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DECOMPOSITION THEOREMS AND APPROXIMATION
BY A “FLOATING” SYSTEM OF EXPONENTIALS

E. S. BELINSKII

ABSTRACT. The main problem considered in this paper is the approximation
of a trigonometric polynomial by a trigonometric polynomial with a prescribed
number of harmonics. The method proposed here gives an opportunity to con-
sider approximation in different spaces, among them the space of continuous
functions, the space of functions with uniformly convergent Fourier series, and
the space of continuous analytic functions. Applications are given to approx-
imation of the Sobolev classes by trigonometric polynomials with prescribed
number of harmonics, and to the widths of the Sobolev classes.

This work supplements investigations by Maiorov, Makovoz and the author
where similar results were given in the integral metric.

INTRODUCTION

Let X be a Banach space of functions defined on the cube T™ = (—m, 7]™ and
2m-periodic in each variable. For k = (k1,....,kn) € Z", let x = (21,...,2,) €
R™  (x,k) = kiz1+... + knxp, and let T'(0,,;x) = Zkeem cxe!®X) be a trigono-
metric polynomial with the spectrum from the set 6, of finite cardinality m.

Let

def . .
m(f;X) = inf_inf |[f - T (0,
em(f; X) = inf inf Il = T(O0m)llx

be the degree of best approximation of f by polynomials with m harmonics. The
quantity e, (f; L2) originally appeared in a paper by S. B. Stechkin [St], who used it
in the criterion for absolute convergence of orthogonal series. This characteristic has
become popular after Ismagilov’s excellent paper [Is], in which he found nontrivial
estimates for e, (]z|; Loo) and gave interesting and important applications to the
widths of Sobolev classes. The Ismagilov method was developed in a series of papers
by V. Maiorov (see, for example, [Mrl1], [Mr2], [Mr3]). The probabilistic method
for constructing approximating polynomials was proposed by Y. Makovoz [Mk] and
the author [Bel].

This paper is organized as follows. First we obtain an estimate in the space
C(T) of continuous functions of one variable and describe the method in all details.
In the subsequent sections the method is used in other situations: the space U of
uniformly convergent Fourier series, the space C4 of continuous analytic functions,
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and the space C'(T™) of continuous functions of n real variables. The proofs in these
sections are less detailed, and often only necessary differences are pointed out.

Applications are given in the concluding section. As usual Cs denotes an absolute
constant.

APPROXIMATION IN THE SPACE C(T)

Let Ty be a trigonometric polynomial of degree at most N, namely,
N
Tn(x) = Z cpett®.
k=—N

Theorem 1. For every 2 <p<oo and1 < M < 2N there exists a trigonometric
polynomial T'(Oar; x) with number of harmonics at most M, such that

N N
(1) T (@) = TOrs5 )]0 < Cr(57 loa(1+ 32 2| T,
and the spectrum Oy is in the segment [—2N, 2N].
The proof is based on the following lemmas.

Lemma 1. Let Van(f;z) be the de la Vallée-Poussin means of the function f.
Then

(1.2) 1Van (5 2)lloo < Cal flloo-

This lemma is well known. Its proof may be found, for example, in [Z]. We
note only that Von (f) is a trigonometric polynomial of degree < 2N and for every
trigonometric polynomial T of degree < N

Von (T x) = Tn ().

We denote by || - || the norm of the Orlicz space generated by the function
P(u) = " — 1 (see, for example, [Z)]).

Lemma 2. For every trigonometric polynomial T (x) and for every M < 2N there

exists a trigonometric polynomial T (0yr; x), with the number of harmonics at most
M, such that

(13) T (x) ~ T(Orr:0)ls < Cs(57) Tl

where the spectrum 0y C [N, NJ.

In the space L, (2 < ¢ < o0) such an inequality was proved in [Be2], [Mk]. The
proof proposed in [Bo] is based on Khinchin’s inequality and can be used in this
situation with minimal changes. For the sake of completeness we shall give the
proof later.

