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A CONDITION ON THE VALUE FUNCTION

BOTH NECESSARY AND SUFFICIENT

FOR FULL REGULARITY OF MINIMIZERS

OF ONE-DIMENSIONAL VARIATIONAL PROBLEMS

M. A. SYCHEV AND V. J. MIZEL

Abstract. We study two-point Lagrange problems for integrands L =
L(t, u, v):

F [u] =

∫ b

a
L(t, u(t), u̇(t)) dt→ inf,

u ∈ A = {v ∈ W 1,1([a, b]; Rn)|v(a) = A, v(b) = B}.

(P)

Under very weak regularity hypotheses [L is Hölder continuous and locally el-
liptic on each compact subset of R×Rn×Rn] we obtain, when L is of superlinear
growth in v, a characterization of problems in which the minimizers of (P) are
C1-regular for all boundary data. This characterization involves the behavior
of the value function S: R×Rn×R×Rn → R defined by S(a, A, b, B) = infA F .
Namely, all minimizers for (P) are C1-regular in neighborhoods of a and b if
and only if S is Lipschitz continuous at (a, A, b,B). Consequently problems (P)
possessing no singular minimizers are characterized in cases where not even a
weak form of the Euler-Lagrange equations is available for guidance. Full reg-
ularity results for problems where L is nearly autonomous, nearly independent
of u, or jointly convex in (u, v) are presented.

1. Introduction

We consider here the two-point Lagrange problem

(1) F [u] =

∫ b

a

L(t, u(t), u̇(t)) dt→ inf,

u ∈ A = {v ∈ W 1,1([a, b]; Rn)|v(a) = A, v(b) = B}.
We define the value function S : R× Rn × R× Rn → R as follows:

S(a,A, b, B) = inf{F [u] | u ∈ A}.(2)
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It is well known that problem (1) has a minimizer [“solution”] if L = L(t, u, v) : R×
Rn×Rn → R is convex in v and satisfies the following growth condition: L(t, u, v) ≥
O(v), where O(v)/|v| → ∞ as |v| → ∞. This growth condition ensures relative
weak compactness of subsets of A satisfying F [u] ≤M <∞, for fixed M > 0. Thus
for M sufficiently large there exists in each such subset a minimizing sequence {un}
converging weakly to some function u0 ∈ A. The convexity in v of L ensures
lower semicontinuity of F with respect to sequential weak convergence, so that
lim infn→∞ F [un] ≥ F [u0], whence u0 is a minimizer for (1). Moreover, if L is
C1 and is strictly convex in v, then any such minimizer u0 is itself C1 on some
open subset Ω having full measure in [a, b], satisfies the Euler-Lagrange equation
d/dt Lv(t, u0(t), u̇0(t)) = Lu(t, u0(t), u̇0(t)) on Ω and |u̇0(t)| → ∞ as t → t0 ∈
[a, b]\Ω (Tonelli’s partial regularity theorem [T, p. 345], [BM], [CV1], [CV2], [S1]).

These properties, when allied with an absence of bounded solutions of the Euler-
Lagrange equation with unbounded derivative, provide full regularity for all min-
imizers. This was the main idea of the approach in [CV1]. There full regularity
of solutions was proved for problems with autonomous L, but the approach used
there did not have the character of a necessary and sufficient condition. There
are nonautonomous integrands L for which the minimizers of problem (1) for all
(a,A, b, B) are C1-regular, while there exist bounded solutions with unbounded de-
rivative of the corresponding Euler-Lagrange equations [BM], [S2]. Such solutions
of the Euler-Lagrange equations don’t have “variational character”. This fact is
not surprising, since it is well known that even classical solutions of these equations
can fail to be local minimizers of F . In order to clarify when a classical solution of
the Euler-Lagrange equations is a local minimizer, it was necessary to develop the
field theory of the calculus of variations [Bo], [Ca], [Ce]. Clearly, a field theory for
problems with nonclassical solutions (solutions satisfying only the requirements of
Tonelli’s partial regularity theorem) will be considerably more complicated.

Thus in the present article we bypass this issue by characterizing regularity for
solutions of (1) in terms of qualitative properties of the value function S defined in
(2). It turns out that Lipschitz continuity of S is such a property. Moreover we will
present a method which shows how this result can be used to prove full regularity
in the presence of such mild restrictions on the integrand that even the very weak
version of the Euler-Lagrange equation utilized in [CV1] is unavailable.

We begin by proving a partial regularity theorem, as well as theorems concerning
existence and regularity in the small, under conditions on L which are weaker than
usual. We adopt the following assumptions concerning the integrand:

L : R × Rn × Rn → R is Hölder continuous on each compact subset
G ⊂ R × Rn × Rn, and L = L(t, u, v) is convex in v. In addition,
for each such subset G there exists a positive number µ = µ(G) such
that L(t, u, v2)− L(t, u, v1)− 〈l, v2 − v1〉 ≥ µ|v2 − v1|2 holds for each
(t, u, v1), (t, u, v2) ∈ G and each l ∈ ∂L(t, u, ·)|v=v1 .

(H1)

We will need to extend certain definitions from [S3] as follows.

Definition. Consider a family of functions X = {ξ : [a, b] → Rn} each of which is
continuous on some open subset Ω = Ω(ξ) ⊂ [a, b] of full measure and satisfies for
each t0 ∈ [a, b]\Ω (∗) limt∈Ω,t→t0 |ξ(t)| = ∞.

Such a family X is said to be a conditionally equicontinuous family (CEF) if
for each M > 0 and ε > 0 there exists δ(M, ε) > 0 such that if ξ ∈ X and t0 ∈ Ω(ξ)
with |ξ(t0)| < M then |t − t0| ≤ δ(M, ε) implies t ∈ Ω(ξ) and |ξ(t) − ξ(t0)| ≤ ε.
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Any such function δ is referred to as a conditional equicontinuity modulus
function (CEMF) for the family X .

Sometimes we will also consider families of functions {ξ} defined on different
closed intervals.

