a natural way the ring domains oc-
curring in the definition of p(z) = p(0, 1; z,∞). There are also “dual” ring do-
mains associated with this same configuration of points, namely those separating
{z, 1} from {0,∞}. This fact gives rise to an extremal problem, which in a cer-
tain sense is dual to the extremal problem of calculating p(z). In the notation
(1.1) the dual extremal quantity is p(1, z; 0,∞). By conformal invariance we have
p(1, z; 0,∞) = p(z/(z−1)). The next theorem, which provides a functional inequal-
ity for p(z), studies these dual problems.

1.9. Theorem. For z ∈ C \ {0, 1}, Re{z} ≥ 1/2,

4 ≤ p(z)p

(
z

z − 1

)
≤ 8.
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Here equality holds in the first inequality if and only if z ∈ (1,∞), and in the second
one if and only if z = 1/2.

The paper concludes with a list of open problems.

2. Preliminary results and some proofs

We shall use some basic facts of geometric function theory from [LV] and [V1].
In the unit disk B = {z : |z| < 1} of C the hyperbolic metric ρ = ρB is defined by

th
ρ(a, b)

2
=

|a− b|√
|a− b|2 + (1− |a|2)(1− |b|2)

.(2.1)

For the hyperbolic sine, cosine, tangent, and their inverses we use the notation sh,
ch, th, arsh, arch, arth, respectively. In the hyperbolic half-plane H = {z ∈ C :
Im{z} > 0} the hyperbolic metric is given by

ch ρ(a, b) = 1 +
|a− b|2

2 Im{a} Im{b} .(2.2)

A ring D in C with nondegenerate complementary components can be mapped
conformally onto B \ E, where E is a compact subset of B. It can be shown [LV,
p. 54], [V1, (5.56), (1.30)] that the modulus of the ring D satisfies

mod D ≤ µ(th
ρ(a, b)

2
)(2.3)

for a, b ∈ E, with equality when E is a geodesic arc of the hyperbolic metric with
endpoints a, b and where

µ(r) =
π

2

K′(r)

K(r)
, K(r) =

1∫
0

dx√
(1− x2)(1− r2x2)

, K′(r) = K(
√

1− r2),(2.4)

for 0 < r < 1. The capacity of the ring D is defined by

capD = 2π/ mod D.(2.5)

Recall from the Introduction that if the boundary components of the ring D are E
and F then we also denote cap D = cap(E,F ). For t > 0, RT (t) is the Teichmüller
ring with complementary components [−1, 0], [t,∞]; and RG(s) is the Grötzsch ring
with complementary components B and [s,∞], s > 1. Then the capacities of these
rings are given by

γ(s) = capRG(s) = 2π/µ (1/s) , τ(t) = capRT (t) = π/µ
(
1/
√

1 + t
)
.(2.6)

Both γ and τ are strictly decreasing and

γ(s) = 2τ(s2 − 1) = τ

(
(s− 1)2

4s

)
.(2.7)

We can rewrite (2.7) also as

γ

(
1

th t
2

)
= τ

(
1

e2t − 1

)
= 2τ

(
2

ch t− 1

)
, t > 0.(2.8)

For more information about (2.1)–(2.8) see [LV] and [V1].
The connection between the hyperbolic metric and capacity is well known [TS].

To find inequalities between the hyperbolic metrics of two simply-connected do-
mains we next introduce a convenient comparison function. Let a, b ∈ C \ {0}
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be distinct points and let D ⊂ C be a simply-connected domain with 0 ∈ C \D.
Then, by using Riemann’s mapping theorem, one can define the hyperbolic metric
ρ(a, b) = ρD(a, b) for a, b ∈ D. For given a, b ∈ C \ {0} let

r(a, b) = inf ρD(a, b),(2.9)

where D runs through all simply-connected domains in C with 0 ∈ C \D.
There are equivalent definitions of the quantity r(a, y) based on the use of ca-

pacities. Our first lemma summarizes the well-known estimates for r(a, b).

2.10. Lemma. For a, b ∈ C \ {0}

r(a, b) ≥ 1

2
log

(
1 +

|a− b|
min{|a|, |b|}

)
,(1)

th
r(a, b)

2
≥ |

√
a−
√
b|√

2(|a|+ |b|)
,(2)

r(a, b) ≤ 1

2
log
|a|+ |b|+ |a− b|
|a|+ |b| − |a− b| ,(3)

r(a, b) ≤ C0 log

(
1 +

|a− b|
min{|a|, |b|}

)
,(4)

where C0 = log(3 + 2
√

2)/ log 3 ≈ 1.6045.
Here bounds (1) and (3) coincide if |a − b| =

∣∣|a| − |b|∣∣, and thus these bounds
are sharp in this case, whereas (2) is sharp if |a| = |b| and (4) is sharp if a = −b.