Lemma 3. For each A > 0, every polynomial Ty € Ly can be represented as a
sum of two polynomials Ty = T}y + Tiy, each of degree < 2N, such that

2
(1.4) ITanlloe < CMlTllw, I TEnlloe < Cse™ I T |l

For the proof, it is sufficient to truncate the polynomial T at level A and apply
the de la Vallée-Poussin operator to both sides of the equality (see Lemma 1).
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y==z y= Rlogz

FIGURE 1

Lemma 4. For every trigonometric polynomial T and for every M < 2N there
exists a trigonometric polynomial T(0pr;x), with the cardinality of the spectrum
< M, such that

N
(1.5) TN (x) = T(On; 7)o < Col57 log N)Y2|| T 2.

This can be derived from the original proof given in [Bel], as well as from the
corresponding statement for the space Ly (2 < g < o0) (see [Be2], [MK], [Bo]), if
the order of growth C, ~ ,/q in Khinchin’s inequality is taken into account.

Proof of Theorem 1. First let p = 2. Denote N/M = R and consider the iterated
sequence

a1 (N, M) = Rlog N, ax(N,M)= Rlogai(N,M), ...,

ax+1(N, M) = Rlogar(N, M), ....

The sequence {ax(N, M)} converges to xg, the largest root of the equation x =
Rlogx. This can be easily seen from Figure 1.

The x( can be estimated by Rlog R < z¢p < 2Rlog R. We will prove that there
is a number « such that for every k and 1 < M < alN there exists a trigonometric
polynomial T'(6%,) such that

(1.6) ITn — T(0%)]loo < Cov/an(N, M)||Tl|2-

Then after a finite number of steps we will obtain the desired estimate.

For k = 1 the estimate (1.6) is given in Lemma 4. Assume that (1.6) holds
for k for all N; we now prove it for £k + 1. According to Lemma 2, there exists a
polynomial T'(6,/; ) such that

N
TN (z) = T(Onr; @)y < 03(M)1/2||TN||2.
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Applying Lemma 3, we find the decomposition
Tn (@) = T(0a;2) = Ton(z) + Toy (2),

for a parameter \ yet to be prescribed. Using our assumption for k, we approximate
the polynomial Ty by a polynomial T(6%,;z) in the norm Lo,. Then

1Ty = T(0xr) = T(050)lloo < | Tonlloo + 1 T3n = T(O3) [l
< CaM|Tx = T(On)l + Cov/ai (2N, M) T3 |2-
From (1.3) and (1.4) we obtain
1T = T(0ar) = T(05,) I

N 2
= V WHTN||2(\/§C4C3)\+030506\/m6_)\ )-

Set A = /1/2logay(N,2M). Then the right-hand side can be rewritten in the form
(1.7)

2ak(2N, M)

N
(= logak(N, 2M))" /2| T [|2(CaCs + CsCs * Vax(N.2M)/log ar(N, 2M)

2M

).

N _ . .
oM ) - + ) )
As sirlogar(N,2M) = agq1(N,2M), we need only prove that the expression in
parentheses does not exceed an absolute constant Cg. To this end we show that for
every k
2ax(2N, M) 1 1
1.8 ———— 2 <A4logd(l+ ——— + ... + ——————).
(18) (N 20 = Mo A+ Nt Tt g NzanT)
For k=1
a1(2N,M)  4log2N

- < 4log 4.
a (N, 2M) ~ logN - 0%

Assume that (1.8) holds for k — 1. Then, according the definition for &
ap(2N, M)  4logar_1(2N,M) 1 ar—1(2N, M)

_ =401
ox(N20) ~ Togar (V.20 0t g (2D 8 a1 (N, 20D
4(1 + ! log(4log4(1 + ! +.. 4 ! )
= log N/2M 0817708 log N/2M " (log N/2M)*—2

1 1
log N/2M ot (1ogN/2M)k—1)'

Therefore if N > 2Me?, then there exists an absolute constant C; such that
% < C7. We can take Cg > C2C3 and bound M < olN in such a way
that the expression in the parentheses in (1.7) does not exceed Cg.

An odd M is treated similarly.

The theorem is proved for all M and N such that M < aN.

For M satisfying alN < M < 2N the conclusion of the theorem follows from the
above.

The proof of the theorem in the case 2 < p < oo is based on the following
decomposition lemma, analogous to Lemma 3.