Theorem 1. Suppose that L satisfies (H1), K is a compact subset of R×Rn and
M > 0. Then there exists ε > 0 such that, for each (a,A) ∈ K, if (b, B) satisfies
|B − A|/|b − a| ≤ M then for some γ > 0 problem (1) has only C1,γ-regular
minimizers in the class of functions in A satisfying |ui(t) − Ai| ≤ ε, t ∈ [a, b],
1 ≤ i ≤ n, provided that |b − a| ≤ η(M, ε) is sufficiently small. Moreover, the
derivatives of all such minimizers form a bounded set in C0,γ .

Theorem 2. Suppose that L satisfies (H1) and K is a compact subset of R×Rn.
Let U be the collection of all solutions of problems of the form (1) whose graphs lie
in K. Then V = {u̇ | u ∈ U} is a CEF.

Our main result is the following:

Theorem 3. Suppose that L = L(t, u, v) satisfies (H1) and has superlinear growth
in v [L(t, u, v) ≥ ϑ(v) ≥ 0, where ϑ(v)/|v| → ∞ as |v| → ∞]. Then S : R ×
Rn × R × Rn → R is Lipschitz continuous at a point (a0, A0, b0, B0) if and only
if all solutions of (1) with boundary condition (a,A, b, B) = (a0, A0, b0, B0) have
bounded derivatives at a and b.

Corollary. If L satisfies the conditions of Theorem 3 then problem (1) has only
C1-regular minimizers for all boundary conditions if and only if the value function
S is Lipschitz continuous at every point.

We prove Theorems 1 and 2 in §3 and Theorem 3 in §4. In §2 we prove some
properties of CEF’s which are needed for the proofs of Theorems 1–3. In §5 we
demonstrate how arguments used in the proof of Theorem 3 simplify in proving reg-
ularity for problems with weak t- or u-dependence as well as for integrands which
are jointly convex in (u, v) (cf. Theorem 4 in §5). In these cases it suffices to prove
the Lipschitz property of S in directions involving variation of a single argument
rather than proving its full Lipschitz continuity. We note that the Lipschitz condi-
tion in Theorem 3 could be replaced in general by a Lipschitz property with respect
to special directions (cf. the Remark following the proof) at the cost of significantly
complicating the statement of the theorem.

It is worth mentioning that there is some hope of obtaining necessary and suffi-
cient conditions for the nonoccurrence of the Lavrentiev gap phenomenon in terms
of the regularity of S. Recall that this gap phenomenon [L], [Ma], [BM] refers to
problems in which a global regularity constraint results in an increase in the infi-
mum of a variational problem. Lavrentiev [L] provided the first example of problem
(1) in which the integrand L and class A were such that

m = inf
A∩C1

F > S(a,A, b, B) = inf
A
F.(Λ)

Since that time other cases have been studied [BM], [Da] in which

mp = inf
A∩W 1,p

F > S(a,A, b, B), for some p > 1.(Λp)

One possibility is that the key issue is continuity of S (cf. [FS, Ch1]): it appears
that continuity of S everywhere follows from the absence of a Lavrentiev gap for
all problems (1) with the given integrand.
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A second important problem is to resolve the question alluded to earlier: when
does a “solution” of the Euler-Lagrange equation which satisfies Tonelli’s partial
regularity conditions yield a minimizer for (1)? It seems clear that resolving this
matter will necessitate the development of a field theory for problems with singular
minimizers. Here, in contrast to the classical case in which C1-norms of functions
are bounded, it is not enough to know the values of the integrands and their partial
derivatives at the graph of the function under consideration in determining whether
the function is a minimizer. In an example from [S1, §2] L = µv2+(u5−t3)4v32 and
the function u0(t) = kt3/5, k = k(µ), is a solution for any problem with boundary
conditions taken from its graph, but [for boundary conditions with a ≤ 0, b ≥ 0] is
not a minimizer for the integrand of [S2, Theorem 1]

L = µv2 + (t3 − u5)4+p((u
5/t3 − k5

0)/(γ0 − k0))v
32,

with appropriately chosen p ∈ C∞[p(t) = 0, t ≤ 0, p(t) = 1, t ≥ 1], k0 < k, γ0 =
(k + k0)/2, despite the fact that both integrands have the same values and partial
derivatives at the graph of u0.

2. Some properties of CEF’s

Lemma 2.1. Let X = {ξ} be a CEF with CEMF δ. Then
(1) Each L1 bounded sequence {ξn} ⊂ X has a subsequence which converges

uniformly to a function ξ0 over every compact subset of some open subset Ω of full
measure in the interval of definition; moreover X ∪ {ξ0} is a CEF with the same
CEMF δ.

(2) Subsets of X which are relatively weakly compact in L1 are relatively strongly
compact in L1; moreover X together with all its L1 sequential weak limits is also a
CEF with the same CEMF δ.

The proof is the same as that for Lemma 2.1 of [S3].

Lemma 2.2. Let X be a CEF and suppose that {ξm}0≤m ⊂ X is such that
‖ξm‖L1(a,b) ≤ C < ∞, and the functions fm : [a, b] → Rn, m ≥ 1, defined by

fm(t) =
∫ t
a
[ξm(s)− ξ0(s)] ds converge pointwise to 0 as m→∞. Then

‖ξm − ξ0‖C(K) → 0

for each compact subset K of the open set Ω = Ω(ξ0). Moreover, if M > 0, ε > 0
and EM = {t| |ξ0(t)| ≥M + ε}, then limm→∞[inft∈EM |ξm(t)|] > M .