Proof. We see that 2.10(1) and 2.10(3) follow from 1.5(1) and 1.5(2). Lemma
2.10(2) follows in turn from (2.3) and [LV, p. 51].

To prove (4) we may assume that a = 1, b = 1+ρeiβ, |b| ≥ 1, ρ > 0. It follows
from Theorem 1.5(1) that the function r(1, 1+ρeiβ) is increasing in β if 0 ≤ β ≤ π.
Thus it is sufficient to prove inequality (4) for b = eiθ, 0 ≤ θ ≤ π, and for b ≤ −1.

In the first case we have

r(1, eiθ) = arch(1 + 2 tan2(θ/4)).

Let

ψ(θ) = C0 log(1 + 2 sin(θ/2))− arch(1 + 2 tan2(θ/4)).

Since

ψ′′(θ) = −C0

2

2 + sin(θ/2)

(1 + 2 sin(θ/2))2
− 1

8

tan(θ/4)

cos(θ/4)
< 0

and

ψ(0) = ψ(π) = 0,

we then obtain

ψ(θ) > 0 if 0 < θ < π.

In the second case let b = −t, t > 1, and D0 = C \ [i0, i∞]. Then

r(1,−t) ≤ ρD0(1,−t).(2.11)
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Mapping the domain D0 onto the half-plane H and using (2.2) we obtain

ch ρD0(1,−t) = 1 +
1 + t√
t
.(2.12)

From (2.11) and (2.12) it follows that it is sufficient to prove

ϕ1(τ) ≥ ϕ2(τ),(2.13)

where ϕ1(τ) = ch(C0 log τ), ϕ2(τ) = 1 + τ−1√
τ−2

, τ ≥ 3. Since

ϕ′′1 (τ) = C0τ
−2(C0 ch(C0 log τ) − sh(C0 log τ)) > 0,

we conclude that

ϕ′1(τ) ≥ ϕ′1(3) = (C0/3) sh(C0 log 3) ≈ 1.5128.

These inequalities, together with the easily verified relation

ϕ2(τ) =
τ − 3

2(τ − 2)3/2
< ϕ2(5) = 3−3/2 ≈ 0.1925,

yield (2.13).

Even the exact value of r(a, b) is known; see (3.4) and Theorem 3.5 below. Since
this exact value is quite complicated it is desirable to use more concrete inequalities
such as Lemma 2.10 above. We next prove other similar results that improve Lemma
2.10. The majorant in Lemma 2.10(3) blows up if |a|+ |b| = |a−b|, while Theorem
2.14 below always yields a finite bound.

2.14. Theorem. For a, b ∈ C \ {0} there exists a ray F with 0 ∈ F , a, b ∈ C \ F
such that, with D = C \ F,

chρD(a, b) = 1 +
|a|+ |b| −

√
(|a|+ |b|)2 − |a− b|2√

|a||b|+ 1
2

√
(|a|+ |b|)2 − |a− b|2

.

In particular, for a, b ∈ C \ {0},

ch r(a, b) ≤ 1 +
|a|+ |b| −

√
(|a|+ |b|)2 − |a− b|2√

|a||b|+ 1
2

√
(|a|+ |b|)2 − |a− b|2

.

Here equality holds if |a− b| =
∣∣|a| − |b|∣∣ or if |a| = |b|.

Proof. We shall construct a ring with complementary components F and E as
follows. Let e be a unit vector such that [0, e] bisects the smaller angle between
the segments [0, a] and [0, b], and let F = {−se : s ≥ 0}. We may assume that

e = −1. Then map C \ F by
√
z onto H, and join

√
a,
√
b by a geodesic segment

E1 of the hyperbolic metric of H. Then E1 is an arc of a circle perpendicular to
R = ∂H. Let E be the image of E1 under z2 joining a to b. With D = C \ F we

have ρD(a, b) = ρH(
√
a,
√
b), while (2.2) yields

ch ρH(
√
a,
√
b) = 1 +

|
√
a−
√
b|2

2 Im{
√
a} Im{

√
b}
.(2.15)

If α ∈ (0, π) is the angle between [0, a] and [0, b], then α
2 is the angle between

√
a

and
√
b, and Im{

√
a} =

√
|a| cos α4 . The Law of Cosines yields

cos2 α

2
=

(|a|+ |b|)2 − |a− b|2
4|a||b| ,
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|
√
a−
√
b|2 = |a|+ |b| − 2

√
|a||b| cos

α

2
= |a|+ |b| −

√
(|a|+ |b|)2 − |a− b|2.

