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REALIZING HOMOLOGY BOUNDARY LINKS

WITH ARBITRARY PATTERNS

PAUL BELLIS

Abstract. Homology boundary links have become an increasingly important
class of links, largely due to their significance in the ongoing concordance
classification of links. Tim Cochran and Jerome Levine defined an algebraic
object called a pattern associated to a homology boundary link which can be
used to study the deviance of a homology boundary link from being a boundary
link. Since a pattern is a set of m elements which normally generates the
free group of rank m, any invariants which detect non-trivial patterns can be
applied to the purely algebraic question of when such a set is a set of conjugates
of a generating set for the free group. We will give a constructive geometric
proof that all patterns are realized by some homology boundary link Ln in
Sn+2. We shall also prove an analogous existence theorem for calibrations
of E-links, a more general and less understood class of links tha homology
boundary links.

1. Introduction

A link of m components is a smooth, oriented, submanifold L = {K1, . . . , Km}
of Sn+2 that is an ordered disjoint union of m manifolds, each of which is piecewise-
linearly homeomorphic to Sn. If m = 1, L is usually called a knot. L is a boundary
link if there exist m disjoint Seifert surfaces, i.e. oriented submanifolds V1, . . . , Vm
of Sn+2 such that ∂Vi = Ki for i = 1, . . . ,m.

Knots and links are of interest since they repeatedly arise in the classification
of manifolds. An especially significant equivalence relation on links is concordance.
Two links L0 and L1 are concordant if there exists a smooth, oriented submanifold
of m components C = {C1, . . . , Cm} of Sn+2 × I such that:

(i) C is piecewise-linearly homeomorphic to L0 × I, and
(ii) ∂C ∩ (Sn+2 × {i}) = Li for i ∈ {0, 1}.
The classification of knot concordance groups was obtained in the mid 1960’s by

M. Kervaire and J. Levine [12], [14]. Among the things they prove is that the knot
concordance group is trivial when n is even and is an infinitely generated group
when n is odd. The techniques used in the concordance classification of knots have
been found to extend in a compatible manner to the class of boundary links [2],
[13], [19]. However, the extension of these ideas to links in general has been a much
more difficult and less successful task. In the process, another class of links, called
homology boundary links, has arisen. A homology boundary link of m components
is a link which admits m disjoint generalized Seifert surfaces {Y1, . . . , Ym} such that
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∂Yi is homologous to Ki in the boundary of a tubular neighborhood of L. In other
words, ∂Yi may consist of many components, each of which is an oriented longitude
of some Kj [20].

Homology boundary links have become an increasingly important class of links.
In [6], [7], T. D. Cochran and K. E. Orr provided the first examples of homology
boundary links which are not concordant to boundary links (cf. [9]). In [10], a
scheme for classifying concordance classes of homology boundary links, analogous
to that for boundary links, was presented. Further investigation has shown that
sublinks of homology boundary links are in fact the “fundamental” class of links
to use in the concordance classification of links [5], [16], [18]. Homology boundary
links have also appeared in connection with the Alexander ideals of links [20] and
in connection with the Andrews-Curtis conjecture [5].

An equivalent definition of homology boundary link is the following: Let L be
an m-component n-dimensional link with link group G = π1(S

n+2 − L). Then L
is a homology boundary link if and only if there exists an epimorphism Φ from
G onto F = 〈x1, . . . , xm〉, the free group on m letters [20]. It is known that L is
a boundary link if and only if G admits an epimorphism Φ (as above) with the
additional condition that for some choice of meridians {µi} ⊆ G, {Φ(µi)} is a basis
for F . Cochran and Levine [5] used this set {Φ(µi)}, which they called a pattern of
a link, to study the deviance of a homology boundary link from being a boundary
link. Precisely, we have:

Definition 1.1. A pattern P = (r1, . . . , rm) is an m-tuple of words in F =
〈x1, . . . , xm〉, a free group on m letters, such that P normally generates F . A
homology boundary link L admits P as a pattern if there exist an epimorphism
Φ: G = π1(S

n+2−L) → F and a choice of meridians {µi} of L such that Φ(µi) = ri
for i = 1, . . . ,m.