< 4log4(l+
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Lemma 5. Let a trigonometric polynomial Ty and A > 0 be given. Then Tx can
be represented as the sum of two polynomials Tay and Ty, Tn = Ty + Tin,
such that

(1.9) ITonlloe < CsAVPITnllp, 1 T3xll2 < CoAVPV2 | Tl

Now we can prove the theorem for 2 < p < oco. By the above, there exists a
polynomial T'(6,/; ) such that

N N
[Ty~ T(001:0)]e < iy loa(2e + 1) T3 o
Therefore by (1.9) we have
1Ty = T(0ar) oo < CroA? + AVP=2(N/M log (N/M + 1)) 2]|| T -

Putting A = N/M log (N/M + 1), we obtain the desired result. O

Remark 1. As one can see from the proof, the interval where the spectrum of the
approximating polynomial is located is doubled on every step. But the actual
support of the spectrum is contained in the segment [—2N, 2N]. This follows from
Lemma 1.

Remark 2. If Ty is the Dirichlet kernel
N
(1.10) Tn(z)= Y e*
k=—N

then estimate (1.1) can be derived immediately from [G1] or [Sp]. A more accurate
estimate of the approximation of kernel (1.10) is proved in [Mr2].

Remark 8. This method of approximation can be used in every space where state-
ments similar to Lemmas 1-4 are valid.

Proof of Lemma 2. Suppose that || Tx|2 = 1, fix N/M ~ 2* and write

N N

_ 1 ija (1 1y idw

E c;e? = E cje e’ + E cj(1—¢j)e
j=—N j=—N

j=—N
N N N
Z 11jw+zcj1_6 2z]w+zcjl_€)(1_€)z]w
j=—N j=—N
N
(1.11) = Y cjejelm 4 Z cj(1—eh)eel™ + .
j=—N
N
+ Z ci(1—¢}) 1—6 )eé’?eijw
]_—N
—|—ch1—6 1—6)”1
j=—N

where {€]'}_N<j<n,1<m<k are £1, the signs to be specified. Denoting (1.11)
by &(e,x), we deduce from the definition of norm in the Orlicz space [Kr| and
Khinchin’s inequality that
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J1otccalluiaarde = [ nt 20+ [ wteote.a)dayaet..em

< /del...dem_l tig(f)%(//?/)(t(b(e,x))demda:)
T

N
<Cu Y [OX leln = et = P et e
j=—N

m<k

The Holder inequality and integration with respect to €', ...,e™ ™! give

(112) [ 16te e < 2%,

and if we let

Ac={j€[-N,N]| ¢ =..=¢ =1},
then
1 N
Ad = o7 S (€)1,
j=—N
N
(1.13) /|A€|de =55 ~ M.

Now (1.12) and (1.13) allow us to choose the signs €7 so that

T(Oasz) =Y (1—€}).(1 = eh)e”

j
satisfies the condition

N
1T () = T(0rs; )|y < Cls(M)l/Q-

Using the homogeneity of the norm, we conclude the proof of the lemma. O

APPROXIMATION IN THE NORM OF UNIFORM CONVERGENCE

Let U be the Banach space of continuous functions defined on T with the norm
Ifllv = supg [|Sk(f)]|oo, Where Sk(f), &k = 1,2,..., are the partial sums of the
Fourier series of f.

Theorem 2. Let 2 < p < oo, 1< M < 2N, and let Ty(x) be a trigonometric
polynomial of degree N. Then there exists a trigonometric polynomial with a number
of harmonics < M, such that

N N
(2.1) TN =T (Om)lv < Cl(ﬁ)l/”(log(ﬁ + 1) Tl
and the spectrum Oy is contained in the segment [—N, N].
In order to use the method of Theorem 1, we need the following results.

Lemma 6. Let A > 1. Then every polynomial T can be represented as a sum of
two polynomials Ty, T4, of degree at most N, such that

_y2/3
ITxllo < CoMl[Twlly, TR N2 < CsAY2e™ Ty
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Proof. By Lemma 3, Ty can be represented in the form Ty = T}y + T2y, where
ITanlloe < Cat| Ty, [ TEyll2 < Coe™ | Tivlle
By [Kil, the function T}y may be decomposed into T,y = g + h, where
(2.2) lgll < ConllTonlloos NIz < Cre™ [T lloe.
Therefore Ty = g + T3y + h, where
loll < Cstul Tl 1 T5y +hllz < Cole™ +te™) | Tivlly.