These, together with (2.15) and the definition (2.8), yield the desired relations. The
equality statements follow if we use the formulas for the modulus of Teichmüller’s
and Mori’s rings [LV, p. 56].

2.16. Proof of Theorem 1.6. Choose disjoint continua E and F in C such that 0, 1 ∈
E, z,∞ ∈ F, and such that D = C \E is simply connected. Then, by the Riemann
Mapping Theorem,

p(z) ≤ 2π/µ

(
th
ρD(z,∞)

2

)
= γ

(
1/ th

ρ

2

)
,

where ρD = ρ is the Poincaré metric of D. By (2.8),

γ
(

1/ th
ρ

2

)
= 2τ(2/(ch ρ− 1)).

Next, in view of Theorem 2.14, we can choose the sets E, F above such that with
s = |z|+ |z − 1|, g =

√
|z||z − 1|, we have

chρ = 1 +
s−
√
s2 − 12

g + 1
2

√
s2 − 12

.

Combining these relations we obtain

p(z) ≤ 2τ
(2g +

√
s2 − 1

s−
√
s2 − 1

)
= 2τ(A2(z)(2g +

√
s2 − 1))

= 2τ(A2(z)(2g + s)− 1) = τ
( (A(z)

√
2g + s− 1)2

4A(z)
√

2g + s

)
,

where in the last step (2.7) was used. Noting that 2g + s = (
√
|z|+

√
|z − 1|)2 we

see that the desired conclusion follows. Applying the results of this section we now
prove some corollaries.

2.17. Corollary. Let f : B → C be K-quasiconformal and zero-free in B. Then,
for |z1| < 1, |z2| < 1,

|
√
f(z1)−

√
f(z2)|√

2(|f(z1)|+ |f(z2)|)
≤ ϕK

( |z1 − z2|√
|z1 − z2|2 + (1− |z1|2)(1− |z2|2)

)
,

where ϕK(r) = µ−1(µ(r)/K).

Proof. There exists a continuum F joining the points 0 and∞ such that f(z) maps
B onto the domain D = C \ F. It follows from (2.9) and [LV, p. 65] that

th
r(f(z1), f(z2))

2
≤ th

ρD(f(z1), f(z2))

2
≤ ϕK

(
th
ρ(z1, z2)

2

)
.

After this observation, the result follows from (2.1) and 2.10 (2).

Our new bound for p(z) and the method of proving Theorem 4.1 in [V2] lead
immediately to the following refinement of this theorem from [V2].

2.18. Corollary. Let f : C \E → C \B be a K-quasiconformal mapping, where
E is a connected set with 0, 1 ∈ E, and let f(∞) =∞. Then, for z ∈ C \E,

|f(z)| ≤ γ−1
( 1

K
γ(
√

1 + 2t)
)
≤ 4K−1(1 + 2t)K/2,

where t is defined in Theorem 1.8.
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A look at the proof of Theorem 2.11 shows that, in fact, the following result
holds.

2.19. Corollary. For given z0 ∈ C \ {0, 1} there exists an arc E joining 0 and 1
with z0 6∈ E such that the conformal mapping f of G = C \E onto C \B satisfies

|f(z0)| = (
√
|z0|+

√
|z0 − 1|)A(z0),

where A(z0) is as in Theorem 1.6. In the cases Im{z0} = 0, Re{z0} > 1 or
Re{z0} < 0, z0 = 1

2 + it, t 6= 0, the arc E is unique.

Proof. Let F be the ray defined in Theorem 2.14 for points z0 and z0 − 1 in the
w-plane, and let E be the image of F under the mapping w 7→ z0/(z0 − w). Then
E is a circular arc joining 0 and 1. If D = C \ F, G = C \E, and f is a conformal
mapping of G onto C \ B with f(∞) = ∞ then, by conformal invariance of the
hyperbolic metric,

chρC\F (z0, z0 − 1) = ch ρC\E(z0,∞) = ch ρC\B(f(z0),∞).

These relations, together with Theorem 2.14, imply the equality

|z0|+ |z0 − 1| −A(z)√
|z0||z0 − 1|+ 1

2A(z)
=

1

|f(z0)|2 − 1
,

which yields the assertion after some calculation.
Uniqueness of the arc E follows from the fact that the ray F is an arc of a

hyperbolic geodesic in the cases under consideration.

2.20. Remark. We shall see below in Example 2.21 that the quantity r(x, y) is not a
metric. We remark in passing that a related question from [V1, p. 193] was recently
solved in the affirmative independently by J. A. Jenkins [J2] and A. Yu. Solynin
[SO2]. They proved that λC\{0}(x, y)−1 is a metric. Jenkins has also extended this
result to any plane domain with finite connectivity. J. Ferrand [F] has proved a
more general result for Riemannian manifolds.

