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ON EXTENSION OF COCYCLES

TO NORMALIZER ELEMENTS, OUTER CONJUGACY,

AND RELATED PROBLEMS

ALEXANDRE I. DANILENKO AND VALENTIN YA. GOLODETS

Abstract. Let T be an ergodic automorphism of a Lebesgue space and α
a cocycle of T with values in an Abelian locally compact group G. An au-
tomorphism θ from the normalizer N [T ] of the full group [T ] is said to be
compatible with α if there is a measurable function ϕ : X → G such that
α(θx, θTθ−1) = −ϕ(x) + α(x, T ) + ϕ(Tx) at a.e. x. The topology on the set
D(T, α) of all automorphisms compatible with α is introduced in such a way
that D(T, α) becomes a Polish group. A complete system of invariants for
the α-outer conjugacy (i.e. the conjugacy in the quotient group D(T, α)/[T ])
is found. Structure of the cocycles compatible with every element of N [T ] is
described.

0. Introduction

0.1. The study of cocycles of dynamical systems is an important trend in modern
ergodic theory. Cocycles retain essential information about the dynamical system as
group representations do about group structure. They have numerous and diverse
applications. So, cocycles arise naturally when studying extensions of ergodic group
actions and equivalence relations [FSZ], [Z], in the representation theory, etc. [M1],
[K], [G]. And one of the most important aspects explaining a vigorous interest
in cocycles is G. Mackey’s construction of a group action associated with cocycles
[M2] which generalizes the well known notion of a flow built under function.

0.2. Let α be a cocycle of an ergodic dynamical system (X,µ,Γ) with values in a
locally compact second countable Abelian group G. We say that an element θ of
the normalizer N [Γ] of the full group [Γ] is compatible with α if the cocycle α ◦ θ is
cohomologous to α (this implies that α can be extended to the group Γθ generated
by Γ and θ as a cocycle with values in an extension of G). Denote by D(Γ, α) the
group of all α-compatible automorphisms. D(Γ, α) is an α-analogue of N [Γ] and
precisely coincides with it when α is a coboundary or the Radon-Nikodym cocycle.
This group retains essential information on α. So, for example, if D(Γ, α) = [Γ]
then α is transient, or if Γ is of type II and N [Γ] = D(Γ, α) then α is a coboundary.
In the paper the topological and algebraic structures of D(Γ, α) are studied. It is
proved that D(Γ, α) is a Polish group with respect to some metric dα which is
determined explicitly. The group of approximately inner automorphisms, i.e. the
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closure of [Γ] in dα, is described. The continuous α-fundamental homomorphism
from D(Γ, α) into the centralizer C(Wα) of the action Wα(G) associated with α is
constructed. It is established that the quotient group D(Γ, α)/[Γ] is isomorphic to
C(Wα)/Wα(G) when α is transient. Moreover, we obtain a simple complete system
of invariants for the α-outer conjugacy of automorphisms compatible with α, i.e. the
conjugacy of their projections in D(Γ, α)/[Γ]. Notice that this equivalence relation
is a natural generalization of the classical outer conjugacy in N [Γ]. However, as
it turns out the above system contains an invariant that has no analogy in the
classical case (see § 1.4 and Theorems 3.1 and 5.8). Thus, one more problem of the
“relative” classification is solved: the classification of automorphisms with respect
to an amenable equivalence relation and a cocycle defined on it. In addition we
consider a problem of the “converse sort”. Namely, given an abstract group D,
[Γ] ⊂ D ⊂ N [Γ], what can be said about the cocycles α with D(Γ, α) = D?
We solve only a particular case of this extremely hard problem: the complete
weak classification of cocycles α of the Radon-Nikodym type is obtained, i.e. with
D(Γ, α) = N [Γ], and their structure is described in a transparent way.

When α is a coboundary the above results are well known [CK], [BG1], [H], [HO].
But in the general case (for an arbitrary α) one encounters certain new problems
such as the possible nondivisibility of G (this fact puts an obstacle for the extension
of a cocycle to outer periodic automorphisms). Moreover, transient cocycles exist,
the extension of a cocycle to an automorphism compatible with it is not unique,
etc.

The theory developed in this work turned out to be a useful tool in the paper
[GS2] devoted to classification of cocycles of amenable equivalence relations, and
in [GD] where the joint actions of two ergodic actions of an Abelian group were
studied.

0.3. The outline of the paper is as follows. Section 1 contains some background
in the ergodic theory. The basic concepts of the present paper are also formulated
here. Section 2 is devoted to the study of some topological properties of D(Γ, α)
and introduces the α-fundamental homomorphism. In Section 3 regular cocycles are
considered. We describe the group of approximately inner automorphisms, struc-
ture of automorphisms compatible with α and find simple necessary and sufficient
conditions for two automorphisms compatible with α to be α-outer conjugate. The
same problems are solved for nonregular cocycles when the actions associated them
are free (Section 4) and nonfree (Section 5). And in the last section we study struc-
ture of cocycles which satisfy the property D(Γ, α) = N [Γ] and prove the results
announced in [Da2].

We thank the referee for valuable comments.

1. Preliminaries. Extension of cocycle to normalizer elements

One can find a detailed outline and discussion of the results stated below in [Kr],
[HO], [S], [BG3], [H].

1.1. Let (X,B, µ) be a non-atomic Lebesgue space, Aut(X,µ) the set of all its
automorphisms, i.e. one-to-one bimeasurable nonsingular transformations of X ,
and let Γ be a countable ergodic subgroup of Aut(X,µ). We shall assume that Γ
acts freely. The set {t ∈ Aut(X,µ) | tx ∈ Γx for a.e. x} is called the full group [Γ]
of automorphisms of (X,B, µ) generated by Γ. If there is a single transformation
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T such that [Γ] = [{Tn | n ∈ Z}] then Γ is called approximately finite (a.f.). An
ergodic group Γ is said to be type II1 (II∞) if there exists a finite (infinite σ-finite)
Γ-invariant measure, equivalent to µ. Otherwise Γ is said to be type III.

A quadruple ξ = (A,Ξ, A(.), γ(., .)) is called a Γ-array on the setA ∈ B, µ(A) > 0,
if

(i) Ξ is a finite set,
(ii)

⋃
i∈Ξ A(i) = A, A(i) ∩A(j) = ∅ for all i 6= j, µ(A(i)) > 0,

(iii) γ(i, j) is a nonsingular isomorphism A(j)→ A(i) such that γ(i, j)x ∈ Γx for
a.e. x ∈ A(j) and γ(k, j)γ(j, i) = γ(k, i), γ(i, i) = idA(i) for all i, j, k ∈ Ξ.

By G(ξ) we denote the (finite) group of automorphisms of A whose restrictions
to every subset A(i) coincide with some γ(i, j), i, j ∈ Ξ, and by P(ξ) the collection
of the sets

⋃
i∈∆A(i), where ∆ is an arbitrary subset of Ξ.

Let ξ1 = (A,Ξ, A(.), γ(., .)) and ξ2 = (A(i0),Ω, B(.), δ(., .)) be two Γ-arrays,
i0 ∈ Ξ. By the refinement of ξ1 by ξ2 we mean the Γ-array

ξ1 × ξ2 = (A,Ξ× Ω, C(., .), τ(., .; ., .)),

where C(i, n) = γ(i, i0)B(n) and τ(i1, n1; i, n) = γ(i1, i0)δ(n1, n)γ(i0, i) for all
i, i0, i1 ∈ Ξ, n, n1 ∈ Ω.

We denote by N [Γ] the normalizer of [Γ] in Aut(X,µ), i.e.

N [Γ] = {θ ∈ Aut(X,µ) | θ[Γ]θ−1 = [Γ]}.
The least positive integer p such that θp ∈ [Γ] is called the outer period (p(θ)) of
θ. If such an integer does not exist, we set p(θ) = 0. As usual, C(Γ) stands for the
centralizer of Γ, i.e. C(Γ) = {θ ∈ Aut(X,µ) | θγ = γθ for all γ ∈ Γ}. It is clear
that C(Γ) ⊂ N [Γ].

1.2. Let G be a locally compact second countable (l.c.s.c.) group. A measurable
map α : X×Γ→ G is said to be a cocycle of the dynamical system (d.s.) (X,B, µ,Γ)
with values in G if α(x, γ1γ2) = α(γ2x, γ1)α(x, γ2) for all γi ∈ Γ at a.e. x ∈ X . The
set of all cocycles will be denoted by Z1(X × Γ, G). It is easy to extend α to [Γ].
Two cocycles α and β are said to be cohomologous if β(x, γ) = φ(γx)α(x, γ)φ(x)−1

for some measurable function φ : X → G and all γ ∈ Γ at a.e. x. By a coboundary
we mean a cocycle which is cohomologous to the trivial one.

Let us consider two d.s. (Xi,Bi, µi,Γi) and their cocycles αi ∈ Z1(Xi × Γi, G),
i = 1, 2. Two pairs (Γ1, α1) and (Γ2, α2) are said to be weakly equivalent if there
is an isomorphism φ : X1 → X2 such that [Γ1] = φ−1[Γ2]φ and the cocycles φ ◦ α1

and α2 are cohomologous. The cocycle φ ◦α1 is defined as follows: φ ◦α1(x2, γ2) =
α1(φ−1x2, φ

−1γ2φ) for all γ2 ∈ Γ2 at a.e. x2 ∈ X2.

Let τ be the shift on the group Z, Γ̂ = Γ × {τn | n ∈ Z} and α̂(x, k, γ × τn) =

α(x, γ) for all n ∈ Z, γ ∈ Γ at all (x, k) ∈ X × Z. The pair (Γ̂, α̂) is called the
countable extension of (Γ, α). We say that (Γ1, α1) and (Γ2, α2) are stably weak
equivalent if their countable extensions are weakly equivalent.

Let µG be a left Haar measure for G. Then one can define the actions V of G
and Vα of Γ on (X ×G,µ× µG) as follows:

V (g)(x, h) = (x, hg−1), Vα(γ)(x, h) = (γx, α(x, γ)h).

Since Vα(γ)V (g) = V (g)Vα(γ) for every g ∈ G, γ ∈ Γ, it follows that V induces a
new action of G on the space (Ω, ν) of Vα-ergodic components. We call it the action
associated with (Γ, α) or the Mackey action and denote by Wα. If Γ is of type III,
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then we shall consider the “double” cocycle α0 = (α, ρ) ∈ Z1(X×Γ, G×R) as well

as α, where ρ is the Radon-Nikodym cocycle, i.e. ρ(x, γ) = log dµ◦γ
dµ (x).

Let G be an Abelian group and Ḡ the one-point compactification of G. An
element g ∈ Ḡ is called an essential value of α if for every set B ∈ B, µ(B) > 0,
and each neighborhood U of g in Ḡ there exist a subset B1 ⊂ B, µ(B1) > 0, and
an automorphism γ ∈ Γ such that γB1 ⊂ B and α(x, γ) ∈ U for a.e. x ∈ B1. By
r̄(Γ, α) we denote the set of all essential values of α. Let r(Γ, α) = r̄(Γ, α)∩G. The
set r(Γ, α) is a closed subgroup in G and is invariant (as well as r̄(Γ, α)) under the
stably weak equivalence.

