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DOUBLE WALSH SERIES WITH COEFFICIENTS
OF BOUNDED VARIATION OF HIGHER ORDER

CHANG-PAO CHEN AND CHING-TANG WU

ABSTRACT. Let D;-“ (z) denote the Cesaro sums of order k of the Walsh func-
tions. The estimates of D;? (z) given by Fine back in 1949 are extended to
the case k > 2. As a corollary, the following properties are established for the
rectangular partial sums of those double Walsh series whose coefficients satisfy
conditions of bounded variation of order (p, 0), (0, p), and (p, p) for some p > 1:
(a) regular convergence; (b) uniform convergence; (¢) L"-integrability and L"-
metric convergence for 0 < r < 1/p; and (d) Parseval’s formula. Extensions to
those with coefficients of generalized bounded variation are also derived.

0. INTRODUCTION

Let I = [0,1). Denote by {wy(t)} the Paley-Walsh orthonormal system defined
on I. Consider the double Walsh series

(0.1)

DD cpwi(@)wr(y)

(z,y € 1),

where {c;i, : j,k > 0} satisfies the following conditions for some positive integer p:

(0.2)

(0.3)

(0.4)

(0.5)

The finite-order differences Ayqc;i are defined by

Aoocjk

ApqCik

= Cjk;

= Ap—1,4Cjk — Dp—1,4Cj+1,k

ApgCir = Dpg-1Cjk — Dpg—1Cj k41

cjk — 0 as max{j, k} — oo,

o0

lim Z |[Apocix| =0,

k—
=0
oo

lim Z |Agpcin| =0,

J—>
k=0

oo oo
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We have

P q
s p q
ApgCji = E E (=1) +t (s) (t) Cj+s,k+t-
0

s=0 t=

Conditions (0.3)—(0.5) are known as conditions of bounded variation of order (p,0),
(0,p), and (p,p), respectively. For p = 1, conditions (0.3) and (0.4) are excessive,
because they can be derived from (0.2) and (0.5). Obviously, conditions (0.3)—(0.5)
generalize the concept of monotone sequences.

For m,n > 0, the rectangular partial sums $,,,(z,y) and the first arithmetic (or
Cesaro) means o, (x,y) of series (0.1) are defined as

m n

Smn (2, Y) chkwj (y),
7=0 k=0

m n

If the cj, are the Walsh-Fourier coefficients of some f € L'(I?), we shall write
Smn(f;2,y) and oy (f; z,y) instead of Sy (x,y) and o, (2, y), respectively.

Let Q C I2. As in [CH], we say that s, converges uniformly on  to f in
the unrestricted sense (or briefly, converges uniformly on 2 to f) if s, converges
uniformly on Q to f as min{m,n} — oo. In contrast, s,, is said to converge
uniformly on Q to f in the restricted sense if for all 0 < a < b < oo,

(0.6) lim  spn(z,y) = fx,y) uniformly on .

a<m/n<b

m,n—aco
We also say that s,,,(xo,yo) converges unrestrictedly (or restrictedly) to f(zo,yo)
if S, converges uniformly on Q to f in the unrestricted (or restricted) sense, where
Q = {(x0,90)}. The above definitions will apply to other sequences of functions,
such as o,,. Conventionally we say that series (0.1) has the mentioned prop-
erty whenever s,,, does. If series (0.1) converges unrestrictedly to f(z,y), the
row series Z;‘)io cjpw;(z)wi(y) converges for each fixed k, and the column series
> o Cikw;(@)wy (y) converges for each fixed j, then we shall say that series (0.1)
converges reqularly to f(z,y), (cf. [H]). Set

1 pl 1/r
|f|rz(/0 / If(:v,y)lrd:vdy) .

Note that || - ||/ defines a metric for 0 < r < 1, and || - ||, is a norm for r > 1.
In this paper, we are concerned with the following convergence problems for
suitable r:

(0.7) where $yn(x,y) converges uniformly to f(z,y),
(0.8) where S, (x,y) converges regularly to f(x,y),
(0.9) whether f € L™(I?) and ||$;n — f|» — 0 as min{m,n} — cc.

We also investigate the validity of the following Parseval’s formula for suitable ¢
and Q-

(0.10) €17151}10// flz,y)d(z,y) dedy = chjk oo, k

=0 k=0
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where {Qcs: 0 < €,6 < 1} is a decreasing family of subsets of I? and

P60k —hm//Q oz, y)w;(v)wr (y) drdy.

€,610

These problems were investigated by many mathematicians, including Balasov [B],
Fine [F], Méricz [M1], Méricz-Schipp [MS1], Rubinstein [R], Sneider [S], Yano [Y]
for the one-dimensional case, and Chen [C2], [C3], [C4], [C5], Méricz [M2], [M3],
Méricz-Schipp [MS2], Méricz-Schipp-Wade [MSW1] for higher dimensions. They
were thoroughly discussed in [C5] for those series of type (0.1) whose coefficients
c; satisfy conditions of bounded variation of order (p,0), (0, p), and (p, p) with the
weight (7k)P~!, where £ = max{¢,1}. The purpose of this paper is to relax these
weight conditions to (0.2)—(0.5) or to more generalized conditions. Details on these
are stated below. The first main result reads as follows.