2.21. Example. We next show that

r(−1, 1) > r(−1, i) + r(i, 1) = 2r(i, 1).

Using the case of equality in Theorem 2.14, we see that

ch r(−1, 1) = 3, ch r(−1, i) = ch r(i, 1) = 7− 4
√

2 ,

3 > ch(2 arch(7− 4
√

2)) = 161− 112
√

2 ≈ 2.60.

The last line verifies the asserted inequality.

3. The duplication formula and computation of the moduli

A notation slightly different from p(z) is used in [K]. There, for complex a ∈
C \ {−1, 1}, she defines

logM(a) = sup
D

mod(D),(3.1)

where D runs through the collection of all ring domains separating {−1, 1} and
{a,∞}. Let h be the similarity map with h(H) = H and h(−1) = 0, h(1) = 1.
Then h(z) = (z + 1)/2, and

p(h(a)) = p((a+ 1)/2) = 2π/ logM(a)(3.2)
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by conformal invariance of the modulus. Conversely, for z ∈ C \ {0, 1},

p(z) = 2π/ logM(h−1(z)) = 2π/ logM(2z − 1),(3.3)

so that p(z) and logM(a) are equivalent. To find a relation between logM(a) and
r(c, d), we map a to 0 by z 7→ z − a. Then −1 7→ −1− a, 1 7→ 1− a, and we get

γ
( 1

th r(1−a,−1−a)
2

)
= γ

( 1

th r(a+1,a−1)
2

)
=

2π

logM(a)

=
2π

µ(th r(a+1,a−1)
2 ).

Thus

logM(a) = µ
(

th
r(a+ 1, a− 1)

2

)
.(3.4)

This is the first part of the exact formula for r(z, w) mentioned in Section 2. The
second part is the explicit formula for logM(a) given in the following theorem,
which goes back to H. Grötzsch, O. Teichmüller, and M. Schiffer, and which in its
present form appears in [K, p. 192].

3.5. Theorem. For a ∈ C \ {−1, 1} the following formula holds:

logM(a) = π Im
{
i
K′(r)

K(r)

}
, r2 =

2

1 + a
.

Here the elliptic integrals K(r) and K′(r) are understood to be positive for r2 ∈
(0, 1) with the explicit formula (2.4), defined for Im{r2} 6= 0 by analytic continu-
ation along any path not intersecting the real axis of the r2-plane, and defined for
Im{r2} = 0 and r2 /∈ [0, 1] by analytic continuation along any path in the lower
half-plane Im{r2} ≤ 0.

In the case a 6∈ [−1, 1] the maximum in (3.1) is realized only for the domain
D(a) obtained from the complex plane C by making cuts along the closures of the
critical trajectories of the quadratic differential

Q(z, a)dz2 = eiβ(a)[(z2 − 1)(z − a)]−1dz2,(3.6)

where

β(a) = − arg r2K2(r),

while in the case −1 < a < 1 it is realized only by the domain D(a) and the domain
symmetric to it with respect to the real axis.

3.7. Remark. It follows from Theorem 3.5 that logM(a) is a harmonic function in
the upper half plane.

The explicit formula for logM(a) in Theorem 3.5 is rather difficult to use for
practical calculations. It would be preferable to have a formula in terms of the
distances |a − 1| and |a + 1| or in terms of the angles of the triangle with vertices
−1, 1, a. We next obtain an expression for logM(a), as a limit of a certain sequence,
which is more suitable for calculations.

3.8. Proof of Theorem 1.7. We first prove a duplication formula for logM(a), which
then easily gives the desired formula for p(z).
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Let a ∈ I0, a 6= 1, and let D(a) be the extremal domain in the sense of Theorem

3.5. Let D̃(a) denote a domain obtained from D(a) by adding a boundary contin-

uum joining the points a and ∞. By G(a) we denote the image of the set D̃(a)
under the double-valued mapping

ζ = 2

√
1− a+ i

√
1 + a√

1− a− i
√

1 + a

√
z − a− i

√
1 + a√

z − a+ i
√

1 + a
− 1.

Here the branches of the square roots
√

1± a are chosen so that 0 ≤ arg
√

1± a < π.
The set G(a) is a ring separating the pairs of points {−1, 1} and {F (a),∞},

where

F (a) = 2(a+
√
a2 − 1)2 − 1(3.9)

and 0 < arg
√
a2 − 1 < π/2 if a ∈ I0.

The moduli of the rings G(a) and D(a) are connected by the relation

mod(G(a)) = 2 mod(D(a)).

We claim that G(a) is extremal in the sense of Theorem 3.5. For if not, then
there would exist an extremal ring G′ such that mod(G′) > mod(G(a)).

