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BIFURCATION PROBLEMS FOR THE p-LAPLACIAN IN RN

PAVEL DRÁBEK AND YIN XI HUANG

Abstract. In this paper we consider the bifurcation problem

−div (|∇u|p−2∇u) = λg(x)|u|p−2u+ f(λ, x, u),

in RN with p > 1. We show that a continuum of positive solutions bifurcates
out from the principal eigenvalue λ1 of the problem

−div (|∇u|p−2∇u) = λg(x)|u|p−2u.

Here both functions f and g may change sign.

1. Introduction

In this paper we consider the following problem in RN :

−∆pu = λg(x)|u|p−2u+ f(λ, x, u),(1.1)

where 1 < p, λ ∈ R, ∆pu = div (|∇u|p−2∇u) is the p-Laplacian, both g and f
may change sign, and satisfy some conditions to be specified later. We are mainly
concerned with the existence of positive solutions to (1.1) for λ in certain range. It
is known (cf. [AH]) that when g satisfies proper conditions, the eigenvalue problem

−∆pu = λg(x)|u|p−2u(1.2)

allows positive eigenvalue λ1 with positive eigenfunction u1. Thus we can study
the bifurcation problem when λ is near λ1.

The bifurcation problem of the type (1.1) on bounded domains has received
extensive attention recently, and we refer to [BH, DM] and [D1, D2] for details.
Topological degree arguments were used there to prove the main results. On the
other hand, the study of the existence of global positive solutions of the p-Laplacian
also sees great increase in number of papers published. We mention [KA1, KA2, KU,
LY, SC] and [Y], to name a few. Loosely speaking, most references we mentioned use
variational methods, and as such, only the case where (in essence) g(x) < 0, λ > 0
and f(|λ|, x, |u|) > 0 was studied thoroughly, and their methods break down when
either one of g and f changes sign. For the case p = 2, [ER] and [RE] studied the
bifurcation from the first eigenvalue in RN and obtained the existence of bifurcating
branches, where functions f and g were assumed positive, and f(x, ·) is sublinear in
[ER] and superlinear in [RE]. We note that topological degree argument and fixed
point theory are employed in [RE] and [ER] respectively. However, their principal
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operator is defined via a Green’s function which is not available to the p-Laplacian.
In this paper we investigate the situation where both f and g may change sign.
Using topological degree arguments, we are able to prove that λ1 given by [AH] is a
bifurcation point of (1.1). In particular, if g ∈ LN/p∩L∞ and g± 6≡ 0, we show that
there are two bifurcation points. Moreover, under proper conditions, regularity and
the decaying of solutions as |x| → ∞ are obtained, and we also give information on
the sign of solutions on the bifurcating branches. We illustrate our results with the
following example.

Example. Assume g(x) = sin(|x|)(1 + |x|)−α and f(x, u) = (1 + |x|)−a|u|b−2u,
where 1 < p < N , α > p, p < b < Np/(N − p) and a > N − (N − p)b/p. Then the
problem

−∆pu = λg(x)|u|p−2u+ f(x, u), in RN(1.3)

has two positive solution branches containing (λ+
1 , 0) and (λ−1 , 0) in their closures

respectively, where λ+
1 > 0 and λ−1 < 0, and λ±1 is the principal eigenvalue of the

eigenvalue problem

−∆pu = λg|u|p−2u, in RN ,

∫
(±g)|u|p > 0.

Moreover, any solution u of (1.3) belongs to LQ(RN ) for any Np/(N−p) ≤ Q ≤ ∞,
and u decays uniformly as |x| → ∞.

This paper is organized as follows: In section 2 we introduce assumptions and
notations which we use extensively in this paper, and prove some technical prelim-
inaries. We note that, in particular, Lemma 2.3 is of its independent interest. In
section 3 we verify that the topological degree is well defined for our operators. We
then prove our bifurcation theorem in section 4 by showing that the topological
degree has a jump when λ crosses λ1. Regularity and decaying property of the
solutions, as well as a sign property of the bifurcating branches, are also given in
this section.

Acknowledgement. The authors thank the referee for his careful and timely ref-
ereeing.

2. Notations and preliminaries

We study the existence of positive solutions and bifurcation of the problem

−∆pu = λg(x)|u|p−2u+ f(λ, x, u)(2.1)

in RN , with λ ∈ R. We first introduce some basic assumptions and notations
which we will need in this paper. We assume first that 1 < p < N . Denote
p∗ = Np/(N−p) and p′ = p/(p−1). Write the weight function g(x) = g1(x)−g2(x)
with g1, g2 ≥ 0, g1 ∈ L∞(RN ) ∩ LN/p(RN ), g2 ∈ L∞(RN ). We let

ω(x) =
1

(1 + |x|)p , x ∈ RN ,

w(x) = max{g2(x), ω(x)} > 0, x ∈ RN .
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We note here that the function ω(x) is exactly the weight function in the following
Hardy’s inequality: ∫

RN

|u|p
(1 + |x|)p ≤

( p

N − p
)p ∫

RN
|∇u|p.

We define the following norm:

‖u‖V =
(∫
|∇u|p +

∫
w(x)|u|p

)1/p

,

where here and henceforth the integrals are taken on the whole RN unless otherwise
specified. Let V denote the completion of C∞0 (RN ) with respect to the norm ‖ · ‖V ,
and V ∗ its dual space with the pairing (·, ·)V . We can see that V is a uniformly
convex Banach space. In this paper we denote by c some generic positive constant
independent of functions in V .