Definition 1.1. An automorphism θ ∈ N [Γ] is called compatible with α (or ad-
missible for α [BGD]) if α and θ−1 ◦α are cohomologous, i.e. there is a measurable
function ϕ : X → G such that

α(θx, θγθ−1) = ϕ(γx)α(x, γ)ϕ(x)−1 for all γ ∈ Γ at a.e. x ∈ X.(1)

By α(θ) we denote the set of all functions ϕ satisfying (1) and by D(Γ, α) the
set of all automorphisms compatible with α. Obviously, D(Γ, α) is a subgroup of
N [Γ]. Since for each automorphism δ ∈ [Γ] we have

α(δx, δγδ−1) = α(γx, δ)α(x, γ)α(δx, δ−1) = α(γx, δ)α(x, γ)α(x, δ)−1

for all γ ∈ Γ at a.e. x, it follows that [Γ] ⊂ D(Γ, α). If ζ ∈ N [Γ], then D(Γ, ζ ◦α) =
ζD(Γ, α)ζ−1. If α is a coboundary, then D(Γ, α) = N [Γ].

Example 1.2. Let X = [0, 1) ⊂ R, µ be the Lebesgue measure on X , {tj}∞j=0 a
sequence of rationally independent irrational numbers, G an Abelian l.c.s.c. group
and Gd = {gj}∞j=1 a countable dense subgroup of G. Let us consider automorphisms

γj and θjp on (X,µ): γjx = x + tj (mod 1), θjpx = x + tjp
−1 (mod 1). By Γ we

denote the group generated by γj , j ∈ N. Obviously, γ0, θjp ∈ N [Γ] for all j, p ∈ N.
We define the cocycle α by setting α(x, γj) = gj, j ∈ N. It is easy to see that γ0

and θjp are compatible with α, and p(γ0) = 0, p(θjp) = p.

Example 1.3. Let (X,µ) =
∏∞
i=1(Xi, µi), where Xi = {0, 1} and µi(0) = µi(1) =

2−1. An Abelian measure preserving group Γ is generated by the automorphisms
γj , j ∈ N, given by (γjx)i = xi + δij (mod 2) for every sequence x of 0’s and
1’s. A cocycle α of the d.s. (X,µ,Γ) with values in Z is determined as follows:
α(x, γj) = (−1)xj j. We define the automorphism θ by setting (θx)i = xi + 1
mod 2, i ∈ N. Evidently, θ ∈ N [Γ]. If θ is compatible with α and ϕ ∈ α(θ), then
it follows from (1) that ϕ(x) − ϕ(γjx) = (−1)xj2j for all j ∈ N at a.e. x. Take a
number N such that µ({x ∈ X | |ϕ(x)| < N}) > 2−1. Then for every j ∈ N we
have |ϕ(x)− ϕ(γjx)| < 2N on some set of positive measure, a contradiction. So, θ
is not compatible with α. We have established also that α is not a coboundary.

Let H be a central closed subgroup of G and α(x, γ) ∈ H for all γ ∈ Γ at a.e. x.
Then we consider the cocycle αH ∈ Z1(X × Γ, H) given by αH(x, γ) = α(x, γ).

Proposition 1.4. D(Γ, αH) = D(Γ, α).

Proof. Let θ ∈ D(Γ, α) and ϕ ∈ α(θ). Since ϕ(γx)ϕ(x)−1 ∈ H for all γ ∈ Γ at a.e.
x and Γ is ergodic, we have ϕ(x) = gψ(x) at a.e. x for some function ψ : X → H
and some element g ∈ G. Evidently, θ ∈ D(Γ, αH) and ψ ∈ αH(θ). It is trivial that
D(Γ, αH) ⊂ D(Γ, α).
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Definition 1.5. Two α-compatible automorphisms θ1 and θ2 are said to be α-
outer conjugate if there exist automorphisms ζ ∈ D(Γ, α) and t ∈ [Γ] such that
ζθ1ζ

−1 = θ2t.

Obviously, the α-outer conjugacy is an equivalence relation on D(Γ, α).
Let an automorphism θ ∈ D(Γ, α) and a function ϕ ∈ α(θ). We define an

automorphism θϕ of (X × G,µ × µG) by setting θϕ(x, g) = (θx, ϕ(x)g). Then
θϕ ∈ N [Vα(Γ)] ∩ C(V ) (see § 1.2), where C(V ) is the centralizer of V (G) in
Aut(X × G,µ × µG). Hence, θϕ induces an automorphism of (Ω, ν) (the space
of Vα(Γ)-ergodic components). We denote it by Ψα(θ, ϕ). Evidently, Ψα(θ, ϕ) ∈
C(Wα).

1.3. Below in this paper we assume that G is an Abelian group. Then for every two
functions ϕ,ψ from α(θ) there exists an element g ∈ G such that ϕ(x) − ψ(x) = g
for a.e. x, i.e. (1) determines ϕ up to an additive constant. Therefore, Ψα(θ, ϕ) =
Ψα(θ, ψ)Wα(g) and it is natural to define a map Φα : D(Γ, α) → C(Wα)/Wα(G)
by Φα(θ) = Ψα(θ, ϕ)Wα(G). We call it the α-fundamental homomorphism.

Let Wα0 be the action of G × R associated with (Γ, α0) on the space (Ω0, ν0).
We consider the action W r

α0
of R given by W r

α0
(t) = Wα0(0, t). The W r

α0
-ergodic

decomposition of (Ω0, ν0) induces the map τ : C(Wα0) → C(Wα) which can be
extended to the homomorphism τ0 : C(Wα0)/Wα0(G, 0)→ C(Wα)/Wα(G) and the
diagram

D(Γ, α)
Φα0−−−−→ C(Wα0(G× R))/Wα0(G, 0)

id

y yτ0
D(Γ, α) −−−−→

Φα
C(Wα(G))/Wα(G)

(2)

is commutative.
If θ ∈ D(Γ, α), one can extend α to a cocycle of the group Γθ generated by Γ

and θ and whose values are in an extension of G. Let ϕ ∈ α(θ). We separately
consider two cases.

1. θ is outer aperiodic, i.e. p(θ) = 0 (see § 1.2). Set{
α̃(x, γ) = (α(x, γ), 0),

α̃(x, θ) = (ϕ(x), 1),
(3)

where the right-hand side belongs to G× Z. Obviously, α̃ ∈ Z1(X × Γθ, G× Z).
2. θ is outer periodic, i.e. p = p(θ) > 0. It follows from (1) that ϕ(x) + ϕ(θx) +

· · ·+ϕ(θp−1x) ∈ α(θp). On the other hand, the function X 3 x 7→ α(x, θp) belongs
to α(θp). Therefore, there exists an element g = g(θ, ϕ) ∈ G with

α(x, θp)− ϕ(x) − ϕ(θx) − · · · − ϕ(θp−1x) = g

for a.a. x. Notice that if another function ψ belongs to α(θ) then ϕ(x)−ψ(x) = pg1

at a.e. x for some g1 ∈ G. The Cartesian product G×{0, 1, . . . , p−1} is an Abelian
l.c.s.c. group if one introduces addition as

(g1, n1) + (g2, n2) = (g1 + g2 + g[(n1 + n2)p−1], n1+̇n2),

where the sign +̇ means addition mod p and [.] the integer part. We denote
this group by G(g, p). Then G is contained in G(g, p) as a closed subgroup of
all elements of the form (g, 0). The element g = g(θ, ϕ) can be divided by p
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in G(g, p), since p(0, 1) = (g, 0). Therefore, (3) correctly determines a cocycle
α̃ ∈ Z1(X × Γθ, G(g, p)).

Remark 1.6. In the case (i) (or (ii) if g = pg1 for some g1 ∈ G), one can define
an extension α+ ∈ Z1(X × Γθ, G) of α as follows: α+(x, θ) = ϕ(x) (or α+(x, θ) =
ϕ(x) + g1 respectively). But the extension α̃ is more useful to study the α-outer
conjugacy (see Lemma 3.2 below).

It is easy to check that if two α-compatible automorphisms θ1 and θ2 are α-outer
conjugate, then g(θ1, ϕ1) = g(θ2, ϕ2) for some functions ϕi ∈ α(θi) (if p(θ) = 0 we
put g(θ, ϕ) = 0). In Example 1.2, g(θjp, ϕ) = gj for ϕ = 0 and every j ∈ N.

2. Topology on D(Γ, α)

Throughout this section we assume that µ(X) = 1 and τ is a bounded invariant
metric on G compatible with the l.c.s.c. topology. A sequence {φn}∞n=1 of measur-
able functions φn : X → G is said to converge in measure to a measurable function
φ : X → G if µ({x | τ(φn(x), φ(x)) > δ})→ 0 as n→∞ for every δ > 0. We recall
the definition of the Polish topology on N [Γ] introduced in [HO] (cf. [Da3]). Let
du denote the uniform distance on [Γ], i.e.

du(δ1, δ2) = µ({x ∈ X | δ1x 6= δ2x}) + µ({x ∈ X | δ−1
1 x 6= δ−1

2 x}),

and dw a metric being compatible with the weak topology on Aut(X,µ). If we
enumerate elements of Γ as {γk | k ∈ N} then d given by

d(θ1, θ2) = dw(θ1, θ2) +
∞∑
k=1

1

2k
du(θ1γθ

−1
1 , θ2γkθ

−1
2 )

is a distance on N [Γ] giving a Polish topology. It is clear that this topology is
stronger than the weak one. Now we define the α-topology on D(Γ, α) via the
α-convergence as follows.

Definition 2.1. A sequence {θn}∞n=1 of α-compatible automorphisms is said to
α-converge to an automorphism θ ∈ D(Γ, α) if there are functions φn ∈ α(θn),
n ∈ N, and φ ∈ α(θ) such that {φn}∞n=1 converges in measure to φ and {θn}∞n=1

converges to θ in the metric d.

Let θi ∈ D(Γ, α) and φi ∈ α(θi), i = 1, 2. Put

d̃α(θ1, θ2) = inf
g∈G

∫
X

τ(φ1(x), φ2(x) + g)dµ(x) + d(θ1, θ2).

Theorem 2.2. The α-topology on D(Γ, α) is Polish and compatible with the metric

d̃α.

Proof. By M(X,G) we denote the space of all measurable maps from X to G. The
metric λ given by

λ(f1, f2) =

∫
X

τ(f1(x), f2(x)) dµ(x)

determines the topology of convergence in measure on M(X,G). Let us prove that
the subset

L = {(θ, φ) | θ ∈ D(Γ, α), φ ∈ α(θ)}
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is a closed subset of N [Γ] × M(X,G). Consider a pair (θ, φ) ∈ L. There is a
sequence {(θn, φn)}∞n=1 of pairs from L such that d(θn, θ) → 0 and φn(x) → φ(x)
as n→∞ for a.e. x. We shall assume below for simplicity’s sake that Γ is a.f. (for
non a.f. groups the proof can be slightly changed in an obvious way). Denote by
T an ergodic transformation with [T ] = [Γ] (see § 1). Then for every n ∈ N

α(x, θ−1
n Tθn) = φn(x) + α(θnx, T )− φn(θ−1

n Tθnx) at a.a. x.(4)

Let us choose a dense countable subset {gk}∞k=1 in G and consider the positive
bounded functions τk(x) = τ(α(x, T ), gk), k ∈ N. It follows from the weak conver-
gence θn → θ that for every k ∈ N∫

X

∣∣∣∣τk(θnx)
dµ ◦ θn
dµ

(x)− τk(θ)
dµ ◦ θ
dµ

(x)

∣∣∣∣ dµ(x)→ 0

as n → ∞. By the diagonal process one can choose a subsequence {nj}∞j=1 such
that for every k ∈ N

τk(θnjx)
dµ ◦ θnj
dµ

(x)→ τk(θx)
dµ ◦ θ
dµ

(x) and
dµ ◦ θnj
dµ

(x)→ dµ ◦ θ
dµ

(x)

as j → ∞ for a.e. x. Hence, there exists limj→∞ τk(θnjx) = τk(θx) at a.e. x for
every k ∈ N. We deduce from this that

α(θnjx, T )→ α(θx, T )(5)

as j → ∞ for a.e. x. Denote by γ (resp. γj) the automorphism θ−1Tθ (resp.
θ−1
nj Tθnj , j ∈ N). We have

τ(φnj (γjx), φ(γx)) ≤ τ(φnj (γjx), φnj (γx)) + τ(φnj (γx), φ(γx)) = I1
j + I2

j .