Let G′′ be the image of G′ under the Möbius transformation

z1 = i
√

1 + a
2(
√

1− a+ i
√

1 + a) + (ζ + 1)(
√

1− a− i
√

1 + a)

2(
√

1− a+ i
√

1 + a)− (ζ + 1)(
√

1− a− i
√

1 + a)
,

and let L = {z1 : |g(z1)| = |g(0)|} be a level curve of a function g(z1) which
maps the ring G′′ conformally onto a suitable circular annulus. Clearly, G′′ is the
only ring with maximum modulus among all rings separating the pair of points√

1− a, i
√

1 + a from the pair −
√

1− a, −i
√

1 + a. These pairs correspond to
each other under the transformation z1 7→ −z1. Therefore, by the uniqueness
of the extremal ring, the domain G′′ and the curve L are invariant under this
transformation. The latter imply that L divides G′′ into two rings, say G(1) and
G(2), such that

mod(G(1)) = mod(G(2)) = (1/2) mod(G′).

In addition, the function ζ = z2
1 + a is univalent in each of the domains G(1) and

G(2). Let D′ be the image of G(1) under the mapping ζ = z2
1 + a. The ring D′

separates the points −1 and 1 from a and ∞ and satisfies the relations

mod(D′) = mod(G(1)) > (1/2) mod(G(a)) = mod(D(a)),

contradicting the extremality of the ring D(a).
Hence G(a) has maximum modulus among all rings separating the points −1

and 1 from the points F (a) and ∞.
Rewriting the relation between the moduli of G(a) and D(a) in an equivalent

form we get the following identity, which holds for all a ∈ I0 \ {1} :

logM(a) = (1/2) logM(F (a)).(3.10)

Formula (3.10) is the “duplication formula” for logM(a). The proof now follows
from (3.3) and (3.10).

The simple method applied above for doubling the modulus of a ring is well
known and was used, for instance, by O. Lehto and K. I. Virtanen to prove formula
(1.4) (cf. Theorem 1.2, Ch. II [LV]).
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In what follows we shall need some properties of the mapping produced by the
function ζ = F (z), where F (z) is defined by (3.9). At first we define some curves.
Let G0 = H \ {z : |z + 1| ≤ 2}, and for t > 0 let

L(t) ≡ {z ∈ H : logM(z) = t}

be arcs of the level curve of logM(z) lying in the upper half-plane H; let L+(t) =
L(t) ∩ I0, L′(t) = L(t) ∩G0.

From Remark 3.7 and Theorem 1.5 (1) it follows easily that L(t) is symmetric
with respect to the imaginary axis; it consists of one analytic arc if t ≥ π/2 or two
if 0 < t < π/2. Moreover, L(t) has at most one point of intersection with each of
the circles Tr(±1), r > 0, where Tr(z0) ≡ {z : |z − z0| = r}.

For t > 0 let

l(t) = {z ∈ I0 :
√
|z2 − 1|(|z + 1|+ |z − 1|+

√
(|z + 1|+ |z − 1|)2 − 4) = 2t}.

(3.11)

It is clear that the arc l(t) is the image, under the linear transformation z 7→ 2z−1
of the arc L(t) introduced in Section 1.

Let

E(t) = {z ∈ I0 : |z + 1|+ |z − 1| = 2(1 + t)}, t > 0,

be an arc in I0 of an ellipse with foci ±1.

3.12. Lemma. (1) The function ζ = F (z) gives the conformal mapping of I0
onto the domain G0 so that the intervals [1,+∞] and [i0,+i∞] correspond to the
intervals [1,+∞] and [−3,−∞] and the interval (0, 1) corresponds to the semicircle
T+

2 (−1), where T+
r (a) = Tr(a) ∩H.

(2) The image under this mapping of the arc L+(t) is the arc L′(2t) and the
images of the arcs l(t) and E(t) are, respectively, the arcs of the circles Tr1(1) and
Tr2(−1) lying in G0, with

r1 = 4t, r2 = 2(1 + t+
√
t(t+ 2))2.

(3) The following inequalities hold:

argF (a) > arg a for a ∈ I0 \ [1,∞],

|F (a)| > |a| for a ∈ I0 \ {1}.

Proof. The mapping ζ = F (z) is a composition of the Joukowski inverse mapping

z 7→ z +
√
z2 − 1, the mapping z 7→ z2, and the linear mapping z 7→ 2z − 1. These

immediately yield (1) and the statement about the arc E(t). The statement about
the arc L+(t) follows from the duplication formula (3.10).

To prove the assertion about the arc l(t) let us consider the preimage l1(t) of the
arc of Tr1(1) under the mapping ζ = F (z). For z ∈ l1(t) we have

|(z +
√
z2 − 1)2 − 1| = 2t.