We assume that f satisfies

(f1) f is a Carathéodory function, i.e., f(·, x, ·) is continuous for a.e. x ∈ RN and
f(λ, ·, u) is measurable for all (λ, u) ∈ R2;

(f2) |f(λ, x, u)| ≤ c(λ)(σ(x) + ρ(x)|u|γ) for a.e. x ∈ RN , u ∈ R, where c(λ) is
nonnegative and continuous on R, and is bounded on bounded subsets of R,
p − 1 < γ < p∗ − 1, 0 ≤ ρ(x) ∈ Lγ1(RN ) with γ1 = p∗/(p∗ − (γ + 1)), 0 ≤
σ(x) ∈ LN/p(wN/p, RN), where LN/p(wN/p, RN ) is the weighted LN/p(RN )
space with the weight function w(x)N/p, and either

(i) σ(x) ∈ L(p∗)′(RN ), (p∗)′ = Np/(Np− (N − p)), or

(ii) σ(x) ∈ Lp′(w1/(1−p), RN);
(f3) the following limit exists:

lim
u→0

f(λ, x, u)

w(x)|u|p−2u
= 0

uniformly for a.e. x ∈ RN and λ in a bounded interval;

We define the operators J,G, F (λ, ·) : V → V ∗ as follows: for u, v ∈ V ,

(J(u), v)V =

∫
|∇u|p−2∇u∇v,

(G(u), v)V =

∫
g(x)|u|p−2uv,

(F (λ, u), v)V =

∫
f(λ, x, u)v.

Sometimes we split G as G = G1 −G2, where

(Gi(u), v)V =

∫
gi(x)|u|p−2uv, i = 1, 2.

We need to establish some properties of these operators for future purposes.

Lemma 2.1. The operators J,G, F are well defined, G and J are (p−1)-homogen-
eous, J is continuous, and F satisfies

lim
‖u‖V→0

‖F (λ, u)‖V ∗
‖u‖p−1

V

= 0,(2.2)

uniformly for λ in a bounded subset of R.
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Proof. (i) Homogeneity of G, J is obvious. Continuity of J follows from the conti-

nuity of the Nemytskii operator from Lp(RN ) to Lp
′
(RN ) (see [FK]).

(ii) Observe that, by Hölder’s inequality,

|(J(u), v)V | =
∣∣∣ ∫ |∇u|p−2∇u∇v

∣∣∣≤ (∫ |∇u|p)1/p′(∫
|∇v|p

)1/p

<∞.

So J is well defined.
(iii) Using Hölder’s inequality again, we have

|(G(u), v)V | ≤
∫ ∣∣∣ g1/p′ |u|p−2u · g1/pv

∣∣∣≤ (∫ |g| · |u|p)1/p′

·
(∫
|g| · |v|p

)1/p

.

Note that for u ∈ V ,
∫
g2|u|p <∞ by the definition of V , and by Hölder’s inequality,

assumption on g1 and the Sobolev embedding theorem (see, e.g. [AD]), we have∫
g1|u|p ≤

(∫
g
N/p
1

)p/N
·
(∫
|u|p

∗
)p/p∗

<∞.

Hence G is well defined.
(iv) For F , we have

|(F (u), v)V | =
∣∣∣ ∫ f(λ, x, u)v

∣∣∣≤ c(λ)
(∫

σ|v|+
∫
ρ|u|γ |v|

)
.

Now, by (f2), either∫
σ|v| ≤

(∫
σ(p∗)′

)1/(p∗)′(∫
|v|p

∗
)1/p∗

<∞,

or ∫
σ|v| ≤

(∫
w1/(1−p)σp

′
)1/p′(∫

w|v|p
)1/p

<∞,

and ∫
ρ|u|γ |v| ≤

(∫
|u|p∗

)γ/p∗
·
(∫

ρp
∗/(p∗−γ)|v|p∗/(p∗−γ)

)(p∗−γ)/p∗

≤ c1
(∫
|u|p∗

)γ/p∗
·
(∫
|v|p∗

)1/p∗

·
(∫

ργ1

)1/γ1

≤ c2‖v‖V · ‖u‖γV <∞;

(2.3)

thus F is well defined.
(v) By definition,

lim
‖u‖V→0

‖F (λ, u)‖V ∗
‖u‖p−1

V

= lim
‖u‖V→0

sup
‖v‖V ≤1

1

‖u‖p−1
V

∣∣∣ ∫ f(λ, x, u)v
∣∣∣

≤ lim
‖u‖V→0

sup
‖v‖V ≤1

∫ |f(λ, x, u)|
w|u|p−1

|ũ|p−1|v|w,
(2.4)

where ũ = u/‖u‖V . We now estimate the integral.
We first define, for δ > 0,

Ωδ(u) = {x ∈ RN : w(x)|u(x)|p−1 ≥ δ}.
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We claim that, as ‖u‖V → 0, meas Ωδ(u)→ 0. Assume, on the contrary, meas Ωδ(u)
≥ c3 > 0. Let ΩK = Ωδ(u) ∩ BK(0) for K > 0. Then meas ΩK ≥ c3/2 taking
K > 0 large enough. Hence we have

0 < δ meas ΩK ≤
∫

ΩK

w(x)|u(x)|p−1 ≤
(∫

ΩK

w(x)|u(x)|p
)1/p′

·
(∫

ΩK

w(x)
)1/p

≤
(∫

ΩK

w(x)
)1/p

· ‖u‖p−1
V ≤ c4(meas ΩK)1/p · ‖u‖p−1

V .

That is,

0 < δ[
c3
2

]1/p
′
< δ (meas ΩK)1/p′ ≤ c4‖u‖p−1

V ,

a contradiction. Now for any given ε > 0, by (f3), there exists δ > 0 so that

|f(λ, x, u)|
w(x)|u|p−1

≤ ε

uniformly for w(x)|u|p−1 < δ. We split the integral in (2.4) into integrals on
RN \ Ωδ(u) and Ωδ(u) respectively. For the first integral, we have∫

RN\Ωδ(u)

|f(λ, x, u)|
w(x)|u|p−1

|ũ|p−1|v|w ≤ ε
∫
RN\Ωδ(u)

|ũ|p−1|v|w ≤ c5ε,

where we have used the following inequality:∫
|ũ|p−1|v|w ≤

(∫
w|ũ|p

)1/p′

·
(∫

w|v|p
)1/p

<∞.