Cochran and Levine [5] proved the following theorem algebraically:

Theorem 2.6. Given any pattern P and any positive integer n, there exists a
homology boundary link L in Sn+2 admitting P . In particular, L is a ribbon link.

In this paper, we give a constructive geometric proof of this theorem, one which
provides an actual ribbon link with the desired pattern. This completes the work
of Cochran and Orr on classifying homology boundary links with specified pattern
and Seifert form [8]. Further, with a slight modification of the proof, we prove an
analogous existence theorem for a more general class of links, namely E-links, which
are defined and discussed in §3. The class of E-links is essentially the class of links
which are sublinks of homology boundary links. Thus, according to [5], [16], [18]
this is an important class of links.

Theorem 3.4. Given any finitely generated E-group E, calibration (E, {y1, . . . ,
ym}), and positive integer n, there exists an E-link L in Sn+2 admitting the E-
calibration (E, {y1, . . . , ym}). In particular, L is a ribbon link.

As we will see, an E-calibration is the analog to E-links of a pattern.

2. Fusions of links

Given a link Ln in Sn+2 and an arc b connecting two different components of
L, i.e. b is smoothly embedded in Sn+2 and intersects L only at its endpoints
(orthogonally), choose a normal vector field ν along b which is normal to L at both
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endpoints of b. With the proper orientation of b, one can perform the connected
sum of the two components of L along b (just use the orthogonal complement of ν
in a tubular neighborhood of b as the connecting tube). The resulting link F (L) is
a link with one less component than L and is called the fusion of L along the band
B = {ν ∪ b}. One can perform more than one fusion to a link along a collection of
bands {Bi}, thus obtaining a sequence of fusions F1(L), . . . , Fk(L). F (L) = Fk(L)
is called the fusion of a link along the bands {Bi}. Of particular interest is the
situation when L is a boundary link, and one performs a sequence of fusions of L
along a collection of bands {Bi}, resulting in the fusion of a boundary link along
the bands {Bi} (cf. [3], [5]). Fusions of boundary links are of interest here because
one can obtain useful information relating the link groups of L and F (L).

Let L be a link in S3, F (L) its fusion along a band B, and B(L) the correspond-
ing “band link”, i.e. B(L) = L ∪B as shown in Figure 2.1. There is no direct way
to relate π1(S

3−L) and π1(S
3−F (L)), the link groups of L and F (L), respectively.

However, L and F (L) both are subsets of B(L). Hence, there exist inclusion maps
of their complements φ : S3 − B(L) → S3 − L and ψ : S3 − B(L) → S3 − F (L)
and corresponding induced maps φ∗ : π1(S

3 − B(L)) → π1(S
3 − L) and ψ∗ :

π1(S
3 − B(L)) → π1(S

3 − F (L)). The curves γ and δ are of particular interest
here. Note that δ ∈ ker(φ∗) and γ ∈ ker(ψ∗). Observe that S3−L = S3−B(L)∪2-
handle and S3 − F (L) = S3 − B(L) ∪ 2-handle, so the link groups of L and F (L)
can be related as quotient groups of the “link” group π1(S

3 −B(L)).
Decompose S3 as the union of two 3-balls D3

+ and D3
− in such a way that D3

−
is a small 3-ball containing the bands {Bi}. Think of D3

+ and D3− as the “outside”
and “inside” of S2 = D3

+ ∩ D3
− = ∂D3

+ = ∂D3
−. Note that for every fusion band

Bi, there exist curves γi and δi as described in Figure 2.1. Set:

(i) U = D3
+ − L,

(ii) V1 = D3
− − L, and

(iii) V2 = D3− − F (L).

Applying Seifert-Van Kampen twice, one obtains the following two isomorphisms:

ΘL : π1(S
3 − L) → π1(U)/〈{δi}〉,(1)

ΘF (L) : π1(S
3 − F (L)) → π1(U)/〈{γi}〉.(2)
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Define an epimorphism K : π1(U)/〈{γi}〉 → π1(U)/〈{γi, δi}〉 whose kernel is 〈{δi}〉.
Then

Ψ = Θ−1
L ◦K ◦ΘF (L) : π1(S

3 − F (L)) → π1(S
3 − L)/〈{γi}〉

is an epimorphism from the link group of F (L) onto a quotient group of the link
group of L. Thus, we have proved the following proposition.