The last relation gives one of the equivalent definitions of the arc l(t) (cf. Intro-
duction).

By direct calculation one can prove that the inequalities (3) with > replaced by
≥ are true on the boundary of the quadrant I0. Hence, by the maximum principle
for harmonic functions, (3) follows.
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3.13. Proof of Theorem 1.8. Lemma 3.12, Theorem 1.5 (1), and Theorem 1.7 imply
the monotone statement of Theorem 1.8 concerning the curve L(t). (They also lead
to a new proof of the statement in Theorem 1.5 (2) about the monotoneity on an
ellipse.) Calculating the values of p(z) at the end points of L(t) we obtain the first
inequality in (1) and inequalities (2), (3).

To prove the monotoneity of p(z) on the Cassini oval, consider arcs l1, l2, and l3 of
the curves Tr(1), CO(t1), and L(t), which go into the half-plane {Re {z} > Re {z0}}
from the point z0 ∈ I1/2. It is not difficult to see that |z||z−1| increases as z moves

on l1 starting from z0. Also the quantity 2A2(z)
√
|z||z − 1| (see the definition of

L(t)) increases as z moves on l2. Therefore, in a neighborhood of z0, the arc l2 lies
between l1 and l3.

By Theorem 3.5 (see Remark 3.7) the level curves of the function p(z) are ana-
lytic. Noting that the angle formed by l1 and l3 is less than π we see easily that
p(z) increases in a neighborhood of z0 as z moves on an arbitrary smooth arc (for
instance on the Cassini oval) starting from z0 and lying between l1 and l3.

Calculating a value of p(z) at the right end of CO(t1), we obtain the second
inequality in (1).

Now we apply the duplication formula to express the function logM(a) as a limit
of a simple recursive sequence.

Let a ∈ I0\{1}, a0 = a. If the complex number an−1 ∈ I0\{1} has been defined,
then the number an is defined by

an =

{
ãn if Re ãn ≥ 0,

−ãn if Re ãn < 0,
(3.14)

where ãn = F (an−1). It follows easily from Lemma 3.12 (3) that

an →∞ as n→∞.
Using the duplication formula, we obtain the relation

logM(a) = 2−n logM(an), n = 0, 1, 2, . . . .(3.15)

By Theorem 1.5 (1) and (3.15) we have

2−n logM(|an − 1| − 1) ≤ logM(a) ≤ 2−n logM(|an − 1|+ 1).(3.16)

For a > 1, relations (3.4), (2.6), and (2.8) yield

logM(a) = 2µ(
√

2/(a+ 1)).(3.17)

Applying (3.16), (3.17), and the relation

µ(r) = log(
4

r
− r − δ1(r)), 0 < r < 1,

with r3/4 < δ1(r) < 2r3, obtained by O. Lehto and K. I. Virtanen [LV, p. 62], we
deduce the relation

logM(a) = 2−n{log |an|+ log 8 +O(|an|−1)},(3.18)

which gives a simple and convenient method for calculation of the function logM(a).
Using the duplication formula and Lemma 3.12, we shall construct the sequence

of points bn on the same level curve of logM(a) such that bn → x(a), where x(a)
is the point of intersection of the mentioned level curve and the interval (1,+∞).
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We shall denote by F [n] and F [−n] the nth iterates of the functions F (z) and
F−1(z), respectively, if these iterations are defined, n = 1, 2, . . . .

It follows from the first inequality of Lemma 3.12 (3) that for each complex
number a ∈ I0 \ [1,∞] there exists a natural number N = N(a) such that

aN = F [N ](a)

is well-defined and Re{aN} < 0.
Each of the level curves of logM(a) intersects the semicircle T+

2 (−1) at most
once. Hence Lemma 3.12 (2) implies the existence of the number b ∈ I0 such that

b = F [−N(a)](−aN(a)).

Using the duplication formula we obtain the equality

logM(b) = logM(a)

and the fact that b lies on the corresponding level curve of logM(a) between a and
the point of intersection of this level curve with the positive real axis R+.

Let b0 = a, b1 = b. If b1 ∈ (1,∞), then we have found the desired point. If this
is not the case, then we can use the described procedure to construct the points

bk = F [−N(bk−1)](−F [N(bk−1)](bk−1)), k = 2, . . . , J,(3.19)

such that

logM(bk) = logM(a),

where J is a natural number or∞, and x(a) = bJ ∈ (1,∞) if J <∞; or bk → x(a),
where x(a) ∈ (1,∞) and logM(x(a)) = logM(a), if J =∞.

