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MINIMAL SETS AND VARIETIES

KEITH A. KEARNES, EMIL W. KISS, AND MATTHEW A. VALERIOTE

ABSTRACT. The aim of this paper is twofold. First some machinery is estab-
lished to reveal the structure of abelian congruences. Then we describe all
minimal, locally finite, locally solvable varieties. For locally solvable varieties,
this solves problems 9 and 10 of Hobby and McKenzie. We generalize part
of this result by proving that all locally finite varieties generated by nilpotent
algebras that have a trivial locally strongly solvable subvariety are congruence
permutable.

1. INTRODUCTION

This paper is an outgrowth of our study of locally solvable locally finite varieties.
Our purpose is to describe tools that have been developed to better deal with finite
solvable algebras. We refer to these tools as “coordinatization theory” and “the
theory of minimal sets in subdirect powers”. Although these tools were originally
developed to deal with solvable algebras, we present them in greater generality
here. After spending the early sections of this paper building theory, we then
present one of the firstfruits of coordinatization theory: we characterize the locally
finite minimal varieties generated by an abelian algebra.

In Section 2 we present all technical results on centrality and type 2 minimal sets
that we use later. There are some new observations here, too, like Theorem 2.12
and its corollary.

Our first section devoted to theory building is Section 3. In this section we
describe coordinatization results. We approach the subject in a general way, ex-
plaining how a subset of an algebra may be coordinatizable by E—traces, but we
quickly get to the most interesting case: we consider when a subset of an algebra
is coordinatizable by traces. Such a subset might be called a “higher dimensional
trace”. We analyze the algebra induced on a coordinatizable subset of an a—class,
where « is a minimal congruence on a finite algebra A and typ(0,, @) € {1,2,3}.
We now describe what this means and why it is interesting. To minimize the pre-
requisites for this discussion we assume that A is a finite simple algebra. In this
setting, &« = 1A, and minimal sets and traces are the same thing. We will use the
word “trace” in the next few paragraphs since that is the accurate choice when
looking at algebras which are not simple.

The fundamental concept of tame congruence theory is that an algebra can be
locally approximated by induced algebras. Omne proceeds as follows. Choose a
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nonconstant idempotent unary polynomial e of A with minimal range. Let N =
e(A). Then N is a (0, 1)-minimal set of A and also a (0, 1)—trace. Define A|xy to be
the algebra whose universe is N and whose basic operations are the polynomials of
A under which N is closed. These are the f € Pol(A) such that f(N*) C N. What
makes this a powerful approach to the study of finite algebras can be summarized
by four words: Isomorphism, Density, Separation and Classification. The word
Isomorphism refers to the fact that, up to polynomial equivalence, the algebra A|y
is independent of the choice of e. Hence, the polynomial equivalence class of Ay
is an invariant of A. The word Density refers to the fact that any two elements of
A can be connected by a chain of overlapping traces. The word Separation reflects
the fact that if a,b € A are distinct, then there is a polynomial p € Pol;(A) such
that p(4) = N and p(a) # p(b). The word Classification refers to the fact that, up
to polynomial equivalence, the structure of A|y is known. Namely, A|y is one of
the following algebras:

1. a simple G-set (for a group G),
2. a 1-dimensional vector space,
3. a 2—element Boolean algebra,
4. a 2—element lattice, or

5. a 2—element semilattice.

The number 1 — 5 is called the type of A|y and also the type of A.

When a finite algebra A offers a puzzle, analysis of the puzzle often can be
reduced to the consideration of a certain “configuration” of elements and operations.
We do not intend to define “configuration” here, but roughly what we mean by this
term is a set of first order sentences in the language of A 4 which are either atomic
or negated atomic. Now, one can use separation to map any configuration of A into
N in a way that preserves at least one negated atomic sentence. This transforms
the puzzle about A into a related puzzle about the induced algebra A|y. Because
of the isomorphism between induced algebras it doesn’t matter which you choose.
Using the classification of induced algebras, one solves the puzzle “locally”. Then
one uses density to transfer the solution back to the original algebra. Of course, the
success of this strategy depends on how closely A is approximated by its induced
algebras.

In Figure 1 we have indicated what might be called the “geometry” of an 8-
element simple algebra A. The black dots represent elements of A. These are the
“points” of the geometry. The set N = {0,1} is one of the ten traces of A. The
traces are the “lines” of the geometry. It would be highly desirable to understand
how all the operations of A compose, but tame congruence theory won’t tell us
that much; the theory only tells us what is happening “on a line”. That is, if
p € Poli(A) and p(N*) C N, then p|y € Polg(A|y). If, for example, A is of
type 2, then p|y is a vector space polynomial. This tells us that a fragment of the
Cayley table for p is described by an operation on N of the form ajx; + - - -+ agzk.
Tame congruence theory does not tell us more about the Cayley table of p, nor
does it tell us anything about other polynomials ¢ € Pol,,,(A) unless it happens
that g(N™) C N (or at the very least one must have ¢(Ny X - -+ X Np,) € Ny, where
all N; are traces).

In Section 3 we go a step further. We show that often there are subsets T'C A
larger than a trace which share the basic properties of traces and which may be
thought of as higher dimensional traces. The sets we consider are those subsets of A
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FIGURE 1. The geometry of A
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FIGURE 2. Multitraces T and 7"

of the form T' = f(N,... ,N), where N is a trace and f € Pol(A). We call these
sets multitraces. In Figure 2 there are two multitraces which are not just traces.
The multitrace T" might be thought of as a “hyperplane” of the geometry. A
classification of algebras of the form Al|r, where T is a multitrace, would tell us
what is happening on a hyperplane rather than just what is happening on a line.
The structure of A|r when A is abelian follows fairly directly from coordinatization
theory. We are also able to determine the structure of A|r when A has type 3.
Unfortunately, the notion of a multitrace is not well-behaved in types 4 and 5.
The class of multitraces of our simple algebra A contains the traces, so we still
have the properties of separation and density with respect to multitraces. In Sec-
tion 3, we classify the algebra induced on a multitrace for types 1, 2 and 3. With
respect to the isomorphism property which traces enjoy, it is not true that any two
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multitraces are polynomially isomorphic. However, any polynomial image of a mul-
titrace is again a multitrace and, in types 1, 2 and 3, the structure that A induces
on a multitrace is determined up to polynomial equivalence by the cardinality of
the multitrace. These two properties may serve as substitutes for the isomorphism
property of traces.

It turns out that there is another realization of the intuitive notion of a higher
dimensional trace which works well in all types. This new notion, called a gener-
alized trace, will be developed in a subsequent paper. Here we will only say that
the definition of a generalized trace is a little more complicated than that of a
multitrace, but in types 1, 2, and 3 these concepts coincide.

Section 4 is our other section devoted to theory building. In this section we inves-
tigate minimal sets in subdirect powers. Generally, our goal is to better understand
the connection between local and global properties in a locally finite variety. Specif-
ically, our goal is to analyze the relationship between minimal sets in A and minimal
sets in an arbitrarily chosen finite algebra B € V(A). This seems to be a difficult
problem. For example, say that a finite algebra satisfies the empty tails condition
if all of its minimal sets have empty tail. It is known (see [11]) that a locally finite
variety is congruence modular if and only if all finite members satisfy the empty
tails condition. The empty tails condition is not sufficient (nor necessary) to prove
congruence modularity for a single algebra; but the empty tails condition for every
finite subalgebra of a power of A is strong enough to prove that A is congruence
modular, and moreover it is strong enough to prove that the variety generated by
A is congruence modular. In particular, this shows that the empty tails condi-
tion holding for all subalgebras of powers of A implies that typ{B} C {2,3,4}
whenever B is a subalgebra of a power of A. However, this implication does not
hold on the level of single algebras; A may satisfy the empty tails condition even
when typ{A} Z {2,3,4}. What is needed, clearly, is a better understanding of
the consequences of asserting that all minimal sets of subalgebras of powers satisfy
a specified condition (like the empty tails condition). In Section 4 we consider a
finite algebra A which has a type 2 prime quotient {«, 3). We describe the minimal
sets corresponding to certain type 2 intervals in subdirect powers of A. In the case
where A is a simple algebra of type 2, our description of minimal sets in subdirect
powers applies to all type 2 prime quotients in all subalgebras of powers of A.

In Section 5 we use the tools developed in the earlier part of the paper to classify
the minimal, locally finite varieties generated by abelian algebras. Any locally finite
variety generated by abelian algebras is locally solvable. Any locally finite minimal
variety is generated by a strictly simple algebra—by which we mean a finite simple
algebra with no nontrivial proper subalgebras. Hence, a minimal locally finite vari-
ety generated by abelian algebras is generated by an abelian strictly simple algebra.
The main idea behind the classification theorem is that this strictly simple abelian
generating algebra must be coordinatizable by traces. The connection between the
theory of coordinatization and matrix powers allows one to deduce that a minimal,
locally finite variety generated by a simple algebra of type 1 is term equivalent to
a matrix power of the variety of sets or the variety of pointed sets. It also allows
one to deduce that a minimal, locally finite variety generated by a simple algebra
of type 2 is an affine variety. We give two proofs of the latter result in Section 5.

In Section 6 we give yet a third proof that a minimal locally finite variety gen-
erated by a simple algebra of type 2 is affine. We then extend this result to non—
minimal varieties generated by nilpotent algebras. The main result in this section
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is that a locally finite variety generated by nilpotent algebras either is congruence
permutable or else has a nontrivial strongly abelian subvariety. This section can be
read independently of Sections 3-5.

The reader is assumed to be familiar with the book [6] on tame congruence
theory, and also with the book [2] containing the basics of universal algebra. The
notation used in the paper is mostly the same as that used in [6]. In particular,
algebras are denoted by boldface capital letters, and A is the underlying set of A.
Boldface lower case letters, like b, denote sequences of elements, and b; stands for
the i—th component of b. Thus b typically denotes (b1, ...,b,) for some integer n
if these are arguments of a function, and the corresponding column vector, if this
is an element of a cartesian product. If R is a binary relation, then by a R b we
mean a; R b; for all i.
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2. CENTRALITY

First we recall the concepts of centrality and of the commutator (defined in
Chapter 3 of [6]) in a slightly more general form.

Definition 2.1. Let A be an algebra, L and R binary relations on A, and § €
Con(A). We say that L centralizes R modulo 6, or that the (L, R)~term condi-
tion holds modulo § (in notation: C(L, R;6)) if for all polynomials f of A and
elements a L b and ¢ Rd of A,

fla;c) E f(a,d)
flb,e) & f(b,d).

The commutator of L and R is defined to be the smallest congruence ¢ of A
with C(L, R;6), and it is denoted [L,R]. The largest congruence o of A satis-
fying C'(«, R;6) is denoted by (6 : R). We write ann(R) for (0a : R); this is the
annihilator of R.

We have to make several remarks to justify this definition. First note that
if R denotes the tolerance of A generated by R, then C(L, R;6) is equivalent to
C(L, R;6). If R itself is reflexive, then it is sufficient to assume f(a,c) § f(a,d) <=
f(b,c) 6 f(b,d) for all terms f (rather than polynomials).

It is easy to see that the set of all congruences § satisfying C'(L, R;6) is closed
under intersection, so the commutator [L, R] indeed exists. However, this set
of congruences is not necessarily a filter in Con(A). The polynomials f(z,c)
and f(xz,d) in Definition 2.1 are called R—twins because they are derived from
the same polynomial with different parameter sequences which are R-related com-
ponentwise. More generally and more precisely, when S C A* is a k-ary relation
on A and ¢(x,7) is a polynomial, then we say that a sequence of unary polynomi-
als, (tf(x,s!),... ,t2(x,s")), where the tuples (s},...,s¥) each belong to S, is a
sequence of (simultaneous) S—twins. The statement that the (L, R)—term condition
holds is simply this: any pair of R—twins which agree modulo 6 at the value a also
agree modulo 6 at any value L-related to a. As one can see, the relations L and R
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do not play symmetric roles. We have described the (L, R)—term condition in such
a way that L refers to the relation in the leftmost position in [L, R] and C'(L, R; 6),
while R refers to the relation which occupies the position to the right of L.

It is not difficult to show that the set of all pairs (a, b) for which C({(a,b)}, R;6)
holds is a congruence relation of A. This congruence is of course (§ : R), so the
definition of (6 : R) is meaningful. We should really speak of a left annihilator
here, but this will cause no trouble, since there is no natural definition for a right
annihilator. Thus, if L denotes the congruence generated by L, then C(L, R; ) and
C(L, R; ) are also equivalent.

An important consequence of the existence of the annihilator is the fact that

Cla;, R;é) forallie I <«— C(\/ a;, R; 6),
i€l
where o; € Con(A) for i € I. This does not imply, however, that the commutator
is left distributive over join.

Definition 2.2. If A is an algebra and R is a compatible, reflexive, binary relation
on A, then the subalgebra of A? with underlying set R (that is, all R-related pairs)
will often be denoted by A(R). If L is any binary relation on A, then Ay r denotes
the congruence on A(R) generated by

{((z,2), (y,9)) | = Ly}

Let m; denote the coordinate projections of A(R) onto A. If v # 0 is a congruence
of A, then we denote by ~; the congruence ;' (7), and write n; for 7, *(0a). If R
is a congruence (3, then 8 = 32 is denoted by S.

It is easy to check that [L, R] = 0 is equivalent to the statement that the di-
agonal subuniverse of A(R) is a union of Ay p—classes. This observation leads to
an alternative definition of the commutator. It also shows that we can replace L
with the congruence it generates in A in the definition of Ay r and also in the
definition of [L, R]. (We point out that what we write as Ap g has unfortunately
been expressed as Apg  in several places in the literature. Because of the con-
nection between Ay r and the commutator of L and R, we choose to arrange our
notation so that the left subscript of Ay g corresponds to the left position of [—, —].
So remember: the right subscript of Ay g is considered as a subalgebra, the left
subscript is put on the diagonal.)

Next we recall some definitions concerning nilpotence, partially contained in
Definition 3.5 of [6].

Definition 2.3. Let A be any algebra and 3 € Con(A). We define (8]' = [3)! =

31 = B, and inductively (8]"*1 = [8, (8"]], also [3)"1 = [[8)", 8], and [3]"*1 =
(18], [8]"]- The congruence ( is called left or right nilpotent, or solvable, iff for

some n we have (]" = 0a, or [3)" = 0a, or [§]" = 0a. The algebra A is left
(right) nilpotent, or solvable, if the congruence 14 is.

