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PRINCIPAL EIGENVALUES

WITH INDEFINITE WEIGHT FUNCTIONS

ZHIREN JIN

Abstract. Both existence and non-existence results for principal eigenvalues
of an elliptic operator with indefinite weight function have been proved. The
existence of a continuous family of principal eigenvalues is demonstrated.

1. Introduction and results

Let g(x) be a locally Hölder continuous function on Rn which changes sign. We
consider the following eigenvalue problem with indefinite weight:

−∆u(x) = λg(x)u(x) for x ∈ Rn,(P )

where ∆ is the standard Laplace operator. A principal eigenvalue of (P ) is a positive
constant λ0, such that we can find a positive solution u(x) for (P ) if λ = λ0.

Recently, a number of authors have investigated the existence of principal eigen-
values for (P ). Part of the motivation to study (P ) is to understand the bifurcation
behavior of solutions for some nonlinear problems arising in population genetics
[4], [5], [7]. Brown, Cosner and Fleckinger in [3] showed that if

∫
Rn g(x)dx > 0,

n = 1, 2, then (P ) has no principal eigenvalues, while if n ≥ 3 and g(x) is negative
and bounded away from 0 near ∞, then (P ) has a principal eigenvalue. Brown
and Tertikas [6] improved the results in [3] to conclude that (P ) has a principal
eigenvalue if g+(x) = max{g(x), 0} has compact support. When g(x) is bounded

and g+(x) ∈ Ln
2 (Rn), the existence of one principal eigenvalue and infinitely many

other eigenvalues was proved by Allegretto in [1].
The goal of this paper is to continue to investigate when (P ) has a principal

eigenvalue. We shall show the existence of not only one principal eigenvalue, but
also a continuous family of principal eigenvalues. Indeed by applying our results
to the case that g+(x) = max{g(x), 0} has compact support, we can conclude that
there is a number λ0 > 0, such that any number λ is a principal eigenvalue of (P )
as long as 0 < λ ≤ λ0.

The basic idea in the paper is to compare the different cases with different weight
functions g(x). First let us introduce a definition:

(G): A non-negative function g1(x) on Rn is said to have the property (G) if it
is not identically zero and there is a principal eigenvalue µ for the problem

−∆u(x) = µg1(x)u(x) for x ∈ Rn.
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Our first result says that (P ) has a continuous family of principal eigenvalues if
the weight function is dominated by a function having the property (G).

Theorem 1. Let n ≥ 3, and let g1(x) be a non-negative function having the prop-
erty (G). If

g(x) ≤ g1(x) for x ∈ Rn,

then any number λ is a principal eigenvalue of (P ) as long as 0 < λ ≤ µ, where µ
is the number defined in the property (G).

By Theorem 1, if we can find a function g1(x) having the property (G), we can
prove the existence of principal eigenvalues for all weight functions dominated by
g1(x). If n = 2, the results in [3] showed that there are no functions having the
property (G). When n ≥ 3, there are a lot of functions having the property (G).
Indeed the following result is part of Theorem 1 in [1] (since no information on the
asymptotic behavior of eigenfunctions is given in the following result, one does not
need to assume that g(x) is globally bounded as in Theorem 1 in [1]).

Theorem 2 (Theorem 1 in [1]). If n ≥ 3, g1(x) ≥ 0 is not identically zero and∫
Rn

|g1(x)|n2 dx <∞,

then g1(x) has the property (G) and

µ ≥ c(n)(

∫
Rn

|g1(x)|n2 dx)− 2
n ,

where c(n) is a constant depending only on the dimension n and µ is the principal
eigenvalue defined in the property (G).

As an application of Theorems 1 and 2, we have (we recall g+(x) = max{g(x), 0})
Theorem 3. If n ≥ 3, g(x0) > 0 for some x0 ∈ Rn, and∫

Rn

|g+(x)|n2 dx <∞,

then any number λ is a principal eigenvalue of (P ) as long as

0 < λ ≤ c(n)(

∫
Rn

|g+|n2 dx)− 2
n ,

where c(n) is a constant depending only on the dimension n.

Proof. By the assumption and Theorem 2, g+(x) has the property (G) and g(x) is
naturally dominated by g+(x). Then Theorem 1 concludes the proof.

Comparing Theorem 3 with results in [1], [2], [5], we have generalized the ex-
istence results in [1], [2], [5] to the existence of a continuous family of principal
eigenvalues. Furthermore, if

∫
Rn g(x)dx > 0, n ≥ 3, (P ) still has principal eigenval-

ues provided the conditions of Theorem 3 are satisfied. This is in contrast to the
results in [3], which showed non-existence of principal eigenvalues if n = 1, 2 and∫
Rn g(x)dx > 0.