By (f2), we have, for the second integral,∫
Ωδ(u)

|f(λ, x, u)|
w(x)|u|p−1

|ũ|p−1|v|w ≤
∫

Ωδ(u)

c(λ)σ(x)

w(x)|u|p−1
|ũ|p−1|v|w

+
c(λ)

‖u‖p−1
V

∫
Ωδ(u)

ρ(x)|u|γ |v| := c(λ)(I1 + I2).

Observe that

I1 ≤
1

δ

∫
Ωδ(u)

σ(x)w(x)|ũ|p−1|v|

≤ 1

δ

(∫
Ωδ(u)

|ũ|p∗
)(p−1)/p∗

·
(∫

Ωδ(u)

(σ(x)w(x) · |v|)p∗/(p∗−(p−1))
)(p∗−(p−1))/p∗

≤ 1

δ

(∫
Ωδ(u)

|ũ|p∗
)(p−1)/p∗(∫

Ωδ(u)

(σ(x)w(x))p∗/(p∗−p)
)(p∗−p)/p∗(∫

Ωδ(u)

|v|p∗
)1/p∗

≤ c6
(∫

Ωδ(u)

(σ(x)w(x))N/p
)p/N

‖ũ‖p−1
V ‖v‖V → 0,

since meas Ωδ(u)→ 0 and σ ∈ LN/p(wN/p, RN ). The estimate (2.3) implies

I2 ≤ c2‖u‖γ−p+1
V ‖v‖V → 0.

We thus conclude that (2.2) holds. This completes the proof.

Lemma 2.2. (i) The operator G2 is continuous. (ii) The operators G1 and F are
compact.
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Proof. (i) Continuity of G2 follows from the continuity of the Nemytskii operator

from weighted space Lp(w,RN ) to Lp
′
(w,RN ).

(ii1) Compactness of G1. We first claim that, for any ε > 0 and ϕ ∈ V , there
exists K > 0, such that

sup
‖v‖V≤1

∫
|x|>K

g1|ϕ|p−1|v| ≤ ε‖ϕ‖p−1
V .(2.5)

Indeed, by Hölder’s inequality,

sup
‖v‖V≤1

∫
|x|>K

g1|ϕ|p−1|v| ≤ sup
‖v‖V≤1

(∫
|x|>K

g1|ϕ|p
)1/p′

·
(∫
|x|>K

g1|v|p
)1/p

≤ sup
‖v‖V≤1

(∫
|x|>K

g
N/p
1

)(p−1)/N(∫
|x|>K

|ϕ|p∗
)(p−1)/p∗

·
(∫
|x|>K

g
N/p
1

)1/N(∫
|x|>K

|v|p
∗
)1/p∗

≤ c7 sup
‖v‖V≤1

(∫
|x|>K

g
N/p
1

)p/N(∫
|x|>K

|ϕ|p∗
)(p−1)/p∗

‖v‖V

≤ ε‖ϕ‖p−1
V ,

since g1 ∈ LN/p.
Now, suppose un → u0 weakly in V . We estimate

‖G1(un)−G1(u0)‖V ∗ = sup
‖v‖V≤1

|(G1(un)−G1(u0), v)V |

= sup
‖v‖V ≤1

∣∣∣ ∫ g1(x)(|un|p−2un − |u0|p−2u0)v
∣∣∣

≤ sup
‖v‖V ≤1

∣∣∣ ∫
|x|≤K

g1(x)(|un|p−2un − |u0|p−2u0)v
∣∣∣

+ sup
‖v‖V≤1

∣∣∣ ∫
|x|>K

g1(x)(|un|p−2un − |u0|p−2u0)v
∣∣∣ .

Observe that for any ε > 0, we can choose a K > 0 so that the integral over
(|x| > K) is smaller than ε/2 for all n, while for this fixed K, by strong convergence
of un to u0 in Lp

∗
on any bounded region, the integral over (|x| ≤ K) is smaller

than ε/2 for n large enough. We thus have proved that G1(un)→ G1(u0) strongly
in V ∗, i.e. G1 is compact.

(ii2) Compactness of F . Let again un → u0 weakly in V . We have

sup
‖v‖V ≤1

|(F (λ, un)− F (λ, u0), v)V |

= sup
‖v‖V ≤1

∣∣∣ ∫ (f(λ, x, un)− f(λ, x, u0))v
∣∣∣

≤ sup
‖v‖V ≤1

∣∣∣ ∫
|x|≤K

(f(λ, x, un)− f(λ, x, u0))v
∣∣∣

+ sup
‖v‖V≤1

∣∣∣ ∫
|x|>K

(f(λ, x, un)− f(λ, x, u0))v
∣∣∣ .

(2.6)

It is easy to see that the integral over (|x| ≤ K) tends to zero as n → ∞ by the

continuity of the Nemytskii operator F from Lp(|x| ≤ K) into Lp
′
(|x| ≤ K). We
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estimate the integral over (|x| > K), as for the case of G1,

sup
‖v‖V≤1

∣∣∣ ∫
|x|>K

f(λ, x, ϕ)v
∣∣∣≤ sup
‖v‖V≤1

∫
|x|>K

c(λ)σ|v| + sup
‖v‖V≤1

∫
|x|>K

c(λ)ρ|ϕ|γv.

The first term is estimated by

c8
(∫
|x|>K

σ(p∗)′
)1/(p∗)′

, or by c8
(∫
|x|>K

w1/(1−p)σp
′
)1/p′

,

respectively, and the second term is estimated by

c9
(∫
|ϕ|p∗

)γ/p∗
·
(∫
|v|p∗

)1/p∗

·
(∫
|x|>K

ργ1

)1/γ1

,

as in the proof of (iv) of Lemma 2.1. We derive then an inequality like (2.5) which
in turn implies that the integral over (|x| > K) in (2.6) tends to zero. Thus F is
compact. The proof is complete.