Proof. In (1) and (2) we first prove pointwise convergence of ξm to ξ0.
(1) Suppose tm → t0 are such that |ξm(tm)|, |ξ0(t0)| < M . Then by the definition

of CEF ξm(t0) − ξm(tm) → 0. We prove that ξm(tm) → ξ0(t0) by contradiction.
If convergence fails there exists a subsequence {ξk′} such that ξk′ (t0) → B 6=
ξ0(t0). Hence for some ε > 0 and i ∈ {1, . . . , n}, |ξik′ (t0) − ξi0(t0)| > 2ε for all
sufficiently large k′. It now follows from the definition of CEF that for some δ > 0
|ξik′(t) − ξi0(t)| > ε for all t ∈ I = [t0 − δ, t0 + δ], and ξk′ , ξ0 are equibounded and
equicontinuous functions on I (k′ sufficiently large). Thus

‖fk′(t0 + δ)− fk′(t0 − δ)‖ =

∥∥∥∥∥
∫ t0+δ

t0−δ
[ξk′ (t)− ξ0(t)] dt

∥∥∥∥∥ ≥ εδ,

which contradicts the hypothesis that fk′ → 0 pointwise.
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(2) Suppose |ξ0(t0)| < M and put J = [t0 − δ, t0 + δ], where 2δ < δ(M + 1, 1).
In view of (1) it suffices to prove that |ξm(tm)| is a bounded sequence whenever
tm → t0. Now by Chebychev’s inequality for each ξm there is a point τm ∈ J such
that |ξm(τm)| < N with a prescribedN > C/δ. By passing to a subsequence one can
suppose that τk′ → τ0 ∈ J . Hence by (1) it follows that ξk′(τk′ ) → ξ0(τ0), so that
|ξk′(τk′ )| < M+1 for all sufficiently large k′, and consequently ‖ξk′‖C(J) ≤M+2 for
all sufficiently large k′. Since every subsequence of the original sequence possesses
a subsequence of the type above, it follows that the full sequence {ξk} satisfies
‖ξk‖C(J) ≤ M + 2 for all sufficiently large k. Hence the sequence |ξm(tm)| is
bounded as claimed.

(3) If K is a compact subset of Ω then the restriction of ξ0 to K is (uniformly)
continuous, so that for some M > 0, |ξ0(t)| ≤ M for all t ∈ K, and by (2)
ξk(t) → ξ0(t) for each t ∈ K. In view of the definition of CEF one can deduce that
for k0 sufficiently large one has uniform boundedness of {ξk}k≥k0 on K. Namely,
there is a finite subset T = {τi} of K such that each point of K is within δ(M+1, 1)
of T . Since for k0 sufficiently large one has |ξk(τi)| < M+1, ∀τi ∈ T for each k ≥ k0,
it follows that ‖ξk‖C(K) ≤ M + 2, for all k ≥ k0. Hence since X is a CEF these
functions are equicontinuous on K, and thus their pointwise convergence to ξ0
implies uniform convergence.

(4) Let M > 0, ε > 0, and EM = {t| |ξ0(t)| ≥M + ε}. If lim infk→∞,t∈EM |ξk(t)|
< M+ε/2, then one can extract a subsequence tk′ → t0 such that ξk′ (tk′) → A with
|A| ≤ M + ε/2 and M + ε ≤ |ξ0(t0)| < ∞, which contradicts (1). This completes
the proof.

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. In (1) below we examine problem 1 where the admissible func-
tions are constrained to lie in a bounded subset of W 1,∞. In (2) we eliminate this
constraint, utilizing stronger hypotheses on L. Then in (3) we reduce the hypothe-
ses on L to (H1).

(1) By (H1) one can choose ε > 0 in such a manner that for some α > 0, β ∈ R
one has for each (a,A) ∈ K and each l ∈ ∂L(a,A, ·)|v=0

L(t, u, v)− L(t, u, 0)− 〈l, v〉 ≥ α|v|+ β ∀v ∈ Rn(3.1)

for all (t, u) satisfying

(t, u) ∈ G(a,A; ε) := {(s, r)| |s− a| ≤ ε, |ri −Ai| ≤ ε, i = 1, . . . , n}.
Let us now restrict the corresponding functional F to the class G of W 1,∞

functions which satisfy for some (a,A), (b, B), u(a) = A, u(b) = B, with (a,A) ∈ K,
|B −A|/|b− a| ≤M , |b− a| ≤ η, and whose graphs lie in G(a,A; ε). Given N > 0
examine the minimization problem for F on GN := {u ∈ G| |u̇(t)| ≤ N a.e.}.
Denoting this problem by PN , let us select N1 such that for some β∗ ∈ R

L(t, u, v)− 〈l, v〉 ≥ α|v|+ β∗ ≥ L(t, u, w)− 〈l, w〉(3.2)

is satisfied for all |v| ≥ N1, |w| ≤M , (t, u) ∈ G(a,A; ε), l ∈ ∂L(a,A, 0). In addition,
we may choose N1 sufficiently large that (3.2) holds uniformly with respect to
(a,A) ∈ K. Furthermore, we can work with the integrands L(t, u, v)− 〈l, v〉 rather
than L because the integral of the linear form has the same value for all admissible
functions satisfying fixed boundary conditions.
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For fixed N , problem PN has only C1-regular solutions ([S1, Theorem 1.2, Corol-
lary 1]). The conditions on L in Theorem 1.2 of [S1] were more restrictive than used
here, but as mentioned at the end of §1 of [S1], the original proof applies to the
present context. Moreover, Theorem 1.2 allows us to conclude that first derivatives
of solutions to such problems PN lie in a CEF.

For each problem PN , N ≥ N1, its minimizers uN cannot have derivatives whose
modulus exceeds N1 for all x ∈ [a, b]. Otherwise we would have F [uN ] > F [p]
where p is an admissible linear function. Let δ = δ(x, y) be a modulus associated
with the CEF. Thus for |a − b| ≤ η0 ≤ δ(N1, 1) we conclude that each minimizer
uN satisfies

|u̇N(t)| ≤ N1 + 1 ∀t ∈ [a, b].(3.3)

Clearly (3.3) implies that it suffices to utilize the modulus δ(N, y) associated with
N = N1 + 1. Therefore we have proved that for a fixed M > 0, ε ≤ ε0 and
(a,A) ∈ K and for all η ≤ η0 = δ(N1, 1) the problems PN have solutions in W 1,∞

with derivatives bounded in modulus by N1 +1. In view of Theorem 1.2, Corollary
2 of [S1] we deduce that the {u̇N} are bounded in C0,γ-norm for some γ > 0. Note
that we have actually proved that for a fixed M > 0, ε < ε0 and (a,A) ∈ K the
minimization problem over all Lipschitz functions with graphs in G(a,A; ε) has
a solution u0 provided that |a − b| ≤ η ≤ η0, |A − B|/|a − b| ≤ M . Indeed u0

can be chosen as the limit of a sequence of solutions uNm to PNm converging in
C1-norm. Moreover, all such minimizers are equibounded in C1,γ norm for some
γ < 0 (uniformly with respect to (a,A) ∈ K, ε ≤ ε0, η ≤ η0).