To apply Theorem 1, it is important to find out which functions have the property
(G). Here is a trivial way to produce more functions having the property (G). Let
g1(x1, x2, x3) be a function defined on R3 having the property (G). Then there is a
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positive constant µ and a positive function u(x), such that −∆u(x) = µg1(x)u(x)
for x ∈ R3. Now we extend u(x) and g1(x), x ∈ R3, onto Rn trivially, that is,

u(x1, x2, x3, · · ·, xn) = u(x1, x2, x3)

and

g1(x1, x2, x3, · · ·, xn) = g1(x1, x2, x3).

Then we see that −∆u(x) = µg1(x)u(x) for x ∈ Rn. Thus g1(x) is a function on
Rn having the property (G). Therefore, from Theorem 1, we have

Theorem 4. Assume that n ≥ 3, and there is a non-negative function g1(x1, x2, x3)
having the property (G), such that

g(x1, x2, x3, · · ·, xn) ≤ g1(x1, x2, x3) on Rn.

Then any number λ is a principal eigenvalue of (P ) as long as 0 < λ ≤ µ, where µ
is defined in the property (G).

An immediate consequence of Theorem 4 is that there are functions having
the property (G) and satisfying

∫
Rn |g+|n2 dx = ∞ (n ≥ 4). Therefore there are

functions having the property (G) and not covered by Theorem 2. The next result
gives more functions having the property (G).

Theorem 5. Let n ≥ 3, and let g1(x) be a non-negative, not identically zero func-
tion on Rn and

g1(x) ≤ c

|x|2 for x ∈ Rn.

Then g1(x) has the property (G), and we can take µ = (n−2)2

4c .

Remark 1.1. From Theorem 5, we see that

g1(x
′) = (1 + |x′|2)−1 with x′ = (x1, x2, x3)

has the property (G). Then by applying Theorems 1, 4 and 5, we conclude that
for all g(x), if g(x) ≤ g1(x

′) on Rn, then (P ) has a continuous family of principal
eigenvalues.

The next result says that the condition in Theorem 5 is quite sharp.

Theorem 6. If n ≥ 3, and

lim
|x|−→∞

g(x)|x|2 = ∞,

then (P ) has no principal eigenvalues.

Remark 1.2. Theorem 6 is also true if n = 2. Indeed, in this case we automatically
get

∫
R2 g(x)dx = ∞; then we can use the result in [3].

In Theorems 1–5, we have no specific control on the asymptotic behavior of
eigenfunctions. To obtain control on the asymptotic behavior of eigenfunctions, we
need to add additional assumptions on the weight function.

Theorem 7. Assume that n ≥ 3,
∫
Rn |g+|n2 dx <∞, g(x0) > 0 for some x0 ∈ Rn,

and there is a p > n
2 such that∫

Rn

|g|p(1 + |x|2)2p−ndx <∞.
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Then (P ) has a principal eigenvalue λ0 and an eigenfunction u(x) such that

λ0 ≥ c(n)(

∫
Rn

|g+
1 |

n
2 dx)−

2
n

where c(n) is a constant depending only on the dimension n. Moreover,

u(x)|x|n−2 −→ c0 as |x| −→ ∞ for a non-negative constant c0.(1.1)

Remark 1.3. If there are K > 0 and α > 2 such that |g(x)| ≤ K|x|−α for |x| large,
the existence of a principal eigenvalue with an eigenfunction u(x) (u(x) −→ 0 as
|x| −→ ∞) was shown in Theorem 4.1 in [3]. In this case, the assumptions of The-
orem 7 are clearly satisfied. If g(x) is bounded and g+(x) ∈ Ln

2 (Rn), the existence
of a principal eigenvalue with an eigenfunction u(x) (u(x) −→ 0 as |x| −→ ∞)
was shown in [1]. In Theorem 7, we do not assume g(x) is bounded. Another
comment is that Theorem 7 only yields the asymptotic behavior of one eigenfunc-
tion corresponding to a particular principal eigenvalue. By Theorem 3, under the
assumptions of Theorem 7, (P ) has a continuous family of principal eigenvalues.
Most likely the asymptotic behavior of other eigenfunctions is not the same as the
one described in (1.1) (see Remark 2.2 for some examples).

Finally, we consider the case n = 2. By a result in [3], a necessary condition for
(P ) having a principal eigenvalue is

∫
R2 g(x) < 0. We would like to find out if this

condition is sufficient. Although we believe the answer is yes, we only can prove a
weaker result here.

Theorem 8. Assume that n = 2,
∫
R2 g(x)dx < 0, g(x0) > 0 for some x0 ∈ R2,

and there is a p > 2 such that∫
R2

|g+|p(1 + |x|2)2(p−1)dx <∞.

Then (P ) has a principal eigenvalue λ0.

Remark 1.4. It would be interesting to know if there is also a continuous family of
principal eigenvalues for the case n = 2. We can not do this here, since by a result
in [3] there is no function having the property (G) for n = 2.