Thus, 3 is left nilpotent if

[67 [67 [67 [ 7[676] ]]]] =04

(for a sufficiently long expression). As proved in [7], the hypothesis of left nilpotence
is weaker than any other notion of nilpotence. For example, if A is a finite algebra
satisfying [1)¥*! = 0 (A is k—step right nilpotent), then A is left nilpotent although
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possibly of higher nilpotence class. Sometimes, when we refer just to nilpotence,
we shall mean the weakest form: left nilpotence. We will need some other results
and definitions of [7], so we reproduce them here.

Definition 2.4. If A is a finite algebra, 5 € Con(A), § < 0 in Con(A) and N is
a (8, f)—trace, then the congruence quotient (6,6) is said to be B—coherent if the
implication

C(B, N?;6) = C(B,0;6)

holds. If every prime quotient of Con(A) is S—coherent for every 3, then A is said
to be coherent.

Note that, as all (8, #)—traces are polynomially isomorphic, if we have C(3, N?; )
for one trace N, then C(8, N?;6) holds for all traces N.

Recall that a group is said to act regularly on a set if whenever a group element
stabilizes a point, it acts as the identity map. (Sometimes this concept is called
semiregularity.)

Definition 2.5. Assume that A is a finite algebra, 5 € Con(A), § < 6 in Con(A),
N is a (6, 0)—trace and H is the group of polynomial permutations of A |y which are
[B—twins of id y. We say that the congruence quotient (4, 8) is —regular if typ(é, 0) #
1, or typ(6,0) = 1 and H acts regularly on N modulo §. When typ(é,6) = 1 this
states that (6, 6) is f-regular iff for all p € H the implication

(Vu,z € N) (p(u) 6 u = p(z) 6 x)
holds.

We record in the following theorem and corollary the facts from [7] that we will
need concerning G—coherent and [S-regular prime quotients.

Theorem 2.6. Let A be a finite algebra, with 3 € Con(A) and § < 6 in Con(A).
Choose U € Ma(6,0) and denote by B and T the body and tail of U respectively.
The following are true.
(1) If [B,B) N O < 6, then (6,0) is B-regular.
(2) If (6,0) is B—regular, then it is S—coherent.
(3) Ewvery homomorphic image of A is left nilpotent iff A is left nilpotent and
coherent.
(4) If (6,0) is B-regular, then for the conditions listed below (i) = (ii) =
(#i1) < (iv) holds.
(i) C(8,0:6).
(ii) 15,6] < 6.
(ii7) C(6,5;0).
(iv) 16,0] <é.
If (B)%|v € B2UT? for some k, then all conditions are equivalent. If [B3]*|y C
B?2UT? for some k and typ(8,0) # 1, then all conditions are equivalent.

Proof. For the case when typ(6,6) = 1, statement (2) follows from Lemma 4.13
of [7]. In all other cases we always have S—coherence by Lemma 4.2 of [7], and also
[B-regularity by the definition (so B-regularity and S—coherence are only interesting
when typ(8, ) = 1). Statement (1) is Theorem 4.20 of [7], (3) is Corollary 4.4 of [7],
and, finally, (4) is a combination of Lemmas 3.1, 3.2, and 4.14 of [7], depending on
the type of (6, 6). O
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Corollary 2.7. Any locally finite variety generated by abelian algebras is locally
left nilpotent.

The concept of an E-trace plays an important role in [6] (see Lemma 2.4 or the
second part of Chapter 6). The name E-trace was coined later.

Definition 2.8. Let A be an algebra, e an idempotent unary polynomial, « a
congruence, and a an element of A. We say that a subset S of A is an E-trace
of A with respect to e (or with respect to «, or a/a), if S =e(A)Na/a.

The following notation and easy—to—check observation is from [1]; see Sections 5
and 7 of that paper for a more detailed analysis.

Definition 2.9. Let oo < 8 € Con(A) for some algebra A. Set
Sep(a, B) = {f € Poli(A) | f(B) £ a} .

Lemma 2.10. Let (o, 3) be a tame quotient of a finite algebra A. Then for all
v € Con(A) with o < v < B we have

(1) Sep(a,v) = Sep(a, 3), and
(2) Sep(v,8) = Sep(a, ).

Next we summarize some basic facts on type 2 minimal sets.

Lemma 2.11. Let A be a finite algebra, (6,0) a type 2 prime quotient of A and
v = (6:0). Choose any (6,0)-minimal set U. Let B be the body and T the tail
of U, and N a (6,0)—trace in B. Then the following hold.

(1) The induced algebra on N/§ (in the algebra A/é) is polynomially equivalent
to a vector space of dimension one over a finite field K.

(2) The induced algebra A|p is Mal’cev, nilpotent, and is an E-minimal algebra
of type 2.

(3) If B€ Con(A) and B2 B A+, then Bly € B2UT?.

(4) C(6,~;6) holds in A.

(5) We have v = (6 : S?) for every subset S of A contained in a 6-block, and
containing a (6,0)—trace. Such subsets include, in particular, the E-traces
of A with respect to 6 that are not contained in 6.

(6) The set B is the intersection of a y—class of A with U, and is therefore an
E—-trace of A.

(7) If U is a minimal set for some other tame quotient, then the type of this
quotient is 2 and B is the body of U with respect to this quotient.

Proof. Statement (1) is the definition of a type 2 quotient, (2) follows from The-
orem 4.31 and Lemma 4.36 of [6]. Theorem 2.6 shows that (6,6) is y—regular and
~v—coherent. By the definition of v we have C(v,80;6), so (4) follows from Theo-
rem 2.6 (4).

To prove (5) let 3 € Con(A). Clearly, C(3,5%;6) is equivalent to C(83,0;6) by
coherence. This proves the first statement in (5). Now let S = e(A) Na/f for
some idempotent polynomial e of A, and elements a,b € S such that (a,b) ¢ 6.
Connect @ and b by a sequence of (6, )—traces N;. Then one of the sets e(N;) is not
contained in a é-block, so it is also a (6, @)—trace, which is contained in S. Thus,
(5) is proved.

Let N be a (6, 8)—trace contained in B. From (1) we get that 6|y covers 6|n. As
all (8, 8)—traces of U are polynomially isomorphic by Lemma 4.20 (5) of [6], we have
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that 6|5 covers 8| 5. Combining this with the fact that modulo 6|5, A|p is nilpotent
(by applying (2) to the algebra A/é and the prime quotient (04,s,60/6)), we have
that C(B2,0|p,6). Then we have C(B?%, N2;6),s0 B2 C (§ : N?) = ~. On the other
hand, 7|y is clearly contained in the congruence 3 defined in Lemma 4.27 (1) of [6],
implying that v|y € B2UT?. This proves (6). Also, in view of Lemma 4.27 (4) (i7)
of [6], v|y € B2UT? and B8 X B A+ imply that 3|y C B?UT?. This proves (3).
Finally, (7) is proved in Section 5 of [10]. |

We conclude this section by proving one more statement. In the following the-
orem, C? denotes the binary centrality relation. Its definition is similar to Defini-
tion 2.1, but here ¢ and d must be elements, and not vectors (hence f is a binary
polynomial). Clearly, binary centrality is weaker than centrality.

Theorem 2.12. Let A be a finite algebra, oo, 0, T,p congruences, and L a binary
relation of A. Suppose that
(i) o0 < 0 < p, and o can be connected to p by a chain of prime quotients of
type 2.
(ii) TV p 2 p.
Then we have
C(t,L;p) & C*(L,7;00) = C(7,L;0).

Proof. Suppose that C(r, L; o) fails. As C(r, L; p) holds, there is a prime quotient
(6,0) of type 2 between o and p such that C(r, L;6) fails, but C(r, L;6) holds.
Thus, there exists a polynomial f, and elements and vectors a 7 b and ¢ L d of A

such that

s=f(a,c) 6 t=f(a,d),

u=f(byc) 6—6 v=f(bd)
(u @ v follows from C(7, L;0)). By tame congruence theory, there exists a unary
polynomial & such that (h(u),h(v)) € 0 — 6, and U = h(A) is a (6, #)—minimal set.
Then h(u) and h(v) are contained in the body B of U. We show that h(s) and h(t)
are also in B.

Indeed, we show that the conditions of Lemma 2.11 (3) are satisfied with § =
7V p. By our assumptions, 3 ~ p ~ §. On the other hand, v = (6 : §) > § obviously
holds, so § < BA~y < 3 and therefore # ~ 3A~y. Thus Lemma 2.11 (3) implies that
Bluv € B2UT?. On the other hand, h(s) 3 h(u) and h(t) 8 h(v), since a 7 b, so we
have proved that h(s) and h(t) are in B.

Now let d be a pseudo—Mal’cev operation on U. Then Lemma 2.9 of [10] shows
that h(s) 6 h(t) implies h(u) § h(v), and this contradiction proves the theorem. O

Corollary 2.13. Let a and 3 be congruences of a finite algebra A. Suppose that
typ{B,aV B} = {2}. Then [a,a] < 3 implies that (a Vv 3)/8 is an abelian congru-
ence, hence [aV B,aV 3] < 3.

Proof. Apply Theorem 2.12 with ¢ = § and p = aV 3. Then (i), (i), and C(r, L; p)

are satisfied for every congruence 7 < aV § and for every binary relation L. So for
every congruence oo < # we have that

C(L,m500) = C(1, L; B) .
We apply this observation twice. First let L = 7 = « and o¢p = [a,«]. Then
C(L,7;00) = C(a, a; [, ) obviously holds, so we get C(a, «; 3). Together with
C(B, «; 8) this implies C(a V 3, «; 3) by the properties of the centrality relation
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mentioned at the beginning of this section. Now apply the above implication again
with L = aV 3, 7 = a, and g9 = . We get that C(a,a V 3;3) holds. But
C(B,a V 8;3) also holds, so finally we get C'(aV 3, a V 3; ), as desired. |

3. COORDINATIZATION

Let a be a minimal abelian congruence of a finite algebra A. As shown by tame
congruence theory, the induced algebras on the (0a, a)—traces have a very tight
structure. In this section we show the same for subsets of the form 7' = f(N,..., N),
where N is a (0a, a)—trace, and f is a polynomial of A. We call such a set T a
(0a, c)—multitrace. Similar terminology will be used when (0a, ) is replaced with
an arbitrary tame quotient. We shall learn that 7" is an E-trace of A with respect
to a, and A|r is term equivalent (or more precisely, isomorphic to an algebra which
is term equivalent) to a matrix power of A|y (see Theorem 3.10). We shall say that
T is a coordinatizable subset of A (or, more specifically, that T is coordinatizable
by traces). Thus, before starting our discussion, we have to summarize some facts
on non-indexed products and matrix powers. The two main references are [13]
and [20].

Definition 3.1. Let Aq,..., Ay be algebras, and f; an n—ary function on A;
for 1 < i < k. Define the n—ary function f; x --- X fr on A; x -+ X Ag to
act as f; in the i—th component for 1 <17 < k, that is,

fi(zl, ... 2h)
(f1><-~-><fk)(x1,...,x"): ,
fr(zh, .o 2})

where x7 € Ay x---x Ay for 1 < j < n, thought of as column vectors. We sometimes
call this function the product of f1,..., f,. If f; is the i—th projection for 1 <17 < k,
then the resulting product is called the diagonal operation on A; X --- x A,. The
non—indexed product A1 ® - --® Ay is defined to have underlying set Ay x - -+ x Ay,
and basic operations, for each non—negative integer n, of the form f; x --- x fy,
where f; runs over all n—ary terms of A; for 1 <1 < k.

Definition 3.2. Let A be an algebra and k£ > 0 an integer. The k—th matriz power
of A, denoted by Al¥ is defined to have underlying set A*, and basic operations,
for each non—negative integer n, of the form

filxl, o2k ah)

fe(xd, . . ah, oo an)

where x7 € AF for 1 < j < n, thought of as column vectors, and f; runs over all
nk—ary term operations of A for 1 <i < k.

The non-indexed product and the matrix power are considered non—indexed
algebras, although we will see in the next theorem how to regard them as indexed
algebras. The difference between the two types of operations is that, although both
take as input a matrix of n columns and k rows, the component maps in the case
of a matrix power can depend on all elements of this matrix, while in the case of a
non-indexed product the i—th component map depends only on the i—th row. To
get the clone (all terms) of the direct product A x - - - X Ay (this makes sense only
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if these algebras are of the same similarity type), one has to consider the reduct of
A ®---® A}, consisting of the functions f41 x --- x f& where f is a term in the
language of the algebras A;. We shall need one more special type of operation of a
matrix power.

Definition 3.3. Let S be any set. The unary shift operation on S* is defined by

€ Tn
Z2 Z1

S . = ()
Tn—1
Tn Tn—1

The following, easy—to—verify theorem collects some well-known facts concerning
the concepts just defined. Statement (5) explains the name ‘matrix power’.

Theorem 3.4. Let A and Aq,..., Ay be algebras and B=A1 ® --- ® Ag. Let V
be a variety with similarity type 7. Then the following hold.

(1) Ewvery congruence of B is a product congruence (see [2], Definition 11.4), so
Con(B) is isomorphic to the direct product Con(Aq) x --- x Con(Ay).

(2) Every congruence of A" is a product congruence of the form 6 x --- x 6,
where 0 is a congruence of A, so Con(Al*) is isomorphic to Con(A). This
isomorphism preserves the notions defined in tame congruence theory (like
centrality, type labeling, tameness).

(3) If the algebras Ay, ..., Ay are of the same similarity type, T, then the clone
of B is generated by the clone of Ay X --- X Ay, together with the diagonal
operation. Thus we can regard B as an indexed algebra over the similarity
type obtained by expanding T by a new k-ary operation symbol.

(4) The clone of AW is generated by all the operations in the (k-fold) non—
indered product A ® ---® A, together with the shift operation. Thus, if A
has similarity type T, then we may regard A% as an indexed algebra over the
similarity type 7%, obtained by expanding T by a new k-ary and a new unary
operation symbol.

(5) Let R be an associative ring and M an R-module. Then M¥ is term equiv-
alent to the module M* considered over the n x n matriz ring over R in the
usual way.

(6) The collection of all algebras of similarity type 78 isomorphic to k-th matriz
powers of algebras in V is a variety. It is denoted by V¥ and called the k-
th matriz power of V. Every subvariety of V¥ is of the form U™ for some
subvariety U C V. In particular, V(AF) = (V(A))H.

Now let us see what a coordinatizable subset is.

Definition 3.5. Let A be an algebra, n a positive integer, f an n—ary polyno-
mial of A, and S7,...,S5, non—empty subsets of A. We say that the set T =
f(S1,...,8,) can be coordinatized (with respect to f and Sy x --- x Sy,), if there
exist unary polynomials g1, ..., g, of A satisfying

gi(f(x1,...,xn)) =2 (1 €S1,...,2, €Sy, 1 <i< ).
The g; are called the coordinate maps (with respect to f and T).