Now we give

Definition 2.1. We say that λ ∈ R and u ∈ V solve the problem (2.1) if

J(u)− λG(u)− F (λ, u) = 0 in V ∗.(2.7)

We recall that, for g satisfying the aforementioned conditions, the eigenvalue
problem

−∆pu = λg(x)|u|p−2u(2.8)

has a pair of principal eigenvalue and eigenfunction (λ+
1 , u

+
1 ) with λ+

1 > 0 and
0 < u+

1 ∈ V . Moreover, such λ+
1 is simple, unique. If g2 6≡ 0 and gi ∈ L∞(RN ) ∩

LN/p(RN ), i = 1, 2, then by symmetry there is also principal eigenpair (λ−1 , u
−
1 )

with λ−1 < 0 and 0 < u−1 ∈ V with analogous properties. For details, we refer to
[AH] for p 6= 2 and [ER] for p = 2. Moreover, we will use the following important
properties of (λ±1 , u

±
1 ). For the sake of brevity we will formulate everything in terms

of λ+
1 and u+

1 respectively. The situation for λ−1 (if it exists) is similar by symmetry.

Lemma 2.3. (i) Every eigenfunction corresponding to the eigenvalue 0 < λ0 6= λ+
1

changes sign in RN . (ii) The principal eigenvalue λ+
1 > 0 is isolated.

Proof. (i). Assume at first that u0 > 0 is the eigenfunction associated with λ0 of
(2.8) with 0 < λ0 6= λ+

1 . Then λ0 > λ+
1 by the variational characterization of the

principal eigenvalue λ+
1 > 0. Then by using (2.8) we have, similarly as in [A] and

[LQ],

0 ≤ (λ0 − λ+
1 )

∫
g(x)(up0 − (u+

1 )p).

Renormalizing u0 so that the last integral is negative we derive a contradiction.
Hence u0 must change sign.

(ii). Let (λ0, u0) be as in (i) and λ0 belong to some fixed neighbourhood of λ1.
Denote Ω−0 = {x ∈ RN : u0(x) < 0}. Then it follows from (2.8) (with λ = λ0 and
u = u0) that ∫

|∇u−0 |p + λ0

∫
g2(x)|u−0 |p = λ0

∫
g1(x)|u−0 |p.
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By Hardy’s and Hölder’s inequalities, the definition of the norm in V , and the
assumption on g1, we derive from this that

c10‖u−0 ‖
p
V ≤

(∫
Ω−0

g
N/p
1 (x)

)p/N
‖u−0 ‖

p

Lp∗(RN )
.

Consequently we obtain, by the Sobolev embedding,(∫
Ω−0

g
N/p
1 (x)

)p/N
≥ c11 > 0.(2.9)

(Independently of λ0 and u0). In particular it follows from (2.9) that taking K0 > 0
large enough we have

meas (Ω−0 ∩BK(0)) ≥ c12(2.10)

for any K ≥ K0, where c12 > 0 depends neither on λ0 nor on u0.
Suppose, now, there exists a sequence of eigenpairs (λn, un) of (2.8) with λn →

λ+
1 . Then λn > λ+

1 and without loss of generality we may assume that ‖un‖V = 1
and un → ũ weakly in V for some ũ ∈ V . By this weak convergence and simplicity
of λ+

1 we get from (2.8) that either ũ = u+
1 or ũ = −u+

1 . Assume further that
un → u+

1 > 0 weakly in V . It follows from (2.8) that∫
(|∇un|p−2∇un − |∇um|p−2∇um)∇(un − um)

=

∫
λng(x)(|un|p−2un − |um|p−2um)(un − um)

+ (λn − λm)

∫
g(x)(|un|p−2un − |um|p−2um)(un − um).

We then deduce∫
(|∇un|p−2∇un − |∇um|p−2∇um)∇(un − um)

≤
∫
|x|≤K

λng1(x)(|un|p−2un − |um|p−2um)(un − um)

+

∫
|x|>K

λng1(x)(|un|p−2un − |um|p−2um)(un − um)

+ c13|λn − λm|(‖un‖pV + ‖um‖pV )→ 0.

(2.11)

Observe that, for any w, v ∈ Lp(RN),

∫
(|w|p−2w − |v|p−2v) · (w − v)

=

∫
(|w|p + |v|p − |w|p−2wv − |v|p−2vw)

≥
∫

(|w|p + |v|p)−
(∫
|w|p

)1/p′

·
(∫
|v|p
)1/p

−
(∫
|w|p

)1/p

·
(∫
|v|p
)1/p′

=
[(∫

|w|p
)(p−1)/p

−
(∫
|v|p
)(p−1)/p]

·
[(∫

|w|p
)1/p

−
(∫
|v|p
)1/p]

≥ 0.

(2.12)

We then derive from (2.11) and (2.12) that
∫
|∇un|p →

∫
|∇u+

1 |p. Hence ∇un →
∇u+

1 strongly in Lp(RN ). By Hardy’s inequality and (2.8) we have then un → u+
1
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strongly in Lp(w,RN ). Thus we conclude that un → u+
1 strongly in V . FixK ≥ K0.

Then we also have un → u+
1 strongly in W 1,p(BK(0)). By Egorov’s Theorem (see,

e.g. [HS]), un converges uniformly to u+
1 on BK(0) with the exception of the set

with arbitrarily small measure. But this contradicts (2.10), replacing subscript 0
there by n (cf. [A]). Thus we have proved that λ+

1 is isolated. This proves the
lemma.

Remark 2.1. For the case p ≥ N , by a result in [AH], in order that λ+
1 > 0 exists,

we have to assume g1(x) 6≡ 0, g1 ∈ LN0/p(RN ) for some N0 > p, and moreover,
g2(x) ≥ ε > 0 in RN , which implies in particular that λ−1 does not exist. Observe
that in this case we can assume g2(x) ≥ ω(x) so the norm in V is

‖u‖V =
(∫
|∇u|p +

∫
g2(x)|u|p

)1/p

.