(2) We prove the assertion of the theorem first for L with superlinear growth:
L(t, u, v) ≥ ϑ(|v|) > 0, where ϑ(ρ)/ρ → ∞ as ρ → ∞, ϑ is an increasing function
on [0,∞) and ϑ′′ > 0 everywhere.

Let ū be an admissible function with essentially unbounded derivative which
satisfies (∗) F [ū] ≤ F [u0], where u0 is a minimizer over all Lipschitz functions (so
u0 satisfies (3.3)). For (t, u) ∈ G(a,A; ε) ((a,A) being fixed) we will construct a

function L̃ ≤ L satisfying the following requirements:

L̃(t, u, v) = L(t, u, v) for |v| ≤ N1 + 1,(3.4)

L̃(t, u, v) = ϑ(|v|)/2 for |v| sufficiently large.(3.5)

For the given (a,A) put

M0 = sup{L(t, u, v)|(t, u) ∈ G(a,A; ε), |v| ≤ N1 + 1},
K0 = sup{|l| |l ∈ ∂vL(t, u, v), (t, u) ∈ G(a,A; ε), |v| ≤ N1 + 1},
N2 = min{ρ ≥ N1 + 1|ϑ(ρ)/2 ≥M0 +K0(ρ+N1 + 1)}.

For (t, u) ∈ G(a,A; ε) we define

L̄(t, u, v) = L(t, u, v), |v| ≤ N2,

= ∞, |v| > N2.

We also put ϑ̄(ρ) = max{ϑ(ρ), ϑ(N2)}. Note that for |v| ≥ N2

L(t, u, v) > ϑ(|v|)/2 ≥ max{L(t, u, v0) + 〈l, v − v0〉|(t, u) ∈ G(a,A; ε),

|v0| ≤ N1 + 1, l ∈ ∂L(t, u, ·)|v0}.
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Let L̃(t, u, v) be the convexification with respect to v of the function f(t, u, v) =

min{L̄(t, u, v), ϑ̄(|v|)/2}. We now check that L̃ ≤ L as well as the validity of
(3.4) and (3.5). Since f ≤ L̄ ≤ L for |v| ≤ N2, while f ≤ ϑ(|v|)/2 ≤ L for

|v| ≥ N2, the relation L̃ ≤ L is clear. Now suppose |v0| < N1 + 1 and take
l ∈ ∂L(t, u, ·)|v0 . Then f(t, u, v0) = L(t, u, v0). Moreover for all v f(t, u, v) ≥
L(t, u, v0) + 〈l, v − v0〉 := gv0(t, u, v). This follows where f(t, u, v) = L(t, u, v)
from the convexity of L in v, while it follows where f(t, u, v) = ϑ̄(|v|)/2 from the

definition of N2. Hence (3.4) follows for L̃ [f(t, u, v0) ≥ L̃(t, u, v0) ≥ gv0 , since

gv0 is affine and f(t, u, v0) = gv0(t, u, v0)]. Similarly, (3.5) holds for L̃ because

f(t, u, v) = ϑ(|v|)/2 for |v| > N2 (f ≥ L̃ ≥ ϑ/2, and ϑ(|v|) is convex). Thus

L̃(t, u, v) = ϑ(|v|)/2 for such v.

Moreover L̃(t, u, v) is Hölder continuous on compact subsets of (t, u, v) variables.
In fact, by the Ekeland lemma [ET, Ch. 9, Lemma 3.2]

L̃(t, u, v) = min

 ∑
1≤i≤n+1

cif(t, u, vi) : ci ≥ 0,
∑

1≤i≤n+1

ci = 1,
∑

1≤i≤n+1

civi = v

 .

Moreover, in view of the superlinear growth with respect to v, for each M > 0
there exists an M1 > 0 such that if |v| ≤M then all vi can be chosen to satisfy the

inequality |vi| ≤M1. This property implies the Hölder continuity of L̃.

Now it can happen that L̃ does not satisfy the local ellipticity condition in (H1).

In this case we consider the integrands Lν = L̃+ ν max{ϑ(|v|)− ϑ(N1 + 1), 0}. By
(∗) Fν [ū] < Fν [u0] for all sufficiently small ν, and ϑ′′ > 0 implies the integrands Lν
satisfy (H1) for ν > 0. In view of (3.2)–(3.4) and the choice of |b− a| the function
u0 is a solution for the problems with integrands Lν over the Lipschitz functions.
On the other hand, in view of (3.5) and Vallée-Poussin’s criterion there exists a
sequence {um} ⊂W 1,∞ for which ‖um− ū‖W 1,1 → 0 and Fν [um] → Fν(ū). This is
a contradiction.

(3) Now consider the case in which L does not have superlinear growth. Here we
can reduce the situation to the case of at least linear growth in v. Let F [w] < F [u0]
for some admissible w ∈ W 1,1 with essentially unbounded derivative. Then for
some increasing function ϑ ∈ C2([0,∞)) with superlinear growth and positive sec-

ond derivative we have
∫ b
a ϑ(|ẇ(t)|) dt < ∞. Therefore for all sufficiently small

ν > 0 Fν [w] < Fν [u0], where Fν is the functional with integrand Lν = L +
ν max{ϑ(|v|) − ϑ(N2), 0}. However, u0 is a minimizer for all integrands Lν in
view of the relation Lν = L0 for |v| ≤ N1 + 1. It follows from (2) that this leads to
a contradiction. Thus we have proved that solutions in W 1,∞ are also solutions in
W 1,1.