Proposition 2.2. Let F (L) be a fusion of a boundary link along fusion bands
{B1, . . . , Bm}. Then there exists an epimorphism

Ψ: π1(S
33− F (L)) → π1(S

3 − L)/〈{γi}〉.
Remarks 2.3. (1) The proof of Proposition 2.2 shows that the epimorphism Ψ is
defined independently of the order in which the bands are fused onto L.

(2) One can easily generalize Proposition 2.2 to links Ln of higher dimensions.
The proof can be altered in the obvious way so that γi is a circle and δi is an
n-sphere. Thus, Ψ will be an isomorphism since its kernel is 〈δi〉 (which is trivial
in π1).

(3) We can further analyze the curves γi as follows. If the fusion band Bi fuses
together components Kj and Kk of L and if xij and xik are meridional elements
of the link group of L for Kj and Kk, respectively, then γi = x̄ijηixik η̄i for ηi ∈
π1(S

3 − L) and where x̄i = x−1
i (see Figure 2.4).

This leads to the following useful corollary (cf. [3]).

γi

ηi

L

k

Figure 2.4

Corollary 2.5. Let L = {K1, . . . , Km} be an m-component trivial link, i.e.
π1(S

3 − L) = 〈x1, . . . , xm〉 where xj is a meridional generator of Kj. Let F (L)
be a fusion of L along fusion bands {B1, . . . , Bk}, where Bi fuses together compo-
nents Kj and Kk. Then there exists an epimorphism

Ψ: π1(S
3 − F (L)) → 〈x1, . . . , xm|xij = ηixik η̄i〉

where ηi ∈ π1(S
3 − L).
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We are now ready to present a constructive geometric proof of Cochran and
Levine’s theorem (cf. [9]).

Theorem 2.6. Given any pattern P and any positive integer n, there exists a
homology boundary link L in Sn+2 admitting P . In particular, L is a ribbon link.

Proof. Let F = 〈x1, . . . , xm〉 be a free group and suppose P = (r1, . . . , rm) is a
pattern in F . Since the map Aut(F ) → Aut(F/[F, F ]) is onto, assume without loss
of generality that xi = ri mod [F, F ] for all i. Since P is a pattern, the elements of
P normally generate F , so each generator xi may be expressed as a word wi such
that

wi =

λi∏
j=1

ηijr
εij
ν(i,j)η̄ij

where rν(i,j) ∈ {r1, . . . , rm}, ηij is a word
∏λij

k=1 x
εijk
σ(i,j,k) in {xi}, and εij , εijk ∈

{±1}. By representing each element of the given basis of F as a product of conju-
gates of pattern elements, we have achieved a decomposition which will appear in
the construction upon application of Corollary 2.5.

Begin the construction by drawing m circles one below another, as shown in
Figure 2.7; call these circles βi. Next to βi, draw λi concentric circles; call these
circles αij for 1 ≤ i ≤ m, 1 ≤ j ≤ λij . Orient the βi’s all clockwise and orient αij
clockwise or counterclockwise depending on whether the exponent εij of rν(i,j) in
wi is +1 or −1. Call the result L0.

Note that G0 = π1(S
3−L0) is a free group on m+

∑m
i=1 λi letters. Let bi and aij

be simple meridional generators in G0 for βi and αij , respectively, oriented using
the right-hand rule. Then G0 ≈ 〈bi, aij〉. Now we will add fusion bands Bij to L0

to obtain the desired link L. Fuse a band Bij to L0 starting at αij and connecting
to βν(i,j). Pass the band Bij through the center of the σ(i, j, k)th set of concentric
circles for every xσ(i,j,k) in ηij . Bij should pass top to bottom if the exponent εijk of
xσ(i,j,k) is +1 and bottom to top if the exponent is −1. If the circle αij is oriented
clockwise, Bij must be given a half-twist before it is attached to βj to preserve
orientation; if αij is oriented counterclockwise, no twists are necessary. Fuse such
a band Bij to L0 for 1 ≤ i ≤ m and 1 ≤ j ≤ λi in the manner described above to
obtain the desired link L; i.e. L will be the fusion of L0 along the bands {Bij}.