Put Aj = {x : γjx 6= γx}. Since d(θnj , θ) → 0, we have µ(Aj) → 0 as j → ∞.
Without loss of generality, one can assume that

∑∞
j=1 µ(Aj) <∞. Then, it follows

from the Borel-Cantelli lemma that α(x, γj) → α(x, γ) and I1
j → 0 as j → ∞ for

a.e. x. Therefore, using (5), we pass to a limit in (4) as nj →∞:

α(x, θ−1Tθ) = φ(x) + α(θx, T )− φ(Tx)

for a.e. x, since I2
j → 0. Thus, (θ, φ) ∈ L. Hence L is a Polish space as a closed

subset of N [Γ] × M(X,G). Consider the equivalence relation on L: (θ1, φ1) ∼
(θ2, φ2) if θ1 = θ2. One can naturally identify the set L/ ∼ with D(Γ, α). Moreover,
the Polish quotient topology on L/ ∼ (or, equivalently, the α-topology on D(Γ, α))

is compatible with d̃α. Thus, the theorem is proved.

Now let dα(θ1, θ2) = d̃α(θ−1
2 θ1, 1) + d̃α(θ−1

1 θ2, 1) + d̃α(θ2θ
−1
1 , 1) + d̃α(θ1θ

−1
2 , 1).

Theorem 2.3. D(Γ, α) is a Polish group with respect to the metric dα.

Proof. Let {θn}∞n=1 and {ζn}∞n=1 be two sequences of α-compatible automorphisms
converging to some θ and ζ from D(Γ, α) respectively. Let us choose functions
φn ∈ α(θn), ψn ∈ α(ζn), φ ∈ α(θ), and ψ ∈ α(ζ) according to Definition 2.1.
Put ηn(x) = φn(x) + ψn(θnx) and η(x) = φ(x) + ψ(θx). Then ηn ∈ α(ζnθn) and
η ∈ α(ζθ). It follows from the definition of dα that the multiplication in D(Γ, α) is
continuous if ηn → η in measure as n→∞. We need an auxiliary lemma.

Lemma 2.4. If a sequence {θn}∞n=1 of automorphisms of (X,µ) weakly converges,
then for every ε > 0 there exist δ > 0 and N ∈ N such that µ(θnA) < ε for every
subset A, µ(A) < δ, and every n ∈ N.
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Proof. Suppose {θn}∞n=1 weakly converges to an automorphism θ ∈ D(Γ, α), but
the conclusion of the lemma is not valid. Then there are a real number ε > 0 and a
sequence of measurable subsets {An}∞n=1 such that µ(An) < 2−n and µ(θnAn) > ε.
We have

µ(θnAn) = µ(θAn) +

∫
An

(
dµ ◦ θn
dµ

(x)− dµ ◦ θ
dµ

(x)

)
dµ(x).(6)

Since the absolute value of the second term in (6) is less than∫
An

∣∣∣∣dµ ◦ θndµ
(x)− dµ ◦ θ

dµ
(x)

∣∣∣∣ dµ(x).

and {θn}∞n=1 weakly converges to θ, one can pass to the limit in (6): µ(θnAn)→ 0
as n→∞, a contradiction.

Let us return to the proof of Theorem 2.3. For every positive integer n

τ(ηn(x), η(x)) ≤ τ(φ(x), φn(x)) + τ(ψn(θnx), ψ(θnx)) + τ(ψ(θnx), ψ(θx)).(7)

Now apply Lemma 2.4 to deduce that

µ({x | τ(ψn(θnx), ψ(θnx)) > δ}) = µ(θ−1
n {x : τ(ψn(x), ψ(x)) > δ})→ 0

as n → ∞. It is easy to see that the other two terms on the right-hand side of
(7) vanish also in measure as n → ∞. The continuity of the inverse operation in
D(Γ, α) is established in a similar way.

Proposition 2.5. Let a cocycle α ∈ Z1(X × Γ, G) take its values in a closed sub-
group H ⊂ G and the cocycle αH be the same as in Proposition 1.4. Then the
topology of αH-convergence on D(Γ, αH) = D(Γ, α) is equivalent to the topology of
α-convergence.

The proof is obvious.

Theorem 2.6. Let a sequence {θn}∞n=1 of α-compatible automorphisms α-converge
to θ ∈ D(Γ, α) and functions φn ∈ α(θn) and φ ∈ α(θ) be chosen according to
Definition 2.1. Then the sequence {Ψα(θn, φn)}∞n=1 of automorphisms from C(Wα)
weakly converges to Ψα(θ, φ).

This statement is similar to Theorem 4 from [H], where the Radon-Nikodym
cocycle was considered. Therefore we state it here without proof.

3. Automorphisms compatible with regular cocycles

In this section we assume that Γ is a.f. A cocycle α ∈ Z1(X × Γ, G) is called
regular if the Mackey action Wα of G is transitive [S], [BG3]. Then the stabilizer
of Wα is equal to r(Γ, α) (see § 1).

Theorem 3.1. Let a cocycle α be such that the “double” cocycle α0 = (α, ρ) is
regular. Then two α-compatible automorphisms θ1 and θ2 are outer conjugate iff

p(θ1) = p(θ2), g(θ1, φ1) = g(θ2, φ2), and Ψα0(θ1, (φ1)0) = Ψα0(θ2, (φ2)0)

for some functions φi ∈ α(θi), where (φi)0(x) = (φi(x), ρ(x, θ)).
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Proof. It follows directly from Definition 1.5 that the above conditions are necessary
for the α-outer conjugacy. So, we have to prove their sufficiency. Let p = p(θi) >
0 (if p(θi) = 0, the proof is simplified). Set g = g(θi, φi) and H0 = r(Γ, α0).
Let α̃i be the extension of αi on Γθi with values in G(g, p) (see § 1), i = 1, 2.
Then Proposition 1.4 implies the existence of pairs (gi, si) ∈ G × R such that
(φi(x) − gi, ρ(x, θi)− si) ∈ H0 for a.e. x. Hence (g + pgi, psi) ∈ H0. It is easy to
see that the cocycles (α̃i)0 = (α̃i, ρ) are regular and

r(Γθi , (α̃i)0) = {(jgi + h, j, jsi + s) ∈ G(g, p)× R for all (h, s) ∈ H0

and j = 0, . . . , p− 1},
i = 1, 2. Since Ψα0(θi, (φi)0) = Wα0(gi, si) and Ψα0(θ1, (φ1)0) = Ψα0(θ2, (φ2)0),
we have (g1 − g2, s1 − s2) ∈ H0. Thus, r(Γθ1 , (α̃1)0) = r(Γθ2 , (α̃2)0). It is known
that the groups Γθi are a.f., i = 1, 2 [CFW]. Therefore, (Γθ1 , α̃1) and (Γθ2 , α̃2) are
weakly equivalent [BG3], [GS1]. To complete the proof we need only to apply the
following lemma.

Lemma 3.2. Let θ1 and θ2 be compatible with a (not necessary regular) cocycle α,
p(θ1) = p(θ2), and g(θ1, φ1) = g(θ2, φ2) for some functions φi ∈ α(θi). If (Γθ1 , α̃1)
and (Γθ2 , α̃2) are weakly equivalent, then θ1 and θ2 are α-outer conjugate.

Proof. Let p = p(θi) > 0 (if p = 0, the proof is similar). Then there exist an
automorphism ζ of (X,µ) and a function ψ : X → G(g, p) such that ζ−1[Γθ2 ]ζ =
[Γθ1 ] and

ζ ◦ α̃1(x, γ2) = −ψ(x) + α̃2(x, γ2) + ψ(γ2x)(8)

for every γ2 ∈ Γθ2 at a.e. x. We assume that ψ(x) = (ψ1(x), 0) for some function
ψ1 : X → G. This can be obtained by left multiplying ζ with a certain automor-
phism t ∈ [Γθ2 ] (see Lemma 2.2 from [BG2]). Let us substitute automorphisms
γ ∈ Γ and then θ2 in (8). We have: ζ ∈ N [Γ], ζ−1θ2ζ = θ1γ0 for some γ0 ∈ [Γ] and

ζ ◦ α(x, γ) = −ψ1(x) + α(x, γ) + ψ1(γx)

for a.e. x, i.e. ζ ∈ D(Γ, α). This proves the lemma.

If α0 is regular then α and ρ are also regular. The converse statement is not
true [BG3]. If Γ is of type III and ρ is a regular cocycle, then r(Γ, ρ) is equal to
{n · logλ | n ∈ Z} for some 0 < λ < 1 or to R. Then Γ is said to be of type IIIλ
or III1 respectively. If ρ is not regular, Γ is said to be of type III0. Let p ∈ Z+.
In [Da1] a pair (Γ, α) is constructed in such a way that α0 is regular and there
exists an uncountable family of α-compatible automorphisms which are pairwise
not α-outer conjugate. Moreover, Γ is of type III1 and the outer period of every
element from the family is equal to p. Hence, these automorphisms are pairwise
outer conjugate.

Our purpose now is to describe the group of approximately inner automorphisms
Cldα([Γ]), i.e. the dα-closure of [Γ]. By H we denote the projection of H0 =
r(Γ, α0) ⊂ G×R to R. First, we formulate an auxiliary lemma. Its proof for a type
II1 group Γ is given in Example 1.2. A similar argument proves the lemma in the
general case (see [Da1]).

Lemma 3.3. Let α0 be a regular cocycle and θ an α-compatible automorphism.
Then there exist a d.s. (X1, µ1,Γ1), a cocycle α1 ∈ Z1(X1 × Γ1, G), and an auto-
morphism θ1 ∈ D(Γ1, α1) such that
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(i) (Γ1, α1) is weakly equivalent to (Γ, α),
(ii) (α1)0 takes its values in a countable dense subgroup of H0 and we have

(α1)0(x,Q) = 0 for some ergodic automorphism Q ∈ [Γ1],
(iii) p(θ1) = p(θ), g(θ1, ϕ1) = g(θ, ϕ), and Ψ(α1)0

(θ1, (ϕ1)0) = Ψα0(θ, ϕ0) for some
functions ϕ ∈ α(θ) and ϕ1 ∈ α(θ1),

(iv) the class α1(θ1) consists of constant a.e. functions and we have ρ(x, θ1) =
const,

(v) if Ψα0(θ, ϕ0) = Wα0(h, 0) for some h ∈ G, then θ1 can be chosen to be µ1-
preserving,

(vi) for every s ∈ Cl(H) there exist an automorphism ζ ∈ Cldα1
([Γ1]) and element

h ∈ G with Ψ(α1)0
(ζ, ψ) = Wα0(h, s), where ψ = 0.