We put now t = A3 and p = A?/3. By the uniform boundedness of the operators
of partial sums in the space U, the lemma follows. O

Lemma 7. Let 1 < M < 2N, and let Ty be a trigonometric polynomial of de-
gree < N. Then there exists a trigonometric polynomial T(0pr), with a number of
harmonics < M, such that

N
TN —T(Om)llv < ClO(Mng)l/ZHTNH%

The proof is analogous to that of Lemma 4.
Now the proof of Theorem 2 follows as Theorem 1. We consider first the case
p = 2. The iterative sequence (R = N/M)

ay :RlogN, anglogBal, cor Q41 :Rlog3ak,...
converges to xo the largest root of the equation z = Rlog® 2 which can be estimated
by Rlog® R < xy < 2Rlog® R. After a finite number of steps, the desired result is
achieved.

Let 2 < p < co. The following result can be proved by the same method as in
[Ki2]

Lemma 8. Let A > 0 and 2 < p < co. Then every polynomial T can be repre-
sented as a sum of two polynomials Ty and T%, of degree at most N, such that

TNl < CLidAY 9| Tllq, TR ||z < CLaAY 972 Ty .

Using this lemma and the already-proved result for p = 2, we obtain the assertion
of the theorem.

Remark 4. Theorem 2 gives a better estimate than Lemma 7 only for M close to
N.

Remark 5. The essential part of the proof is the decomposition obtained in Lemma,
6, the proof of which is based on Carleson’s famous theorem about convergence
almost everywhere of the Fourier series for functions in Lo. It would be interesting
to give another proof independent of this deep result.

APPROXIMATION OF ANALYTIC POLYNOMIALS IN THE SPACE H®°

Let us consider an analytic polynomial, i.e.

N
(3.1) Tn(x) = cre™,
k=0

and estimate its best approximation by analytic polynomials with M harmonics.
Note that we cannot use Theorem 1 because the polynomial in Theorem 1 is not
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analytic. It happens that for an analytic polynomial T, the approximating poly-
nomial in Theorem 2 is analytic. However Theorem 2 yields a worse estimate of
the approximation.

Theorem 3. Let Ty be an analytic trigonometric polynomial, and let 2 < p <
o and 1 < M < N. Then there exists an analytic trigonometric polynomial
T(On;x), with a number of harmonics < M, such that

N N
(3.2) TN —T(0nm)]loo < Cl(ﬁ 1Og(M + D))V T |l
and Op C [0,2N].

We begin with the case p = 2. The main lemma to be proved is the decomposition
lemma.

Lemma 9. Let A > 0 be given. FEvery analytic polynomial can be represented as
the sum of two analytic polynomials, Ty = Tl + Tan, of degree < 2N, such that

2
ITonlloo < CoMTN Ny, [Tonll2 < Cae™ || T |y

Proof. We follow [Kil] and assume without loss of generality that [|[Tn|ly, = 1.
We truncate T by multiplying it by an analytic function 7(x) = [a + iH ()]}
where H is the Hilbert transform and a(x) = max(1, @) It is obvious that
|7(2)] < 1/a(x); therefore | T (z)7(x)| < A. From the definition of the norm in the
Orlicz space and the Tchebychev inequality we have

(3.3) p{z s [T (z)] > A} < e /2,
Denote Ey = {z: |Tn| > A}. Then
(3.4)

[0 =r@my@pdr < [ my el +/|TN|2H(1Q;2“)|2@).

Because a(z) = 1 if |[Tx| < A, the first term in (3.4) can be rewritten in the form
Jg, ITN| = Al?dz, which by virtue of (3.3) can in turn be estimated by

/ |u — )\|e_“2/2du < Cse /2.
A

For the second term we have
H(1l
[P i oy

Since the Hilbert transform is bounded in Lo, it follows that

/T|H(1 —a)?dr < /T(l —a)’dx = /|TN|>A(1 — |Tn|/N)?dx

which we have already estimated. Now Ty = 7Tn + (1 — 7)Tny = f1 + f2, where
f1 and f5 are analytic functions. We apply the de la Vallée-Poussin operator and
Lemma 1, and the proof follows.