The paper is organized as follows. In section 2, we consider the case n ≥ 3, where
Theorems 1,2,5,6, and 7 are proved and a generalization to more general elliptic
equations is given. In section 3, we consider the case n = 2, where Theorem 8 is
proved.
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2. The case that n ≥ 3

We first prove Theorem 1.

Proof of Theorem 1. By assumption, there is a positive number µ and positive func-
tion w(x) on Rn, such that

−∆w = µg1(x)w on Rn.(2.1)
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Let Bk(0) be the ball centered at origin with radius k, k = 1, 2, 3, · · ·. For each
fixed number 0 < λ ≤ µ, we consider a family of boundary value problems:{−∆u = λg(x)u on Bk(0);

u = k on ∂Bk(0).
(Pk)

We claim that (Pk) has a positive solution uk(x) for all k.
We set uk(x) = vk(x)w(x); then it is straightforward to check (using (2.1) and

(Pk)) that uk(x) is a positive solution of (Pk) if and only if vk(x) is a positive
solution of

{−∆v − 2∇ lnw · ∇v = (λg(x)− µg1(x))v on Bk(0);

v = kw−1 on ∂Bk(0).
(Pk,v)

Set c(x) = λg(x)−µg1(x). Since g(x) ≤ g1(x) on Rn, g1(x) ≥ 0, 0 < λ ≤ µ, we see
that

c(x) = λg(x)− µg1(x) ≤ λg1(x) − µg1(x) ≤ µg1(x) − µg1(x) = 0.

Thus we only need to show that the following problem has a positive solution vk(x):{
∆v + 2∇ lnw · ∇v + c(x)v = 0 on Bk(0);

v = kw−1 on ∂Bk(0).
(Pk,v)

The existence of a solution follows immediately from Theorem 6.8 on p.100 in [8].
The positivity of the solution follows from Hopf’s maximum principle (Theorem
3.5 on p. 35 in [8]) since vk > 0 on the boundary of Bk(0). Therefore (Pk) has a
positive solution uk(x). We normalize uk(x) by setting uk(0) = 1. Then


−∆uk = λg(x)uk on Bk(0);

uk(x) > 0 on Bk(0);

uk(0) = 1.

(2.2)

Now we apply the Harnack inequality for positive solutions of elliptic equations
(Theorem 8.20 on p. 199 in [8]) to (2.2); we see that for any compact set Ω on
Rn, there are constants K and M (where M depends only on Ω, λ, and g(x); K
depends only on Ω), such that

0 < uk(x) ≤M on Ω for k ≥ K.

Then an application of the interior Schauder estimates (Theorem 6.2 on p. 90 in
[8]) for solutions of elliptic equations yields

|uk|C2,β(Ω) ≤M1 for k ≥ K1 > K,

where |uk|C2,β(Ω) is the C2,β norm of uk, M1, K1 and β are constants (where M1

depends only on Ω, λ and g(x); β depends only on λ and g(x); K1 depends only
on Ω). Then it is clear that uk(x) has a subsequence which converges to a C2

non-negative function u(x) on Rn on any compact set. Therefore

−∆u(x) = λg(x)u(x) on Rn, u(0) = 1, u(x) ≥ 0.

Now an application of a maximum principle concludes that u(x) is positive every-
where on Rn.
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As we mentioned before, Theorem 2 is a result in [1]. For the convenience of our
readers, we present a proof here using a slightly different approach. For a domain
Ω on Rn, we denote H1

0 (Ω) the Banach space of all functions that have square
integrable first order derivatives and are zero on the boundary.

Proof of Theorem 2. Let Bk(0) be the ball centered at the origin with radius k,
k = 1, 2, 3, · · ·. By assumption, g1(x0) > 0 for some x0 ∈ Rn. We may assume
x0 ∈ B1(0). We consider a family of eigenvalue problems:

{−∆u = λg1(x)u on Bk(0);

u = 0 on ∂Bk(0).
(Dk)

Let

λ1(k) = inf{
∫
Bk(0)

|∇u|2dx | u ∈ H1
0 (Bk(0)),

∫
Bk(0)

g1(x)u
2 = 1}.

Since g(x0) > 0, we see that λ1(k) is well defined, non-increasing on k and λ1(k) ≥ 0.
Thus µ = limk−→∞ λ1(k) exists. Furthermore it is easy to see that there is a non-
negative function uk(x) ∈ H1

0 (Bk(0)) that achieves the infimum. By the regularity
theory for solutions of elliptic equations (Theorem 3.55 on p.86 in [2]) and the
maximum principle, we see that uk(0) is actually a C2 positive solution of (Dk).
We normalize uk(x) so that uk(0) = 1. Then

−∆uk = λ1(k)g1(x)uk on Bk(0);

uk(x) > 0 on Bk(0);

uk(0) = 1.