Now we will prove that all solutions in W 1,1 are Lipschitz. Let w be a solution
in W 1,1. Put k(t1, t2) = (w(t2) − w(t1))/(t2 − t1). Suppose that for sequences
tm1 , t

m
2 → t0 (tm1 < t0 < tm2 ) k(tm1 , t0) → k−, k(t0, tm2 ) → k+, with |k+|, |k−| <∞. It

follows by contradiction that k− = k+. Otherwise we could replace w by minimizers
u−, u+ over Lipschitz functions having the same boundary conditions as w on the
intervals [tm1 , t0] and [t0, t

m
2 ], respectively. In view of the results in (1), (2) and the

boundedness of k− and k+, u− and u+ are also bounded in C1-norm for sufficiently
large m. In view of the equicontinuity of their derivatives, u̇−(t0) 6= u̇+(t0) for
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these m. But (2) implies that the function

w1 = u+(t), t ∈ [tm1 , t0],

= u−(t), t ∈ [t0, t
m
2 ],

is a solution in W 1,∞. This contradicts the regularity proved in (2) for such so-
lutions. Next suppose that only one of k− and k+ can be taken to be finite, say
|k−| < ∞. We again arrive at a contradiction in similar fashion. We can choose
τm → t0−0 for which k(τm, t0) → k−. Moreover there exist sequences τm1 → t0−0,
τm2 → t0+0 for which k(τm, τm1 ) → k−, k(τm1 , τm2 ) → k0 such that |k−| < |k0| <∞.
Now consider minimizers u−, u+ over the class of Lipschitz functions with bound-
ary conditions given by the values of w at τm, τm1 andτm1 , τm2 , respectively. For
all sufficiently large m such minimizers exist, and their derivatives are equicontin-
uous functions by the results in (1) and (2). Therefore u̇+(τm1 ) 6= u̇−(τm1 ) for m
sufficiently large. But the function which is given by u− on [τm, τm1 ] and u+ on
[τm1 , τm2 ] is a minimizer over Lipschitz functions according to (2). This contradicts
the regularity properties obtained for such minimizers.

We are now able to complete the proof of regularity for w. In view of what was
shown above, w has a finite derivative at each point where at least one of k− and k+

is finite. Moreover the derivative is bounded and continuous in some neighborhood
of each point of this type. Namely, if t0 is such a point then k− = k+ = ẇ(t0).
Therefore for each t1, t2 sufficiently near t0 with t1 < t0 < t2 we can replace w on
[t1, t0], [t0, t2] by respective minimizers u−, u+ over W 1,∞, while maintaining the
property that w is a minimizer over W 1,1. Hence u̇−(t1) = ẇ(t1), u̇

+(t2) = ẇ(t2).
In view of the equicontinuity result obtained in (1) for minimizers over W 1,∞ we
conclude that ẇ(t1), ẇ(t2) → ẇ(t0) as t1, t2 → t0.

Now let t0 be a point where ẇ(t0) exists with |ẇ(t0)| ≤ N1, with N1 as in (1).
Examine J0 =

⋃
J , where t0 ∈ J and ẇ is bounded on the segment J . In view of

(1) |ẇ(t)| ≤ N1 + 1 everywhere on J0. Hence in view of what was proved above J0

can be extended to the interval [a, b]. This complete the proof.

Proof of Theorem 2. Let u be one of the functions under consideration, namely a
minimizer of (1) whose graph lies in K, where K is a compact set in R× Rn. Let
t0 be a point in the domain of u such that

lim inf
t1,t2→t0,t1<t0<t2

|(u(t2)− u(t1))/(t2 − t1)| <∞.(3.6)

In view of Theorem 1 we deduce that u is C1-regular in some neighborhood of t0.
Thus u ∈ C1(Ω) for an open set Ω of full measure in its domain. Moreover, at all
other points t in its domain u satisfies

lim inf
t1,t2→t,t1<t<t2

|(u(t2)− u(t1))/(t2 − t1)| = ∞.(3.7)

In order to prove that the derivatives {u̇} of these functions form a CEF we first
show that for any N > 0 and ε ∈ (0, 1/2) there exists η̄ > 0 such that if u is any
one of the functions under consideration and |u̇(t0)| < N then |u̇(t) − u̇(t0)| ≤ ε
whenever |t− t0| ≤ η̄.

Put M = N + 1, let ε0, η0 denote the values associated in Theorem 1 to K and
M and let ν denote the modulus of equicontinuity for the functions {u̇} furnished
by Theorem 1. We select η̄ subject to the following conditions:

ν(η̄) ≤ ε/2, ε0 > Mη̄ [η̄ < min{ε0, η0}].(3.8)
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We now prove by contradiction that |t−t0| ≤ η̄ implies |u̇(t)−u̇(t0)| ≤ ε. Otherwise,
there is some t ∈ J = (t0 − η̄, t0 + η̄) for which |u̇(t) − u̇(t0)| > ε. Hence if t > t0
there exists t1 ∈ J such that |u̇(t)| ≤M for all t ∈ [t0, t1] and |u̇(t1)− u̇(t0)| = ε [if
t < t0 the argument is similar]. Now by the second inequality in (3.8) the graph of
u over [t0, t1] lies in

G(t0, u(t0); ε0) = {(t, u)| |t− t0| ≤ ε0, |ui − ui(t0)| ≤ ε0, 1 ≤ i ≤ n}.
In view of Theorem 1 and the first inequality in (3.8) we have |u̇(t1) − u̇(t0)| ≤
ν(|t1 − t0|) ≤ ε/2, which gives a contradiction. Hence |u̇(t) − u̇(t0)| ≤ ε for
all t ∈ J . To complete the proof we need to show that if u is one of the func-
tions under consideration and t0 /∈ Ω, where Ω is the set of regularity for u, then
limt→t0,t∈Ω |u̇(t)| = ∞. Note however that if there exists a sequence {tn} ⊂ Ω sat-
isfying tn → t0 such that {|u̇(tn)|} is bounded then Ω includes the η-neighborhoods
of {tn} for some η, and t0 necessarily lies in Ω as well. This completes the argu-
ment.

4. Proof of Theorem 3

Proof of Theorem 3. For (1) with given boundary conditions (a0, A0, b0, B0) the
superlinear growth condition ensures that the graphs of the set U of all minimizers
lies in a compact subset K of R×Rn. Hence by Theorem 2 the set V = {u′|u ∈ U}
is a CEF.