Theorem 3.4. If α0 is regular, then Cldα([Γ]) = D(Γ, α) ∩Cld([Γ]).

Proof. We put L = G × Cl (H). Let θ be a α-compatible automorphism and
Ψα0(θ, ϕ0) ∈Wα0(L) for some ϕ ∈ α(θ). It follows from (i) and (vi) of Lemma 3.3
that there exists an automorphism ζ ∈ Cldα([Γ]) such that Φα0(θζ) = Wα0(G, 0).
Apply Lemma 3.3 to the triple (Γ, α, θζ). Then by virtue of Theorem 3.1 one
can deduce that the isomorphism η : X → X1 taking (Γ, α) to (Γ1, α1) takes
automorphism θζt to θ1 with some transformation t ∈ [Γ]. Consider a sequence
{ξn}∞n=1 of Γ1-arrays on (X1, µ1) such that (see [BG2, Theorem 2.1] and [BG3,
Lemma 3.11]:

(i) ξn = (An−1(in−1),Ξn, An(.), γn(., .)) for some in−1 ∈ Ξn−1 (we assume that
A0(i0) = X1);

(ii) [
⋃∞
n=1 G(ξ1 × · · · × ξn)] = [Γ1];

(iii)
⋃∞
n=1 P(ξ1 × · · · × ξn) = B1 mod 0;

(iv) for every γ ∈ G(ξ1 × · · · × ξn) and an atom c ∈ P(ξ1 × · · · × ξn) we have
(α1)0(x, γ) = const at a.e. x ∈ X1.

Since θ1 and Q preserve µ1 (see Lemma 3.3(ii) and (v)), we have that for every
n ∈ N there exists an automorphism qn ∈ [Q] such that θ1An(in) = qnAn(in) [Kr],
[HO]. Put

rn(x) = θ1γθ
−1
1 qnγ

−1x, x ∈ γAn(in),

where γ = γ1(j1, i1)γ2(j2, i2) · · · γn(jn, in), jk ∈ Ξk, k = 1, . . . , n. Then the auto-
morphisms rn ∈ [Γ1], n ∈ N. A routine calculation shows that (α1)0(x, rn) = 0 and
d(rn, θ1) → 0 as n → ∞. Therefore θ1 ∈ Cldα1

([Γ1]). Hence θζt ∈ Cldα([Γ]). By
virtue of Theorem 2.4, θ is an approximately inner automorphism. So,

{θ ∈ D(Γ, α) | Ψα0(θ, ϕ0) ∈Wα0(L) for some ϕ ∈ α(θ)} ⊂ Cldα([Γ]).

Theorem 2.8 implies the converse inclusion.
Let Γ be of type II, θ ∈ N [Γ], and λ be a Γ-invariant µ-equivalent measure.

Then one has log dλ◦θ
dλ (x) = mod θ at a.e. x for some positive number mod θ [CK],

[HO]. Hence, if Γ is of

(i) type II, then Cldα([Γ]) = {θ ∈ D(Γ, α) | mod θ = 0};
(ii) type III1, then Cldα([Γ]) = D(Γ, α);
(iii) type IIIλ, 0 < λ < 1, then Cldα([Γ]) = {θ ∈ D(Γ, α) | Φα0 = Wα0(G, 0)}.

Since α0 is regular, we see that Γ is not of type III0 and the map τ0 in diagram (2)
is onto. By virtue of the results from [BG1], [HO], [H] the theorem is completely
proved.
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4. Automorphisms compatible with nonregular cocycles.

Free associated actions

4.0. It is known that the Mackey action Wα of G (associated with (Γ, α)) is free if
and only if r(Γ, α) = 0. Let Γ act freely. A cocycle α is called

(i) transient if the α-skew product action Vα of Γ (see § 1.2) is of type I, i.e. the
Vα(Γ)-orbit partition of (X ×G,µ× µG) is measurable,

(ii) recurrent if it is not transient.

4.1. Throughout this section we assume that α or, equivalently, α0 [BG3] is tran-
sient. If (and only if) Γ is of type II, then one can assume that ν isWα(G)-invariant.
Note that ν may be finite or infinite (σ-finite) regardless of Γ being of type II1 or
II∞.

Theorem 4.1. Let an automorphism ζ ∈ C(Wα). If Γ is of type II∞ or III,
then there exist an automorphism θ ∈ D(Γ, α) and a function ϕ ∈ α(θ) such that
ζ = Ψα(θ, ϕ). The same is true when Γ is of type II1 if ζ preserves the Wα(G)-
invariant measure ν.

Proof. We shall only consider the case of continuous group G. If G is discrete,
the proof is clear. It is convenient to apply the theory of measurable equivalence
relations (measurable groupoids) [M2], [R1], [R2], [FHM]. Let H be a measurable
equivalence relation generated by Wα and F be the transitive equivalence relation
on the circle T. By E we denote a full lacunar countable section for Wα and by
νE the projection of ν on E along Wα-orbits [FHM], [R2]. Since E is lacunar,
there is a discrete equivalence relation R on it and, hence, a countable group Σ
of automorphisms on (E, νE) generating R [FM]. The map πE(ω,Wα(g)ω) = g
is called the return homomorphism on E. An automorphism of H corresponding
to ζ will be also denoted by ζ. It is known that the Cartesian product R × F is
isomorphic to H [FHM, Theorem 6.4]. Therefore we shall identify them. Then
there exist an inner automorphism τ of H (i.e. ω and τω are Wα(G)-equivalent for
a.e. ω) and an automorphism ϑ of R such that

τζ = ϑ× id(9)

(see [GS1, Theorem 2.4]). Let the homomorphism π of H into G be given by
π(ω,Wα(g)ω) = g and let ψ(ω) = π(ω, τω). Then

(τζ)−1 ◦ π(ω, υ) = −ψ(ω) + π(ω, υ) + ψ(υ)(10)

for all (ω, υ) from some inessential reduction of H. Hence there defines an element
t0 ∈ T such that (10) is valid for a.e. (ω, υ) ∈ R × {(t0, t0)}. It follows from (9)
that ϑ is compatible with πE , i.e. πE and ϑ ◦ πE are cohomologous. Theorem 7.4
from [FHM] implies that (Γ, α) and (Σ, πE) are stably weak equivalent. Therefore
ϑ corresponds to a α-compatible automorphism θ. A calculation implies Φα(θ) =
ζWα(G).

Remark 4.2. Since α is transient, it follows that Φα(θ) 6= Wα(G) for any θ ∈
D(Γ, α) \ [Γ].

Corollary 4.3. If Γ is of type II∞ or III then the quotient groups D(Γ, α)/[Γ]
and C(Wα)/Wα(G) are algebraically isomorphic. The same is true when Γ is of
type II1 if the Wα(G)-invariant measure is finite.
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Corollary 4.4. If Γ is of type II, θ ∈ D(Γ, α), ϕ ∈ α(θ), and mod θ = 0, then
Ψα(θ, ϕ) preserves the Wα(G)-invariant measure.

The next statement follows straightforwardly from Theorem 4.1 and Corol-
lary 4.3.

Theorem 4.5. Let Γ not be of type II1. Two α-compatible automorphisms θ1 and
θ2 are α-outer conjugate iff there exists an automorphism ζ ∈ C(Wα) such that

Ψα(θ1, ϕ1) = ζΨα(θ2, ϕ2)ζ−1(11)

for some functions ϕi ∈ α(θi), i = 1, 2. The same is true when Γ is of type II1 if
ζ preserves the Wα(G)-invariant measure.

Note that (11) implies p(θ1) = p(θ2) and g(θ1, ϕ1) = g(θ2, ϕ2).

Definition 4.6. An ergodic action V of G on (X,µ) is called w-rigid if the set
V (G) is weakly closed in Aut(X,µ).

Proposition 4.7. If the action Wα(G) is w-rigid then Cldα([Γ]) = [Γ].

The proof is obvious.

Example 4.8. Let T be an ergodic automorphism on (X,µ) such that C(T ) =
{Tn | n ∈ Z} (see, for example, [O]). Set α(x, Tn) = n for all x ∈ X , n ∈ N. It is
easy to see that the cocycle α ∈ Z1(X × [T ],Z) is transient. Since the centralizer
of Wα is trivial, the action Wα is w-rigid. Therefore D(T, α) = [T ], i.e. each
automorphism compatible with α is inner. Note that only transient cocycles can
satisfy this property.

Remark 4.9. Since the commutativity of G is used nowhere in Theorem 4.1, all
statements of § 4.1 can be easily reformulated for non-Abelian G.

4.2. Throughout this section (if the contrary is not stated explicitly) we assume
that Γ is an a.f. type II∞ group, α is a nonregular recurrent cocycle, and Wα is
free. Replacing if it is necessary (Γ, α) by a weakly equivalent pair we can assume
that [BG3]:

A1) (X,µ) = (Z × Y, κ× λ) for some Lebesgue spaces (Z, κ) and (Y, λ);
A2) Γ is generated by two automorphisms S0 and Q0:

S0(z, y) = (z, Sy), Q0(z, y) = (Qz,Uzy),

where S is an ergodic type II∞ automorphism of (Y, λ), λ is a S-invariant
measure, Q is an ergodic automorphism of (Z, κ), and Z 3 z → Uz is a
measurable field of transformations on (Y, λ) such that Uz ∈ N [S] for a.e.
z ∈ Z.

A3) α is determined on the generators of Γ by:

α(z, y, S0) = 0, α(z, y,Q0) = δ(z,Q),

where δ ∈ Z1(Z × [Q], G) is a transient cocycle.

Moreover, since all ergodic type II∞ automorphisms are orbitally equivalent, we
can assume that

A4) (Y, λ) = (Y1×R, λ1×σ) and S(y1, t) = (Ty1, t+ρ(y1, T )), where T is an ergodic
type III1 automorphism of (Y1, λ1), and σ is the measure on R determined
by log dσ

dλR
(t) = −t for all t ∈ R (remind that λR is Lebesgue measure on R).
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Then the map π : R → N [S] determined by π(t1)(y1, t) = (y1, t + t1) is a Borel
homomorphism with mod π(t1) = t1 for each t1 ∈ R. Therefore we can assume
that

A5) Uz = π(ρ(z,Q)) for a.e. z, i.e. Q0 preserves µ.

Now we can describe a structure of automorphisms compatible with α.

Proposition 4.10. For every automorphism θ ∈ D(Γ, α) there exist transforma-
tions τ ∈ [Γ] and ϑ ∈ D(Q, δ) such that τθ(z, y) = (ϑz, Vzy) for a.e. (z, y) ∈ X,
where Z 3 z → Vz is a measurable field of transformations on (Y, λ), Vz ∈ N [S]
and mod θ = mod Vz + ρ(z, ϑ) for a.e. z.