(Dk)

Now exactly as we did in the proof of Theorem 1, we see that uk(x) has a subse-
quence which converges to a C2 non-negative function u(x) on Rn on any compact
set. And u(x) is a positive eigenfunction with the principal eigenvalue µ.

To complete the proof, we only need to show that µ is bounded away from zero
by the bound given in the statement of Theorem 2.

By the Hölder inequality, we have∫
Bk(0)

g(x)u2dx ≤
∫
Bk(0)

g+(x)u2dx

≤ (

∫
Bk(0)

|g+(x)|n2 dx) 2
n (

∫
Bk(0)

|u| 2n
n−2 dx)

n−2
n .

Then if
∫
Bk(0) g(x)u

2dx = 1, we have

(

∫
Bk(0)

|g+(x)|n2 dx)− 2
n ≤ (

∫
Bk(0)

|u| 2n
n−2 dx)

n−2
n .

On the other hand, by the Sobolev imbedding inequality (Theorem 2.14 on p. 39
in [2]), there is a constant c1(n), depending only on the dimension n, such that for
all u ∈ H1

0 (Bk(0)),

(

∫
Bk(0)

|u| 2n
n−2 dx)

n−2
2n ≤ c1(n)(

∫
Bk(0)

|∇u|2dx) 1
2 .
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Thus

(

∫
Bk(0)

|g+(x)|n2 dx)− 2
n ≤ c21(n)(

∫
Bk(0)

|∇u|2dx).

This immediately yields

λ1(k) ≥ c(n)(

∫
Bk(0)

|g+(x)|n2 dx)− 2
n ≥ c(n)(

∫
Rn

|g+(x)|n2 dx)− 2
n .

Therefore

µ ≥ c(n)(

∫
Rn

|g+(x)|n2 dx)− 2
n .

Remark 2.1. The proofs of Theorems 1 and 2 can also be modified to cover more
general cases. Let Ω be an unbounded domain in Rn (n ≥ 3) with C2,β bound-
ary. We consider the principal eigenvalue problem for a second order linear elliptic
operator in divergent form:

− ∂

∂xi
(aij(x)

∂u

∂xj
) = λg(x)u on Ω;

u = 0 on ∂Ω;

u(x) > 0 on Ω.

(P1)

Here the summation convention is used. We also assume that the coefficients are
Hölder continuous and the equation is uniformly elliptic, that is, there are positive
constants m1 and m2, such that

m1|η|2 ≤ aij(x)ηiηj ≤ m2|η|2 for η = (η1, η2, · · ·, ηn) ∈ Rn, x ∈ Rn.

Then a direct modification of the proofs of Theorems 1 and 2 yields

Theorem 9. If n ≥ 3, g+(x0) > 0 for some x0 ∈ Ω, and∫
Ω

|g+|n2 dx <∞,

then any number λ is a principal eigenvalue of (P1) as long as

0 < λ ≤ c(n,m1,m2)(

∫
Ω

|g+|n2 dx)− 2
n ,

where c(n,m1,m2) is a constant depending only on n, m1, m2.

Sketch of the proof. In the proof of Theorem 1, we replace Bk(0) in (Pk) by Ωk =
Bk(0)∩Ω. Then we choose a function hk(x) on ∂Ωk such that hk(x) ≥ 0, hk(x) = 0
on ∂Ω∩∂Ωk, and hk(x) > 0 on part of Bk(0)∩∂Ωk. Also, let u = hk(x) on ∂Bk(0)
in (Pk).

In the proof of Theorem 2, we replace Bk(0) in (Dk) by Ωk = Bk(0) ∩ Ω.
Those are all the changes needed to carry out the complete proof of Theorem 9.

(Actually one might need to smooth out the edges of Ωk; we leave it to reader.)

Now we prove Theorem 5.
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Proof of Theorem 5. We choose a radially symmetric smooth positive function η(x)
such that c

|x|2 ≥ η(x) ≥ g1(x) on Rn and η(x) = c
|x|2 for |x| large. If we can show

Theorem 5 for η(x), we can apply Theorem 1 to g1(x) to get the conclusion.
It is easy to see that the Euler equation

v′′(r) +
n− 1

r
v′(r) +

(n− 2)2

4r2
v(r) = 0

has a solution v(r) = r−
n−2

2 for 0 < r <∞. Thus v(x) = v(|x|) satisfies

−∆v =
(n− 2)2

4|x|2 v on Rn \ {0}.(2.3)

Now for any number 0 < λ ≤ (n−2)2

4c , we consider an initial value problem for the
ordinary differential equation:ψ′′(r) +

n− 1

r
ψ′(r) + λη(r)ψ(r) = 0,

ψ(0) = 1, ψ′(0) = 0.
(2.4)

Since η(r) is smooth, it is clear that (2.4) has a solution ψ(r) defined on (0, T ) for
some T > 0. Also η(r) > 0 implies that ψ(r) is decreasing on (0, T ). We claim that
ψ(r) > 0 on (0, T ). Assume the claim for the moment. Then ψ(r) can be extended
beyond T , that is, ψ(r) exists on 0 < r < ∞. Thus ψ(r) > 0 is an eigenfunction
corresponding to the principal eigenvalue λ.