1) Now suppose that all u in U have bounded derivatives at a0 and b0. Then
there exists M > 0 such that the derivatives at a0 and b0 of all u in U are bounded
in modulus by M . Otherwise we could select a sequence {un} ⊂ U for which
|u̇n(b0)| → ∞ [the case |u̇n(a0)| → ∞ can be treated analogously]. Furthermore
we can suppose by going to a subsequence that {un} converges uniformly to some
function u0 on [a0, b0]. Then u0 is also a minimizer for (1), by Tonelli’s lower
semicontinuity theorem or Lemma 2.1. By hypothesis |u̇0(b0)| < ∞, so that b0 is
a point of the relatively open subset Ω(u̇0). Consequently by Lemma 2.2 there is
an interval [b0 − η, b0] such that ‖u̇n − u̇0‖C[b0−η,b0] → 0, which contradicts the
assumption |u̇n(b0)| → ∞.

2) We now show that the value function S defined in (2) is continuous at
(a0, A0, b0, B0). S is lower semicontinuous at (a0, A0, b0, B0) by virtue of Tonelli’s
theorem or Lemma 2.1. Now let (an, An, bn, Bn) → (a0, A0, b0, B0) and let un de-
note a corresponding minimizer for each n ≥ 0. In view of the property |u̇0(a0)|,
|u̇0(b0)| ≤ M we can modify u0 to produce an admissible function ũn for the nth
problem (by taking ũn to be linear in appropriate neighborhoods of an and bn with
derivatives equibounded in modulus on these neighborhoods) in such a way that
F(an,bn)[ũn] → F(a0,b0)[u0] [this construction will be made explicit in 3)]. Thus

S(a0, A0, b0, B0) = F [u0] ≥ lim sup
n

S(an, An, bn, Bn),

which completes the proof of continuity.
3) Next we prove that for all boundary conditions (a,A, b, B) sufficiently near

to (a0, A0, b0, B0) the corresponding minimizers will have derivatives on neighbor-
hoods of a and b which are bounded in modulus by M + 1. By Theorem 2 the set
V = {u̇} of derivatives of all such minimizers is a CEF, so that the above asser-
tion is an immediate consequence of 1), Lemma 2.2 and 2). The continuity of S
implies that uniform limits of solutions un for problems with boundary conditions
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(an, An, bn, Bn) → (a0, A0, b0, B0) are solutions for the problem with boundary
conditions (a0, A0, b0, B0).

This fact permits us to prove the Lipschitz continuity of S at (a0, A0, b0, B0).
Namely, with u a minimizer for (a,A, b, B) and u0 a minimizer for (a0, A0, b0, B0),

put ã = max{a0, a}, b̃ = min{b0, b}. Then∣∣∣∣∣
∫ b

a

L(t, u(t), u̇(t)) dt −
∫ b0

a0

L(t, u0(t), u̇0(t)) dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ b̃

ã

[L(t, u(t), u̇(t))− L(t, u0(t), u̇0(t))] dt

∣∣∣∣∣
+

∫ ã

a

|L(t, u(t), u̇(t))| dt +

∫ b

b̃

|L(t, u(t), u̇(t))| dt

+

∫ ã

a0

|L(t, u0(t), u̇0(t))| dt +

∫ b0

b̃

|L(t, u0(t), u̇0(t))| dt

≤
∣∣∣∣∣
∫ b̃

ã

[L(t, u(t), u̇(t))− L(t, u0(t), u̇0(t))] dt

∣∣∣∣∣
+ c(|a− ã|+ |b− b̃|),

(4.1)

where c = max{L(t, u, v) | (t, u) ∈ K, |v| ≤ M + 1} and K is a compact set
including the graphs of all minimizers under consideration. In particular, if

|a− a0|+ |b− b0|+ |A−A0|+ |B −B0| ≤ η,(∗)
then ∣∣∣∣∣

∫ b

a

L(t, u(t), u̇(t)) dt −
∫ b0

a0

L(t, u0(t), u̇0(t)) dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ b̃

ã

[L(t, u(t), u̇(t))− L(t, u0(t), u̇(t))] dt

∣∣∣∣∣+ cη,

|u(ã)− u0(ã)|+ |u(b̃)− u0(b̃)| ≤ η + 2(M + 1)η.

(4.2)

We will use (4.2) to appraise |S(an, An, bn, Bn) − S(a0, A0, b0, B0)| where (an, An,
bn, Bn) → (a0, A0, b0, B0) and (∗) is satisfied. Letting {un}n≥0 denote minimizers,
as above, it is clear that the restrictions of un, n ≥ 0, to any interval J ⊂ [an, bn] are
minimizers for the associated boundary data at the endpoints of J . Now suppose
for a given n > 0

F(ãn,b̃n)[un] = S(ãn, un(ãn), b̃n, un(b̃n))

≥ S(ãn, u0(ãn), b̃n, u0(b̃n)) = F(ãn,b̃n)[u0].
(4.3)

We proceed to construct an admissible function ũn on [ãn, b̃n] (for η sufficiently
small) as follows:

ũn(t) = u0(t) for t ∈ [ãn + η, b̃n − η],

so that

|u̇n(t)|, |u̇0(t)| ≤M + 2 for t ∈ [ãn, ãn + η] and [b̃n − η, b̃n].(4.4)
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ũn(ãn) = un(ãn), ũn(b̃n) = un(b̃n), ũn has constant derivative on [ãn, ãn + η] and

on [b̃n − η, b̃n]. Thus by (4.2) |ũ′n(t)| ≤ 4M + 8 on these intervals. Then by virtue
of the boundedness of L on bounded sets in R× Rn × Rn

0 ≤ F(ãn,b̃n)[ũn]− F(ãn,b̃n)[u0] ≤
∫ ãn+η

ãn

|L(t, ũn(t), ũ′n(t))| dt

+

∫ b̃n

b̃n−η
|L(t, ũn(t), ũ

′
n(t))| dt ≤ c2η.