Proof. Choose φ ∈ α(θ) and set ζ = Ψα(θ, φ). It is straightforward that Wα = Wδ

(see A3)). Then by Theorem 4.1 there are ϑ ∈ D(Q, δ) and ψ ∈ δ(ϑ) with ζ =
Ψδ(ϑ, ψ). One can check that the formula

ξ(z, y) = (ϑz, π(ρ(z, ϑ)− mod θ)y)

defines an α-compatible automorphism ξ with mod ξ = mod θ and Ψα(θ, χ) = ζ
for the function χ(z, y) = ψ(z) at all (z, y) ∈ X . We put η = θξ−1. Then η is
a µ-preserving, α-compatible automorphism, and Ψα(η, υ) = id for some function
υ ∈ α(η). We write η as η(z, y) = (A(z, y), B(z, y)). Note that a.e. Vα(Γ)-
ergodic component is of the form: Vδ(Q)-orbit×Y . By the Vδ(Q)-orbit of a point
(z, g) ∈ Z ×G we mean the set {(Qnz, g + δ(z,Q)) | n ∈ Z}. Since Ψα(η, υ)ω = ω
for a.e. ω ∈ Ω, a.e. ηυ-orbit (see § 1.3) is contained in a Vα(Γ)-ergodic component.
Hence A(z, y) = Qn(z,y)z for a.e. (z, y), where n : X → Z is a measurable function.
Let Xm = {(z, y) | A(z, y) = Qm}. Then X =

⋃
m∈ZXm. Since η and Q0 preserve

µ, we have

λ({y ∈ Y | (z, y) ∈ ηXm}) = λ({y ∈ Y | (z, y) ∈ Qm0 Xm})
for a.e. z ∈ Z and each m ∈ Z. Therefore there exist one-to-one maps τm :
Qm0 Xm → ηXm with τm(z, y) = (z, Slm(z,y)y) for a.e. (z, y), where l : Qm0 Xm → Z
are some measurable maps, m ∈ Z [Kr], [HO]. Now we define an automorphism
τ ∈ [Γ] by

τ(z, y) = Q−m0 τ−1
m (z, y)

for all (z, y) ∈ ηXm. Obviously, τη(z, y) = (z, Ṽzy) for a.e. (z, y), where Z 3 z → Ṽz
is a measurable field of transformations on (Y, λ). Since τη ∈ N [Γ] it follows that

τη ∈ N [S0]. Hence, Ṽz ∈ N [S] for a.e. z ∈ Z. Thus the proposition is proved.

Remark 4.11. The α-fundamental homomorphism Φα : D(Γ, α)→ C(Wα)/Wα(G)
is onto.

Theorem 4.12. Two α-compatible automorphisms θ1 and θ2 are α-outer conjugate
if and only if p(θ1) = p(θ2), mod θ1 = mod θ2 and there exists an automorphism
ζ ∈ C(Wα) such that

Ψα(θ1, ϕ1) = ζΨα(θ2, ϕ2)ζ−1(12)

for some functions ϕi ∈ α(θi), i = 1, 2.

Proof. It is sufficient to prove the if part. Set p = p(θi). By Proposition 4.10
we can assume that θi(z, y) = (ϑiz, Vi(z)y), where ϑi ∈ D(θ, δ) and Z 3 z →
Vi(z) are measurable fields of automorphisms from N [S]. It is easy to check that
ϕi(z, y) = ψi(z) at a.e. (z, y) ∈ X for some functions ψi ∈ δ(ϑi). Consequently,
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g(θi, ϕi) = g(ϑi, ψi), i = 1, 2. Then (12) implies g(θi, ϕi) = g(ϑi, ψi) (see the remark
just after Theorem 4.5). Hence one can define the extensions α̃i of α on Γθi with
values in G × Z or G(g, p) when p = 0 or p > 0 respectively, where g = g(θi, ϕi),
i = 1, 2. It follows from the assumptions of the theorem that the actions associated
with (Γθi , (αi)0), i = 1, 2, are isomorphic. Hence (Γθ1 , α1) and (Γθ2 , α2) are weakly
equivalent [BG3, Theorems 5.12 and 7.2]. To complete the proof, it remains to
apply Lemma 3.2.

Note that any condition of Theorem 4.12: (p(θ1) = p(θ2), mod θ1 = mod θ2, and
(12)) does not follow from the other ones. By dw we denote a metric compatible
with the weak topology on the set of all automorphisms of (X,µ) [HO].

Theorem 4.13. Cldα([Γ]) = {θ ∈ D(Γ, α) | Φα(θ) ∈ Cldw(Wα(G))/Wα(G) and
mod θ = 0}.

Proof. We only consider the case of a continuous group G. Assume that there are
a sequence {gn}∞n=1 of elements from G and an automorphism ζ ∈ C(Wα) such
that dw(Wα(gn), ζ) → 0. Choose a countable dense subgroup Gd in G containing
{gn}∞n=1. Then Wα(Gd) is a countable ergodic a.f. group of automorphisms on
(Ω, ν). Put (X1, µ1) = (Ω×Y, ν×λ). By Γ1 we denote the group of automorphisms
on (X1, µ1) generated by S1 and γg, g ∈ Gd:

S1(ω, y) = (ω, Sy), γg(ω, y) = (Wα(g)ω, π(ρ(ω,Wα(g)))y).

Define a cocycle α1 of the d.s. (X1, µ1,Γ1) by

α1(x1, S1) = 0, α1(x1, γg) = g

at all x1 ∈ X1 for every g ∈ Gd. It is easy to see that the actions Wα1 and Wα of
G are isomorphic. Hence (Γ, α) and (Γ1, α1) are weakly equivalent. Consider the
automorphism ξ1 on (X1, µ1):

ξ1(ω, y) = (ζω, π(ρ(ω, ζ))y).

It is straightforward to check the following properties of ξ1: ξ1 ∈ D(Γ1, α1),
mod ξ1 = 0, and Φα1(ξ1) = ξWα1(G). Moreover, one can check that {γgn}∞n=1

α1-converges to ξ1 as n → ∞. Therefore ξ1 corresponds to an automorphism
ξ ∈ Cldα([Γ]) so that mod ξ = 0 and Φα(ξ) = ζWα(G). Thus for the completion
of the proof we need to establish that

Cldα([Γ]) ⊃ {θ ∈ D(Γ, α) | mod θ = 0 and Φα0 ∈Wα(G)}.
Suppose that θ ∈ D(Γ, α),mod θ = 0, and there exists a function ϕ ∈ α(θ) with
Ψα(θ, ϕ) = id. By Proposition 4.10 one can assume that θ is of the following form:
θ(z, y) = (z, Vzy), where modVz = 0 and p(Vz) = p(θ) for a.e. z. Choose the
automorphisms tn ∈ [S] and η ∈ N [S] so that mod η = 0, p(η) = p(θ), tnUz = Uztn
for all n ∈ N and a.e. z, and tn → η in the metric d [HO] as n → ∞. We put
η0(z, y) = (z, ηy) for all (z, y) ∈ X . Then η0 ∈ D(Γ, α). Theorem 4.12 implies
that θ and η0 are α-outer conjugate. Now define an automorphism γn ∈ [Γ] by
γn(z, y) = (z, tny) for all (z, y) ∈ X , n ∈ N. A routine calculation shows that
{γn}∞n=1 α-converges to η0. Since D(Γ, α) is a topological group, it follows that
θ ∈ Cldα([Γ]), as desired.

Corollary 4.14. If Wα is w-rigid, then

Cldα([Γ]) = {θ ∈ D(Γ, α) | Φα(θ) ∈Wα(G) and mod θ = 0}.
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Remark 4.15. Theorems 4.12 and 4.13 are also true when Γ is of type II1. To
prove this one must only consider a countable extension (Γ̂, α̂) of (Γ, α) and notice
that if mod θi = 0 under the conditions of Theorem 4.12, then there exists an
automorphism ξ that α-outer conjugates θ1 and θ2 and whose mod ξ = 0.

4.3. Using Theorem 4.13, we can describe the group of approximately inner auto-
morphisms compatible with a transient cocycle (see also Proposition 4.7).

Theorem 4.16. Let Σ be an ergodic a.f. group of automorphisms on a Lebesgue
space (Z, κ) and δ a transient cocycle of (Z, κ,Σ) with values in G. Then

Cldδ([Σ]) = {ϑ ∈ D(Σ, δ) | Φδ(ϑ) ∈ Cldw(Wδ(G))/Wδ(G)}.

Proof. Take an automorphism Q ∈ [Σ] with [Σ] = [Q]. Consider the pair (Γ, α)
determined by the quadruple (Z, κ,Q, δ) in such a way that A1)–A5) are valid (see
§ 4.2). Select an automorphism ϑ ∈ D(Σ, δ) with Φδ(ϑ) ∈ Cldw(Wδ(G))/Wδ(G).
By Theorem 4.13 there are an automorphism θ ∈ Cldα([Γ]) and a sequence {γn}∞n=1

of automorphisms from [Γ] such that Φα(θ) = Φδ(ϑ) and dα(γn, θ) → 0. In view
of Proposition 4.10 and Remark 4.2 we may assume that θ(z, y) = (ϑz, Vzy) for
a.e. (z, y) ∈ X . Moreover, we assume that Vz = π(ρ(z, ϑ)) for a.e. z, since every

automorphism η ∈ N [Γ] of the form η(z, y) = (z, V
′

z y) is approximately inner and
compatible with α (see the proof of Theorem 4.13). Since π(R) ⊆ C(S) (see A4)),
it follows that θ commutes with S0. By µ1 we denote a probability measure on X
equivalent to µ. Since d(γn, θ)→ 0 as n→∞, we have

µ1({x | γ−1
n S0γnx 6= S0x})→ 0.(13)

Lemma 4.17. For an automorphism γ ∈ [Γ] let B = {x ∈ X | S0γx 6= γS0x}.
Then there exists an automorphism η ∈ [Γ] with ηS0 = S0η and ηx = γx for all
x 6∈ B.

Proof. Note that S0γ(B) = γS0(B) (mod 0). Set ηx = γx for all x 6∈ B. We
continue the construction of η inductively. Let

C0 = B, Bn = S−1
0 (X \ Cn−1) ∩ Cn−1, Cn = Cn−1 \Bn.

Put ηx = S−1
0 ηS0x for all x ∈ Bn. If there is N ∈ N∪{∞} such that B =

⋃∞
n=1Bn

(mod 0), then the above formula determines a well-defined automorphism η as
desired. Otherwise we denote by B∞ the set B \

⋃∞
n=1Bn. One can check that it is

S0-invariant. Hence B∞ = A× Y mod 0 for some subset A ⊆ Z, κ(A) > 0. Then
we set ηx = S0x for all x ∈ B∞. Evidently, η is the desired automorphism.

Return to the proof of Theorem 4.16. Apply Lemma 4.17 to γn, and denote by ηn,
n ∈ N, the automorphism whose existence is asserted in the lemma. It follows from
(13) that ηn → θ in dα as n→∞. But since η0 commutes with S0, we have

ηn(z, y) = (qnz, Vn(z)y)

for a.e. (z, y) and an automorphism qn ∈ [Σ], where Z 3 z → Vn(z) is a measurable
field of automorphisms from N [S]. One can check that qn → ϑ in dδ. So,

Cldδ([Σ]) ⊇ {ϑ ∈ D(Σ, δ) | Φδ(ϑ) ∈ Cldw(Wδ(G))/Wδ(G)}.
The inverse inclusion is obvious. Thus the theorem is proved completely.
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4.4. Now we consider an ergodic type III a.f. group Γ of automorphisms on
(X,µ) and its cocycle α such that the “double” cocycle α0 = (α, ρ) is recurrent and
nonregular, and Wα0 is free. Then one can replace (Γ, α) by a weakly equivalent
pair in such a way that the following five conditions are valid: A1), A2), A4) (see
§ 4.2),

B3) α0 is defined on the generators S0 and Q0 by

α0(z, y, S0) = 0 and α0(z, y,Q0) = δ(z,Q),

where δ = (δ1, δ2) ∈ Z1(Z × [Q], G × R) is a transient cocycle [BG3, Theo-
rem 5.6],

B5) Uz = π(ρ(z,Q)− δ2(z,Q)) for all z ∈ Z.