To show that L admits P as a pattern, we must exhibit an epimorphism Φ:
π1(S

3 − L) → F such that for some choice of meridians {µi} of L, Φ(µi) = ri
for i = 1, . . . ,m (L0 has m +

∑m
i=1 λi components and

∑m
i=1 λi bands were fused

to L0, so L is an m-component link). From the construction, one observes that
each component βi of L0 lies in a different component of L (so we can consider L
similarly ordered). Choose a set of meridians {µi} of L such that each µi is a simple
meridian of the ith component of L equivalent to bi. The curve γij corresponding
to the band Bij , by construction, is expressed as:

aij =

λij∏
k=1

λijk∏
t=1

a
εσ(i,j,k)t

σ(i,j,k)t

εijk bν(i,j)

λij∏
k=1

λijk∏
t=1

a
εσ(i,j,k)t

σ(i,j,k)t

εijk

in π1(S
3 − L0). By Proposition 2.2, there exists an epimorphism

Ψ: π1(S
3 − L) → π1(S

3 − L0)/〈γij〉,
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Figure 2.7

where by Corollary 2.5

π1(S
3 − L0)/〈γij〉

=

〈
bi, aij |aij =

λij∏
k=1

λijk∏
t=1

a
εσ(i,j,k)t

σ(i,j,k)t

εijk bν(i,j)

λij∏
k=1

λijk∏
t=1

a
εσ(i,j,k)t

σ(i,j,k)t

εijk〉 .
Using Tietze transformations on the group π1(S

3 − L0)/〈γij〉, add generators Ai

and relations Ai =
∏λi

j=1 a
εij
ij . Then recall Figure 2.7 and observe that the curve ρi

is represented in π1(S
3−L0)/〈γij〉 by

∏λi
j=1 a

εij
ij . So we have obtained the following

presentation:

π1(S
3 − L0)/〈γij〉 =

〈
bi, aij , Ai|aij =

λij∏
k=1

A
εijk
σ(i,j,k)bν(i,j)

λij∏
k=1

A
εijk
σ(i,j,k), Ai =

λi∏
j=1

a
εij
ij

〉
.
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Define a map Ψ0 : π1(S
3 − L0)/〈γij〉 → F where

bi → ri, aij → ηijrν(i,j)η̄ij , and Ai → xi.

Ψ0 is well defined since the image of relations

aij =

λij∏
k=1

A
εijk
σ(i,j,k)bν(i,j)

λij∏
k=1

A
εijk
σ(i,j,k)

are trivial in F , and the relations Ai =
∏λi

j=1 a
εij
ij become xi = wi. Ψ0 is onto since

{Ψ0(Ai)} is a basis for F . Define Φ: π1(S
3 − L) → F by Φ = Ψ0 ◦ Ψ. One checks

that Φ(µi) = Ψ0(bi) = ri. Thus L is a homology boundary link admitting P as a
pattern. One further observes that L is a ribbon link by construction. �

Remarks 2.8. (1) The link L obtained in the proof is not unique. The proof only
requires that fusion bands be added which do not intersect one another or the link
L0 (except where they are properly attached). The fusion band may be twisted
and knotted in any fashion as long as these necessary conditions are maintained!

(2) The proof is the same for the construction of higher dimensional links (cf.
Proposition 2.2, Remarks 2.3).

We close this section with two examples. The first is a relatively simple one,
which provides a homology boundary link which is not concordant to a boundary
link. The second example uses a pattern which is only slightly more complicated
than the first example. However, the resulting link is much more complicated!

Example 2.9. Consider the free group F = 〈x1, x2〉 and pattern P1 = (r1, r2) =
(x1[x1, x2], x2). Cochran and Orr constructed a link admitting this pattern which
was the first (and still simplest known) example of a homology boundary link which
is not concordant to a boundary link [6], [7]. Since P1 is a pattern, P1 normally
generates F , so xi is expressible as a word wi where

wi =

λi∏
j=1

ηijr
εij
ν(i,j)η̄ij .