(4.5)

Since F(ãn,b̃n)[un] ≤ F(ãn,b̃n)[ũn], we conclude by (4.2) that

|S(an, An, bn, Bn)− S(a0, A0, b0, B0)| ≤ (c+ c2)η.(4.6)

An analogous approach applies for those values of n for which

F(ãn,b̃n)[un] = S(ãn, un(ãn), b̃n, un(b̃n))

≤ S(ãn, u0(ãn), b̃n, u0(b̃n)) = F(ãn,b̃n)[u0].
(4.3′)

In such cases the construction of ũn is given as:

ũn(t) = un(t) for t ∈ [ãn + η, b̃n − η], for η so small that

|u̇n(t)|, |u̇0(t)| ≤M + 2 for t ∈ [ãn, ãn + η] and [b̃n − η, b̃n], ũn(ãn) =

u0(ãn), un(b̃n) = u0(b̃n), ũn has constant derivative on [ãn, ãn + η]

and on [b̃n − η, b̃n].

(4.4′)

Thus by (4.2) |ũ′n(t)| ≤ 4M + 8 on these intervals. Thus we obtain

0 ≤ F(ãn,b̃n)[u0]− F(ãn,b̃n)[ũn]

≤
∫ ãn+η

ãn

|L(t, ũn(t), ũ′n(t))| dt

+

∫ b̃n

b̃n−η
|L(t, ũn(t), ũ′n(t))| dt ≤ c2η,

(4.5′)

from which (4.6) again follows.
4) Finally, we consider the case in which problem (1) with boundary conditions

(a0, A0, b0, B0) has a minimizer possessing an infinite derivative at b0 [the case with
an infinite derivative at a0 can be reduced to this one]. Let u0 be a minimizer for
(1) such that

lim
t→b0−0

|u0(b0)− u0(t)|/|b0 − t| = ∞.(4.7)

We prove that S(a0, A0, b, B0) cannot be Lipschitz at b0. For fixed b > b0 let us
denote by t0(b) the largest value of t < b0 for which |(B0 − u0(t))/(b − t)| = 1. It
is clear that t0(b) is defined by all b sufficiently close to b0 from the right and that
(b − t0(b))/(b − b0) → 1 as b → b0+ . We now define an admissible function ub for
(a0, A0, b, B0) by

ub(t) = u0(t) for t ∈ [a0, t0(b)]
= Cb(t− t0(b)) + u0(t0(b)) for t ∈ (t0(b), b],
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with |Cb| = 1. Using the hypothesis concerning a convex function ϑ with superlinear
growth, we obtain the following appraisal:

S(a0, A0, b0, B0)− S(a0, A0, b, B0)

≥
∫ b0

t0(b)

ϑ(u′0(t)) dt −
∫ b

t0(b)

L(t, ub(t), u
′
b(t)) dt

≥ (b0 − t0(b))ϑ([B0 − u0(t0(b))]/[b0 − t0(b)])−K(b− t0(b)).

Hence

[S(a0, A0, b0, B0)− S(a0, A0, b, B0)]/(b− b0)

≥ ϑ([B0 − u0(t0(b))]/[b0 − t0(b)])(b0 − t0(b))/(b− b0)−K(b− t0(b))/(b− b0).

(4.8)

[Here |B0 − u0(t0(b))|/|b− t0(b)| = 1 and (b− t0(b))/(b− b0) → 1 as b→ b0+ .]
Since B0−u0(t0(b))/(b−b0) → 1 as b→ b0+ and |B0−u0(t0(b))|/|b0−t0(b)| → ∞,

the limit of the difference quotient in (4.8) is +∞ by the superlinear growth of ϑ.
This shows that the right derivative of S(a0, A0, b, B0) at b0 is −∞, contradicting
the Lipschitz property. This completes the proof of Theorem 3

Remark 1. The proof above actually demonstrates a stronger assertion:
regularity of the (a0, A0, b0, B0) minimizers at b0 holds if and only if the function
S(a0, A0, b, B0) is Lipschitz at b0. Under the assumptions of Theorem 3 it is also
true that problem (1) with boundary conditions (a0, A0, b0, B0) has all minimizers
regular at b0 if and only if the function S(a0, A0, b0, B) is Lipschitz at B0. In §5 we
will use these assertions in the proof of Theorem 4.

Proof. The Lipschitz property of S(a0, A0, b0, B) at B0 is a consequence of the proof
of the theorem given above. Let u0 be a minimizer for (1) with boundary conditions
(a0, A0, b0, B0) such that

lim
t→b0−0

|u0(b0)− u0(t)|/|b0 − t| = ∞.(4.9)

(It again suffices to consider the case in which problem (1) with boundary conditions
(a0, A0, b0, B0) has a minimizer possessing an infinite derivative at b0.) We prove
that S(a0, A0, b0, B) does not have the Lipschitz property at B0. For η > 0 define
an admissible function uη for problem (1) with boundary condition (a0, A0, b0, Bη)
where Bη = u0(b0 − η) via:

uη(t) = u0(t) for t ∈ [a0, b0 − η]
= u0(b0 − η) for t ∈ [b0 − η, b0].

Then for some convex function ϑ of superlinear growth

S(a0, A0, b0, B0)− S(a0, A0, b0, Bη) ≥ F(a0,b0)[u0]− F(a0,b0)[uη]

≥
∫ b0

b0−η
ϑ(u̇0(t)) dt−

∫ b0

b0−η
L(t, u0(b0 − η), 0) dt

≥ ηϑ([B0 − u0(b0 − η)]/η)− cη,

where c = max{L(t, u, 0) | (t, u) ∈ K}. Using the superlinearity of ϑ and the
infinite slope of u0 at b0 it follows from the above that

|S(a0, A0, b0, B0)− S(a0, A0, b0, Bη)|/|B0 −Bη|
≥ (η/|B0 −Bη|)[ϑ([B0 −Bη]/η)− c] →∞ as η → 0,
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thereby demonstrating that S(a0, A0, b0, B) is not Lipschitz at B0, as claimed.

Remark 2. Using arguments applied in the proof of Theorem 3 it is not hard to
prove that if K is a compact subset of boundary data (a,A, b, B) at each of which
S is Lipschitz, then S is uniformly Lipschitz over K.

5. Application of the main result for establishing full regularity

under certain conditions on integrands

Theorem 4. Let L(t, u, v) : R × Rn × Rn → R satisfy condition (H1) and have
superlinear growth. Then any of properties 1)–3) below ensures full regularity of all
solutions of problem (1).