First we investigate a weaker form of this condition.
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Lemma 3.6. Let A be a finite algebra, Sy, ...,S, and T non—empty subsets of A,
and g1, ...,gn € Poli(A), f € Pol,,(A) such that
(Z) f(Sh s 7Sn) cT;
(#9) gi(T) C S; for 1 <i<n;
(#73) f(r(x),...,gn(x)) = for allx € T.
Let G: T — Sy x --- xSy, be defined by

G(ZZ?) = (gl(z)a cee 7971(1:)) )
and let S = G(T). Then the following hold.

(1) The induced algebra (Als, ® -+- @ Alg,)|s is term equivalent to a reduct of
Alr.

(2) If the sets Si,..., Sy are all equal, then S is the range of an idempotent unary
polynomial of the algebra P = (Al|g,)™, and Al|r is term equivalent to P|s.

(3) If a is an arbitrary congruence of A, and all the S; are E-traces with respect
to a, then T is an E-trace with respect to a.

Proof. Let F'= f|s:S — T. Then F and G are inverse bijections between S and T
by (iii). For a function t : T% — T define G(t) : (S1 x -+ x S,)*¥ — S by

Gt)(xt, ..., x") = G(f(x),..., f(x")).
Similarly, to any h : S¥ — S we can assign F(h) by composing it with G inside and
F outside. This way we have set up inverse bijections between the set of all finitary
functions on T' and the set of all finitary functions on S. Let

C={(G)ls |t € Pol(A|r)}.

Clearly, G and F establish an isomorphism between the algebras A|r and (S,C).

To prove (1), let h be a k—ary polynomial of Als, ® --- ® Alg, that can be
restricted to S. Then h = hq|s, X -+ X hy|s, , where the h; are k—ary polynomials
of A that can be restricted to .S; for 1 < i < n. Define

t(z1,. .., xk) = f(hi(g1(z1), .-, 91(xk))s - s An(gn(z1), - - - gn(zk))) -

Then t is a k—ary polynomial of A that can be restricted to 7', and an easy calcu-
lation shows that (G(t|7))| s = h| s, proving (1).

To prove (2), assume S; = --- = S,. To show that C is the clone of P|s let s
be the unary shift operation of P. Define s'(z) = f(gn(2), g1(2),..., gn—1(x)). It
is easy to check that (G(s'|7))|s = s|s (in particular, the set S is closed under s).
Thus, (1) and Theorem 3.4 (4) show that C D Clo(P|s). For the converse inclusion,
assume that t € Poli(A) can be restricted to 7. Then the definition of h = G(t|r)
clearly implies that its component maps are nk—ary polynomials of A that can
be restricted to S;, and that h preserves S, so indeed h|s € Clo(P|s). Finally,
e = G(idr) is clearly an idempotent polynomial of P with range S. Thus (2) is
proved.

To prove (3), let S; = e;(A)Na;/a for some idempotent polynomials e; of A and
a; € S;. Let

hz) = flergi(x), ..., engn(x)),
and let h* be an idempotent power of h. We prove that 7' = h*(A)Na/a for any a €
T. First we show that h(a/a) C T. Indeed, if b € a/«, then e;g;(b) a e;g;(a) € S;
by condition (i), so e;g;(b) € e;(A) Na;/a = S;; hence h(b) € T by condition (7).
Thus, h(a/a) € T. On the other hand, h acts on T as the identity map by
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condition (#i¢), and by the same condition, T is contained in a single a—block.
Hence, h is already idempotent on a/a, with range T. Therefore e = h* still has
range T on a/q, but e is idempotent on A. If e(c) € a/a, then e(c) = e(e(c)) € T,
so indeed T' = e(A) Na/a, as stated. |

When we have a coordinatizable subset, we get a full matrix power, and not just
an induced algebra on an E—trace.

Corollary 3.7. Let A be a finite algebra, f an n—ary polynomial, and Si,...,5S,
non—empty subsets of A such that T = f(S1,...,Sn) is coordinatizable with respect
to f and S1 X -+ X Sy, with coordinate maps g1, ..., gn. Then the following hold.

(1) If « is an arbitrary congruence of A, then T is an E-trace with respect to «
if and only if all the S; are E—traces with respect to a.

(2) If the sets Sy, ..., S, are polynomially isomorphic, then A|r is term equivalent
to the full matriz power (Alg,)™ for all 1 <i < n.

Proof. First note that coordinatizable subsets satisfy conditions (¢)—(iii) of Lemma
3.6 (to verify condition (7i7), substitute a general element x = f(x1,...,2,) of T,
where z; € S;). In this case, however, we get that S= 57 x -+ X S,,.

To show (2), let h; : S; — S1 be a polynomial isomorphism with polynomial
inverse k; : S1 — S;. Set g = h; 0 g; and

oy, xn) = fki(z1), .. kn(zn))

Clearly, T satisfies (i)—(i#i) of Lemma 3.6 with respect to f’, ST, and g;. Thus,
statement (2) of that lemma immediately implies (2).

To prove (1), first assume that the sets S; are E—traces of A for 1 < i < n.
Then Lemma 3.6 (3) clearly implies that T is an E-trace with respect to a. For
the converse we apply the same lemma, but with a different selection of subsets
and polynomials. So assuming that 7" is an E-trace with respect to o, we want
to show that S; is also an E—trace. Let n’ = 1, 7" = S;, 8] =T, f = g
and g} (z) = f(c1,...,¢i—1,2,Cit1,...,Cn), where ¢; € S; are arbitrary, but fixed
elements. It is straightforward to check that the conditions of Lemma 3.6 (3) are
satisfied. Thus, the corollary is proved. O

Lemma 3.8. Let A be a finite algebra, S a subset of A, and T = f(S,...,S) for
some n—ary polynomial f of A. Suppose that T has more than one element, and:

(1) The induced algebra Als is polynomially equivalent to a vector space over a
finite field K with addition + and zero element 0.

(i) For any two elements a #b € T there exists a unary polynomial g of A that
separates a and b, and maps T into S.

Then T is a coordinatizable subset of A with respect to S* and a k-ary polyno-
maal f' for some integer k < m.

Proof. Let 0/ = f(0,...,0) € T and
G ={glr | g € Poli(A),g(T) C 5,9(0) = 0}.

This is a finite dimensional vector space over K under pointwise operations. Let
g1, ---,gr be a basis. Since g; o f can be restricted to S, and maps 0 to 0, we can
write

gi(f(ze, ... xp)) = Nizy + -4+ Nz, (ijS,)\j»EK,lgiSk,lgjgn).
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As the mappings g1, ..., gi are linearly independent, so are the rows of the matrix
AL
M= :
N

This matrix induces a linear map L : K" — K’“7 which is therefore onto. Thus k <
n, and there exists a linear map L’ : K¥ — K" satisfying LL'(v) = v for all v € K*.
Thus, the matrix M’ of L’ is such that MM’ is the k x k identity matrix. Let
W

M/ — . .
' 0
and choose k—ary polynomials ¢; € Pol;(A) satistying

Ej(;vl,...,xk):u{x1+---+uixk (r; €59,1<i<k, 1<j<n).
Finally, let

flxy, . mk) = fll(xg, o ymk), e (1, k) -
Then we have
g(f' (@1, o) =2  (z1,...,2x €85, 1<i<k).

This is a simple calculation based on M M’ being the identity matrix. So to finish
the proof it is sufficient to show that T' = f'(S,...,S5).

Clearly, T 2 f'(S,...,S). To prove the converse inclusion, we first show that if
a # b €T, then there exists an ¢ such that g;(a) # ¢;(b). By condition (2), there is
a g € Pol;(A) with g(T) C S and g(a) # g(b). Then g(x) — g(0’) still separates a
and b, and this new function is an element of the vector space G. As g1,...,9gk is a
basis for this vector space, g(x) — ¢(0’) can be written as a linear combination of
the maps g;. Therefore g;(a) = g;(b) indeed cannot happen for all 4.

Now let a € T and b = f'(¢1(a),...,gx(a)). It is sufficient to show that a = b,
since b € f/(5,...,5). By the result of the previous paragraph, we have to show
that g;(a) = g;(b) for all 1 <4 < k. But this is clear, since the g; are coordinate
maps for f’. |

Lemma 3.9. Let A be a finite algebra, S a subset of A, and T = f(S,...,S) for
some n—ary polynomial f of A. Suppose that T has more than one element, and:
(i) The induced algebra Algs is permutational (that is, it is essentially unary, and
every unary polynomial is either a permutation or constant).
(i) For any two elements a #b € T there exists a unary polynomial g of A that
separates a and b, and maps T into S.

Then T is a coordinatizable subset of A with respect to S* and a k—-ary polyno-
mial f' for some integer k < m.

Proof. If f does not depend on, say, its n—th variable on S, then let f'(z1,...,2n—1)
= f(x1,...,2n_1,c), where c is an arbitrary, but fixed element of S. Clearly, T'
= f'(S,...,S). Hence, we may assume that f depends on all of its variables on S.
We shall prove in this case that T is coordinatizable with respect to f. (Note that
having f depend on several variables does not contradict condition (¢). Condition (4)
only asserts that if h € Pol;(A) has the property that h(S*) C S, then h|s depends
on at most one variable.)
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To simplify notation, we shall construct the coordinate map g;. As f depends
on its first variable, there exist elements a,b € S and ¢ € S"~! such that f(a,c) #
f(b,c). Choose, by condition (i), a unary polynomial g that maps T to S and
separates f(a,c) and f(b,c). Hence, the polynomial

gf (@1, ..., Tn)

depends on its first variable on S. This polynomial can be restricted to S. As the
induced algebra A|g is permutational, this polynomial does not depend on any other
variable on S, and is a permutation in its first variable on S. Denote by m the order
of this permutation, and let h(z) = gf(z,...,z). Then h(z1) = gf(x1,22,...,2xs),
and hence

hm_lgf(xla"wxn):h’m(zl):zl ($1,...,$n68)-
Thus, g1 = h™ ! o g is the required coordinate map. O

Theorem 3.10. Let o be an abelian congruence on a finite algebra A such that
(0a, ) is tame, and let T be a (Oa,a)—multitrace. Then T is an E-trace with
respect to a, it is coordinatizable by traces, and A|r is term equivalent to (A|N)[k],
where N is a (Oa, o) —trace.

Proof. Depending on the type of (0, @), apply Lemma 3.8 or Lemma 3.9. Note that
if T = f(N,...,N) for some n—ary polynomial f, then the resulting number k is
at most n, but it is not necessarily equal to n. O

The conclusion of Theorem 3.10 (that 7" is an E-trace which is coordinatizable
with respect to N¥) is false when « is nonabelian. However, in the type 3 case we
still have the weaker conditions assumed in Lemma 3.6. Recall that an algebra is
primal if every finitary operation on the universe of the algebra is a term operation
of the algebra.

Lemma 3.11. Let A be a finite algebra, S a subset of A, andT = f(S,...,S) for
some n—ary polynomial f of A. Suppose that T has more than one element, and:

(i) The induced algebra Als is primal.
(i) For any two elements a #b € T there exists a unary polynomial g of A that
separates a and b, and maps T into S.

Then there exist gi,...,gn € Poli(A) satisfying conditions (i)—(iii) of Lemma 3.6

Proof. By the second hypothesis, we can choose unary polynomials p;(z) of A,
where 1 < i < k for some k, which map T into S and which separate the elements
of T. For every y € T pick a vector (z},...,2¥) in S™ such that f(z¥,...,2Y%) = y.
For 1 < i < nlet h; be a k—ary polynomial of A mapping S* to S, and satisfying,
for every y € T,
hi(pr(y), - pe(y)) = o .

Why do we have such polynomials? As the mapping that sends every y € T to the
k—tuple (p1(y),...,pr(y)) € S* is one to one, there certainly exists a function h;
satisfying the above equation. But A|g is primal, so the desired polynomials indeed
exist. Now set

9i(x) = hi(p1(z), ..., pe(2)) -
Then the polynomials g; clearly satisfy the conditions. O
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Theorem 3.12. Let 0 < a be a type 3 minimal congruence on a finite algebra A
and let T be a (0, a)—multitrace. Then T is an E-trace with respect to a and Alr
is a primal algebra.

Proof. The statement follows from Lemma 3.6 (2) and from Lemma 3.11, since a
matrix power of a primal algebra is clearly primal and the algebra induced on any
subset of a primal algebra is again primal. O

A second proof of the fact that A|r is primal when the type is 3 can be obtained
from Rosenberg’s primal algebra classification. One can arrange things so that T
is a maximal set of the form f(N,...,N), where N C T is a (0a, a)—trace. These
conditions imply that T is closed under f and therefore f is an operation of A|r.
One can also arrange it so that A|r has operations which restrict to give all Boolean
operations on N. These Boolean operations together with f are incompatible with
all Rosenberg-type relations.

It is not true in general that we can get coordinatization in the type 3 case.
Indeed, consider any three—element primal algebra A and any two—element subset N
of A. Then there is a binary polynomial of A satisfying f(N,N) = A, but A is
not coordinatizable, because its cardinality is not a power of 2.

Multitraces in the type 4 and 5 cases are even less well-behaved. Their behavior
with respect to coordinatization will be discussed in a subsequent paper.

4. MINIMAL SETS IN SUBDIRECT POWERS

In this section, A will be a finite algebra and C will be a finite subdirect power
of A. We shall compare the structure of certain minimal sets in C to minimal
sets in A. We fix the following notation concerning A: «, 3,7 € Con(A), a < 3,
typ(o, ) = 2 and 8 < v < (a : ). If N is an (o, B)—trace, then A|y/a|y is
polynomially equivalent to a 1-dimensional vector space over a finite field. Let K
denote that field. We assume that C is a subdirect subalgebra of A*, k < w, which
satisfies C C v*). The condition C' C ¥} means that if (c1,...,c;) € C, then
(ciyej) €y for all 1 < i,j < k. We fix the following notation for C: o/ = (a¥)|c,
B = (8%)|c, and 7' = (v)|c.

It can happen that the algebra C is very ‘thin’. The results below are empty if
o = 3. Let us call a coordinate ¢ (with 1 <4 < k) bad, if a ' b implies a; o b;
for all elements a, b of C; otherwise i is called a good coordinate. In other words,
the good coordinates are those for which o’ and ' map to different congruences
under the i—th projection. We have o/ < (' if and only if there exists at least
one good coordinate. In ‘normal’ subalgebras of A¥, for example when C contains
the diagonal, every coordinate is automatically good. Throughout this section, we
assume that there is at least one good coordinate.