Theorem 0.1. Assume that conditions (0.2)—(0.5) are satisfied for some p > 1.
Then series (0.1) converges regularly to some measurable function f(x,y) for all
z,y € I\ Ep, and the convergence is uniform on any compact subset Q of (I\ E,)?,
where E, is a suitable countable set of dyadic rationals. Moreover, the following
statements are true.
(i) Forall0 <1 < 1/p, we have f € L™(I?) and ||Smn— f|l — 0 as min{m,n} —
00.
(ii) Let {Qes : 0 < €,6 < 1} be a decreasing family of compact subsets of (I'\ E,)?.
Assume that ¢ : [0,1] x [0, 1] — C is measurable and locally bounded in (0, 1] x
(0,1], ¢, (4, k) exists for all (§,k), and the condition

(0.11) sup
J,k=0
0<e,6<1

is satisfied. Then formula (0.10) holds.

The set E, and the Cesaro sums Df(:z:) will be defined in §1. We say that
{Qs:0 < €,6 < 1} is a decreasing family of subsets of I? if whenever €; < €5 and
01 < b2, we have Q¢,s5, D Qc,s,. For 2 and s, a wider class is allowed in a more
general setting. This will be proved in §2. In [C4], [C5], the Parseval’s formula
involved there corresponds to the case Qs = [e,1) x [6,1). Theorem 0.1 and its
extension generalize [C5, Theorems 2.1 & 4.1], [F, Theorem X], [M2, Theorems 1
& 2], [R], and [S]. For regular convergence and mean convergence, the cases p =1
and 2 of Theorem 0.1 were proved in [M2]. Those proofs were based on suitable
estimates for the Walsh-Dirichlet kernels D} () and the Walsh-Fejér kernels K (x).
These estimates were given by Fine in [F]. The obstacle to extending the results of
Moricz [M2] to p > 2 is that an analogous estimate for D¥(x) with k > 2 has not
been found yet. We shall set up such a result in §1.

Obviously, condition (0.5) implies any of the following conditions:

//955 ¢z, y) D (x) Di(y) dedy| < oo

o [An]

)\ 1-—
(0.12) limlimsup Y S ) + Pl =k \ ol =0,
All p—oo 20 ket 1
e [Am]+1—
(0.13) 1;?1111731—%301) ‘ g g D] — |Appcjk| =0.
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Conditions (0.12) and (0.13) have appeared in many places. They were originally
taken into consideration in the development of pointwise convergence of double
trigonometric series, (¢f. [C1], [CH], [CMW]). The second main result of this paper
is the following.

Theorem 0.2. Assume that conditions (0.2)—(0.4) and (0.12)—(0.13) are satisfied
for some p > 1. Then the following statements are true.

(i) Let Q be a compact subset of (I\ Ep)?. If opn(x,y) converges uniformly on
Q to f(x,y), then so does Spyn(x,y).

(i) If |lomn — fllr — O unrestrictedly for some r with 0 < r < 1/p, then
|$mn — fll» — 0 as min{m,n} — oo.

Theorem 0.2 generalizes [M3, Theorems 1 & 1’]. The particular case =
{(x0,y0)} of Theorem 0.2 (i) reduces to a pointwise convergence property. Let
Cyw (I?) be the collection of all uniformly W-continuous functions f : I? +— R.
Then Cyy (I?) is the uniform closure of the double Walsh polynomials (¢f. [SSW,
pp. 156-158]). As proved in [M3, Lemma 4], 0., (f;2,y) converges uniformly on
I? to f(x,y) for all f € Cyw(I?). Given n € N and = € I, let J,(z) denote the
dyadic interval of length 27" which contains z. Set

() = sup ——

net |a(@)] /Jn(m)f(tay)dt‘ (f € LM1?)).

Recently, Weisz [W1] extended a result of Mdricz-Schipp-Wade [MSW2] from f €
L'logt L'(I?) to f# € L'(I?). He proved that if f# € L'(I?), then

Omn(fi2,y) — flz,y) a.e. as min{m,n} — oo.

As for f € L'(I?), the Riemann-Lebesgue lemma ensures (0.2). By the Holder
inequality and the two-dimensional extension of [M], we find that

lomn = fllr < llomn — fll1 — 0 as  min{m,n} — oo,

where 0 < r < 1/p. Using these, we obtain the following result, which generalizes
[M3, Theorems 2 & 2’, Corollaries 1, 2 & 2].

Corollary 0.3. Let c;i, be the Walsh-Fourier coefficients of f € L*(I?). Assume
that conditions (0.3)—(0.4) and (0.12)—(0.13) are satisfied for some p > 1. Then
the following statements remain true.
(1) If f# € LY(I?), then spn(f;2,y) — f(x,y) a.e. as min{m,n} — oco.
(i) If f € Cw(I?), then smn(f;x,y) converges uniformly on any compact subset
Qof (I\ Ep)? to f(z,y).
(iii) If f € L*(I?), then for all 0 < r < 1/p, ||Smn(f) — fll- — 0 as min{m,n} —
00.