In the assumptions, we replace p∗ by p̃ = N0p/(N0−p), assume σ(x) ∈ LN0/p(RN ),

and either (i) σ(x) ∈ L(p̃)′(RN), or (ii) σ(x) ∈ Lp′(RN ), where (p̃)′ = p̃/(p̃ − 1).
Observing that (∫

|u|p̃
)1/p̃

≤ c14‖u‖V ,

by Sobolev’s embedding theorem, we see that the proofs in this section can be
carried over and the conclusions remain valid for the case p ≥ N .

3. Topological degree

In this section we will define the topological degrees for the operators given by
the left-hand side of (2.7).

We first recall some known results about the degree theory for operators from a
Banach space X to X∗. Let X be a real reflexive Banach space and X∗ its dual,
and A : X → X∗ be a demicontinuous operator (cf. [FK]). We assume A satisfies
the condition α(X), i.e.

for any sequence un ∈ X satisfying un → u0 weakly in X and

lim sup(A(un), un − u0)X ≤ 0,

un → u0 strongly in X .

Then it is possible to define the degree Deg [A;D, 0], where D ⊂ X is a bounded
open set such that A(u) 6= 0 for any u ∈ ∂D. Its properties are proved in [SK] or
in [BP] (where α(X) is called (S)+). Note that the properties are analogous to the
ones of the Leray-Schauder degree and we recall some of them which will be used
in our proof.

A point u0 ∈ X will be called a critical point of A if A(u0) = 0. We say that u0

is an isolated critical point of A if there exists ε > 0 such that for any u ∈ Bε(u0),
A(u) 6= 0 if u 6= u0. Then the limit

Ind (A, u0) = lim
ε→0

Deg [A;Bε(u0), 0]

exists and is called the index of the isolated critical point u0 of A.
Assume furthermore that A is a potential operator, i.e., for some continuously

differentiable functional Φ : X → R, Φ′(u) = A(u), u ∈ X . Then we have the
following two lemmas. (For their proofs and other related properties of the degree
“Deg,” we refer to the book [SK].)
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Lemma 3.1. Let u0 be a local mimimum of Φ and an isolated critical point of A.
Then

Ind(A, u0) = 1.

Lemma 3.2. Assume that (A(u), u)X > 0 for all u ∈ X, ‖u‖X = r. Then

Deg[A;Br(0), 0] = 1.

Remark 3.1. Note that these assertions are natural extensions of analogous prop-
erties of the Brouwer degree.

Remark 3.2. Note that every continuous map A : X → X∗ is also demicontinuous.
Note also, that if A satisfies the condition α(X) then A + K also satisfies the
condition α(X) for any compact operator K : X → X∗.

Now we take X = V and Aλ = J − λG− F (λ, ·). We verify in this section that
the degree “Deg” is defined for the operator Aλ. By Lemmas 2.1, 2.2 and Remark
3.2, it’s sufficient to prove

Lemma 3.3. The operator J + λG2 : V → V ∗ satisfies α(V ) for λ > 0.

Proof. Assume un → u0 weakly in V and

lim sup
n→∞

(J(un) + λG2(un), un − u0)V ≤ 0.

Then we have

0 ≥ lim sup
n→∞

((J(un)− J(u0), un − u0)V + λ(G2(un)−G2(u0), un − u0)V )

= lim sup
n→∞

{∫
(|∇un|p−2∇un − |∇u0|p−2∇u0)(∇un −∇u0)

+ λ

∫
g2(x)(|un|p−2un − |u0|p−2u0)(un − u0)

}
.

(3.1)

We then derive from (3.1) and (2.12) that∫
|∇un|p →

∫
|∇u0|p,

∫
g2(x)|un|p →

∫
g2(x)|u0|p.

This together with weak convergence of un → u0 in V implies that ∇un →∇u0 in
Lp(RN ). This is also to say un → u0 in V if p ≥ N . For the case 1 < p < N , it
follows from Hardy’s inequality that∫ |un − u0|p

(1 + |x|)p ≤
( p

N − p
)p ∫

|∇(un − u0)|p → 0.

We again conclude that un → u0 in V . This ends the proof.

It follows from Lemma 3.3 that

Deg [J − λG− F (λ, ·);D, 0](3.2)

(where D is a bounded open set in V such that Aλ(u) 6= 0 for any u ∈ ∂D) is well
defined for any λ > 0.

Remark 3.3. If g ∈ L∞(RN ) ∩ LN/p(RN) (1 < p < N) then G is compact (cf.
Lemma 2.2 and the proof of compactness of G1) and the degree (3.2) can be defined
also for λ ≤ 0.
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4. Bifurcation from λ1

Definition 4.1. Let E = R× V be equipped with the norm

‖(λ, u)‖E = (|λ|2 + ‖u‖2V )1/2, (λ, u) ∈ E.(4.1)

We say that

C = {(λ, u) ∈ E : (λ, u) solves (2.1), u 6= 0}
is a continuum of nontrivial solutions of (2.1) if it is a connected set in E with
respect to the topology induced by the norm (4.1). We say λ0 ∈ R is a bifurcation
point of (2.1) (in the sense of Rabinowitz) if there is a continuum of nontrivial
solutions C of (2.1) such that (λ0, 0) ∈ C and C is either unbounded in E or there

is an eigenvalue λ̂ 6= λ0 such that (λ̂, 0) ∈ C.

Theorem 4.1. Let 1 < p < N . Assume (f1)–(f3) and g1 ∈ L∞(RN ) ∩ LN/p(RN ),
g1 6≡ 0. Then the principal eigenvalue λ+

1 > 0 of the eigenvalue problem

−∆pu = λg|u|p−2u, in RN ,

∫
g|u|p > 0

is a bifurcation point of (2.1).

Proof. The proof consists of three steps, the last one being only a variation of the
proof of Rabinowitz’s theorem [R, Theorem 1.3].

Step 1. First consider the operator Ãλ(u) = J(u) − λG(u). It follows from the
variational characteristic of λ+

1 that for λ ∈ (0, λ+
1 ) and any u ∈ V with ‖u‖V 6= 0,

we have

(Ãλ(u), u)V > 0.