We do not provide the proof of the next theorem, since it is a slightly modified
version of Proposition 4.10 and Theorems 4.12, 4.13.

Theorem 4.18. (i) Let an automorphism θ be compatible with α. Then there
exist automorphisms τ ∈ [Γ] and ϑ ∈ D(Q, δ) such that

τθ(z, y) = (ϑz, Vzy)

for a.e. (z, y) ∈ X, where Z 3 z → Vz is a measurable field of automorphisms
on (Y, λ) and Vz ∈ N [S] at a.e. z,

(ii) the α0-fundamental homomorphism Φα0 : D(Γ, α) → C(Wα0)/Wα0(G, 0) is
onto,

(iii) two α-compatible automorphisms θ1 and θ2 are α-outer compatible iff p(θ1) =
p(θ2) and

Ψα0(θ1, (ϕ1)0) = ζΨα0(θ2, (ϕ2)0)ζ−1(14)

for some automorphism ζ ∈ C(Wα0) and for (ϕi)0(z) = (ϕi(z), ρ(z, θi)),
where ϕi ∈ α(θi), i = 1, 2,

(iv) Cldα([Γ]) = {θ ∈ D(Γ, α) | Φα0(θ) ∈ Cldw(Wα0(G, 0))/Wα0(G, 0)}.

Remark 4.19. Note that even if θ1 and θ2 are outer conjugate and Ψα(θ1, ψ1) =
ξΨα(θ2, ψ2)ξ−1 for some ψi ∈ α(θi) and ξ ∈ C(Wα), then they need not be α-outer
conjugate, i.e. (14) need not be valid—one can construct a pair (Γ, α) in such a
way that Γ is of type III1, r(Γ, α) = G, Wα0 is free, and the centralizer of Wα0

contains nonconjugate elements [BG3, Example 7.4].

5. Automorphisms compatible with nonregular cocycles.

Nonfree associated actions

5.0. Throughout this section we assume that Γ is a.f. and a cocycle α of the d.s.
(X,µ,Γ) is such that α0 is nonregular and Wα0 is nonfree. All the other cases were
considered before (for an a.f. group Γ). The stabilizer of Wα0 is equal to r(Γ, α0)
(see § 1.2).

5.1. In this subsection we assume Γ is of type II∞ (if the contrary is not stated
explicitly). Then there exists a closed subgroup H ⊂ G such that H = r(Γ, α). Re-
placing if necessary (Γ, α) by a weakly equivalent pair we assume that the following
conditions are valid: A1), A2), A4), A5) (see § 4.2), and

C3) α is determined on the generators of Γ by

α(z, y, S0) = β(y, S), α(z, y,Q0) = δ(z,Q),
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where β ∈ Z1(Y × [S], G) is a regular cocycle with r(S, β) = H, and δ ∈
Z1(Z × [Q], G) is so that the H-factor cocycle δH ∈ Z1(Z × [Q], G/H) (i.e.
δH(z,Q) = δ(z,Q) +H) is transient (as well as δ).

Set (Ỹ , λ̃) = (Y, λ) ⊗ (Y, λ), S1 = S × id, S2 = id × S, β̃(y, y1, S1) = β(y, S),

β̃(y, y1, S2) = 0, π̃(t) = id× π(t) for all (y, y1) ∈ Ỹ , t ∈ R. Denote by S̃ an ergodic

automorphism of (Ỹ , λ̃) such that [S̃] is equal to the full group generated by S1 and

S2. Now identifying Ỹ , λ̃, S̃, β̃, π̃ with Y , λ, S, β, π respectively we obtain a pair
(Γ, α) satisfying the conditions A1), A2), C3), A5) and

C6) π(t) ∈ D(S, β) and π(t) ◦ β = β for all t ∈ R.

Lemma 5.1. Given an automorphism ζ ∈ C(WδH ), there exist a cocycle δ
′ ∈

Z1(Z × [Q], G) and an automorphism ϑ ∈ D(Q, δ
′
) such that δ

′

H = δH and Ψδ
′
H

=

ζWδH (G/H).

Proof. By Theorem 4.1 there are an automorphism ϑ ∈ D(Q, δH) and a function
ϕH ∈ δH(ϑ) so that ζ = ΨδH (ϑ, ϕH). Let σ : G/H → G be a Borel cross-section of
the projection j : G→ G/H, i.e. j ◦ σ = id and T an automorphism on (Z, κ) such
that [T ] equals to the full group generated—as a full group—by Q and ϑ.

We first assume that p(ϑ) = 0. Denote by δ+
H ∈ Z1(Z × [T ], G/H) the extension

of δH to [T ] (see Remark 1.6) and consider the function

f : Z 3 z 7→ f(z)
def
= σ(δ+

H(z, T )).

We define the cocycle δ
′ ∈ Z1(Z × [Q], G) by setting

δ
′
(z,Q) =

{
f(z) + f(Tz) + · · ·+ f(T l−1z), if l > 0,

−f(T−1z)− f(T−2z)− · · · − f(T lz), if l < 0,
(15)

where the integer l = l(z) is determined byQz = T lz for a.e. z. It is straightforward

to check that δ
′

H = δH and ϑ ∈ D(Q, δ
′
), as desired.

Now let p = p(ϑ) > 0. Consider the extension δ̃H of δH on [T ] with values
in (G/H)(gH , p), where gH = g(ϑ, ϕH) (see § 1.3). Set g = σ(gH). Consider
the function f1 : Z → G(g, p) given by f1(z) = (f(z),m), where m = m(z) is
determined by Tz = Qnϑmz, 0 ≤ m < p, for a.e. z. Substitute f1 in (15) for

f . Then (15) defines a cocycle δ
′

of the d.s. (Z, κ,Q) with values in G ⊂ G(g, p).

Evidently, ϑ ∈ D(Q, δ
′
).

Proposition 5.2. For any automorphism θ ∈ D(Γ, α) there exist a cocycle δ
′ ∈

Z1(Z×Q,G) and transformations τ ∈ [Γ] and ϑ ∈ D(Q, δ
′
) such that δ

′

H = δH and
τθ(z, y) = (ϑz, Vzy) for a.e. (z, y) ∈ X, where Z 3 z → Vz is a measurable field
of automorphisms on (Z, κ) satisfying the conditions: Vz ∈ D(S, β) and mod θ =
mod Vz + ρ(z, ϑ) for a.e. z ∈ Z.

Proof. Set ζ = Ψα(θ, ϕ) for a function φ ∈ α(θ) and apply Lemma 5.1. The
completion of the proof coincides almost literally with that of Proposition 4.10.

Notice, that the change of δ for δ
′

in C3) implies that we pass from (Γ, α) to a
weakly equivalent pair.

Corollary 5.3. The α-fundamental homomorphism

Φα : D(Γ, α)→ C(Wα)/Wα(G)

is onto.
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Theorem 5.4. Two α-compatible automorphisms θ1 and θ2 are α-outer conju-
gate iff p(θ1) = p(θ2), mod θ1 = mod θ2, g(θ1, ϕ1) = g(θ2, ϕ2), and Ψα(θ1, ϕ1) =
ζΨα(θ2, ϕ2)ζ−1 for some functions ϕi ∈ α(θi) and an automorphism ζ ∈ C(Wα).

This theorem is an analogue of Theorems 3.1 and 4.12 and can be proved in a
similar way.

The following example shows that the condition g(θ1, ϕ1) = g(θ2, ϕ2) in Theo-
rem 5.4 may not be omitted (cf. Theorem 4.12).

Example 5.5. Let (Γ, α) satisfy A1), A2), C3), A4), and A5), the automorphismQ
preserve κ, and Uz = id for a.e. z. Select automorphisms ηi ∈ D(S, β) such that the
following conditions are satisfied: mod θi = 0, p(θi) = p, and g(η1, ϕ1) 6= g(η2, ϕ2)
for all ϕi ∈ β(ηi), i = 1, 2 (see, for instance, Example 1.2). Put θi(z, y) = (z, ηiy)
for all (z, y) ∈ X , G = Z × Z, and H = Z × {0}. Then p(θi) = p, mod θi = 0,
Φα(θi) = Wα(G), but g(θ1, ψ1) 6= g(θ2, ψ2) for every ψi ∈ α(θi), i = 1, 2. Hence, θ1

and θ2 are not α-outer conjugate.

Remark 5.6. Theorem 4.13 is also true for pairs (Γ, α) described in the beginning
of the section and its proof may be obtained in a similar way.

Remark 5.7. Theorems 5.4 and 4.13 are also true when Γ is of type II1 (cf. Re-
mark 4.15).

5.2. Now let Γ be of type III. Set up H0 = r(Γ, α0). Replacing if it is necessary
(Γ, α) by a weakly equivalent pair, one may assume that [BG3, Theorems 6.4 and
7.5]:

D1) (X,µ) = (Z, κ)⊗ (y, λ),
D2) Γ is generated by the automorphisms S0 and Q0:

S0(z, y) = (z, Sy), Q0(z, y) = (Qz,Uzy),

where S and Q are ergodic automorphisms on (Y, λ) and (Z, κ) respectively
and Z 3 z → Uz is a measurable field of automorphisms such that Uz ∈ N [S]
for a.e. z,

D3) α is determined on the generators of Γ by

α0(z, y, S0) = β0(y, S), α0(z, y,Q0) = δ(z,Q),

where the cocycles β ∈ Z1(Y × [S], G) and δ = (δ1, δ2) ∈ Z1(Z × [Q], G× R)
are such that β0 is regular, r(S, β0) = H0, and δH0 ∈ Z1(Z × [Q], G×R) (see
C3)) is transient (as well as δ),

D4) there is a continuous homomorphism π : R→ D(S, β) such that π(t)◦β0 = β0

for all t ∈ R and Uz = π(ρ(z,Q)− δ2(z,Q)) for a.e. z ∈ Z.

The specific form of H0 as above ensures that S is of type II or IIIλ (0 < λ ≤ 1).

Theorem 5.8. (i) For an automorphism θ ∈ D(Γ, α) there exist a cocycle δ
′ ∈

Z1(Z × [Q], G×R) and transformations τ ∈ [Γ] and ϑ ∈ D(Q, δ
′
) such that δ

′

H0
=

δH0 and τθ(z, y) = (ϑz, Vzy) for a.e. (z, y) ∈ X.
(ii) Two α-compatible automorphisms θ1 and θ2 are α-outer conjugate if and

only if p(θ1) = p(θ2), g(θ1, ϕ1) = g(θ2, ϕ2), and

Ψα0(θ1, (ϕ1)0) = ζΨα0(θ2, (ϕ2)0)ζ−1

for some functions ϕi ∈ α(θi), i = 1, 2, and an automorphism ζ ∈ C(Wα0).
Moreover, the statements (ii) and (iv) of Theorem 4.18 are also true for this pair

(Γ, α).
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6. Cocycles compatible with every element of normalizer

6.0. Let α be a cocycle of an a.f. automorphism group Γ with values in an Abelian
l.c.s.c. group G.

Definition 6.1. Let us say that α has property A (or is A-cocycle) if D(Γ, α) =
N [Γ].