We now prove that claim. Indeed if ψ(r) < 0 for some 0 < r < T , since
ψ(0) = 1, we can find a r0 such that ψ(r0) = 0, ψ(r) > 0 for 0 < r < r0. Then for
ψ(x) = ψ(|x|)

{−∆ψ = λη(|x|)ψ on 0 < |x| < r0;

ψ(0) = 1, ψ(x) = 0 if |x| = r0.
(2.5)

We then set ψ(|x|) = φ(|x|)v(|x|) for a new function φ(|x|). (2.3), (2.5) and a
calculation shows that φ satisfies

−∆φ− 2∇ ln v · ∇φ = (λη(|x|) − (n− 2)2

4|x|2 )φ(|x|),
φ(0) = 0, φ(|x|) = 0 if |x| = r0;

φ(x) > 0 for 0 < |x| < r0.

(2.6)

But λ ≤ (n−2)2

4c and the construction of η(x) imply

λη(|x|) ≤ λc

|x|2 ≤ (n− 2)2

4|x|2 for 0 < |x| < r0.

Then we apply Hopf’s maximum principle (Theorem 3.71 on p.96 in [2]) to (2.6)
to conclude that φ(|x|) can not take a positive maximum on 0 < |x| < r0 unless φ
is a constant. This is a contradiction.

Remark 2.2. Since η(r) = c
r2 for r large, from (2.4) and the formula for general

solutions of Euler equation, we see that if 0 < λ < (n−2)2

4c ,

ψ(r) = c1r
α1 + c2r

α2 for r large,
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where c1, c2 are constants and

α1 =
1

2
(−(n− 2) +

√
(n− 2)2 − 4λc), α2 =

1

2
(−(n− 2)−

√
(n− 2)2 − 4λc).

Therefore for different λ, the corresponding principal eigenfunction has different
asymptotic behavior. For some particular principal eigenvalue, the asymptotic
behavior of the corresponding eigenfunction is investigated in Theorem 7.

Now we show Theorem 6, which says that the assumptions in Theorem 5 are
quite sharp.

Proof of Theorem 6. We prove the conclusion by contradiction. Suppose that there
is a λ0 > 0 and a function u(x) > 0, such that

−∆u(x) = λ0g(x)u(x) on Rn.

Fix a number M > (n−2)2

4 ; then by the assumption of the theorem we can choose
a number M1 such that

λ0g(x) ≥ M

|x|2 for |x| ≥M1.(2.7)

Let k be an integer greater than M1. We consider a boundary value problem for
an ordinary differential equation


− v′′(r) − n− 1

r
v′(r) =

µ

r2
v(r) for M1 < r < k;

v(M1) = 0, v(k) = 0;

v(r) > 0 for M1 < r < k.

(2.8)

Since the equation is an Euler equation, we see that only for

µ =
(n− 2)2

4
+ π2ln−2(

k

M1
),

(2.8) has a solution of the form

vk(r) = Cr−
(n−2)

2 sin(

√
µ− (n− 2)2

4
ln

r

M1
).(2.9)

Thus µ −→ (n−2)2

4 as k −→∞. Now we fix a k such that the corresponding µ < M .
Let vk(r) be the solution defined by (2.9) with C = 1. We set vk(x) = vk(|x|) =
φk(x)u(x) for a new function φk(x); a calculation shows that φk(x) satisfies


−∆φk(x)− 2∇ lnu(x) · ∇φk(x) = (

µ

|x|2 − λ0g(x))φk(x);

φk(x) = 0, for |x| = M1;

φk(x) = 0, for |x| = k;

φk(x) > 0 for M1 < |x| < k.

But (2.7) and the choice of µ imply that

µ

|x|2 − λ0g(x) ≤ 0 for M1 ≤ |x| ≤ k.
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Now an application of Hopf’s maximum principle (Theorem 3.71 on p.96 in [2]) lets
us conclude that φk(x) can not take an interior positive maximum unless φk(x) is
a constant. This is a contradiction.

Now we prove Theorem 7. The proof is carried out by pulling back the problem
(P ) to an equivalent one on the unit sphere. Indeed, the proof of Theorem 7
includes that of Theorem 2. We have given a proof for Theorem 2 separately just
for simplicity. Before we start the proof of Theorem 7, let us fix some notation.
Let s0 = (0, 0, · · ·,−1) be the south pole of the unit sphere Sn in Rn+1, ds2 the
standard metric on Sn, dx2 the Euclidean metric on Rn. Use the stereographic
projection F : Rn −→ Sn \ {s0},

F (x) = (
2x

1 + |x|2 ,
1− |x|2
1 + |x|2 ), x ∈ Rn.