Then the degree

Deg [Ãλ;Br(0), 0](4.2)

is well defined for any λ ∈ (0, λ1) and any ball Br(0) ⊂ V . Applying Lemma 3.2
we get

Deg [Ãλ;Br(0), 0] = 1, λ ∈ (0, λ+
1 ).(4.3)

According to Lemma 2.3 there exists a δ > 0 such that the interval (λ+
1 , λ

+
1 + δ)

does not contain any eigenvalue of the problem (2.1). Hence the degree (4.2) is well

defined also for λ ∈ (λ+
1 , λ

+
1 + δ). To evaluate Ind (Ãλ, 0) for λ ∈ (λ+

1 , λ
+
1 + δ), we

use similar procedure as in [D1, D2].
Fix a K > 0 and define a function ψ : R→ R by

ψ(t) =

{
0, for t ≤ K,
2δ
λ+

1

(t− 2K), for t ≥ 3K,

and ψ(t) is positive and strictly convex in (K, 3K). We define the functional

Ψλ(u) =
1

p
(J(u), u)V −

λ

p
(G(u), u)V + ψ(

1

p
(J(u), u)V ).

Then Ψλ is continuously Fréchet differentiable and its critical point u0 ∈ V corre-
sponds to the solution of the equation

J(u0)− λ

1 + ψ′( 1
p (J(u0), u0)V )

G(u0) = 0.
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However, since λ ∈ (λ+
1 , λ

+
1 + δ), the only nontrivial critical points of Ψ′λ occur if

ψ′(
1

p
(J(u0), u0)V ) =

λ

λ+
1

− 1,

and hence we must have
1

p
(J(u0), u0)V ∈ (K, 3K).

In this case either u0 = −u+
1 or u0 = u+

1 , where u+
1 > 0 is the principal eigen-

function. So, for λ ∈ (λ+
1 , λ

+
1 + δ) the derivative Ψ′λ has precisely three isolated

critical points −u+
1 , 0, u

+
1 . The functional Ψλ is weakly lower semicontinuous. In

fact, assume un → u0 weakly in V . Then

(G1(un), un)V → (G1(u0), u0)V(4.4)

due to the compactness of G1 (Lemma 2.2), and

lim inf
n→∞

(1

p
(J(un), un)V +

λ

p
(G2(un), un)V + ψ(

1

p
(J(un), un)V )

)
≥ 1

p
(J(u0), u0)V +

λ

p
(G2(u0), u0)V + ψ(

1

p
(J(u0), u0)V ),

(4.5)

by the facts that lim inf ‖un‖V ≥ ‖u0‖V , lim inf ‖∇un‖Lp(RN ) ≥ ‖∇u0‖Lp(RN ) and
that ψ is nondecreasing.

The relations (4.4) and (4.5) then imply

lim inf
n→∞

Ψλ(un) ≥ Ψλ(u0).

Observe that Ψ is coercive, i.e.,

lim
‖u‖V→∞

Ψλ(u) =∞.

Indeed, observe first that for ‖u‖V → ∞ two cases can occur: (i) (J(u), u)V is
bounded and hence (G1(u), u)V is bounded too, by the Sobolev embedding, but
(G2(u), u)V →∞; (ii) (J(u), u)V →∞. In the former case clearly Ψλ(u)→∞ for
‖u‖V →∞. In the latter case we can estimate Ψλ(u) as follows:

Ψλ(u) =
1

p
(J(u), u)V −

λ+
1

p
(G(u), u)V +

λ+
1 − λ
p

(G(u), u)V + ψ(
1

p
(J(u), u)V )

≥ λ+
1 − λ
p

(G(u), u)V + ψ(
1

p
(J(u), u)V )

≥ λ+
1 − λ
pλ+

1

(J(u), u)V + ψ(
1

p
(J(u), u)V )

≥ − δ

pλ+
1

(J(u), u)V +
2δ

λ+
1

[1

p
(J(u), u)V − 2K

]
→∞,

for ‖u‖V → ∞. Here we used the variational characterization for λ+
1 and the

definition of ψ. Since Ψλ is even, there are precisely two points at which the
minimum of Ψλ is achieved: −u+

1 , u
+
1 . The point 0 is obviously an isolated critical

point of “the saddle type.” By virtue of Lemma 3.1, we have

Ind (Ψ′λ,−u+
1 ) = Ind (Ψ′λ, u

+
1 ) = 1.(4.6)

Simultaneously, we have that (Ψ′λ(u), u)V > 0 for any u ∈ V , ‖u‖V = κ with κ > 0
large enough. Here we have to consider again separately two cases as in the proof
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of coerciveness of Ψλ. In the case (i) clearly again (Ψ′λ(u), u)V → ∞. In the case
(ii) we use the following estimate:

(Ψ′λ(u), u)V = (J(u), u)V − λ(G(u), u)V + ψ′(
1

p
(J(u), u)V )(J(u), u)V

= (J(u), u)V − λ+
1 (G(u), u)V

+ ψ′(
1

p
(J(u), u)V )

[
(J(u), u)V −

λ− λ+
1

ψ′( 1
p(J(u), u)V )

(G(u), u)V
]

≥ 2δ

λ+
1

[
(J(u), u)V − 2K

]
·
[
(J(u), u)V −

λ+
1

2
(G(u), u)V

]
→∞

for ‖u‖V →∞. We have used again the variational characterization of λ+
1 and the

definition of ψ. Lemma 3.2 then implies that

Deg [Ψ′λ;Bκ(0), 0] = 1.(4.7)

We choose κ so large that ±u+
1 ∈ Bκ(0). Now, by the additivity of the degree (see

[SK]), and (4.6) and (4.7), we have

Ind (Ψ′λ, 0) = −1.(4.8)

We further have, by the definition of ψ,

Deg [Ãλ;Br(0), 0] = Ind (Ψ′λ, 0)(4.9)

for r > 0 small enough. We then conclude from (4.3), (4.8) and (4.9) that

Ind (Ãλ, 0) = 1, λ ∈ (0, λ+
1 ),

Ind (Ãλ, 0) = −1, λ ∈ (λ+
1 , λ

+
1 + δ).