The minimal sets in C that will concern us correspond to prime quotients which
we call “centralized”. We define (8, 6) to be centralized if

(1) &/ <é6=<0<7,

(2) typ(6,0) =2, and

(3) C(v/,0;6) holds.
Of course, it is condition (3) which suggests the name “centralized”. We want to
describe the minimal sets corresponding to centralized quotients in C. For this
purpose, we let M denote the collection of all subsets of C' which are minimal with
respect to at least one centralized quotient.
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Theorem 4.1. If A, o, 3, v, K, k, C, o/, 5, v/ and M are as above, then the
following hold.

(1) There exists a centralized quotient.

(2) If y R 3 in Con(A), then all type 2 prime quotients in the interval I[o, 3]
are centralized.

(3) Every member U of M is a minimal set with respect to each centralized quo-
tient. The body and the tail of U are the same with respect to all centralized
quotients.

(4) If U € M and f is a unary polynomial of C satisfying f(6'|v) € ', then
f(U) e M and f is a polynomial isomorphism of U onto f(U).

(5) Let U € M, M the intersection of the body of U with a class of 3', C = C/c/,
and M the image of M in this factor. Then 6|ﬁ s polynomially equivalent
to a vector space over K of dimension at most k. For every n—ary polynomial

f of C, the set f(M,..., M) is a coordinatizable E-trace of C with respect to

Mﬁ for some £ < n.

(6) The elements of M are exactly the sets U = C N (e1(A) x -+ X er(4)),
where (e1,...,ex) is a sequence of simultaneous C—twins and each e; is an
idempotent polynomial of A with e;(A) € Ma(«,3). The body and tail of U
are of the form CN(By X -+-X By) and CN(Ty x - -+ x Ty,), respectively, where
B; and T; are the {«, B)-body and tail of e;(A).

The six parts of Theorem 4.1 are proved in Lemmas 4.3, 4.6, 4.8, and 4.10. These
lemmas depend on intermediate results.

We introduce the following notation for certain congruences of C. For 1 < < k,
let ; be the 1—th projection kernel restricted to C, and

o :(1A><---><1A><a><1A><---><1A)|C,
Bi =(0ax---x1axBx1ax--%x1a)lc,

pi =(Bx--xBxaxfx--xp)c,

where «, 8, and « occur in the i—th component of «;, 3;, and p;, respectively.

Lemma 4.2. The following are true.
(1) a; < B; and typ(ay, B;) = 2 for all i.
(2) a; NS = p; for alli.
(3) i is a good coordinate if and only if B’ £ «; if and only if a; V ' = B; if and
only if p; < B if and only if B;/c; and B'/p; are perspective quotients. If i is
bad, then p; = (3.
(4) The intersection of all p; for 1 <i <k is .

Proof. (1) follows from the fact that C/#; is isomorphic to A, and 3;/n; corresponds
to B and «;/n; corresponds to o under this isomorphism. We get (2), (3), and (4)
as straightforward consequences of the definitions and of (1). |

We prove Theorem 4.1 (1) and (2) immediately, to make it clear that the rest of
the results in this section have content.

Lemma 4.3. Assume the hypotheses of Theorem 4.1.
(1) There exists a centralized quotient. In fact, if &' =6 <0 < ', then (6,0) is
centralized.
(2) If y R 3 in Con(A), then all type 2 prime quotients in the interval I[o, 5]
are centralized.
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Proof. For part (1), choose (§,6) so that o’ = § < 6 < . The quotient (4,0) is
prime by choice. Since v < (a: 8) in A, we get
V<@ f)< (0" :0)=(8:0)
in C. Hence, C(v/,0;6). What remains to be shown is that typ(6,0) = 2.
Choose (a,b) € 0§ — 6. We have (a,b) € 8’ — &/, so we have (a;,b;) € § — « for
some i. For this ¢ we have (a,b) € 3; — a;. Thus, we have

()éiZOéi\/6<Oéi\/9§ﬂi.

By Lemma 4.2, a; < ;, so we conclude that (§,0) and {(«;, 3;) are perspective.
Hence, typ(6,0) = typ(ay, 5;) = 2.

To prove (2), first observe that [y, 5] < a, so [y, ('] < o'. Now let (6,0) be an
arbitrary type 2 prime quotient in I[a/, 3']. We have

.00 <[, 81<a <.

Since vy ~ Bin Con(A), we get that 4/ < 3’ in Con(C). This means that thereis a k
such that [y/]* < . But [B,6] < a, so [#, 3'] < ' and therefore [y']F*!1 < o/ < 6.
Now Theorem 2.6 (4) applies to show that [y',0] < § (which holds) is equivalent
to C(v',0;6). Hence (6, 6) is centralized. O

Lemma 4.4. For every congruence p of C with o/ < p < ' and for each good i
we have that

Sep(a’, p) = Sep(c/, B') = Sep(as, B;).

Proof. We first show that Sep(a’,p) = Sep(a’/,3'). Let f € Poli(C). Since
Sep(c/, p) C Sep(c, B'), clearly, we have to show that if f(p) C «/, then f(8') C /.
Assume that f(p) C o’ and let the components of f be fi,..., fi. Set

Vi ={(z,y) € B | (Vg € Poli(A)) (fig(z) a fig(y))}-

It is easy to see that this is a congruence of A for every i, and a < ¢; < 3. As C is
a subdirect power of A, for every g € Pol;(A) and any given 1 < i < k there exists
a unary polynomial § of C that acts as g in the i—th component. This implies that
if
a=(a,...,an) p (by,...,by) =Db,

then a; 9; b; for all i (as f collapses p to o). Now p # o/, so we can choose a, b,
and i so that (a;,b;) ¢ «. Then a; ¥; b; implies that ¥; # «, so by @ < 8 we have
that 1; = 5. Setting g to be the identity map of A, we see that f;(x) a f;(y) holds
for all x § y; that is, f; collapses § into o. Now we use the fact that C' C ().
As the polynomials f; are C—twins, they are (« : 8)—twins also. If one collapses 3
to «, then so do all the others. Thus, we indeed have f(3') C «'.

The argument that Sep(a’, 8') C Sep(ay, 3;) is not very different from the above.
Using the fact that C is a subdirect power of A, one gets that any polynomial f
for which f(3;) C «; has i—th component f; such that f;(8) C «. As argued above,
every component of f collapses § into «, and so f(3') C /.

Now we argue that Sep(a;, 3;) C Sep(«/, ). Since i is good, Lemma 4.2 (3)
proves that 8/ p; is perspective with 3;/c;. Hence, Sep(«;, 8;) = Sep(p;, 3'). Since
o < p; < B, we get Sep(p;, ') C Sep(a/,3"). These last two sentences give the
desired conclusion. O

Lemma 4.5. Let (6,0) be a centralized quotient, choose U € Mc(6,0) and denote
the body of U by B.
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(1) B; < (6:0) for each i.
(2) The lattice interval between o'|p and f'|p in Con(C|p) is a complemented
modular lattice.

(3) Sep(6,0) = Sep(, 3').

Proof. Since C C 4 and 8 < v, we get that 8; < 4/ for all i. Since (6,6) is
centralized, we get that 3; <+’ < (6 : 9). This proves (1).

Since B is an E—trace with respect to (¢ : 6), the restriction map is a homomor-
phism from the interval I[0, (6 : 6)] of Con(C) onto Con(C|g). Since 8; < (6 : ),
by (1), and a; < §;, by Lemma 4.2 (1), we get that a;|p = 5| or «;|p < Gils
in Con(C|p). The induced algebra C|p is Mal’cev, so the lattice Con(C|p) is mod-
ular. Using Lemma 4.2 and the modularity of Con(C|g), we get that p;|g = |5
or pi|p < B'|p for all i. Since o’ = ﬂle pi, then by restriction to B we find that
o/|p is a meet of lower covers of §'|p. This is enough to force the lattice interval
I[/|5, 3| B] to be a complemented modular lattice. This proves (2).

By Lemma 4.4, we have Sep(a/, ') = Sep(«y, 5;) for any good i. To prove (3),
we will show that Sep(ay, 5;) = Sep(6,0) for some good i. Since I[d/|g, 0 |5] is
a complemented modular lattice for which p;|p = B'|p or pilp < 3| for each
iand o|p = ﬂle pilB, then the prime quotient (6|p,0|p) is projective to some
prime quotient {p;|5,0’|s). Since I[d/|5, 3 |5] is complemented and modular, we
can project in two steps from 0|5 /6|p to 8|5/ p:ilB:

9|B/5|B \ M/V / 6/|B/pi|B

for some congruences u,v € Con(C|p). Necessarily ¢ is good, so Lemma 4.2 (3)
proves that 3'/p; / B;/a;. Therefore, we even have that

0|/l \ n/v /" Bilp/ail|B.

Set o1 = Cgc(u) and let ¥ be the largest congruence on C for which 7 < [ and
V|p = v. Then, since § < 6, a; < B; and restriction to B is a lattice homomorphism,
we get that

0/6\ ft/V /" Bi]
in Con(C). This forces

Sep(& 9) = Sep(ﬁv :[L) = Sep(aiv 61)
and finishes the proof of (3). O

Now we prove part (3) of Theorem 4.1.

Lemma 4.6. Assume the hypotheses of Theorem 4.1.
(3) Fvery member U of M is a minimal set with respect to each centralized quo-
tient. The body and the tail of U are the same with respect to all centralized
quotients.

Proof. We proved in Lemma 4.5 that Sep(é,0) = Sep(«/, 5') when (6, 6) is central-
ized. It follows that Mc(6,0) = Mc(d/, 3'); therefore, a set is a minimal set for
one centralized quotient if and only if it is a minimal set for all centralized quo-
tients. It follows that Mc(6, ) = M. The second part of this lemma follows from
Lemma 2.11 (7). O

We are at a point where it is possible to identify exactly which quotients are
centralized and which are not. In the next lemma, let p’ be the congruence on C
which is the join of all congruences p such that o/ < p < f'.
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Lemma 4.7. The following are true of p'.

(1) (o, p') is tame of type 2.

(2) Mc(a/,p') = M.

(3) The {(d/, p’)-body of any U € M is the same as the (§,60)-body for any cen-
tralized quotient (0, 0).

4) p'lu =P for allU € M.

(5) Fuvery type 2 prime quotient in the interval I[o, p'] is centralized. Every cen-
tralized quotient is perspective with one in the interval I[o!, p']. No centralized
quotient is contained in I[p’, #'].

Proof. The following observation will be useful in this proof.

Claim 1. For any U € M, the mappings p +— ply and o — Cg®(a/ Ua) are inverse
bijections between {p € Con(C) | o/ < p < #'} and {0 € Con(C|y) ‘ oy <o <
B}
Proof of Claim 1. Choose a congruence p such that o/ < p < 3 and a U € M.
By Lemma 4.3 (1), the quotient (¢, p) is centralized. Hence U € Mg (¢, p), and
so &'|y < plu. This implies that o'|y < ply. Since restriction to U is a lattice
homomorphism of I/, 3] onto I[¢/|y,S'|u], we must have that distinct covers
of o restrict to distinct covers of o|¢. Tt is clear that o/ < Cg€(a’ U ply) < p, so
CgC(a/ U p|y) = p since o’ < p.

To finish, we must show that any cover of /|y in I[d/|y, f'|v] is the restriction
of a cover of o in I[e, #]. Choose & so that o/ |y < o < #|y. For 7 = Cg®(a/Uoa),
we clearly have o/ < 7 < . Choose some congruence A with o’ < A\ < 7. Then

O/|U -<)\|U §T|U =0,

since we have shown that covers of o’ restrict to covers of /|y. But then A|y = o,
since o covers o'|y. Claim 1 is proven. O
Lemmas 4.4 and 4.5 (3) prove that
Sep(e/, p') = Sep(e’, B') = Sep(é, 0)
for any centralized (6,6). Hence, Mc(c/, o) = Mc(6,6) = M, proving (2). It now
follows that any member of Mc(a/, p’) is the image of an idempotent polynomial.
To prove that {a/, p’) is tame we must verify that the restriction map from I[a/, p/]
to Il |y, p'|u] is 0,1-separating for any U € M.

If restriction were not O-separating, then we would have /|y = p|y for some p
satisfying o/ < p < 3. Claim 1 shows that this does not happen, so restriction is
O-separating. Choose o such that o/ < o < p’. From the definition of o/, there is a
congruence p such that o < p < p/, where p £ 0. We get that p/o’ /" p’/o. Hence,
if ol = p'lu, we also have o/|y = p|u, which is false. Thus, o|y # p'|y for any
lower cover of p’ in I/, p']. This proves that restriction is 1-separating. We get
that (o, p’) is tame. Since I[a/, 3] is a solvable interval containing p’, it must be
that typ(c’,p’) € {1,2}. But, we showed in Lemma 4.3 that for any p such that
o' < p < p we have typ(a/, p) = 2. Hence, I[o/, p'] is not strongly solvable. We
infer that typ(a/, p’) = 2. This proves (1).

Parts (1) and (2) of this lemma combine with part (7) of 2.11 to establish (3).

We now prove (5). Let (6, 0) be an arbitrary centralized quotient, choose U € M
and let B be the body of U. By Lemma 4.5 (2), the interval I[o/|p, 5'|p] is a
complemented modular lattice. We have é|p < 0|5, since U € M¢(6,0). Hence,
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there is a congruence o € Con(C|g) which is a complement to §|p in I[¢/|5,0|5].
By Claim 1, o is the restriction to B of some p € Con(C) with o/ < p < .
It follows that p/a’ / 0/6. This proves the part of (5) which asserts that every
centralized quotient is perspective with one in the interval I[o/, p']. Tt also proves
that no centralized quotient is contained in I[p’, '], since no prime quotient in this
interval is perspective with any p/a’ when o < p < 3’. To finish the proof of (5) we
must explain why every type 2 prime quotient in the interval I[¢/, p] is centralized.
Theorem 7.7 (4) of [6] shows that I[a/,p']/ X is a modular lattice. Since the
atoms of this lattice join to the top element, then every element of this lattice is a
join of atoms. This implies that every prime quotient in I[o/, p']/ < is perspective
with one of the form (p/ X)/(o// X) for some p satisfying o/ < p < B'. It then
follows from Lemma 6.5 of [6] that any type 2 prime quotient in the interval I[o/, p/]
is perspective with a centralized quotient of the form (o/, p). If (6,6) is a type 2
prime quotient in the interval (o, p’) and U € M (6, 0) = M, then as noted earlier
the (6,0)-body and tail of U are the same as they would be for any centralized
quotient. It follows from Lemma 2.11 (6) that o/|y € B? U T? for this body and
tail, and so to prove that C(v/,8;6) it suffices, by Lemma 2.6, to observe that

[V, 0] <[, 8] <o <6
This finishes the proof of (5).