Sn \ {s0} is diffeomorphic to Rn, and under this coordinate chart

ds2 =
4

(1 + |x|2)2 dx
2, x ∈ Rn.

We denote ψ(x) = 4
(n−2)

4 (1 + |x|2)− (n−2)
2 ; then ds2 = ψ(x)

4
(n−2) dx2. The following

lemma says that the eigenvalue problem (P ) can be translated into an equivalent
eigenvalue problem on Sn. (For a function v(x) on Rn, we still denote the corre-
sponding function v ◦F−1 by v(x). The notation should be clear from the context.)

Lemma 2.1. u(x) > 0 satisfies

−4(n− 1)

n− 2
∆u(x) = λg(x)u(x) on Rn(P )

if and only if the function w(x) = u(x)ψ−1(x) satisfies

−4(n− 1)

n− 2
∆sw + n(n− 1)w = λgψ−

4
n−2w on Sn \ {s0},(Ps)

where ∆s is the Laplace-Beltrami operator on Sn with respect to the metric ds2.

Proof. u(x) > 0 satisfies (P ) if and only if

−4(n− 1)

n− 2
∆u(x) = λg(x)u−

4
n−2 (x)u

n+2
n−2 (x) on Rn.

That is, the metric u
4

n−2 (x)dx2 has the scalar curvature function λg(x)u−
4

n−2 (x).

Therefore the metric u
4

n−2 (x)ψ−
4

n−2 ds2 has the scalar function λg(x)u−
4

n−2 (x). For
w(x) = u(x)ψ−1, this is equivalent to (see p. 126 in [2])

−4(n− 1)

n− 2
∆sw + n(n− 1)w = λgu−

4
n−2w

n+2
n−2 on Sn \ {s0}.

By the definition of w(x), this is just (Ps).

Now we are ready to prove Theorem 7. The proof is more or less the same as
that of Theorem 2. The difference here is that we are now working on the unit
sphere Sn. Then we can use the fact that Sn is a compact manifold.
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Proof of Theorem 7. Let B 1
k
(s0) be the geodesic ball on Sn centered at the south

pole s0 with radius 1
k , k = 10, 11, · · ·. Denote Ωk = Sn \ B 1

k
(s0). We may assume

that g(x0) > 0 for some x0 ∈ Ω10. We consider− 4(n− 1)

n− 2
∆sw + n(n− 1)w = λgψ−

4
n−2w on Ωk;

w = 0, on ∂Ωk.
(Ps,k)

Let

λ1(k) = inf{1

2

∫
Ωk

(
4(n− 1)

n− 2
|∇sw|2 + n(n− 1)w2)dV ol, where

w ∈ H1
0 (Ωk),

∫
Ωk

g(x)ψ−
4

n−2w2dV ol = 1}.

where dV ol is the volume form on Sn induced from the metric ds2 and ∇s is the
gradient with respect to the metric ds2. Since g(x0) > 0 for some x0, λ1(k) is
well defined and there is a non-negative function wk(x) ∈ H1

0 (Ωk) that achieves
the infimum. By the regularity theory for solutions of elliptic equations (Theorem
3.55 on p.86 in [2]) and the maximum principle, we see that wk(x) is actually a C2

positive solution of (Ps,k). Furthermore, from the definition of λ1(k), we see that
λ1(k) is non-increasing on k and λ1(k) ≥ 0; thus λ0 = limk−→∞ λ1(k) exists. Now
we have

λ1(k) =
1

2

∫
Ωk

(
4(n− 1)

n− 2
|∇swk|2 + n(n− 1)w2

k)dV ol

and ∫
Ωk

g(x)ψ−
4

n−2w2
kdV ol = 1.

Thus a subsequence of wk(x) converges weakly inH1(Sn) to a non-negative function
w in H1(Sn). Then wk converges strongly to w in Lq(Sn) for any q < 2n

n−2 . Since
for some p > n

2 , ∫
Rn

|g(x)|p(1 + |x|2)2p−ndx <∞,

we have ∫
Sn

|g|pψ− 4p
n−2 dV ol <∞.

Then by the Hölder inequality,

1 =

∫
Ωk(0)

g(x)ψ−
4

n−2w2
kdV ol ≤ (

∫
Sn

|g|pψ− 4p
n−2dV ol)

1
p (

∫
Sn
w2q
k dV ol)

1
q

for some q < n
n−2 . Thus∫

Sn
g(x)ψ−

4
n−2w2dV ol = limk−→∞

∫
Ωk

g(x)ψ−
4

n−2w2
kdV ol = 1.