(4.10)

Step 2. It follows from (2.2) and the homotopy invariance of the degree that for
r > 0 small enough,

Deg [Aλ;Br(0), 0] = Deg [Ãλ;Br(0), 0]

for λ ∈ (0, λ+
1 + δ) \ {λ+

1 }. We have, from (4.10),

Ind (Aλ, 0) = 1, λ ∈ (0, λ+
1 ),

Ind (Aλ, 0) = −1, λ ∈ (λ+
1 , λ

+
1 + δ).

Step 3. Following the proof of Theorem 1.3 in [R] we can prove the conclusion of
this theorem.

This completes the proof.

Theorem 4.2. Assume (f1)–(f3), g ∈ L∞(RN ) ∩ LN/p(RN ) and g± 6≡ 0. Then
the conclusion of Theorem 4.1 remains valid. Moreover the principal eigenvalue
λ−1 < 0 of the eigenvalue problem

−∆pu = λg|u|p−2u, in RN ,

∫
g|u|p < 0

is a bifurcation point of (2.1).

Proof. Under the assumptions of this theorem, the operator G2 is also compact.
So, substituting −g for g in (2.1), Theorem 4.1 is applicable. This concludes the
proof.
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Similarly, for the case p ≥ N , modifying the assumptions in the spirit of Remark
2.1, we have the following analogy of Theorem 4.1.

Theorem 4.3. Let p ≥ N . Assume (f1)–(f3), g1 ∈ L∞(RN ) ∩ LN0/p(RN ), g1 6≡ 0
for some N0 > p, and g2(x) ≥ ε > 0 in RN . Then the principal eigenvalue λ+

1 > 0
of the eigenvalue problem

−∆pu = λg|u|p−2u, in RN ,

∫
g|u|p > 0

is a bifurcation point of (2.1).

Remark 4.1. We note that, for the p-Laplacian with p 6= 2, bifurcation from the
principal eigenvalue on a bounded domain has been studied in [DM, D1, D2] for
positive weight function, and in [BH] for indefinite weight function, by calculating
the corresponding topological degrees.

Remark 4.2. For p = 2, [ER] and [RE] considered the following bifurcation problem
in RN :

∆u+ λf(x)(u+ h(u)) = 0,

where f(x) > 0 satisfying certain growth condition (comparable to that of ours on
g1(x)), and h(u) satisfies

lim
t→0+

h(t)

t
= a > −1.

Observe that the effect of h(u) only shifts the principal eigenvalue from λ+
1 to λ1

a+1 ,

so our result essentially contains Theorem 6 of [RE], and we allow g(x) to change
sign. We also note that since the utilization of Green’s function is fundamental in
their calculation of the topological degrees, their method cannot be extended to the
case p 6= 2.

Remark 4.3. Assuming

lim
u→∞

f(λ, x, u)

w(x)|u|p−2u
= 0,

which corresponds to assuming h(t) is bounded in [RE], we can discuss bifurcation

from the infinity. Indeed, let v = u · ‖u‖−p/(p−1)
V . Then u = v · ‖v‖−pV . Multiplying

equation (2.1) by ‖u‖−pV we get

−∆pv = λg(x)|v|p−2v + ‖v‖p(p−1)
V f(λ, x, ‖v‖−pV v).(4.11)

Observe that

‖v‖p(p−1)
V f(λ, x, ‖v‖−pV v)

w(x)|v|p−2v
=

f(λ, x, u)

w(x)|u|p−2u
→ 0

as v → 0. Thus (f3) is satisfied for (4.11). Now define a new operator Âλ as

Âλ(v) =
Aλ(u)

‖u‖pV
= J(v)− λG(v) − ‖v‖p(p−1)

V F (λ, ‖v‖−pV v).

We see that the calculations in the proof of Theorem 4.1 remain valid for Âλ; hence
(λ+

1 , 0) is a bifurcation point for the problem associated with Âλ. Consequently
(λ+

1 ,∞) is a bifurcation point of (2.1). This is compatible with Theorem 9 of [RE].

We want to further strengthen our bifurcation result. Instead of (f2) we assume
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(f2)′ There is a nonnegative ρ̃(x) ∈ L∞(RN) ∩ Lγ1(RN ) such that

|f(λ, x, u)| ≤ c(λ)ρ̃(x)|u|γ

for all λ, u ∈ R and a.e. x ∈ RN .

Then we have the following result.

Theorem 4.4. Let 1 < p < N , and assume (f1), (f2)′, (f3) hold, g1 ∈ L∞(RN) ∩
LN/p(RN ) and g1 6≡ 0. Then for any solution u of (2.1) with λ ≥ 0, u ∈ LQ(RN )
for any p∗ ≤ Q ≤ ∞ and u decays uniformly as |x| → ∞. Moreover, u ∈
C1,α(BK(0)) for any K > 0 with some α = α(K) ∈ (0, 1).

Proof. The proof of u± ∈ LQ(RN ), p∗ ≤ Q ≤ ∞, and the decay of u± as |x| → ∞
can be performed in the similar way as in the steps 2, 3 of the proof of Theorem 3.1
in [D3], by separating u+ and u− and using the bootstrap argument and Serrin’s
estimates (cf. [SE]). The regularity result follows then from [TO]. Note that here
u± denotes the positive and negative part of u respectively.

Let ϕ∗ ∈ V ∗ be fixed and satisfy

(ϕ∗, u+
1 )V = 1,

and for τ ∈ (0, 1) define the sets

K+
τ = {(λ, u) ∈ E : (ϕ∗, u)V > τ‖u‖V },

K−τ = {(λ, u) ∈ E : (ϕ∗, u)V < −τ‖u‖V }.