Claim 2. Whenever o/ < § < 0 < ' and §|y < 0|y for some U € M, then (8, 0) is
centralized.

Proof of Claim 2. To see this, we argue first that U € M¢(6,0). Since 6|y < 0|y,
it is clear that U contains a (6, #)-minimal set. (In more detail, if e € E(C) is
such that e(C') = U, then e(8) € 6, so U = e(C) contains a (6, §)—minimal set.)
However, if V' C U is a (6, )—minimal set properly contained in U and f € E(C) is
such that f(C) =V, then f & Sep(c/, p’) = Sep(/, 3'). Hence f & Sep(8,6). But
this is impossible since f(0]y) € 6. We conclude that U € Mc(6,6). Since U is
already known to be minimal with respect to some centralized quotient, it follows
that typ(8, ) = 2 and that the (4, 0)-body and tail are the same as they would be
for any centralized quotient. Hence, 4’|y € B? UT? for this body and tail. The
proof that C(+/, 0; §) holds is the same as in the paragraph preceding the statement
of Claim 2. O

Now (4) follows from Claim 2 and the part of (5) which states that no centralized
quotient is contained in I[p’, #’]. This finishes the proof of the lemma. O
Parts (4) and (5) of Theorem 4.1 are now easy to prove.

Lemma 4.8. Assume the hypotheses of Theorem J.1.
(4) If U € M and f is a unary polynomial of C satisfying f(5'|lv) € o, then
f(U) e M, and f is a polynomial isomorphism of U onto f(U).
(5) Let U € M, M the intersection of the body of U with a class of 3', C = C/c/,
and M the image of M in this factor. Then 6|M s polynomially equivalent
to a vector space over K of dimension at most k. For every n—ary polynomial

f of C, the set f(M,..., M) is a coordinatizable E-trace of C with respect to
HZ for some £ < n.

Proof. By Lemma 4.7, 8’|y = p'|u; so (4) is simply a restatement of Theorem 2.8 (3)
of [6] for the tame quotient (¢, p').
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Now we prove (5). Since 3’|y = p|u, the set M is simply an (o, p')—trace of U.
Clearly, Cl57 is isomorphic to (C|ar)/(e’|a), which is polynomially equivalent to
a vector space since (o, p’) is tame of type 2. The dimension of this vector space
is the same as the height of the lattice I[&/|ar, 0 |ar] = I[e/|ar, B |ar]- But the
latter lattice is a homomorphic image of I[o/|p, 3 |p] by Lemma 2.4 of [6]. We
proved in Lemma 4.5 that I[a/|g, 3| 5] is a complemented modular lattice, where
d|p = ﬂle pilB. Since each p;| g is either equal to 3’| g or a coatom in I[d/ |5, | 5],
we get that o/|p is a meet of at most k coatoms in I[a/|p, 5| 5]. This proves that
the height of I[o/|p, 8| 5] (and therefore of I[a/|pr, 3'|ar]) is at most k.

Let K’ denote the field over which (C|a)/(e/|ar) is a vector space. If i is
good, then p;|g < B'|s = p'|p. Since M is an (¢, p')—trace, and all traces are
polynomially isomorphic, p;|a < p|ar in Con(C|ar). Let M’ denote the 3;|y—class
containing M and let e be an idempotent polynomial of C with range U. Clearly,
M’ /a; is an E—trace of C/«; with respect to (8;/a;) and e(x)/a;, since M is an E—
trace of C with respect to 3; (> ;) and e(x). Since 3; < v/, we get B;|y € B?UT?,

and so M’ C B. The fact that C|p is Mal’cev implies that
Blpoailp=psVails=(8"Va)ls = Bils,

so M C M' and each element of M’ is o;—related to an element of M. We conclude

that M/a; = M'/«;. In particular, M/a; is an E-trace of C/«; with respect to

(Bi/ ;) and e(x) /.

Now, (C|ux)/(|ar) is a K'—space and p;|pr = «y|ar is a maximal congruence
of C|s above |5, and so it follows that the algebra (C|ar)/ (| ar) is polynomially
equivalent to a 1-dimensional K'—space. At the same time M/«; is an E—trace
with respect to (3;/c;) in C/cay, which forces it to be a (0¢/a,, (8:i/ci))-trace. But
C/a; 2 A/a, and (8;/a;) corresponds to (8/a) under this isomorphism. The field
associated with any («, §)—trace is K, so we have K’ = K.

The coordinatizability of sets of the form f(M,..., M) follows directly from
Lemma 3.8. This finishes the proof of (5). O

Centralized quotients will play almost no role in the rest of this section, so now
seems a good time to present an example to justify the amount of attention we have
paid them.

The structure of minimal sets of type 2 in subdirect powers would be easier
to describe if all type 2 prime quotients in the interval I[o/, 5] were centralized.
Unfortunately, as the next example witnesses, that is not always the case (however,
recall Lemma 4.3 (2)).

Example. (Some quotients may not be centralized.) Our example has universe
{0,1,2} and a single basic operation, which is binary, and has the table

Offof1]|1
191700
211]0]|2

A is the algebra ({0,1,2}; o). The only congruences of A are « = 0a, 8 = Cg(0,1),
and v = 1a. It is not hard to check by hand or computer that C(v, 5; «) holds.
Furthermore, typ(c, 3) = 2, and the unique member of Ma («, ) is the set N =
{0,1}. We choose C to equal A2. In this example, o’ = 0c, 8 = 8 x 8 and
4" = 1c. C has twenty-four congruences, so we will not try to display them all.
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' 9
o ll
Ficure 3. I/, 0.

What interests us are the ten congruences in the interval I[a/, 3']. Their relative
positions are shown in Figure 3. All prime quotients shown in this picture are of
type 2. In Figure 3, p' =6 < 6 < 3.

From Lemma 4.7 (5) we see that neither (6,60) nor (0, ') is centralized even
though they both are prime quotients of type 2 which lie between o/ and 3. To see
that the minimal sets corresponding to non—centralized quotients must be handled
in a different way, we note that Mc(o/, p') = M = {N x N}, Mc(6,0) = {N x A},
and Mc(0,5") = {A x N}.

Now we resume the main line of our argument. Fix an element U € M and let
B and T be the {o/, p')-body and tail, respectively. B is an E-trace of C, and C|p
is Mal’cev and E—minimal. Choose an idempotent polynomial e of C such that
e(C) = U, denote the components of e by ey, ..., e, and let U; = ¢;(A). Clearly,
(e1,...,er) is a sequence of simultaneous C—twins, where each component is an
idempotent polynomial of A. Furthermore, the idempotence of each e; implies that

U=0CnN U x - x Uy).

Denote by B; and T; the image of B and T under the i—th projection. Since
C|p/ni|B is isomorphic to A|p,, it follows that A|p, is Mal’cev and E-minimal.

Lemma 4.9. We have U; € Ma(a, 8) for alli. The body and tail of U; are B; and
T;, respectively.

Proof. Since e € Sep(o/, 3’), we get that e; € Sep(a, 3) for at least one i. This
implies that e, € Sep(«, ) for all 4, since the e; are simultaneous C—twins, C' C ()
and v < (a : B). From this it follows that each U; = e;(A) contains an {«, 3)—
minimal set. Assume that, say, U; properly contains the (o, 3)-minimal set V.
Choose an idempotent polynomial f; of A such that fi1(A) = V. Since C is a
subdirect power of A, it is possible to choose a polynomial f of C which has
f1 as its first component. Now ef(z) is a unary polynomial of C whose first
component is ey f1(z) = fi(z) € Sep(a, §). It follows that all components of ef
belong to Sep(«, ), since they are simultaneous C—twins. Choose a good i and
then pick (a,b) € 8’ — ;. Since (a;,b;) € f — « and e;f;(8) € «, there exists
a unary polynomial g; of A such that (e;f;gi(a;),e;figi(b;)) € B — a. We can lift
gi(x) to a unary polynomial g(x) of C whose i~th component is g;, since C < A*
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is subdirect. For this g we have

(efg(a),efg(®)) € Blv — i Cpllu — o' = p'lp — o
It follows that efg(C) contains an (o, p’)—minimal set. But efg(C) is properly
contained in the minimal set e(C) = U, since e; f1g1(A) C V C U;. This contra-
dicts the minimality of e(C) = U. The conclusion is that each U; is a member
of MA (()é, ﬂ)

We now prove that «;|p < Bi|p for each coordinate i. Select a coordinate j
at random. Since U; € Ma(a, 3), it follows from the definition of U; that there
exist ¢,d € U such that (c;,d;) € Blu; — a. This means that (c,d) € fj|lv — o;.
In particular, it means that a;|y < B;|v, and so U contains an («;, §;)—minimal
set. We claim that U € Mc(a;,8;). To see this, choose an idempotent unary
polynomial f such that

f(C)=ef(C)=VCU
and V € Mc(ay, 3;). Since f = ef € Sep(ay, 5;), we must have e; f; € Sep(a, 3).
This implies that all coordinates of ef are in Sep(c, 3). Thus, each e; f;(A) contains
an (o, f)—minimal set and is at the same time contained in U;. We conclude that
fz(A) = ele(A) = Uz = €; (A) for all 3. Hence,

U=e(C)=Cn(er(A) x - x ex(A)) = CN(fi(A) x -+ x fr(A)) = £(C) = V.

This proves that U € Mc(a;, 5;). By Lemma 4.2 (1), the quotient (¢, 3;) is of
type 2. From Lemma 2.11 (7) we get that the («;, ;)~body and tail of U are B
and T, respectively; which implies that «;|p < Gi|5-

We now show that B; and T; are the body and tail of U;, respectively. If ¢ is in
the body of U;, then there is some element d also in the body with (¢,d) € 8 — a.
Since U; is the projection of U onto its i—th component, there are elements a and
b € U with a; = ¢ and b; = d. Then (a,b) € ;|v — «;|y, and so both of these
elements lie in B, the body of U. This shows that a; = ¢ is in B;.

For the converse, suppose that ¢ is a member of B;. Then there is some a in B
with a;, = c¢. Being a member of B means that there is some b also in B with
(a,b) € B; — a;. Then b; belongs to U; and (a;, b;) € 8 — «. This shows that a; = ¢
is a member of the body of Uj;.

We have shown that the body of U; equals B;. To prove that the tail of U; is T},
it will suffice to show that {B;,T;} is a partition of U;. The fact that U; = B; UT;
follows from the way B; and T; were defined. Assume that B; N'T; # 0. Then we
can find b € B and t € T such that b; = ¢;. This implies that (b,t) € B x T and
that

(b t) € nilu <A'lv < (6:9)|u,
where (6,0) is an arbitrarily chosen centralized quotient. But U € M (6,6), and
therefore (by Lemma 2.11 (6)) B is a (6 : §)|y—class. Now the last displayed line
implies that b € B < t € B. Thus, we cannot have (b,t) € B x T, after all. This
completes the proof. O

One consequence of Lemma 4.9 is that B = C N (By x --- X Bg) and T =
CN(Ty x---xTy). To see this, notice that CN(By X ---x By) and CN(Ty x - - - x Tk)
are disjoint, in the range of e, and that the first set contains B while the second
contains 7.

Now we prove the last part of Theorem 4.1.

Lemma 4.10. Assume the hypotheses of Theorem 4.1.
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(6) The elements of M are exactly the sets U = C N (e1(4) x -+ x er(A)),
where (e1,... ,ex) is a sequence of simultaneous C—twins and each e; is an
idempotent polynomial of A with e;(A) € Ma(«,3). The body and tail of U
are of the form CN(By x -+ X Bg) and CN(Ty X - - - x Ty), respectively, where
B; and T; are the {«, B)-body and tail of e;(A).

Proof. The element U € M which we fixed prior to Lemma 4.9 has the prescribed
structure. Since U was chosen arbitrarily, all elements of M are of this form.
Furthermore, as we remarked just before this lemma, the body and tail of U are

as claimed. It remains to show is that if (e1,... ,ex) is a sequence of simultaneous
C—twins and e;(A) € Ma (a, ) for each 4, then C' N (e1(A) X --- x ex(A4)) € M.
The function e(z) is a unary polynomial of C, since (eq, ... ,ex) is a sequence of

simultaneous C—twins. Furthermore, each e; belongs to Sep(«, 3). This is enough
to force e € Sep(c’,3’). To see this, choose (a,b) € ' — a/. Assume that, say,
(ai,b;) € f—a. There is a unary polynomial g; such that (e;g;(a;), e;g:(b;)) € B—a.
Let g be a unary polynomial of C which has g; as its i—th component. Then
(c,d) = (eg(a),eg(b)) € 7/ — . Since (e(c),e(d)) = (c,d), we get e € Sep(/, 5').

Let U be a member of M which is contained in e(C). Let f be an idempotent
unary polynomial of C for which f(C) = U. By the first part of this proof, f;(A) €
Ma (a, B) for alli. But f;(A) C e;(A) =U; € Ma(a, B) for all 4, since f(z) = ef(z).
We must have f;(A4) = e;(A) = U; for all i. Hence,

U=f(C)=CNUL - xUp) = e(C)

which proves that e(C) € Mg(o/, p'). O

To conclude we summarize the results from this section for the case in which we
are dealing with a finite simple abelian algebra. In this case, we obtain a precise
description of all type 2 minimal sets in subpowers of A.

Corollary 4.11. Let A be a finite simple abelian algebra and let C be a finite
subdirect power of A. Let M be the collection of all subsets of C which are minimal
with respect to at least one prime quotient of C of type 2. Let K denote the finite
field such that A induces a 1-dimensional K-vector space structure on each of its
minimal sets. The following hold:

(1) M is nonempty, and every member of M is minimal with respect to every
prime quotient of C of type 2.

(2) Each U in M has an empty tail with respect to every type 2 prime quotient,
and Cly is polynomially equivalent to a vector space over K.

(3) If U € M and f is a unary polynomial of C which is nonconstant on U, then
fU) € M and f is a polynomial isomorphism of U onto f(U). If f is an
n-ary polynomial of C, then f(U,...,U) is a coordinatizable E—trace of C
with respect to U for some | < n.

(4) The elements of M are exactly the sets U = C N (e1(A) x -+ X er(4)),
where (e1,...,ex) is a sequence of simultaneous C—twins and each e; is an
idempotent polynomial of A with e;(A) a minimal set of A.