On the other hand, it is easy to see that w is a weak solution of− 4(n− 1)

n− 2
∆sw + n(n− 1)w = λ0gψ

− 4
n−2w on Sn;

w ≥ 0 on Sn.
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Since gψ−
4

n−2 ∈ Lp(Sn) for some p > n
2 , w ∈ L

2n
n−2 (Sn), we have gψ−

4
n−2w ∈

Lq(Sn) for some q > n
2 (this can be seen by Theorem 9.15 on p.241 in [8] and the

bootstrap argument). Then the regularity theory for solutions of elliptic equations
(Theorem 3.55 on p.86 in [2]) conclude that w is smooth on Sn\{s0} and continuous
on Sn. An application of a maximum principle lets us conclude that w(x) > 0 on
Sn \ {s0}. Therefore if λ0 > 0, then λ0 is a principal eigenvalue for (Ps) and w is
a corresponding eigenfunction. We notice that for (P ), λ0 is a principal eigenvalue
and u(x) = w(x)ψ(x) is a corresponding principal eigenfunction. Moreover,

u(x)|x|n−2 = w(x)ψ(x)|x|n−2 −→ w(s0) ≥ 0 as |x| −→ ∞.

Now we still need to prove that λ0 is bounded by the lower bound given in the
statement of Theorem 7. To do so, we only need to show that

λ1(k) ≥ c(n)(

∫
Rn

|g+|n2 dx)− 2
n .(2.10)

For any w ∈ H1(Sn) (see Proposition 6.4 on p.126 and Theorem 2.14 on p.39 in
[2]), ∫

Sn
(
4(n− 1)

n− 2
|∇sw|2 + n(n− 1)w2)dV ol ≥ c2(n)(

∫
Sn
w

2n
n−2 dV ol)

n−2
n ,(2.11)

where c2(n) is a constant depending only on n. Also, by the Hölder inequality,∫
Sn
g(x)ψ−

4
n−2w2dV ol ≤

∫
Sn
g+(x)ψ−

4
n−2w2dV ol(2.12)

≤ (

∫
Sn

|g+(x)|n2 ψ− 2n
n−2 dV ol)

2
n (

∫
Sn

|w| 2n
n−2 dV ol)

n−2
n ,

and finally we notice that

∫
Sn

|g+(x)|n2 ψ− 2n
n−2 dV ol =

∫
Rn

|g+(x)|n2 ψ− 2n
n−2ψ

2n
n−2 dx =

∫
Rn

|g+(x)|n2 dx.(2.13)

Then (2.10) is a direct consequence of (2.11), (2.12) and (2.13).

Remark 2.3. As we pointed out in Remark 2.2, Theorem 7 provides information
on the asymptotic behavior only for a particular eigenfunction. The asymptotic
behavior of other eigenfunctions (corresponding to other principal eigenvalues) is
unknown.

If we in addition assume that p > n in Theorem 7, then the principal eigenfunc-
tion u(x) obtained in the proof will satisfy

u(x)|x|n−2 −→ c0 ≥ 0 as |x| −→ ∞
and

|∇u||x|n−1 −→ c1 as |x| −→ ∞
for some constants c0 and c1.
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3. The case that n = 2

Now we prove Theorem 8. As we did in the proof of Theorem 7, we shall pull
the equation in (P ) back onto the two dimensional unit sphere S2. Let s0 be the
south pole of the unit sphere S2, ds2 the standard metric on S2, dx2 the Euclidean
metric on R2. By the stereographic projection F : R2 −→ S2 \ {s0}, S2 \ {s0} is
diffeomorphic to R2, and under this coordinate chart

ds2 =
4

(1 + |x|2)2 dx
2, x ∈ R2.

We denote ψ(x) = 4(1 + |x|2)−2; then ds2 = ψ(x)dx2. The following lemma says
that the eigenvalue problem can be translated into an equivalent eigenvalue problem
on S2. (Once again, we shall not distinguish the notation for functions on R2 and
S2 \ {s0} as we did in the proof of Theorem 7.)

Lemma 3.1. u(x) satisfies

−∆u(x) = λg(x)u(x) on R2(P)

if and only if the function u(x) satisfies

−∆su = λgψ−1u on S2 \ {s0},(Ps)

where ∆s is the Laplace-Beltrami operator on S2.

Proof. Under the coordinate chart (stereographic projection) F : R2 −→ S2 \ {s0},
ds2 = ψ(x)dx2, x ∈ R2.

A direct calculation from the definition of the Laplace-Beltrami operator yields that

∆su = ψ−1∆u,

where ψ(x) = 4(1 + |x|2)−2.