3.20. Some particular cases. In some particular cases the calculation of the
function logM(a) can be simplified further. In case Im{ a} = 0, Re {a} > 1,
the extremal ring in the definition of logM(a) is similar to the Teichmüller ring,
and another simple particular case occurs when Re {a} = 0. In the latter case the
extremal domain is Mori’s ring, and logM(a) is equal to the modulus of this Mori’s
ring. These particular cases are well known [LV], [K].

A nontrivial particular case where logM(a) can be evaluated in simplified form
occurs for −1 < a < 1. Indeed, Theorem 3.5 and the following formulas of the table
4 of [Bat, p. 319] (note that we have the sign “-” in our first formula instead of
“+” in the corresponding formula of [Bat] because we use the analytic continuation
along paths in the lower half-plane instead of along paths in the upper half-plane
as in [Bat])

K(1/κ) = κ[K(κ)− iK′(κ)],

K′(1/κ) = κK′(κ),

imply, for −1 < a < 1 that

logM(a) =
πK(s)K′(s)

K2(s) + K′2(s)
,(3.21)

or

logM(a) = (π2/2)(µ(s) + µ(s′))−1,
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Figure 3.1. Some level curves of logM(a)

where s2 = 1
2 (1 − |a|), s′ =

√
1− s2. Note that, by formula (3.21), logM(a) is a

decreasing function of a for a ∈ (0, 1). Using the duplication formula and (3.21)
one can derive an expression for logM(a) in certain cases similar to (3.21). For
instance, for a = ±1 + 2eiθ we obtain

logM(−1 + 2eiθ) = 2 logM(cos(θ/2))

=
2πK(sin(θ/4))K(cos(θ/4))

K2(sin(θ/4)) + K2(cos(θ/4))
.

(3.22)

Numerical values of complete elliptic integrals of complex arguments have been
tabulated in [FC].

Finally, we point out the following relations (see [SO2]):

logM(1 + ε) = − π2

log |ε| (1 +
5 log 2

log |ε|
)

+ o(log−2 |ε|),

(logM(1 + ε))−1 = −π−2(log |ε| − 5 log 2) + α(ε),

(3.23)

where α(ε)→ 0 if ε→ 0. Some level curves of the function logM(A) are shown in
Figure 3.1.

4. Dual problems for ring domains

For the proof of Theorem 1.9 we need the following two results for general plane
rings. In the case of rings having complementary components on a Jordan curve
the first (without the equality statement) is proved in [GS, p. 715].

4.1. Theorem. Let D1, D2 be rings in C , and let E
(k)
1 and E

(k)
2 be the comple-

mentary continua of Dk, k = 1, 2. If E
(k)
m ∩ E(l)

n 6= ∅, k, l,m, n = 1, 2 and k 6= l,
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then

cap (D1) · cap (D2) ≥ 4.

Equality holds here only for rings ϕ(D1(t)) and ϕ(D2(t)), where D1(t) =
((C \ [−1, 1]) \ [−∞,−1/t]) \ [1/t,∞], D2(t) = (C \ [−1/t,−1]) \ [1, 1/t], t > 1,
and ϕ is a Möbius transformation.

Proof. The set D1 \E(2)
1 \E

(2)
2 contains at least two quadrilaterals Q′ and Q′′, each

of which has one pair of distinguished sides on the continua E
(2)
1 and E

(2)
2 and a

second pair on the continua E
(1)
1 and E

(1)
2 . By Theorem 3 [SO3] we have

modD1 ≤ (1/4)(modQ′ + modQ′′).(4.2)

Again equality in (4.2) occurs if and only if the set D1 \Q′ \Q′′ consists of two arcs
γ1 and γ2 that correspond to opposite radial segments under a conformal mapping
of D1 onto the circular annulus.

Using the Grötzsch Lemma (see e.g. [J1, p. 23]) we obtain the inequality

mod(Q′) + mod(Q′′) ≤ 1/mod(D2).(4.3)

Equality in (4.3) occurs if and only if the arcs γ1 and γ2 are the complementary
continua of the domain D2 and the set D2 \ Q′ \ Q′′ consists of arcs γ3 and γ4,
which correspond to opposite radial segments under the conformal mapping of D2

onto the circular annulus. The desired inequality follows from (4.2) and (4.3).
If equality holds in Theorem 4.1 then it holds in (4.2) and (4.3) as well. Let fk

map the ring Dk onto a suitable domain Dk(t) so that fk(Q′) = H, k = 1, 2. It
is easy to show that f1 = f2 on the set Q′ ∪Q′′. Hence f1 can be continued to an
automorphism of C.

4.4. Theorem. Let γ1 and γ2 be two intersecting closed curves on C, let the

points z
(l)
1 , z

(l)
2 divide the curve γl into the arcs γ′l and γ′′l , and let the points be

separated by the curve γs, l, s = 1, 2, s 6= l. Then

cap(γ′1, γ
′′
2 ) · cap(γ′′1 , γ

′
2) ≥ 16.