(5) If p' is the join of all of the atoms in Con C, then the interval I[0¢,p'] is
tame of type 2 and the interval I[p’, 1¢] is strongly solvable.
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5. MINIMAL LOCALLY SOLVABLE VARIETIES

A variety is called minimal (or equationally complete) if it is nontrivial, but its
only proper subvariety is trivial. Every nontrivial variety contains a nontrivial sim-
ple algebra, so every minimal variety is generated by a simple algebra. A minimal
locally finite variety is generated by a strictly simple algebra. We recommend [18]
to the reader interested in a survey of strictly simple algebras and minimal locally
finite varieties.

If a strictly simple generator of a minimal variety is nonabelian, then every
member of the variety is nonabelian; in fact, nonsolvable. If the generator is abelian,
every member of the variety is guaranteed to be locally solvable. Thus, minimal
locally finite varieties either are locally solvable or contain no solvable algebras. In
this section we describe all minimal, locally finite, locally solvable varieties. Here
is our result.

Theorem 5.1. Let V be a locally finite, locally solvable variety. Then V is minimal
if and only if one of the following possibilities holds.

(1) V is term equivalent to a matriz power of the variety of sets with no operations,
or to the variety of sets with one constant operation. In this case V is strongly
abelian.

(2) V is affine (in particular, it is congruence permutable), and is generated by a
finite, simple algebra that is polynomially equivalent to a module over a finite
ring, and has a 1-element subalgebra.

The structure of the varieties described in (2) is well-known (see Freese and
McKenzie [3], Theorem 12.4), and it is proved there that such varieties are indeed
minimal (all subdirectly irreducible algebras are isomorphic to the generator). In
view of Theorem 3.4 (6), the varieties given in (1) are also minimal, since the variety
of sets and the variety of pointed sets are obviously minimal. By the same theorem,
the statement in (1) is equivalent to saying that V is generated by a finite simple
algebra that is term equivalent to a matrix power of the 2—element set or of the
2—element pointed set.

As promised in the Introduction, we give three different proofs of case (2) in this
paper (and one proof of case (1)). Still more proofs of Theorem 5.1 are known. For
instance, Agnes Szendrei discovered a different proof independently and at about
the same time that we discovered ours. Her results appear in [19] and [16] for the
type 1 and type 2 cases, respectively. Three years later, Szendrei and the first
author discovered two more proofs of this theorem. (One proof and the outline of
the second can be found in [9].) The reader will find one proof of the type 2 case in
the next section, two in this one. The difference between the two arguments here
is that one uses the theory of minimal sets in subdirect powers, the other one does
not. This difference occurs only in the proof of the following key lemma (which also
applies in the type 1 case, but we only have one proof of that).

Lemma 5.2. Let A be a finite, simple, abelian algebra generating a minimal va-
riety V. Then for each nonconstant, idempotent polynomial e of A there exist a
binary polynomial s(x,y) of A and a trace N C T = e(A) of A satisfying the
following conditions.

(i) s(A,4) CT.

(it) s(N,T)=T.
(tt) |s(t,T)| <|T| for a suitable (that is, all) t € T.



MINIMAL SETS AND VARIETIES 27

Proof. First we explain statement (ii7) of the lemma. Suppose that |s(¢,T)| < |T|
for a suitable t € T. Then the mapping x — s(¢,z) is not a bijection on T, so
we have s(t,t1) = s(t, ta) for some t1,to € T. As A satisfies the term condition,
we have s(t',t1) = s(t',t2) for every t' € T. As T is finite, this indeed implies
[s(t',T)| < |T)-

Our first argument works only for the case when typ{A} = {2}. We shall use
the theory of minimal sets in subdirect powers. Consider a listing t = (¢1,...,t)
of the elements of T, and let C be the subalgebra of A* generated by the diagonal
and the element t. As A is simple and abelian, Corollary 4.11 applies for A and
C. From Corollary 4.11 (5) we know that if p’ is the join of all of the atoms in
Con C, then the interval I[p’,1¢] is strongly solvable and the interval I[0¢, p'] is
tame of type 2. It follows that C/p’ is strongly solvable. But the locally strongly
solvable algebras of V form a subvariety W by Corollary 7.6 of [6]. A is not in W,
since its type is 2, and so W must be trivial. Therefore C/p’ is the trivial algebra,
and we must have p’ = 1c. We conclude that the algebra C is tame of type 2. In
particular, any two elements of C are connected by a chain of minimal sets. The
collection of these minimal sets is called M in Section 4, and their structure is
described in Corollary 4.11 (4).

For ¢ € A, let ¢ denote the element (c,... ,c¢) of C. Fix some element ¢ from 7.
Since |T| > 1, t and # are two different elements. Connect t to ¢ with a chain of
members of M. Let é denote the (idempotent) unary polynomial of C that acts as
e in every component. Apply é to the elements of this chain. Since every element of
the chain is a minimal set of the tame algebra C, then on any given element of the
chain, either e is constant or it maps that element onto another member of M. We
get another chain of elements of M running entirely in 7% which connects é(t) = t
to é(t) = t. In particular, there exists a V' € M such that t € V C T*.

Since V is a minimal set, we obtain that there exists an idempotent unary poly-
nomial f of C satisfying f(C) = V. Since C is generated by the diagonal and the
element t, we may express f as

f(x) = gC(x,t,¢1,...,¢ém)
for some term ¢ and elements ¢; from A. Let s(z,y) = eg®(z,y,c1,... ,¢m).
Clearly, s is a binary polynomial of A. The construction of s ensures that for
every x € C' we have
filzi) = sz, ti)

where f; is the i—th component function of f. As f is idempotent and C contains
the diagonal, we have s(s(z,t;),t;) = s(x,t;) for each x € A. From the abelian
property of A we get that s(s(z,t;),2) = s(x, z) holds for all z,¢; € T.

Corollary 4.11 (4) states that we have é(C) DV = CN(Ny X --- X Ni) for some
minimal sets N; C e(A) = T of A. We show that s satisfies the conditions of the
lemma with N = N;. Condition (¢) holds, since g is prefixed by e in the definition
of s. From f(C) =V and t € V we see that ¢t; € N; = s(A4,t;). By the equality
above,

s(N1,t;) = 5(s(A, 1), 1;) = s(A, t;) = Nj
for every 1 < 4,j < k. In particular, s(N1,T) = T, implying (ii). To prove (iii),
assume that s(¢,T) =T for some ¢t € T. Then

N1 = S(Nl,tl) Q S(T,tl) = S(S(t,T),tl) = {S(t,tl)},

which is our final contradiction.
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This was the proof of the lemma for the type 2 case using the theory of minimal
sets in subdirect powers. We included this argument to demonstrate the usefulness
of this theory. Now we present our “elementary” proof. Note that in the above
argument we used only that the locally strongly solvable subvariety of V is trivial.
Here we shall use the minimality of V in a different way. We do not distinguish
between type 1 and type 2 until the end of the argument.

First note that ' = e(A) contains a trace N of A. Indeed, e is not constant,
and therefore its range contains a minimal set, that is, a trace.

Let N = p(A), where p(x) = rA(x,dy,...,d) is an idempotent polynomial
and r is a term of A. Then A does not satisfy the identity r(z,z1,...,2¢) =
r(y, #1, ..., 2¢), since we can choose z,y € N to be different, and z; = d;. Hence,
the subvariety of V defined by this identity is trivial. Now, assume that C € V is
any finite algebra, having a congruence 6 # 1¢, and elements sq, ..., sy such that
rC(z,s1,...,5¢0) 0 rC(y, s1,...,50) for all z,y € C. Taking a maximal congruence
1 of C containing 6, the simple algebra S = C/4 is abelian and satisfies

Vx7y(rs(x,§1, .. '755) = T,S(y, 517 o '7§€))'

Using the term condition, we get that S is a nontrivial algebra satisfying the equa-
tion r(z,21,...,2¢) = r(y,21,...,2¢). This is impossible, since this equation to-
gether with the equations of V defines the trivial variety. We conclude that there
is no finite C' € V having a congruence 6§ # 1¢, and elements si,..., sy such that
rC(z,51,...,50) 07C(y, 81,...,8¢) forall z,y € C.

Again let t = (t1,...,tx) be a listing of the elements of T', and C the subalgebra
of A* generated by the diagonal and the element t. Let U = N¥ N C, and denote
by 6 the smallest congruence of C collapsing U. Since p(z) = r(z,d1,...,d;) and
p(A) = N, then we have rC(z,dy,...,ds) 0 rC(y,dy, ..., dy) for all z,y € C. By
the remarks in the previous paragraph, the minimality of V implies that 8 = 1¢.
Thus, the images of U under the unary polynomials of C connect the elements of C.

Notice that we had a similar statement in the previous proof. We now have it
for type 1 as well. The next few steps of the proof are the same as above, but we
now know less about the polynomial images of U (in particular, we do not know if
they can be obtained as the range of an idempotent polynomial), so we have to do
more calculations.

Connect the element t to ¢ = (,...,t), where ¢ is some fixed element of T,
with a chain of polynomial images of U. These are two different elements, since
|T'| > 1. Let é denote the (idempotent) unary polynomial of C that acts as e in
every component. Apply é to the elements of this chain. We get another chain
of polynomial images of U contained entirely in 7%. In particular, there exists a
unary polynomial f of C such that V' = f(U) has at least two elements and satisfies
teV CTk

Since C is generated by the diagonal and the element t, we may express f as

flx) = gc(x,t,&l,... ,Gm)

for some term g and elements a; from A. Let s(z,y) = eg®(z,y,a1,... ,am).
Clearly, s is a binary polynomial of A. The construction of s ensures that for every
x € C' we have

fi(zi) = s(xi, i),

where f; is the i—th component function of f.
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We have an element u € U such that f(u) = t, that is, s(u;, ¢;) = ¢; for every
1 < i < k. Since u; € N, this implies that ¢t € s(N,t) for every ¢t € T; hence
s$(N,T) D T. On the other hand, g is prefixed by e in the definition of s, so we
have s(A4, A) C T. Thus s satisfies (i) and (7).

Now we have to split the proof into two cases according to the type of A. First
suppose that this type is 1. As f is not constant on U, there exist elements ny,ny €
N and x € T such that s(ni,z) # s(ng,z). But A is strongly abelian, so this
implies that s(ni,x) # s(ng,y) for every y € T. That is, s(n1,T') is contained
in T — s(ng, T), and therefore we have condition (ii¢) with t = ns.

In the type 2 case we transform s in three steps to get a new binary polynomial
that still satisfies conditions (i) and (i7), but satisfies (iii) as well. As f is not
constant on U, there exist elements ny,ny € N and 0 € T such that s(ny,0) #
s(ng2,0). Hence, M = s(N,0) is a trace of A, which contains 0 (since ¢ € s(N,t)
for every t € T). Let ¢ be a polynomial inverse of s(z,0) mapping M to N and
satisfying q(A) = ¢(M) = N. Set

51($,y) = S(Q(*T’)?y) :
Then s1(z,0) = z for all x € M, so s1(M,0) = s1(A,0) = M. We also have
t € s1(M,t) for every t € T. Thus, s; satisfies conditions (i) and (i) with respect
to M instead of N. Thus, if $1(0,y) is not a permutation of 7', then we are done
because (i4¢) will be satisfied with ¢t = 0. Otherwise, consider a power h(y) of this
permutation, which is its inverse on the set T'. Set

s2(x,y) = s1(z, h(y)) .-

By the definition of h we have s2(0,y) = y for all y € T. As h is a permutation
of T, it maps T onto T, so so(M,T) = s1(M,h(T)) = $1(M,T) =T. From 0 € M
we get that s1(0,0) = 0, so the element 0 is a fixed point of s1(0, y); hence h(0) = 0.
Therefore sq(x,0) = = holds for all z € M, and we have s2(A,0) = s2(M,0) = M.

Let + denote the (polynomial) addition on M with zero element 0. We show
that for each z,y € M we have so(x,y) = 2 + y. (This follows easily from the fact
that A is quasi—affine, but the following argument is simpler and more elementary.)
We apply the term condition. From

52(0+07y) =Y= 52(0+y30)

we obtain, by changing the first zero to z, that
s2(x +0,y) = s2(z +y,0) =2 +y,
since x +y € M.
Finally, let eg(x) = s2(x,0); this is an idempotent polynomial of A with range

M. Set

s3(x,y) = s2(eo(x) — eo(y), y) -
We show that sg satisfies all three conditions. Obviously, s3(A,A) CT. Ift € T,
then ¢ = sa(m,t’) for some m € M and t' € T. Let m’ = eg(t') + m; then
ss(m/ t') = saleg(t') + m — eo(t'),t) = sa(m,t’) = t, so we have s3(M,T) = T.
Finally if z,y € M, then we have s3(z,y) = s2(x —y,y) = (x —y) +y = =z,
showing that s3(0, M) = {0}. Therefore s3(0, ) is not a permutation of 7' and so
s3(0,T) # T, as T is finite. Thus, all proofs of Lemma 5.2 are complete. O

Lemma 5.3. Let A be a finite, simple, abelian algebra generating a minimal vari-
ety V. Then A is coordinatizable by traces.
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Proof. Let T be minimal among all E-traces of A that are not coordinatizable by
traces, and let T = e(A) for an idempotent polynomial e of A. Consider the trace
N and binary polynomial s provided by Lemma 5.2 for this 7. Iterate s in its
second variable so that it becomes idempotent. If this happens in m steps, then let

g(x1, .y xm,y) = s(x1, s(x2, ... 8(Tm,y)...)),

and h(z,y) = g(z,...,z,y). Pick t € T arbitrarily. Then f(x) = h(t,z) is an
idempotent polynomial of A. Let R = f(A). As s(A,A) C T, we have RC T. As
s(t,T) is a proper subset of T, by the properties of s, the definitions of g and h
show that R is a proper subset of T. On the other hand, s(N,T) = T implies that
g(N,...,NT)=T.

We show that g(N,...,N,R) = T. Indeed, from h(z, h(z,y)) = h(z,y) we get
that

gz, ..., x,g(x, ..., x,y)) = g(z,...,2,y),

so by applying the term condition we obtain that

g1, xm,g(x, .. x,y) =91, T, Y) -
Thus g(N,...,N,T) =g(N,...,N,h(t,T)) as stated.

By the minimality of T" we know that R is coordinatizable by traces. This
means that R = p(M,..., M) for some polynomial p and trace M of A. As M
and N are polynomially isomorphic, we may assume that M = N (by changing p
appropriately). Hence T = g(N,...,N,p(N,...,N)), so by Lemmas 3.8 and 3.9,
the set T' is coordinatizable by traces. This contradiction proves the lemma. O

Finally we show that Theorem 5.1 follows from this lemma.