Proof of Theorem 8. We write g(x) = g+(x)− g−(x), where g+(x) = max{g(x), 0}
and g−(x) = max{−g(x), 0}. Now take a function φ(x) ∈ C∞0 (R2) such that
φ(x) = 0 for |x| large, 0 ≤ φ(x) ≤ 1 on R2, and∫

R2

(g+(x)− φ(x)g−(x))dx < 0.(3.1)

(3.1) is possible since we have assumed
∫
R2 g(x)dx < 0. We denote g1(x) = g+(x)−

φ(x)g−(x); then g+
1 (x) = g+(x) and g−1 (x) = φ(x)g−(x), and (3.1) implies that∫
S2

g1ψ
−1dV ol =

∫
R2

g1ψ
−1ψdx =

∫
R2

g1dx < 0.(3.2)

Also the assumptions on g imply∫
R2

|g1(x)|p(1 + |x|2)2(p−1)dx <∞,

for some p > 2. Then∫
S2

|g1(x)ψ−1|pdV ol = 41−p
∫
R2

|g1(x)|p(1 + |x|2)2p(1 + |x|2)−2dx(3.3)

=

∫
R2

|g1(x)|p(1 + |x|2)2(p−1) <∞.



1958 ZHIREN JIN

Then by Theorem 4.7 on p.104 in [2], (3.2) and (3.3), there is a function z on
W 2,p(S2) ∩C1,β(S2) ∩ C2(S2 \ {s0}), such that

∆sz = g∗ − g1ψ
−1 on S2 \ {s0},

where

g∗ =
1

4π

∫
S2

g1ψ
−1dV ol.

Thus we can choose a constant δ1 > 0 such that if 0 < δ < δ1, then

∆s(δz) + |∇s(δz)|2 + δg(x)ψ−1(x) = δ∆sz + δ2|∇sz|2 + δg(x)ψ−1(x)

= δg∗ − δg1ψ
−1 + δ2|∇sz|2 + δg(x)ψ−1(x)

= δg∗ − δ(g+
1 (x) − g−1 (x))ψ−1 + δ2|∇sz|2 + δ(g+(x) − g−(x))ψ−1(x)

= δg∗ − δ(g+(x) − g−(x)φ(x))ψ−1 + δ2|∇sz|2 + δ(g+(x)− g−(x))ψ−1(x)

= δg∗ + δ2|∇sz|2 + δ(φ(x) − 1)g−(x)ψ−1(x)

≤ δg∗ + δ2|∇sz|2 ≤ 0 on S2 \ {s0};
here we have used the fact that 0 ≤ φ(x) ≤ 1. Then it is easy to check that v = eδz

satisfies

−∆sv ≥ δg(x)ψ−1v on S2 \ {s0} for 0 < δ < δ1.(3.4)

Now we start the same procedure as in the proof of Theorem 7. That is, let B 1
k
(s0)

be the geodesic ball on S2 centered at the south pole s0 with radius 1
k , k = 10, 11, ···.

Denote Ωk = S2 \B 1
k
(s0). We may assume that g(x0) > 0 for some x0 ∈ Ω10. We

consider

{
−∆su = λgψ−1u on Ωk;

u = 0, on ∂Ωk.
(Ps,k)

Let

λ1(k) = inf{
∫

Ωk

|∇su|2dV ol |u ∈ H1
0 (Ωk),

∫
Ωk

g(x)ψ−1u2dV ol = 1}.

As we saw before, λ1(k) is well defined and achieved by a positive C2 function
uk(x) ∈ H1

0 (Ωk). Furthermore, λ0 = limk−→∞ λ1(k) exists. Now we normalize
uk(x) such that uk(y0) = 1 at the north pole y0. As we did in the proof of Theorem
2, we see that a subsequence of uk(x) converges in C2 to a positive C2 function u(x)
on any compact set on S2 \ {s0}. Therefore if λ0 > 0, λ0 is a principle eigenvalue
and u(x) is a corresponding eigenfunction.

Now we show that λ0 > 0. Let δ1 and v(x) be defined in (3.4). We claim that
λ0 ≥ δ1. We only need to show that λ1(k) ≥ δ1 for k large. Indeed if λ1(k) < δ1
for some k, let δ = λ1(k), vk = eλ1(k)z ; (3.4) is

−∆svk ≥ λ1(k)g(x)ψ
−1vk on S2 \ {s0}.(3.5)
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Set uk = vkhk for a new function hk. Then the definition of uk(x) and (3.5) implies
that hk satisfies 

−∆shk − 2〈∇ ln vk,∇hk〉s ≤ 0 on Ωk;

hk = 0 on ∂Ωk;

hk > 0 on Ωk.

(3.6)

where 〈∇ ln vk,∇hk〉s is the inner product of the vectors ∇ ln vk and ∇hk under the
metric ds2. Now an application of Hopf’s maximum principle (Theorem 3.71 on
p.96 in [2]) to (3.6) concludes that hk can not take an interior positive maximum
on Ωk unless hk(x) is a constant. This is a contradiction.

Remark 3.1. The idea of constructing vk(x) in (3.5) is borrowed from [9].
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