The main goal of this section is to prove the following statement announced in
[Da2]:

Theorem 6.2. α has property A iff one of the following conditions is satisfied (it
depends on the type of Γ):

(i) (for Γ of type II) α is a coboundary,
(ii) (for Γ of type IIIλ, 0 < λ ≤ 1) α0 = α×ρ is regular, i.e. Wα0(G×R) is tran-

sitive, and r(Γ, α0) =
⋃
s∈r(Γ,ρ)(l(s), s) for some continuous homomorphism

l : r(Γ, ρ)→ G,
(iii) (for Γ of type III0) a.e. Wα0(G, 0)-ergodic component is isomorphic to the

shiftwise action of G on (G,µG) and the natural map C(Wα0) → C(Wρ) is
onto.

So, weakly equivalent classes of A-cocycles are in one-to-one correspondence with
elements of G when Γ is of type IIIλ, 0 < λ < 1, and with the graphs of continuous
homomorphisms from R into G when Γ is of type III1. Every A-cocycle is a
coboundary for Γ of type II, and for type III1 if, additionally, G is discrete. If Γ
is of type III0, then Wα0(G× R) is a free action for every A-cocycle.

The if part of Theorem 6.2 is obvious for (i) and (ii) and directly follows from
Proposition 4.10, Theorem 4.18(i) and [BG3]. In the next two subsections we
produce the proof of the only if part which seems to be more difficult.

6.1. First of all we consider the most important cases of regular and transient
cocycles.

Lemma 6.3. Let p ∈ N, M be a countable subset of G, Yk = {0, 1, . . . , p − 1},
νk(0) = · · · = νk(p− 1) = 1/p, (Y, ν) =

∏∞
k=1(Yk, νk), ∆ the automorphisms group

generated by δk, k ∈ N: (δky)j = yj + δkj (mod p), and {gk}∞k=1 be a sequence of
elements of M , in which every element of M occurs infinitely many times. Set

β(y, δk) =

{
gk, if yk 6= p− 1,

−(p− 1)gk, otherwise.

Then the cocycle β ∈ Z1(Y × ∆, G) is regular and r(∆, β) is the smallest closed
subgroup of G containing M.

This lemma is a slightly modified version of Theorem 3.2 from [BG3] and can be
proved in a similar way.

Proposition 6.4. Let Γ be of type II and α a regular A-cocycle. Then α is a
coboundary.

Proof. Let M be a countable dense subset of r(Γ, α) and p = 2. Apply Lemma 6.2.
Since the group r(Γ, α) = r(∆, β) is a complete invariant of the stably weak equiv-
alence for regular cocycles, we can identify (Γ, α) with (∆, β). Consider an auto-
morphism θ ∈ N [∆] given by (θy)j = yj + 1 (mod p). Since θ is compatible with
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α, there exists a function ϕ : X → G such that

(−1)yk+1gk = −ϕ(y) + (−1)ykgk + ϕ(δky)

for all k ∈ N at a.e. y ∈ Y . Hence (−1)yk2gk = ϕ(y) − ϕ(δky), i.e. 2α is a
coboundary. It follows then 2r(Γ, α) ⊆ r(Γ, 2α) = {0}. Thus, r(Γ, α) is a periodic
group and every nonzero element of r(Γ, α) has the order 2. Now let p = 3.
Reasoning similarly, we obtain that the cocycle ε of ∆ given by

ε(y, δk) =


0, if yk = 0,

3gk, if yk = 1,

−3gk, if yk = 2

is a coboundary. It is easy to deduce from this that 3r(Γ, α) = {0}. Hence,
r(Γ, α) = {0}, i.e. α is a coboundary.

Proposition 6.5. Let α be a transient cocycle. Then α doesn’t have the A-property.

Proof. Suppose the contrary. Without loss of generality we may assume that Γ
is not of type II1. Otherwise consider the countable extension (Γ̃, α̃) of (Γ, α).
Select two automorphisms θi ∈ N [Γ] \ [Γ] such that mod θi = 0, i = 1, 2, and the
commutator [θ1, θ2] 6∈ [Γ] (see [GS1, Theorem 5.4]). Since θi ∈ Cld([Γ]) (see [HO]),

there are two sequences {σ(i)
n }∞n=1 of inner automorphisms, i.e. from [Γ], converging

to θi in the metric d, i = 1, 2. Since the natural embedding D(Γ, α) → N [Γ] is
continuous and onto, then by a version of Banach’s theorem on closed graphs and

Theorem 2.3 it is a homeomorphism. Hence, σ
(i)
n → θi in dα as n → ∞, i = 1, 2.

Choose the corresponding sequences of functions ϕ
(i)
n ∈ α(σ

(i)
n ) and ϕi ∈ α(θi),

i = 1, 2, n ∈ N, as in Definition 2.1. In view of Theorem 2.8 Ψα(σ
(i)
n , ϕ

(i)
n ) →

Ψα(θi, ϕi) as n → ∞, i = 1, 2, in the weak topology dw on C(Wα(G)). Since

Ψα(σ
(i)
n , ϕ

(i)
n ) ∈Wα(G), then Ψα(θi, ϕi) ∈ Cldw(Wα(G)) which is an Abelian group.

Therefore, [Ψα(θ1, ϕ1),Ψα(θ2, ϕ2)] = id. On the other hand, since α is transient
and [θ1, θ2] 6∈ [Γ], we have by Remark 4.2 that Ψα([θ1, θ2], ϕ) 6∈ Wα(G) for any
ϕ ∈ α([θ1, θ2]), a contradiction.

Remark 6.6. It follows from the proof that Cld([Γ]) 6= Cldα([Γ]) for any transient
α.

Corollary 6.7. Let T be an ergodic automorphism. Then there exists an auto-
morphism θ ∈ N [T ] such that θt 6∈ C(T ), i.e. [θt, T ] 6= id, for any transformation
t ∈ [T ].

Proof. Consider the d.s. (X,µ, T ) and its transient cocycle α with values in Z given
by α(x, Tn) = n. Then by Corollary 4.3 we can identify two groups D(T, α)/[T ]
and C(T )/{Tn}n and then apply Proposition 6.5.

The authors do not know any other method to prove the above very natural
statement.

Lemma 6.8. Let two automorphisms ξ1 and ξ2 belong to N [Γ] for a type II ergodic
a.f. group Γ and [ξ1, ξ2] ∈ [Γ]. Set

Dξ1,ξ2(Γ, α) = {ξ ∈ D(Γ, α) | [ξ, ξi] ∈ [Γ] for i = 1, 2}.
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Then Dξ1,ξ2(Γ, α) is a Polish group with respect to the metric d̃α given by

d̃α(ζ, η) = dα(ζ, η) +
2∑
i=1

du([ζ−1η, ξi], 1),

and Cld̃α([Γ]) = Cldα([Γ]) ∩Dξ1,ξ2(Γ, α).

This statement is a generalization of Lemma 3.9 from [BG1]. We do not give its
proof here since it can be obtained in a similar manner.

Lemma 6.9. Let the assumptions of Lemma 6.8 be valid.

(i) If α is transient, then Dξ1,ξ2(Γ, α) 6= Dξ1,ξ2(Γ, ρ).
(ii) If α is regular and Dξ1,ξ2(Γ, α) = Dξ1,ξ2(Γ, ρ), then α is a coboundary.

Proof. The proof of (i) is almost the same as that of Proposition 6.5 but Lemma 6.8
should be used instead of Theorem 2.3.

(ii) Consider the cocycle β ∈ Z1(X × X × Γ × Γ, G) that is given by
β(x1, x2, γ1×γ2) = α(x1, γ1). There is an isomorphism η : (X,µ)→ (X×X,µ×µ)
such that the following conditions are satisfied: η[Γ]η−1 = [Γ× Γ], η ◦ α = β, and
ηξiη

−1 = (id × ξi)ti for some automorphisms ti ∈ [Γ × Γ], i = 1, 2. This can be
proved by the same arguments as in Theorem 3.1. If α is not a coboundary, then
by Proposition 6.3 there exists an automorphism θ ∈ N [Γ] \ D(Γ, α). Therefore
the automorphism θ × id 6∈ D(Γ× Γ, β) and commutes with id× ξi, i = 1, 2. Then
η−1(θ × id)η ∈ Dξ1,ξ2(Γ, ρ) \Dξ1,ξ2(Γ, α).

Remark 6.10. Cld̃α([Γ]) 6= Cld̃ρ([Γ]) for any transient α.

Proof of Theorem 6.2(i). Suppose the contrary. By Propositions 6.4 and 6.5 α is
nontransient and nonregular. Without loss of generality we may assume thatWα(G)
is free (otherwise consider the quotient cocycle α′ = α + r(Γ, α) with values in
G/r(Γ, α)). But then one can suppose that the conditions A1)–A5) from § 4.2 are
valid. For every automorphism ϑ ∈ N [Q] consider the transformation ξ ∈ N [Γ]
given by ξ(z, y) = (ϑz, π(ρ(z, ϑ))). Since ξ ∈ D(Γ, α), it follows that ϑ ∈ D(Q, δ).
Hence δ has the A-property, a contradiction.

(ii) Let λ < 1. Then we can suppose that Γ is generated by two automorphisms of
(X,µ): an ergodic S of type II∞ and ξ ∈ N [S] with mod ξ = − logλ. Obviously,
Dξ,1(S, ρ) ⊆ N [Γ]. Denote by α′ the restriction of α on [S]. Since D(Γ, α) = N [Γ],
we have Dξ,1(S, ρ) ⊆ D(Γ, α) and, hence, Dξ,1(S, ρ) = Dξ,1(S, α′). By the same
method as in (i) one can prove using Lemma 6.8 that α′ is a coboundary. Therefore,
replacing α by a S-cohomologous cocycle we can assume that α(x, S) = 0 for a.e.
x. Since S is ergodic, α(x, ξ) = h for an element h ∈ G at a.e. x. Hence, α0 is
regular and r(Γ, α0) =

⋃
n∈Z(nh,−n logλ), as desired.

Now consider the case λ = 1. Then we can suppose that Γ is generated by three
automorphisms of (X,µ): an ergodic S of type II∞ and ξ1, ξ2 ∈ N [S] such that
ρi = mod ξi, i = 1, 2, are rationally independent reals. By the above reasoning
one can obtained that α0 is regular and

r(Γ, α0) = Cl

 ⋃
n,m∈Z

(h1n+ h2m,nρ1 +mρ2)


for some hi ∈ G, i = 1, 2. Since ρ1 and ρ2 are arbitrary (rationally independent)
reals, the natural projection of r(Γ, α0) on R is onto. So, it remains to prove that
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r(Γ, α0) ∩ (G× {0}) = {(0, 0)}. Let H0 be a countable dense subgroup of r(Γ, α0),
{(gk, sk)}∞k=1 a sequence of elements of H0 in which every element of H0 appears
infinitely many times, Yk = {0, 1}, νk(0) = (1 + esk)−1, νk(1) = esk/(1 + esk),
(Y, ν) =

∏∞
k=1(Yk, νk), ∆ the same group as in Lemma 6.3, and β the cocycle of

(Y, ν,∆) given by β(y, δk) = (−1)ykgk for all y ∈ Y , k ∈ N. Then β0 is regular
and r(∆, β0) = r(Γ, α0) [BG3, Theorem 3.2]. If there are two elements g1, g2 ∈ G
such that (g1, 0) and (g2, 0) ∈ H0, then there exist two sequences {ki}i, {mi}i
of positive integers such that α(y, δki) = (−1)ykig1, α(y, δmi) = (−1)ymig2, and
νki(j) = νmi(j) = 1

2 , i ∈ N, j = 1, 2. Put

(θy)j =


ymi , if j = ki,

yki , if j = mi,

yj , otherwise.