Proof of Theorem 5.1. Let V be a locally finite, locally solvable, minimal variety.
Then V is generated by a finite simple solvable (and hence abelian) algebra A. If we
put together Lemma 5.3 and Theorem 3.7 (2), we find that A4 is term equivalent
to (U|y)¥, where U is either a finite simple vector space or a finite simple algebra
whose basic operations are all unary and permutations of U, and k is some natural
number. Thus, we can assume that A is polynomially equivalent to Ul*l. This
means that the universe of A will be assumed to be U*, and it further entails that
the clone of A is contained in the clone of (Uly)*.

In the case where U is a vector space we have that A is an abelian algebra which
has a Mal’cev polynomial. This says that A is polynomially equivalent to an affine
algebra. But an algebra polynomially equivalent to an affine algebra is affine itself
as we now explain. Let p(z,y, z) be a polynomial of A that interprets as  — y + z.
If p(z,y, 2) = t*(x,y, 2,a1, ... ,a;) for some term ¢, then in fact

p(z,y,2) =A@ A (Y U U Y oY)y 20 Y5 Y)

That is, the term ¢(x, t(y, ¥, ¥, Y, .- ,Y), 2, Y, ... ,y) interprets as x — y + z. One
can see this most easily by first representing t(z,y,z,4) as a module polyno-
mial for which ¢ (z,y,2,a) = * — y + z and then showing that the operation
tA(z,t2(y,y,y, 1), z, 1) is independent of @. Now that we see that A is affine, we
can rely on Theorem 12.4 of [3] to obtain part (2) of our theorem.

In the case where U is unary it follows from the definition of the matrix power
of an algebra that all term operations of U¥l (and hence of A) depend on at most
k variables. This implies that any polynomial of A which depends on exactly
k variables must in fact be a term operation of A. In particular, since the clone
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of U can be generated by k-ary operations which depend on all of their variables,
it follows that the clone of A contains the clone of Ul*. (Here it is essential that
the basic operations of U are permutations.)

If the unary term operations of U act transitively on U, then the unary term
operations of Ul will act transitively on U*. In this case, the clone of (U|y )"
covers the clone of Ul¥l in the lattice of clones on U*. The clone of A must equal
one or the other of these clones, since it contains one clone and is contained in the
other. Thus, when the terms of U act transitively, then A is term equivalent to
either U or (U|y)¥.

The algebras U and U|y do not generate minimal varieties when the unary
term operations of U act transitively on U (the subvariety defined by the equations
t(z) = z for all nonconstant unary terms ¢ is nontrivial); hence their matrix powers
cannot either. Thus, in this case, A can’t generate a minimal variety, since term
equivalence preserves this property.

We are reduced to considering the case where U is a 2—element algebra with no
basic operations and the clone of A contains the clone of Ul¥! but is contained in the
clone of (U|y)*]. However, there are only four clones on the set U* which contain
the clone of U* and are contained in the clone of (Uly)*. If we let U = {0, 1},
then the four clones are the clones of

({0,130,
({0,1};0),
({0,1}; 1)[¥ and
({0,1};0, 1)l
(It takes a small calculation to see that there are no other clones in this interval.)
A is term equivalent to one of these four algebras. The second and third are term
equivalent to each other. The fourth algebra on the list does not generate a minimal
variety (since the equation 0 ~ 1 defines a nontrivial proper subvariety). Hence, A
must be term equivalent to either ({0,1};0)¥ or ({0,1};0)[.

To summarize, we have shown that the algebra A either must generate an affine
variety or must be term equivalent to a matrix power of a 2—element set or to a
matrix power of a 2—element set with a single constant operation. O

To conclude this section, we give a more detailed description of the minimal
locally finite varieties of type 2. We have shown that a minimal locally finite
variety of type 2 is affine and has a 1-element subalgebra. This is already a good
description of minimal varieties of type 2, but it is not as good a description as the
one we have given for minimal varieties of type 1. In particular, Theorem 5.1 does
not tell us what the clone of a minimal type 2 variety is.

Let A be a strictly simple algebra which generates a minimal variety of type 2.
Let S denote the set of trivial subalgebras of A, and choose some 0 € S. If we
expand A by adding in all polynomials which preserve 0 as new basic operations,
we obtain an affine algebra with exactly one trivial subalgebra. Such an algebra
is term equivalent to a finite simple module, B, with the same universe as A.
The endomorphism ring End(B) is a finite field which we denote by F. If V is
the universe of B, then V is a finite-dimensional F—space and B is isomorphic to
the R—module structure on V' where R = Endg (V). The algebras A and B are
polynomially equivalent, so the following theorem serves to describe the clone of A.
The proof of this theorem can be derived from Propositions 2.6 and 2.10 from [17].
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Theorem 5.4. Let V' be a finite—dimensional vector space over the field F and let
B equal V' considered as an R—module, where R = Endg(V'). Let A be any reduct
of B which is polynomially equivalent to B. Let S be the set of trivial subalgebras
of A. The following are true.

(1) S is a subspace of V.

(2) The clone of A consists precisely of those linear operations on V which pre-
serve the members of S.

(3) There is a left ideal J of R such that the clone of A consists precisely of those
linear operations my(z1) + -+ -+ my(z,) on V which satisfy

my+---+m, = 1 (modJ).
(Here 1 denotes the identity element of R.)

By a reduct of an algebra C we mean any algebra with universe C' whose clone
of term operations is a subset of the clone of term operations of C. In the following
corollary an affine module is an idempotent reduct of a module.

Corollary 5.5. A minimal, locally finite affine variety is categorically equivalent
to a variety of vector spaces or a variety of affine modules.

Proof. A unary term o(z) for the variety V is said to be invertible in V if there exist
some n > 0, an n—ary term p(Z) and n unary terms qi, ... , g, such that V satisfies
p(o(qi(x)),... ,0(gn(x))) = z. If o is an idempotent term of V), then for A € V we
write A(o) for the algebra with universe o(A) and whose basic operations are the
operations of the form o o f|,(4), where f is a term of A. We write V(o) for the
variety of algebras {A(c)|A € V}. It is shown in [12] that if ¢ is an idempotent
term which is invertible in V, then V is categorically equivalent to V(o).

If V is a minimal, locally finite affine variety, then using Theorem 5.4 it is fairly
easy to show that any nonconstant idempotent term is invertible. Just follow these
steps:

(i) Let A be a strictly simple generator of V and choose ¢1, ... ,¢n, € Cloi(A)

such that {oqi,...,0qn} separates the points of A.

(i) Show that the left ideal of R generated by {oq1,...,0¢n,} is R. In this step
use the fact, which we established in the proof of Theorem 5.4, that left ideals
of R are just the annihilators of subspaces of V.

(797) If 1 = > myoq;, then p(Z) = > m;(x;) € Cloy,(A) by Theorem 5.4 (3), and
so p and q1,... ,qn are terms which witness that o is invertible.

Now if A, the strictly simple generator of VV, has more than one trivial subalgebra,
then the description of the clone of A given in Theorem 5.4 implies that A has a
nonconstant idempotent term whose range is the space of trivial subalgebras. If
o is such a term, then V(o) is an idempotent affine variety. That is, it is term
equivalent to a variety of affine modules. Since term equivalence is a categorical
equivalence, we get that V is categorically equivalent to a variety of affine modules
in this case. In the other case A has exactly one trivial subalgebra. We choose ¢ to
be any idempotent, invertible term whose range has vector space dimension 1. The
term operations of A (o) contain the vector space operations and are all linear with
respect to these operations. Hence, A(c) is term equivalent to a 1-dimensional
vector space. But A (o) generates V(o), so the latter is term equivalent to a variety
of vector spaces. This finishes the argument. O
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Since the matrix power construction, viewed as a functor V — V¥l is a categor-
ical equivalence, the results of this section show that any minimal, locally finite,
locally solvable variety is categorically equivalent to one of the following varieties:

the variety of sets,

the variety of pointed sets,

a variety of vector spaces, or

a variety of affine modules over a finite simple ring.

No two varieties on the list are categorically equivalent to each other; they can be
categorically distinguished by comparing the endomorphism monoids of A2, where
A is the unique simple algebra in each variety.

We would like to point out that from the results of this section it is not hard to see
that every locally finite minimal abelian variety is w-categorical. A class of algebras
is w-categorical if up to isomorphism there is a single countably infinite algebra in
the class. What is perhaps more interesting is that our results can be used to
provide another proof of the classification of w-categorical varieties [4, 5, 8, 14, 15],
since it is not difficult to show that such a variety must be locally finite, abelian
and minimal (see Theorem 4.1 of [8]).

6. T'SSS VARIETIES

We will call a locally finite variety with trivial locally strongly solvable subvariety
a T'SSS variety. Examples of TSSS varieties include all locally finite varieties which
satisfy a nontrivial special Mal’cev condition, as well as all minimal locally finite
varieties which are not of type 1. We are going to analyze the commutator proper-
ties of algebras in TSSS varieties. We give a short argument which establishes that
a TSSS variety generated by an abelian algebra is congruence permutable. This is
a quick proof of the fact that a minimal variety of type 2 is affine. We further show
that a T'SSS variety generated by a left nilpotent algebra is congruence permutable.

Lemma 6.1. Let V be a locally finite variety. The following conditions are equiv-
alent.

(1) V is a TSSS variety.
(i) V contains no finite simple algebra of type 1.
(13i) Whenever A € V is finite, « < (3 in Con(A) and typ(a, ) = 1, then
-C(1, B; ).

Proof. We shall prove that —(i) = —(ii) = —(iii) = —(i). If V is not a TSSS
variety, then it has a nontrivial locally strongly solvable subvariety which contains
a finite simple algebra of type 1. Hence, (i) = —(i4). Next, if V contains a finite
simple algebra S of type 1, then by choosing A = S and setting a =0 and g8 = 1 we
get that C(1, §; &) since S is abelian. Hence, —(#4) = —(#4¢). To finish, we need to
show that if V contains a finite algebra A with congruences a@ < 8 in Con(A) such
that typ(c, 5) = 1 and C(1, 8;«), then V contains a nontrivial strongly solvable
algebra. Without loss of generality we may assume that o = 0.

Let 3 be the congruence 3 x 3 restricted to the subalgebra A(3) of A x A (as
in Definition 2.2). Clearly, 3 is strongly abelian, so we have 3 X 0. It is easy to
check that 3V Aq,3 =1. Hence

1 :B\/Al,ﬁ = OVAL[} = Alﬁ.
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Therefore, B = A(8)/A; 3 is a strongly solvable member of V. To finish our proof
that V is not a TSSS variety, we will show that B is not a 1-element algebra. (This
will show that V contains a nontrivial strongly solvable member.) To see this, note
that our hypothesis C(1, 3;0) is equivalent to [1, 5] = 0, which in turn is equivalent
to the condition that the diagonal of A(f) is a union of A; g—classes. But not every
element of A(f) is on the diagonal, since 5 > 0. It follows that A; g has at least
one class contained in the diagonal of A(8) and at least one class disjoint from the
diagonal of A(3). Hence, B = A(3)/A1,s has at least 2 elements. |

Theorem 6.2. IfV is a TSSS variety generated by an abelian algebra, then V is
affine.

Proof. Since V is generated by an abelian algebra, then we know from [6] that V is
locally solvable, or equivalently, that typ{V} C {1, 2}. Corollary 2.7 tells us that in
fact every finite member of V is left nilpotent. Now, if 1 € typ{V}, then V contains
a finite subdirectly irreducible algebra A with monolith p, where typ(0,u) = 1.
As A is left nilpotent, [1,u] = 0; that is, C(1,u;0). But now the equivalence
(i) <= (i4i) of Lemma 6.1 proves that V is not TSSS. Hence 1 ¢ typ{V}. The
conclusion is that typ{V} = {2}, and therefore that V is congruence permutable
by Theorem 7.11 (3) of [6]. Any congruence permutable variety generated by an
abelian algebra is affine, and so the theorem is proved. O

Corollary 6.3. Every minimal variety of type 2 is affine.

The following lemma generalizes the result, found in [7], that every homomorphic
image of a finite abelian algebra is left nilpotent. (To see that it generalizes the
result in [7], take « = 1 and 8 = 0.)

Lemma 6.4. If A is a finite algebra with congruences a, 3, then
[, o] < 8= C(aV 3,0;6)
whenever <6 <0< aVp.

Proof. If the statement of the lemma is false for A, then it is false for A /[a, o], so
we need only to prove the lemma in the case where [, @] = 0. Assume throughout
the proof that [o,a] =0 and 8 <6 < 6 < aV [B. We will argue that C(a V 3,6;0).

Since 8 < 6 < aV g, weget aVd=aV . Hence, we need to show that
C(aVé,0;6). But

ClaVé,6;6) < Cla,0;6) & C(6,0;6).

Since C(6, 0; ) holds for any two congruences ¢ and 0, we can establish the lemma by
showing that C'(«, 0;6). We will use the fact that (6, 0) is a—regular, which follows
from Theorem 2.6 (1). Theorem 2.6 (4) applies, since [a,a] = 0 < 6 and (6,0) is
a-regular. This guarantees that the conditions C(«; 8;6), C(6; «;6), [0, ] < é and
[a, 8] < 6 are equivalent, so it suffices to establish any one of these conditions.
Case 1. aNO <.

In this case, [o, 0] < a A8 <6, so C(a,8;6) and we are done.

Case 2. a N £ 6.

Let A = a A6 and choose v such that A < v < a A #. The prime quotients
(A, v) and (6,0) are perspective prime quotients which are both a-regular (since
[a, ] =0). Now,

[v,a] <[a,a] =0 < A,
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so C(v,a; A) by Theorem 2.6 (4). But A = a A4, so C(v,a; ) implies C(v, ; 6).
Together with C(6, a; ) we get C(6 Vv, a;6). But § Vv =6, so we have C(0, o; 6).
By Theorem 2.6 (4), we have C(«,8;6). This finishes the proof of Case 2, and
therefore it finishes the proof of the lemma. O

Lemma 6.5. Assume that A is a finite algebra and that Con(A) has congruences
a, B such that [a,a] < B and a vV 3 = 1. Then for the conditions listed below,
(i) = (id) = (iii).

(1) V(A) is a TSSS variety.

(i) typ{s,1} = {2}.
(i5i) C(1,1;8) holds.

Proof. The implication (1) = (#i7) clearly follows from Corollary 2.13. So assume
that (i) holds. From the previous lemma we know that C(1,0;8) whenever 8 <
6 < 6 < 1. This tells us two things. First, the interval I[3,1] is solvable, so
typ{8,1} C {1,2}. Second, referring to Lemma 6.1 (i) <= (iii), we find that
1 ¢ typ{fB,1} since we are in a TSSS variety. Hence, typ{s,1} = {2} and (i)
holds. O

Lemma 6.6. Assume that A belongs to a TSSS variety and A has a congruence
a such that [1,a] =0. Then B = A(a)/A1,o generates an affine variety. If o > 0,
then B s nontrivial.