For P1, we have

λ1 = 3, λ2 = 1,

rν(1,1) = r1, rν(1,2) = rν(2,1) = r2, rν(1,3) = r̄2,

η11 = η12 = x̄1, η13 = η21 = 1.

Applying the construction in Theorem 2.6, one obtains a homology boundary link
L1, pictured in Figure 2.10. One may also observe that L1 is equivalent to the
initial link used by Cochran and Orr, shown in Figure 2.11.
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µx2

µx1

Figure 2.11

Example 2.12. Consider the free group F = 〈x1, x2〉 and pattern P2 = (r1, r2) =
([x2, x̄1]x1, [x1, x̄2]x2). Note that no element of P2 is conjugate to any generator
of F , so any homology boundary link admitting P cannot be a boundary link [5].
Nor can L be the strong fusion of a boundary link [10]. Since P2 is a pattern, P2
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Figure 2.13

normally generates F , so xi is expressible as a word wi where

wi =

λi∏
j=1

ηijr
εij
ν(i,j)η̄ij .

For the pattern P2 given above we have the following:

λ1 = λ2 = 5,

rν(1,2) = rν(1,4) = rν(2,1) = r1, rν(1,5) = rν(2,3) = r̄1,

rν(1,1) = rν(2,2) = rν(2,4) = r2, rν(1,3) = rν(2,5) = r̄2,

η11 = η25 = x1x2x̄1, η12 = η23 = x1, η13 = η22 = x2,

η14 = [x2, x1], η15 = η21 = x2x1x̄2, η24 = [x1, x2].
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So applying the construction in Theorem 2.6 one obtains the following homology
boundary link L2, as shown in Figure 2.13 which admits P as a pattern, via some
epimorphism Φ: π1(S

3 − L) → F where Φ(µi) = xi for i = 1, 2. Note that L2 is
the fusion of a 12-component trivial link along 10(=

∑
λi) fusion bands [3], [4].

3. Generalizations to E-links

With some small modifications, we can extend Theorem 2.6 to a more general
class of links, namely E-links [3], [16].

Definition 3.1. A group E is an E-group if there exists a (not necessarily finite)
2-complex K such that:

(i) π1(K) = E,
(ii) H1(K) is torsion-free, and
(iii) H2(K) = 0.

If K is a finite complex, then E is said to be a finite E-group.

All free groups are necessarily E-groups. E-groups are a more general class of
groups than free groups. For example, any group E whose deficiency is equal to
rank(H1(E)) is also an E-group [3], [16].

Definition 3.2. Suppose E is an E-group with rank(H1(E)) = m. An E-calibra-
tion is a pair (E, {y1, . . . , ym}) where the {y1, . . . , ym} normally generates E.

An E-calibration is the analog of a pattern for E-groups. Note than an E-
calibration can only exist for E-groups which are normally generated by m elements
where m = rank(H1(E)).

Definition 3.3. A link L is said to be an E-link if it admits an E-calibration for
some E-group E.

In [3], it is shown that every sublink of a homology boundary link is an E-link.
With a small additional assumption (it is still unknown whether this assumption
is necessary), Levine showed that every finite E-link is a sublink of a homology
boundary link [16], [18].

Given a finitely generated E-groupE normally generated by elements {y1, . . . , ym},
where m = rank(H1(E)), one can construct a second E-group E′ of rank m such
that:

(i) there exists an epimorphism φ : E′ → E,
(ii) E′ is normally generated by y′i where φ(y′i) = yi, and
(iii) E′ has the following presentation:

E′ =

〈
x′1, . . . , x

′
m′ , y′1, . . . , y

′
m|x′i =

λi∏
j=1

ηijy
′εij
ν(i,j)η̄ij

〉
,

where {x′i}, 1 ≤ i ≤ m′, generate E′(m ≤ m′).
Construct E′ as follows. Suppose E is generated by {x′1, . . . , x′m′}. Then the free

group on {x′i} ∪ {y′i} maps onto E by φ(x′i) = xi, φ(y′i) = yi. Since {yi} normally
generate E, this map factors through the group E′ above. Consider a 2-complex
K ′ consisting of the wedge product of m 1-cells with m′ 2-cells attached giving the
presentation listed above. By construction, K ′ satisfies Definition 3.1, so E′ is a
finite E-group.
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In order to generalize Theorem 2.6, we would like the collection {yi} to play
the role that the pattern did in the case of homology boundary links. Note that it
is sufficient to realize (E′, {y′i}) as an E′-calibration for L since we can then map
(E′, {y′i}) onto (E, {yi}) via φ to obtain an E-calibration for L. The immediate
obstruction is that the group E′ (and E) onto which the calibration maps is not
necessarily a free group and, worse yet, may not even be generated by the same
number of elements as in the normal generating set {yi}, i.e. m′ ≥ m. This
obstruction is overcome by beginning with a trivial link of more components and
fusing more bands to obtain the desired E-link L.

Theorem 3.4. Given any finitely generated E-group E, calibration (E, {y1, . . . ,
ym}), and positive integer n, there exists an E-link L in Sn+2 admitting the E-
calibration (E, {y1, . . . , ym}). In particular, L is a ribbon link.

Proof. Let {y1, . . . , ym} be a normal generating set for E. By the remarks preceding
the statement of the theorem, we may assume that E has presentation:

E =

〈
x1, . . . , xm′ , y1, . . . , ym|xi =

λi∏
j=1

ηijy
εij
ν(i,j)η̄ij

〉
.

Follow Theorem 2.6 and begin the construction by drawing m circles one below
another; orient all m circles counterclockwise and call these circles βk. Next to
the βk’s draw m′ sets of λi concentric circles; call these circles αij . Orient the
circles βk and αij as in Theorem 2.6 for 1 ≤ k ≤ m, 1 ≤ i ≤ m′, and 1 ≤ j ≤ λi.
For simplicity, let Rij = ηijy

εij
ν(i,j)η̄ij ; that is, let Rij be the jth conjugate in the

relation expressing xi as a product of conjugates in the presentation for E. Orient
αij clockwise if the exponent εij of yν(i,j) in Rij is +1 and counterclockwise if −1.
Call the resulting link L0 (see Figure 3.5).

Note that L0 is a trivial link of m +
∑m′

i=1 λi components. Following the con-

struction in Theorem 2.6, add
∑m′

i=1 λi fusion bands to L0 which connect αij to
βν(i,j) to obtain the desired E-link L. One then proceeds exactly as in Theorem 2.6
to obtain an E-calibration Ψ for L, completing the proof. �

As was the case with the proof of Theorem 2.6, the proof of this theorem can
be interpreted in the obvious way to produce E-links of any dimension. Lastly, we
close with an example illustrating the theorem.
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β1

α11

α1λ 1

αm1

αmλ
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αmλm

αm 1

βm

L0

Figure 3.5

Example 3.6. Consider the E-group with presentation

E = 〈x1, x2, x3|x̄1[x3, x1][x3, x2]〉.
Using {x2, x3} as a normal generating set for E, we may equivalently present E by

〈x1, x2, x3, y1, y2|x1 = y2x1ȳ2x̄1x3y1x̄3ȳ1, x2 = y1, x3 = y2〉.
G. Baumslaug [1] has shown that E is parafree but not free, and therefore cannot
map onto a free group of rank 2. Hence, any E-link L calibrating E cannot be a
homology boundary link; however L will be a sublink of a homology boundary link
[10]. Following the construction outlined in Theorem 3.4, a link L calibrating E is
shown in Figure 3.7. Observe that the meridians µ1 and µ2 labeled in the diagram
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µ1

µ2

L

Figure 3.7

are the meridians which the E-calibration will map to the normal generating set
{y1 = x2, y2 = x3} in E.

λ1 = 4, λ2 = λ3 = 1,

rν(1,1) = y2, rν(1,2) = ȳ2, rν(1,3) = y1, rν(1,4) = ȳ1,

rν(2,1) = y1, rν(3,1) = y2,

η12 = x1, η13 = x3, η11 = η14 = η21 = η31 = 1.
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