Equality holds here if and only if the curves γ1 and γ2 are orthogonal circles on C
and the points z

(l)
1 and z

(l)
2 are symmetric to each other with respect to γs, l, s =

1, 2, s 6= l.

We omit the proof of this theorem, because it is similar to the proof of Theorem
4.1.

4.5. Proof of Theorem 1.9. By definition we have p(z) = p(0, 1; z,∞) and p( z
z−1 ) =

p(1, z; 0,∞). Hence the first inequality in Theorem 1.9 follows from Theorem 4.1.
Using Theorem 1.5 (1) we see that both factors of the product p(z)p( z

z−1 ) in-

crease when z moves in the upper half plane on the arc of the circle {w : |w−1| = t}
in the positive direction. We consider separately the two cases t ∈ (0, 1/2] and t >

1/2. In the first case let a = 1− t and in the second let a = 1
2 + ih, h =

√
t2 − 1/4.

With this notation, in both cases we have p(z)p( z
z−1 ) ≤ p(a)p( a

a−1 ).

Case 1. 1
2 ≤ a < 1. Let Ga = C \ {z = a + it : 0 ≤ t < ∞} and Da = Ga \ E,

where E is the hyperbolic geodesic segment joining the points 0 and 1 in Ga. It is
clear that

p(a) ≤ cap(Da).(4.6)
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We claim that

cap(Da) · p
( a

a− 1

)
≤ 8.(4.7)

Using the equality statement in Theorem 4.1, we obtain

p
( a

a− 1

)
= 4/p(1/a).

Hence (4.6) is equivalent to the inequality

cap(Da) ≤ 2τ
(1− a

a

)
or, in view of (2.8), to the inequalities

cap(Da) ≤ γ(a−1/2),

chρGa(0, 1) ≤ chρ(0, a1/2).

By using (2.2) and simple calculation we obtain the inequality

(a(1− a))−1/2 ≤ 2a(1− a)−1,

which obviously holds if 1
2 ≤ a < 1. Hence (4.7) holds which, together with (4.6),

proves Theorem 1.8 in the case 1
2 ≤ a < 1.

Case 2. a = 1
2 + ih, h > 0. The function

ζ = (1−
√
z)/(1 +

√
z)

maps the domain D0 = C \ [−∞, 0] onto the unit disk B. Moreover, ζ(1) = 0 and
|ζ(1

2 + ih)| = r1, where

r2
1 = (1− 23/2

√
cosα cos(α/2) + 2 cosα)/(1 + 23/2

√
cosα cos(α/2) + 2 cosα),

α = arc tan 2h.

Let G(h) = C \ [1
2 + ih, 1

2 − i∞] \ {z = 1
2 + ih + ρeiθ, −α ≤ θ ≤ π + α}, ρ =√

(1/4) + h2. In the case considered here the extremal domain connected with the
problem of p(a) is Mori’s ring. Therefore, by the equality statement of Theorem
4.4, we have the relation

p(a) = 16/ cap (G(h)).

This last relation shows that the assertion of the theorem, in Case 2, will follow
from the inequality

γ(r−1
1 ) ≤ (1/2) cap(G(h)).(4.8)

The function

ζ = i(w − i)/(w + i),

where w =
√
i(z − a)/ 4

√
(1/4) + h2, maps G(h) onto the domain U\[−r2, r2], where

r2
2 = (

√
2 + sin(α/2)− cos(α/2))/(

√
2− sin(α/2) + cos(α/2)).

Hence

(1/2) cap(G(h)) = γ(r−2
2 ).
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Thus (4.8) is equivalent to the inequality

r2
1 ≤ r4

2,

or

1− 23/2
√

cosα cos(α/2) + 2 cosα

1 + 23/2
√

cosα cos(α/2) + 2 cosα
≤ 3 + 23/2(sin(α/2)− cos(α/2))− sinα

3− 23/2(sin(α/2)− cos(α/2))− sinα
.

Replacing
√

cosα by cosα one can see, after some calculations, that the latter
inequality will follow from

3 cosα cos(α/2)− 1

2
sin(2α) · cos(α/2) + (1 + 2 cosα)(sin(α/2)− cos(α/2)) ≥ 0.

Multiplying by cos(α/2) we obtain the equivalent inequality

sin(2α)(1− cosα) + 2(sinα)(1− sinα) ≥ 0,

which is clearly correct if 0 ≤ α ≤ π/2. This completes the proof.

4.9. Open problems. (1) Find a generalization of Theorem 1.7 to the n-dimensional
case. Some results in this case were obtained in [V2].

(2) Extend the results of Section 4 to the n-dimensional case.
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