Now the theorem for p = 2 can be proved by the method of Theorem 1. We
omit the details.

Since for 2 < p < oo every analytic polynomial can be decomposed as Ty =
T+ Ty with [Ty loe < CoAY | Twlly, [ T2yll2 < CrA/P=1/2| T, (sce [Ki2]),

it is sufficient to apply the statement for p = 2 and choose an optimal . O



APPROXIMATION BY A FLOATING SYSTEM... 51

APPLICATIONS

1. Best approximation by trigonometric polynomials of functions from
the Sobolev classes. We consider W** (1 < p < 00), the class of functions which
have the integral representation

(1) @) = 5= [ oo = WP,
where

— 1
Fro(u) = E Fcos(ku —ma/2), 0<a<?2,
k=1

is a Bernoulli kernel and ||¢||, < 1. We consider

en(WPHX) = sup_em(f; X),
P

the error of the best approximation in the Banach space X of the class W by
trigonometric polynomials with a prescribed number of harmonics.

Theorem 4. Let 1 <p < oo and r > 1/p. Then
em(W;;,a; U) = m~ min(r,r—l/p+1/2).
The lower estimate follows immediately from [Bel], since
em(Wy*U) > em (W% La).

The upper estimate can be proved in the usual way (see for example [Be2]).
The exact order of e,,(W;"*; L,), 2 < q < 0o, was found earlier in [Be2].

Corollary. Let 1 <p<oo andr > 1/p. Then
em(W£7a; Loo) ~m~ min(r,r—l/p+1/2)'

2. Best approximation of analytic functions in the unit disk |z| < 1. In our
approach to this problem we consider the subspace WZ; C Wy« of functions of the
form (4.1) with Fourier series containing only exponentials with positive indices.

Theorem 5. Let 1 <p < oo andr > 1/p. Then
em(WZ;? Hoo) = m~ min(r,r—l/p+1/2)'
The proof is based on Theorem 3.
3. Best approximation and the estimate of trigonometric widths for
the classes of functions of several variables. Let f be a real function on

T" = [~m,7|", 2m-periodic in each variable, and let r be an integer. Let W} be
the class of functions f with

S DD Dl <1
ri+ret...+rp=r
We shall estimate the trigonometric widths

T r. def . . . _
A (Wys Lg) = lelffe%’;ﬁ% 1f = T(0m)llq,
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where the infimum is taken over all subsets of cardinality m in Z™. It is obvious
that the trigonometric m-width is no less than the Kolmogorov m-width, namely,

uf sup inf [|f = ull,

r def .
( ) ( P q) 1Lm feW;‘ UE Ly,

where the infimum is taken over all subspaces L,, of dimension m.
Another obvious but useful inequality is

em(Wys L) < df (W) Ly).
Theorem 6. Let 1 <p <2 p' =p/p—1, 2<q<p <oo, and r >n. Then
dl (W7 Lg) =< m~r/n=1/et1/2),

Due to estimates for the Kolmogorov widths ([Mr3], [Ho]), the lower estimate is
a corollary of them. The upper estimate strengthens the corresponding estimate for
the Kolmogorov widths. The proof of the upper estimate is based on the extension
of the estimate of Theorem 1 to the case of several variables.

Remark 6. In this connection it would be interesting to find an extension of Theo-
rem 4 to the case of several variables. The main open question is a corresponding
decomposition lemma.

ACKNOWLEDGMENTS.

I would like to express my deep gratitude to Yuly Makovoz and Dany Leviatan
for their helpful comments on this paper. I also thank the referee, who pointed out
to me how Lemma 8 and therefore Theorem 2 could be strengthened.

Note. After this paper was submitted the author learned that a result analogous to
Theorem 1 was proved by another method by R. DeVore and V. Temlyakov. Their
proof is mainly based on Gluskin’s finite-dimensional result [G1].