1) For each compact set K of (t, u) variables we have∣∣∣∣L(t1, u, v)− L(t2, u, v)

t1 − t2

∣∣∣∣ ≤ c|L(t1, u, v)|+ γ(t) for some γ ∈ L1.

2) For each compact set of (t, u) variables we have∣∣∣∣L(t, u1, v)− L(t, u2, v)

u1 − u2

∣∣∣∣ ≤ c|L(t, u1, v)|+ γ(t) for some γ ∈ L1.

3) For each t ∈ R the integrand L(t, u, v) is convex in (u, v).

Remark. The integrand L(t, u, v) clearly has property 1) or property 2) if L does
not depend on t or u, respectively, for all sufficiently large |v|.
Proof. (Theorem 4).

1) For some boundary conditions (a0, A0, b0, B0) suppose a solution has un-
bounded derivative at some point. It is enough to consider the case

lim
t→b0−0

∣∣∣∣u0(b0)− u0(t)

b0 − t

∣∣∣∣ = ∞.

The general situation can be reduced to this one. Let a1 ∈ (a0, b0) be such that
|u̇(a1)| < ∞. Consider the problem with boundary conditions (a1, A1, b0 + ε,B0)
where A1 = u0(a1), and examine solutions uε corresponding to ε > 0. We have
u̇ε(a1) → u̇(a1). Otherwise for some sequence εk → +0 u̇εk(a1) → A 6= u̇0(a1)

and uεk converges uniformly to ũ0. In view of Lemmas 2.1 and 2.2, ˙̃u0(a1) = A if
|A| < ∞, (|u̇(a1)| = ∞ if |A| = ∞). But S(a1, A1, b0 + ε,B0) → S(a1, A1, b0, B0)
as ε→ 0. Then the function u defined by

u(t) =

{
u0(t), a0 ≤ t ≤ a1,

ũ0(t), a1 ≤ t ≤ b0,

is a minimizer for the problem with boundary conditions (a0, A0, b0, B0). Moreover
we have u̇(a1 − 0) 6= u̇(a1 + 0), but u0 satisfies the assertion of Theorem 2, which
yields a contradiction. Therefore we have proved that u̇ε(a1) → u̇0(a1) if ε→ +0.
Then in view of Theorem 2

|u̇ε(t)| ≤M for ε ∈ [0, ε0] and t ∈ [a1, a1 + δ](δ > 0).(∗∗)
Consider the following admissible functions uε associated with the boundary

condition (a1, A1, b0, B0)

uε(t) =

{
uε(t + ε), a1 + ε ≤ t ≤ b0,

u̇ε ≡ c(ε) = constant, a1 ≤ t ≤ a1 + ε.
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In view of (∗∗) |c(ε)| are equibounded for all sufficiently small ε > 0. Then

[S(a1, A1, b0 + ε,B0)− S(a1, A1, b0, B0)]/ε

≥ F [uε]− F [uε]

ε
≥
∫ b0+ε

a1
L(t, uε(t), u̇ε(t)) dt−

∫ b0
a1

L(t, uε(t), u̇ε(t) dt

ε
≥M1

in view of (∗∗) and the fact that∣∣∣∫ b0+ε

a1+2ε L(t, uε(t), u̇ε(t)) dt−
∫ b0
a1+ε L(t, uε(t), u̇ε(t)) dt

∣∣∣
ε

≤
∫ b0+ε

a1+2ε

{|L(t, uε(t), u̇ε(t))|+ |γ(t)|} dt.

As was proved in part 4) of the proof of Theorem 3, S′(a1, A1, b0 + ε,B0)|ε=0+ =
−∞. Thus we have arrived at a contradiction.

2) A proof of assertion 2) of the theorem can be obtained in analogous way. If

limt→b0−0 |u(b0)−u(t)
b0−t | = ∞, then we consider the function ξ 7→ S(a0, A0, b0, B0 + ξ).

If t0 → b0 − 0 then B(t0) = u(t0) → B0. Let ut0(t) = u0(t) for a0 ≤ t ≤ t0 and
ut0(t) = B(t0) for t0 ≤ t ≤ b0. Then it was proved in Remark 1 to Theorem 3 that

S(a0, A0, b0, B0)− S(a0, A0, b0, B(t0))

|B0 −B(t0)| → ∞

as t0 → b0 − 0 (in this case |B0 −B(t0)| → 0). But we can also prove that the last
expression is bounded by some constant, using arguments similar to those in 1).

3) Here, let u be a minimizer for problem (1) satisfying condition 3) of the
theorem. Suppose u0 /∈ C1 and consider the case

lim
t→b0−0

∣∣∣∣u0(b0)− u0(t)

b0 − t

∣∣∣∣ = ∞ (all other cases may be reduced to this one).

Then, as was proved in Remark 1 to Theorem 3 S(a0, A0, b0, B) is not Lipschitz
at B0 (here A0 = u0(a0)). But the function S is convex in B!

Indeed, if B1, B2 are sufficiently close to B0 and u1, u2 are solutions of the
corresponding problems then for λ1, λ2 ≥ 0 such that λ1 + λ2 = 1 we know that
u = λ1u1 + λ2u2 satisfies the boundary conditions (a0, A0, b0, λ1B1 + λ2B2).

Therefore, in view of the convexity of L(t, u, v) in (u, v) we deduce that λ1F (u1)+
λ2F (u2) ≥ F (λ1u1 + λ2u2). Thus the function S(a0, A0, b0, B) is convex in B in
some neighborhood of B0. In this case S is Lipschitz at B0, which is a contradiction.

This contradiction permits us to conclude that each minimizer u0 is C1. This
completes the proof.

Acknowledgment

The first-named author wishes to express appreciation for the pleasant environ-
ment provided by the Carnegie Mellon Mathematics Department during his stay
in Pittsburgh and for the hospitality of his coauthor, of D. Golovaty, of Professor
D. Kinderlehrer and other members of the department which made his visit an
enjoyable one.



REGULARITY OF MINIMIZERS 133

References

[BM] J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do
not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), 325–388.
MR 86k:49002

[Bo] O. Bolza, Vorlesungen über Variationsrechnung, Teubner 1909 (Koehler and Amelang
1949).
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