Proof. Since C(1,a;0) in Con(A), we get C(1,@;n;), i = 1,2, in Con(A(w)), and
therefore C(1,@;0) as well. Thus, [1,@] = 0, and so [@,a] = 0 < A;,. We also
have @V Ay o = 1. Lemma 6.5 proves that C'(1,1; Ay,4) holds; so, by Theorem 6.2,
B generates an affine variety.

If « > 0, then the universe of A(a) properly contains the diagonal, but the
diagonal is a union of A; ,—classes. Hence, there are at least two distinct A; o—
classes. It follows that B contains at least two elements. O

Lemma 6.7. Assume that A is an algebra with a congruence a such that [1,a] = 0.
If d(z,y,z) is a term which interprets as a Mal’cev operation on A/a and on
A(a)/A1,a, then a term M(x,y, z) which interprets as a Mal’cev operation on A
may be constructed by composition from d(x,y,z).

Proof. Write A for Aq,. The statement that d(x,y,z) interprets as a Mal'cev
operation on each of A/« and A(«)/A is equivalent to the statement that for all
u,v € A and (a,b), (¢, e), (f,g) € o we have that

d® (u,u,v) a v a d®(v,u,u)

and that () & (¢ ) naplies
A ()G (0) 2 () G))

Claim 1. For any a € A the polynomials d*(z, a, a),d*(a,a, ) and d*(z,z, r) are
one-to-one functions. Furthermore, if (a,b) € a, then d*(z,a,a) = d*(x,b,b) and
d®(a,a,z) = d*(b,b, x).



36 KEITH A. KEARNES, EMIL W. KISS, AND MATTHEW A. VALERIOTE

Proof of Claim 1. Assume that for u,v € A we have that d®(u,a,a) = w =
d®(v,a,a). Since d®(z,a,a) a =, then

uw o d®(u,a,a) = d*(v,a,a) av;

hence (u,v) € a. But now, (u,v),(a,a) € a and ( Z ) A ( Z ) . Hence, from

above we see that

()= () () (2)» (7))

Since the diagonal of A(«) is a union of A-—classes, we conclude that v = v and
hence that d®(z,a,a) is one-to-one. A similar proof works for d*(a, a, ).

b b

r Ao r a a _( d*(r,a,a)
() o ()0 (5)) = (i)

Again using the fact that the diagonal of A(«a) is a union of A—classes we see that
dA(r,a,a) = d®(r,b,b). A similar proof shows that d*(a,a,x) = d*(b,b, ) for all
x €A

Finally we must show that d(z, z, ) is one-to-one. Assume that d (u, u,u) =
w = d*(v,v,v) for some u,v € A. Since d is Mal'cev on A/a, we get that
d®(z,z,2) a x, so we must have (u,w),(w,v) € a. From what we have al-
ready proved, d®(x,u,u) = d*(x,v,v), so d*(u,v,v) = d*(u,u,u) = w. Since
d®(z,v,v) is one-to-one and d* (u,v,v) = w = d*(v,v,v), we get u = v. Claim 1
is proved. O

Now, assume that (a,b) € a and that r € A. Since ( “ ) A < ¢ ), then

Claim 2. For n; equal to the i—th projection kernel of A(a) we have n; A A = 04.
Proof of Claim 2. We prove the claim for 77 only. Assume that ( Z ) m A

A CCL . Necessarily we have (a,b), (a,c) € a. Using Claim 1, we get the first

equality in

d®(c,c,c) _ d®(a,a,c) _ A a a c Al €

d2(b,b,b) ) — \ d*(b,c,e) ) T b c c c )’
Hence d2(b,b,b) = d®(c,c,c). By Claim 1 we have that b = c¢. This completes the
argument for Claim 2. O

We define a first approximation to a Mal’cev term on A:
p(@,y, 2) = d(d(z, 2, x),d(d(z, z, 2), 2,Y), 2).

Claim 3. The algebras A/a and A(«)/A satisfy the equation d(z,y, 2) = p(z,y, 2).
Furthermore, A satisfies the equation p(z,z, z) = 2.

Proof of Claim 3. The fact that A/ and A(a)/A satisfy the equation d(x,y, z) =
p(z,y, z) follows from the definition of p and the fact that d interprets as a Mal’'cev
operation on these algebras.

We must show that A satisfies the equation p(x, x, z) = z, which may be written
as d(d(z, z,x),d(d(z,x, z),z,x),2) = z. To show that this holds, choose a,b € A
arbitrarily. We will show that d®(d*(b,b,a),d®(d*(a,a,b),b,a),b) = b. Set u =
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dA(d?(a,a, b) b,a) Since d*(a,a,b) a b, we get that u o d®(b,b,a) a a. Hence
the pairs (bzlb’a) , ( Z ) and ( Z ) belong to A(a), and the latter two

are A-related. This means that

(b

() (1) (1) (")

We can modify the left side of this displayed line by noticing that d (d® (b, b, a), u, b)
= p®(a,a,b) and that (since u a a) d*(u,u,b) = d*(a,a,b). Hence the left
side equals p*(a,a,b)

a d*(a,a,b)

d®(d*(a,a,b),b,a). Starting with this and continuing yields
(

>. We can modify the right side replacing u with

( dA(dA(abcil?)), b,a) >

_ jA@) (( dA(alja,b) ) ( 2 ) ( . >> A ( dA(alja,b) )

Putting the left and right modifications together, we get that
A
p™(a,a,b) b
( d®(a,a,b) > mAA ( d®(a,a,b) |-

From Claim 2 we deduce that p(a,a,b) = b, as desired. This completes the proof
of Claim 3. O

Our Mal’cev operation M must be constructed from p in a different way than p
was constructed from d. The definition of M is

M(:L‘7y, Z) = p(p(ﬂmp(% 2, 2)71')7p(y,p(y7 Z, Z)vy)7 Z)

Claim 4. The algebras A/a and A(a)/A satisfy p(x,y,z) = M(x,y,z). Further-
more, M2 (z,y, z) is a Mal’cev operation.

Proof of Claim 4. The first part of Claim 4 is handled just like the first part of
Claim 3. From the definition of M and the fact that A |= p(z,x, 2) = z we get that
A = M(z,z,2z) = z. We must prove that for any a,b € A we have

a = M*(a,b,b)
= pA(pA(ava(a7 b7 b)7 a)upA(b7pA(b7 b7 b)u b)7 b)
= p*(p™(a,p*(a,b,b),a),b,b).

In the upcoming calculations, when moving from the first line to the second, we
will use the fact that p(a,p™(a,b,b),p?(a,b,b)) = p™(a,a,a) = a, which follows
from p®(a,b,b) a a and Claim 1.

(M) (1) (1)) (")
) )
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Replacing the first expression in the above sequence with an equal value yields

M*A(a,b,b) a
(i ) 208 (o )
From Claim 2 we deduce that M#(a,b,b) = a. This finishes the proof of Claim 4
and therefore of the theorem. |

There is a simpler proof of the previous lemma if one assumes that A is finite.
After proving Claim 1 one knows that for all a € A the polynomials d*(x, a,a) and
d®(a,a,z) are one-to-one. When A is finite this implies that these polynomials
are permutations. From this one can construct a Mal’cev term from d by iteration.
Unlike the argument given above, in this argument the complexity of the term M
depends on |A].

Theorem 6.8. IfV is a TSSS variety generated by a left nilpotent algebra, then V
is congruence permutable.

Proof. We may assume that V is generated by a finite, left nilpotent algebra. For if
V is a T'SSS variety generated by a left nilpotent algebra, then Fy,(2) is a finite, left
nilpotent algebra. If the theorem holds for finitely generated varieties, then V' =
V(Fy(2)) is congruence permutable. But V' = V(Fy(2)) is congruence permutable
iff V is congruence permutable. (The reason for this is that any Mal’cev term for V'
is also a Mal’cev term for V, since the defining equations for a Mal’cev term involve
only two variables.) Thus, we only need to prove the theorem in the case when V
is generated by a finite, left nilpotent algebra.

Let A denote the class of finite, left nilpotent algebras that generate TSSS va-
rieties. We will use induction on the nilpotence class to prove that for any A € A
the variety V(A) is congruence permutable. As we explained in the last paragraph,
this will finish the proof.

If A € Ais abelian, then Theorem 6.2 proves that V(A) is affine and therefore
congruence permutable. The base case for our inductive proof has been established.
For the inductive step of our argument, choose A € A of nilpotence class k > 1 and
assume that the theorem is true for all A’ € A of smaller nilpotence class. Since
A is of nilpotence class k, we have (1]**1 =0 < (1]*. Let a = (1]*; note that A /a
has nilpotence class k — 1. Let A = Ay, € Con(A(«)). We have [1,a] = 0, so by
Lemma 6.6 we have that A(a)/A is affine. Let 8 =@ A A in Con(A(«)). Notice
that A(a)/a@ = A/a is of nilpotence class k — 1, and A(a)/A is abelian since it is
affine. B = A(a)/f is of nilpotence class < k — 1, since it is a subdirect product of
algebras of nilpotence class < k — 1. Since B € V(A), we get that V(B) is TSSS.
This means that B € A4 and, from our inductive hypothesis, V(B) is congruence
permutable. Let d(z,y, z) be a term which interprets as a Mal’cev operation on
B. Then d(z,y, z) interprets as a Mal’cev operation, both on A(a)/a = A/a and
on A(w)/A. Hence, by Lemma 6.7, there is a term M (z,y, z) constructible from
d(x,y, z) which interprets as a Mal’cev operation on A. This proves that V(A) is
congruence permutable, and the argument for the inductive step is complete. [

Corollary 6.9. IfV is a TSSS variety, then V has a congruence permutable sub-
variety containing all left nilpotent members of V.

Proof. We need to prove that if V is a TSSS variety, then there is a term which
interprets as a Mal’cev operation on every left nilpotent algebra in V. For then the
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equations which state that this term is a Mal’cev operation define a congruence
permutable subvariety of V containing all the left nilpotent members of V.

Let {t1(z,y,2),... ,tn(x,y,2)} be a set of representatives of the V—inequivalent
ternary terms. If, for each i, there is a left nilpotent A; € V such that ¢; does
not interpret as a Mal’cev operation on A;, then no ternary term interprets as a
Mal’cev operation on the left nilpotent algebra [[,., A;. We proved this to be
impossible in Theorem 6.8. The conclusion is that some ¢; interprets as a Mal'cev
operation on every left nilpotent member of V. O

Example. (We cannot replace left nilpotence with solvability) To see that the
nilpotence hypothesis in Theorem 6.8 cannot be weakened to solvability, we exhibit
a T'SSS variety which is generated by a finite solvable algebra but is not congruence
permutable.

Let V be the variety with one binary operation, denoted by juxtaposition, and
one nullary operation, 1, which is defined by the equations V | 1z = 21 = z. If
A eVand a€ A— {1}, then (a,1) is a 1-snag of A. Hence there does not exist a
nontrivial, finite, strongly solvable algebra in V. It follows that every locally finite
subvariety of V is a T'SSS variety. So let A be the member of V presented by

(a,b]a* =b*=ab=ba=1).

A ={1,a,b}, and Con A is a 3—element chain with a = Cg(a,b) the unique non-
trivial, proper congruence. It is easy to see that typ(0, ) = 1 and typ(«a, 1) = 2, so
A is solvable and V(A) is a TSSS variety, but V(A) is not congruence permutable.

We pointed out in Section 5 that an abelian algebra with a Mal’cev polynomial
has a Mal’cev term. This can be taken as the basis step in a proof by induction,
modeled on the proof of Theorem 6.8, of the following result (which becomes false
if the word “nilpotent” is replaced by “solvable”).

Theorem 6.10. Any nilpotent algebra with a Mal’cev polynomial has a Mal’cev
term.

In this section we have focused on left nilpotent algebras in TSSS varieties.
The results extend to other types of nilpotent algebras in TSSS varieties, since [7]
proves that the hypothesis of left nilpotence is weaker than any other notion of
nilpotence. For example, if A is a finite algebra satisfying [1,1)**! = 0 (A is k-
step right nilpotent), then A is left nilpotent although possibly of higher nilpotence
class. Similarly, if a mixed expression like [1,[[1,[1,1]],1]] = 0 holds, then A is left
nilpotent. We know very little about which non—nilpotent algebras generate TSSS
varieties, except that some of the arguments in this section may be localized.

We conclude this section with a peculiar application of Theorem 6.8.

Corollary 6.11. Let V be an idempotent variety generated by nilpotent algebras.
If Fy(2) has odd cardinality, then V is congruence permutable.

Proof. As we pointed out in the proof of Theorem 6.8, to show that V is congruence
permutable it suffices to prove that the subvariety V' = V(Fy(2)) is congruence
permutable. We shall prove this with the aid of Theorem 6.8. If Fy,(2) has odd
cardinality, then V'’ is generated by the finite, left nilpotent algebra Fy,(2). We
need only to prove that the locally strongly solvable subvariety of V' is trivial to
complete the argument.
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Let a be the automorphism of Fy,(2) determined by switching the generators.
This automorphism has order two, and, since |F),(2)| is odd, this implies that there
is an element w € Fy(2) such that a(w) = w. If w(zx,y) is any binary term
representing w, then w(z,y) = w(y, z) is an equation of V',

If V' has a nontrivial locally strongly solvable subvariety, then it has a strongly
abelian, minimal subvariety, M. The strictly simple generator of M is term equiv-
alent to a matrix power of a 2—element set or a 2—element pointed set, as we have
proved. But since we are working with idempotent algebras, M must in fact be
equivalent to the variety of sets. The term w(x,y) must interpret as a projection
in M; either w(z,y) = x or w(x,y) = y is an equation of M. But now we have a
contradiction: M satisfies w(z,y) = w(y, x) and either w(x,y) = z or w(x,y) =y,
but it does not satisfy z = y. This is clearly impossible. The conclusion is that V' is
TSSS and so is congruence permutable. It follows that ) is congruence permutable
as well. O

We called this corollary ‘peculiar’ because the odd cardinality hypothesis results
in such a strong conclusion. If, for example, we start with a finite nilpotent group
G and take the reduct (G;2"y*~") for some 7, then we get a nilpotent algebra
which generates an idempotent variety. The cardinality |F}(2)| can turn out to be
either odd or even. Often, but only when |Fy(2)| is even, this type of variety is not
congruence permutable.
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