We see that the transformation θ preserves ν. Since θδmiθ
−1 = δki , θδkiθ

−1 = δmi
for i ∈ N, and θδkθ

−1 = δk for all k 6= ki,mi, it follows that θ ∈ N [∆]. The pairs
(Γ, α) and (∆, β) are weakly equivalent [BG3] and therefore θ is compatible with
β. So, there is a measurable function ϕ : Y → G such that the following conditions
are satisfied:

(−1)ykig2 = −ϕ(y) + (−1)yki g1 + ϕ(δkiy),

(−1)ymig1 = −ϕ(y) + (−1)ymig2 + ϕ(δmiy),

0 = −ϕ(y) + ϕ(δky) if k 6= ki,mi, for all i ∈ N.
(16)

Consider the cocycle β′ ∈ Z1(Y ×∆, G) given by

β′(y, δk) =


(−1)yki (g2 − g1), if k = ki,

(−1)ymi (g1 − g2), if k = mi,

0, otherwise.

Then β′0 is regular and (g1−g2, 0) ∈ r(∆, β′0). According to (16) β′0 is a coboundary
and therefore g1 = g2.

6.2. In this section the last part of Theorem 6.2 will be handled. To this end we
need to generalize some results of the previous section on nonergodic d.s.

Let S0 be a nonergodic conservative aperiodic automorphism on (X,µ) and
µ(X) = 1. We can assume that (X,µ) = (Z, κ)× (Y, ν) and S0(z, y) = (z, Szy) for
a measurable field Z 3 z → Sz of ergodic automorphisms on (Y, ν) [HO]. Without
loss of generality we may suppose that Sz is not of type II1 for all z ∈ Z. Denote
by P the following equivalence relation on X : (z1, y1) ∼ (z2, y2) if z1 = z2. Let
AutP(X,µ) be the group of all automorphisms on (X,µ) which preserve a.e. P-class
fixed (mod 0). Set NP [S0] = N [S0] ∩AutP (X,µ). Then θ ∈ NP [S0] if and only if
θ(z, y) = (z, θzy) at a.e. (z, y) for some measurable field Z 3 z → θz ∈ N [Sz] of au-
tomorphisms on (Y, ν). For every cocycle α ∈ Z1(X×S0, G) there exists a measur-
able field of cocycle Z 3 z → αz ∈ Z1(Y × [Sz], G) such that α(z, y, S0) = αz(y, Sz)
for a.e. (z, y) ∈ X . Put DP(S0, α) = D(S0, α) ∩ NP [S0]. Then θ ∈ DP(S0, α) if
and only if θz ∈ D(Sz, αz) and there is a measurable function ϕ : X → G such that
ϕz = ϕ(z, .) ∈ αz(θz) for a.e. z ∈ Z.

The next statement follows from Theorem 2.4.
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Lemma 6.11. DP(S0, α) is a Polish group with respect to the metric dPα given by

dPα (θ(1), θ(2)) =

∫
Z

d(θ(1)
z , θ(2)

z ) dκ(z).

If α is a coboundary then we write dP for dPα .
Since the ergodic components of Wα(G) are in one-to-one correspondence with

Wαz (G), z ∈ Z, the formula

Wα(G) =

∫
Z

Wαz (G) dκ(z)

has an obvious sense.

Definition 6.12. A cocycle α of a d.s. (X,µ, S0) is called

(i) transient if αz is transient at a.e. z ∈ Z;
(ii) regular if αz is regular at a.e. z ∈ Z;
(iii) H-regular for a closed subgroup H of G if α is regular and r(Sz , αz) = H at

a.e. z ∈ Z.

The following two statements are “nonergodic” analogues of Propositions 6.4
and 6.5.

Proposition 6.13. Let S0 be of type II∞, i.e. Sz be of this type for a.e. z ∈ Z, α
a H-regular cocycle, and DP(S0, α) = NP [S0]. Then α is a coboundary.

Proof. Since a.a. pairs (Sz, αz) are mutually weakly equivalent we can suppose that
S0(z, y) = (z,Ry) and α(z, y, S0) = β(y,R) at a.e. (z, y) ∈ X for some ergodic II∞
transformation R of Y and a cocycle β ∈ Z1(Y × [R], G). It easy to see that β has
the A-property. Then by Proposition 6.4 it is a coboundary and so is α.

Proposition 6.14. Let α be a transient cocycle of a nonergodic d.s. (X,µ, S0).
Then DP(S0, α) 6= NP [S0].

Proof. Suppose the contrary. Let (Xst, µst,Γst) be an ergodic d.s. of type II∞.
Then there exists a measurable field of isomorphisms Z 3 z → Pz : Y → Y ×Xst

such that the measures Pz ◦ν and ν×µs are equivalent and Pz [Sz]P
−1
z = [Sz×Γst]

for a.e. z ∈ Z [HO], [Kr]. Take two automorphisms θ
(i)
st of (Xst, µst) such that

θ
(i)
st ∈ Cld([Γst])\[Γst], i = 1, 2, and [θ

(1)
st , θ

(2)
st ] 6∈ [Γst]. Consider two transformations

of (X,µ) given by

θ(i)(z, y) = (z, P−1
z (θ

(i)
st × id)Pzy), i = 1, 2.

It is easy to see that θ(i) ∈ CldP ([S0]) \ [S0] and [θ(1), θ(2)] 6∈ [S0]. Moreover,

θ
(i)
z ∈ Cldz([Sz]) \ [Sz ] and [θ

(1)
z , θ

(2)
z ] 6∈ [Sz] for a.e. z, where dz is the Polish metric

on N [Sz]. Take ϕ(i) ∈ α(θ(i)), i = 1, 2. Since

Ψα(θ(i), ϕ(i)) =

∫
Z

Ψα(θ(i)
z , ϕ(i)

z )dκ(z) ∈ C(Wα), i = 1, 2,

it remains only to apply the reasoning of the proof of Proposition 6.5.

Theorem 6.15. Let S0 be aperiodic conservative transformation of type II and α
a cocycle of S0 such that r(Sz , αz) = H at a.e. z for a closed subgroup H in G. If
DP(S0, α) = NP [S0], then α is a coboundary.
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Proof. By virtue of Propositions 6.13 and 6.14 we can assume that α is nontransient
and nonregular. Then one can establish the following decomposition of (X,µ, S0, α)
(as in [BG3] for an ergodic S0):

A1) (Y, ν) = (Y1, ν1)× (Y2, ν2);
A2) S0 is orbit equivalent to the automorphism group generated by S10 and S20:

S10(z, y1, y2) =(z, y1, T y2),

S20(z, y1, y2) =(z, S(2)
z y1, Uz,y1y2),

where T is an ergodic type II∞ transformation of (Y2, ν2), Z × Y1 3→ Uz,y1

is a measurable field of automorphisms from N [T ], and Z 3 z → S
(2)
z ∈

Aut(Y1, ν1) is a measurable field of ergodic transformations;
A3) a cocycle α is determined by

α(z, y1, y2, S10) = β(y2, T ), α(z, y1, y2, S20) = δz(y1, S
(2)
z ),

where β is a regular cocycle, r(T, β) = H, and

Z 3 z → δz ∈ Z1(Y1 × [S(2)
z ], G)

is a measurable field of transient cocycles.

Consider the d.s. (Z × Y1, κ × ν1, S̃), where the transformation S̃ is given by

S̃(z, y1) = (z, S
(2)
z y1). Let its cocycle δ be determined by δ(z, y1, S̃) = δz(y1, S

(2)
z ).

Then every automorphism θ̃ from NP [S̃] can be extended to an automorphism
θ ∈ NP [S0] by the following formula:

θ(z, y1, y2) =

(
z, θzy1, π

(
log

dν1 ◦ θz
dν1

(y1)

)
y2

)
,

where π : R→ N [Γ] is a continuous homomorphism such that mod π(t) = −t for

all t ∈ R. Therefore, if H = {0} then DP(S̃, δ) = NP [S̃] and by Proposition 6.14 δ
is a coboundary. If H 6= {0}, consider the factor-cocycle αH given by αH(x, S0) =
α(x, S0)+H. By the above arguments αH is a coboundary. It follows α isH-regular.
Hence, by Proposition 6.13 α is a coboundary.

Note that Theorem 6.15 generalizes Theorem 6.2(i), where only ergodic trans-
formations have been considered. Similarly, the following statement which we for-
mulate here without proof is a generalization of Theorem 6.2(ii).

Theorem 6.16. Let S0 be an aperiodic conservative transformation of type IIIλ,
0 < λ ≤ 1, and α a cocycle of S0 such that r(Sz , (αz)0) = H0 at a.e. z for a closed
subgroup H0 ⊆ G × R. If DP(S0, α) = NP [S0], then α is H0-regular and H0 is of
the same form as in Theorem 6.2(ii).

Now fix an automorphism Q0 from N [S0]. It follows Q0(z, y) = (Qz,Uzy) for
a.e. (z, y) ∈ X , where Q ∈ Aut(Z, κ) and Z 3 z → Uz ∈ N [Sz] is a measurable field

of automorphisms on (Y, ν). Set up DQ0

P (S0, α) = {θ ∈ DP(S0, α) | [θ,Q0] ∈ [S0]}.

Lemma 6.17. Let S0 be an aperiodic conservative transformation of type II∞.
Then DQ0

P (S0, α) is a Polish group with respect to the metric d̂ given by

d̂(ζ, η) = dPα (ζ, η) + du([ζ−1η,Q0], 1)

and Cld̂([S0]) = CldPα ([S0]) ∩DQ0

P (S0, α).
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The proof of this statement is routine and therefore we omit it here (see its close
analogue in [BG1, Lemma 3.9]). The following proposition we also formulate with-
out proof since it is an analogue of Lemma 6.9 (see also the proof of Theorem 6.2(i),
(ii)).

Proposition 6.18. Let S0 be an aperiodic conservative transformation of type
II∞. If DQ0

P (S0, α) = DQ0

P (S0, ρ), then α is a coboundary.

Proof of Theorem 6.2(iii). Since Γ is of type III0, we can suppose that Γ is orbitally
equivalent to the automorphisms group generated by an aperiodic conservative
transformation S0 of type II∞ and an automorphism Q0 ∈ N [S0] such that the
function f(z) = ρ(z,Q) + mod Uz > ε at a.e. z for some ε > 0 [Kr], [HO].
Consider the restriction α′ of α on [S0] and apply Proposition 6.18. Then α′

is a coboundary. Hence, replacing α by a S0-cohomologous cocycle we obtain
α(x, S0) = 0. Moreover, α(z, y,Q0) = a(z) at a.e. (z, y) for a function a : Z → G.
A cocycle δ′ ∈ Z1(Z × [Q], G× R) given by

δ′(z,Q) = α0(z, y,Q0) = (a(z), f(z))

is transient since its second part is transient. It follows that Wα0 has free transitive
(mod 0) components. The natural map C(Wα0)→ C(Wρ) is onto by Theorem 4.1,
[H, Section 3], and commutative diagram (2).

Note, that both conditions in Theorem 6.2(iii) are independent.
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