REFERENCES

[St] S. B. Stechkin, On the best approzimation of given classes of functions by arbitrary poly-
nomitals, Uspekhi Matematicheskikh Nauk 9 (1) (1954), 133-134 (Russian).

[Is]  R. S. Ismagilov, Widths of set in normed linear spaces and approzimation of functions by
trigonometric polynomials, Uspecki Matematicheskikh Nauk 29 (3) (1974), 161-178 (Rus-
sian), English translation in Russian Math. Surveys 28 (3) (1974). MR 53:11284

[Mrl] V. E. Maiorov, On linear widths of Sobolev classes and chains of extremal subspaces,
Matematicheskii Sbornik 113 (1980), 437-463; 119 (1982), 301; English translations in
Math. USSR Sb. 41 (1982); 47 (1984). MR 82j:41022; MR 84b:41021

[Mr2] V. E. Maiorov, Trigonometric widths of Sobolev classes W, in the space Lq, Matematich-
eskie Zametki 40 (2) (1986), 161-173; English translation in Math. Notes 40 (1986). MR
87k:46072

[Mr3] V. E. Maiorov, On the best approzimation of classes W{ (I®) in the space Loo(I°), Matem-
aticheskie Zametki 19 (1976), 699-706; English translation in Math. Notes 19 (1976). MR
54:10946

[MK] Y. Makovoz, On trigonometric n-widths and their generalizations, J. Approx. Theory 41
(1984), 361-366. MR 86g:41038

[Bel] E. S. Belinskii, Approzimation of periodic functions by a “floating” system of exponentials,
Studies in the Theory of Functions of Several Real Variables (Y. A. Brudnyi, ed.), Yaroslav.
Gos. Univ., Yaroslavl, 1984, pp. 10-24 (Russian). MR 88j:42002

[Be2] E. S. Belinskii, Approzimation by a “floating” system of exponentials on classes of smooth
periodic functions, Matematischeskil Sbornik 132 (1987), 20-27; English translation in
Math. USSR Sb. 60 (1988). MR 88d:42001



(2]
[Bo]

[G1]

(Sp]

Kil]

[Ki2]

(Ho]

[Kr]

APPROXIMATION BY A FLOATING SYSTEM... 53

A. Zygmund, Trigonometric series, 2nd ed., Cambridge Univ. Press, Cambridge, 1959. MR
21:6498

Y. Bourgain, Bounded orthogomal systems and the A(p)-set problem, Acta Math. 162 (3-4)
(1989), 227-245. MR 90h:43008

E. D. Gluskin, Extremal properties of orthogonal parallelepipeds and their application to the
geometry of Banach spaces, Matematischeskil Sbornik 136 (1988), 85-96; English transla-
tion in Math. USSR Sb. 64 (1989). MR 89j:46106

J. Spencer, Siz standard deviations suffice, Trans. Amer. Math. Soc. 289 (2) (1985), 679-
706. MR 86k:05005

S. V. Kislyakov, Quantitative aspect of the “corrigible” theorems, Investigations on Lin-
ear Operators and Function Theory, Zapiski LOMI 92 (1979), 182-191. (Russian) MR
82c¢:28012

S. V. Kislyakov, Fourier coefficints of boundary values of functions that are analytic in the
disk and bidisk, Spectral Theory and Functional Operators II, Trudy Math. Inst. Steklov
155 (1981) 77-94; English translation in Proc. Steklov Inst. Math. 1983, no. 1 (155). MR
83a:42005

K. Hollig, Approzimationszahlen von Sobolev-Einbettungen, Mathematische Annalen 242
(1979), 273-281. MR 80j:46051

M. A. Krasnoselskii and Y. B. Rutitskii, Convex functions and Orlicz spaces, Fizmat-
giz, Moscow, 1958; English translation, Noordhoff, Groningen, 1961. MR 21:5144; MR
23:A4016

DEPARTMENT OF MATHEMATICS, TECHNION, 32000, HAIFA, ISRAEL

Current address: Department of Mathematics, University of Zimbabwe, P. O. Box MP167,
Mount Pleasant, Harare, Zimbabwe

E-mail address: belinsky@maths.uz.zw