Note that K±τ are cones containing ±u+
1 respectively, and τ is a measure of “open-

ness” of these cones. Furthermore, let Bη(λ+
1 , 0) denote the ball in E centered at

the point (λ+
1 , 0) with radius η.

Theorem 4.5. Let the assumptions of Theorem 4.4 be fulfilled. Moreover, suppose
that there exists δ > 0 such that

J(u) = λ+
1 G(u) + F (λ+

1 , u)(4.12)

has no nonzero solution u ∈ V , 0 < ‖u‖V < δ. Then there are maximal connected
subsets C+, C− of C (C is the set from Theorem 4.1) containing (λ+

1 , 0) ∈ E in
their closures,

C± ∩Bη(λ+
1 , 0) ⊂ K±τ , η = η(τ)→ 0 as τ → 1,(4.13)

and such that both C± are unbounded in E. Moreover, λ > λ+
1 for any (λ, u) ∈ C±,

u > 0 in RN if (λ, u) ∈ C+, and u < 0 in RN if (λ, u) ∈ C−.

Proof. Following step by step of the proof of Theorem 2 in [DA], we get the exis-
tence of the maximal connected subsets C± ⊂ C satisfying (4.13) and being either
unbounded in E or containing in their closures a common point different from
(λ+

1 , 0) ∈ E (cf. [D2]). We will show that the latter case cannot occur.
Note that λ > λ+

1 for any (λ, u) ∈ C± due to the fact that (4.12) has no nonzero
solution for λ = λ+

1 . Let (λn, un) ∈ C+ be a sequence such that λn → λ+
1 .

Then ‖un‖V → 0. Denoting ũn = un · ‖un‖−1
V we can assume due to (f2)′ and

(f3) that ũn → u+
1 weakly in V . Similarly as in the proof (ii) of Lemma 2.3 we
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derive that ũn → u+
1 strongly in V . We claim that for n large, un > 0. Denote

Ω−n = {x ∈ RN ; ũn(x) < 0}. Then we have∫
|∇u−n |p + λ

∫
g2(x)|u−n |p = λ

∫
g1(x)|u−n |p +

∫
f(λ, x, u−n )u−n .

By Hardy’s, Hölder’s, Sobolev’s inequalities, the assumptions on g and (f2)′, we get

c15‖u−n ‖
p
V ≤ c16

(∫
Ω−n

(g1(x))N/p
)p/N

‖u−n ‖
p
V + c17

(∫
Ω−n

(ρ̃(x))γ1

)1/γ1

‖u−n ‖
γ+1
V ,

i.e.

c15 ≤ c16

(∫
Ω−n

(g1(x))N/p
)p/N

+ c17

(∫
Ω−n

(ρ̃(x))γ1

)1/γ1

‖u−n ‖
γ+1−p
V .

Since ‖un‖V → 0, g1 ∈ LN/p(RN ), ρ̃ ∈ Lγ1(RN ) and c15, c16, c17 do not depend on
un, we derive from here that for K0 > 0 large enough,

meas (Ω−n ∩BK(0)) ≥ c18

for any K > K0, where c18 > 0 depends on neither λn nor un. Now, using the
same argument as in the proof (ii) of Lemma 2.3 based on the Egorov Theorem we
deduce that ũn (and hence un) is nonnegative in RN for n large enough. It then
follows that u ≥ 0 for any (λ, u) ∈ C+ ∩Bη(λ+

1 , 0) with η > 0 small enough.

Assume now that there exists (λ̂, û) ∈ C+ such that û(x) ≤ 0 at some point

x ∈ RN . Since C+ is connected and by the C1,α
loc -regularity of solutions of (2.1),

there exists (λ∗, u∗) ∈ C such that u∗ 6≡ 0, u∗ ≥ 0, and u∗(x0) = 0 for some
x0 ∈ RN . This violates the Harnack inequality (see Theorem 1.2 in [TR]). Hence
u > 0 for any (λ, u) ∈ C+ and similarly u < 0, λ > λ+

1 for all (λ, u) ∈ C−.
This excludes the second alternative of Theorem 2 in [DA] and thus C± must be
unbounded in E. This ends the proof.

Remark 4.4. For the case p > N , any solution u of (2.1) is in L∞(RN ) by Sobolev’s
embedding theorem, while for p = N , solution of (2.1) belongs to Lr(RN ) for
p ≤ r < ∞. Observe that in either case changing the assumptions in the spirit of
Remark 2.1, the arguments in the proofs of Theorems 4.4 and 4.5 are still valid, so
Theorems 4.4 and 4.5 remain true for p ≥ N .

Remark 4.5. For 1 < p < N , if (f1), (f2)′, (f3) hold, g ∈ L∞(RN ) ∩ LN/p(RN ) and
g± 6≡ 0, then the same conclusions of Theorems 4.4 and 4.5 also hold for λ−1 .

Remark 4.6. One possible form of f(λ, x, u) satisfying the hypothesis of Theorem
4.5 is the following:

f(λ, x, u) = −c(λ)ρ̃(x)|u|γ−1u,

where c(λ+
1 ) > 0 and ρ̃(x) > 0 for a.e. x ∈ RN . Indeed, due to the variational

characterization of λ+
1 > 0, we have∫

|∇u|p − λ
∫
g(x)|u|p ≥ 0

and ∫
f(λ, x, u)u = −c(λ)

∫
ρ̃(x)|u|γ+1 < 0

for any λ ≤ λ+
1 , λ close to λ+

1 and any u ∈ V with u 6= 0. Note that in this case we
have (λ, u) ∈ C+ if and only if (λ,−u) ∈ C−.
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Remark 4.7. Suppose that c(λ0) = 0 (in (f2)′) for some λ0 > λ+
1 ; then C+ (and

similarly for C−) from Theorem 4.5 “blows up” in ‖u‖V . In fact, since

−∆pu = λ0g(x)|u|p−2u

cannot have a positive solution in RN , the parameter λ cannot cross the value λ0

and hence ‖u‖V is unbounded along C+.
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