It is clear that Theorem 0.2 and Corollary 0.3 will apply to the following case:
¢k = a;bk (j,k > 0), a; = 0 except perhaps for a finite number of j, and
{bi : k > 0} is a null sequence satisfying the property stated below for some
positive integer p:

[An]

> (] = k+1)]Apbe| =0.

k=n+1

limlims
A Pl =
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The differences Apby, are defined in a way similar to those for Ap4cjix. A special
example of {a;} is as follows: ap = 1 and a; = 0 for all j > 0. This particular case
of Corollary 0.3 generalizes [M1, Theorems 1 & 2].

The definition of restricted convergence given in (0.6) means that s,,,(z,y) con-
verges uniformly on Q to f(z,y) as both m and n tend to infinity in such a way
that a < m/n < b. For restricted convergence, we need the following concept of
restricted limit superior, introduced in [CH]:

limsup dmn = inf ( sup djx) = lim ( sup dji),
a<m/n<b as<m/n<b o< /k<b m—00 " 0<j/k<b
m,n— o0 m,n>1 ji>m.k>n ji>m,k>m

where {d;x : j,k > 0} is a double sequence of extended real numbers. In the
sequel, we drop “m,n — oo” under the sign “limsup”. Instead of (0.3)—(0.4) and
(0.12)—(0.13), we consider the following weaker conditions:

0.14 lim sup Apocik| =0,
( ) a<m/k<bJZO| POt |
0.15 lim sup Agpcik| =0,
(0.15) a<g/n<b,;)| opCik|
(0.16) lim Tims i% M“ 1A, el =0,
. im lim sup —_ Cik| =
All a<m/n<bj 0 k=n+1 [)\TL] Y
[Am]
A 1-—
(0.17) hm lim sup Z Z m] + |Appcjk|
a<m/n<b] —m+1 k=0

where 0 < a < b < co. We have

Theorem 0.4. Assume that conditions (0.2) and (0.14)—(0.17) are satisfied for
some p > 1 and for all 0 < a < b < co. Then the following statements hold.

(i) Let Q be a compact subset of (I\ Ep)?. If oyn(x,y) converges uniformly on
Q in the restricted sense to f(x,y), then so does Smn(x,y).

(i) If |lomn — flr — O restrictedly for some r with 0 < r < 1/p, then ||$mn — fl|»
converges restrictedly to 0.

Recently, Weisz [W2] proved that o, (f;z,y) converges almost everywhere to
f(z,y) in the restricted sense for any f € L'(I?). As explained in the paragraphs
before Corollary 0.3, the following is a consequence of Theorem 0.4, which general-
izes Corollary 0.3 for restricted convergence.

Corollary 0.5. Let cj, be the Walsh-Fourier coefficients of f € L*(I?). Assume
that conditions (0.14)—(0.17) are satisfied for somep > 1 and for all0 < a < b < oo.
Then the following statements remain true.

(1) Iff € LY(I?%), then smn(f;x,y) — f(x,y) restrictedly for almost all (z,y) €

(i) If f € Cw(I?), then Spmn(f;x,y) converges uniformly on §) in the restricted
sense to f(x,y) for all compact subsets 0 of (I\ Ep)>.

(iii) If f € L*(I?), then for all 0 <1 < 1/p, ||Smn(f) — fll» converges restrictedly
to 0.

Throughout this paper C' and C,, denote constants, which are not necessarily the
same at each occurrence.
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1. MAGNITUDE OF THE CESARO SUMS Df(x)

Let DY (x) = w;(x) and Df(x) denote the Cesaro sums of order k of the sequence
{D9(x)} (¢f. [Z] for this terminology). Then

Df(x) = ij Dy z) (5 =0k >1).

u=0

For the sake of convenience, we also define Df(x) =0for j <Oork < 0. The
number Djl (x) is known as the Walsh-Dirichlet kernel of order j, and K,(z) =
D3(x)/(j +1) is called the jth Walsh-Fejér kernel. In [F, §6-§7], Fine established
the following expansions and estimates.

Lemma A. Let j=p-2" 4+ q withp >0 and 0 < q < 2™. Then for all x, we have

Dj(w) = Dy_1(2"2) D3n_4 () + wp(2"2) Dy ().

Lemma B. Let n > 1. Then for all j and for x € (27,271, we have

2
D!} <=,
|D; (z)] .
4 4

D2 _+ 2
DY@ < sy * o

In [C5], the first author used the estimate for [D}(x)| to derive the inequality

(L1) ID}()] < 286D/ min{ ()F, (G)F a1,

where z € I,j > 0, and k > 1. The purpose of this section is to get an estimate
like the second one given in Lemma B, which is better than (1.1) for use. To do so,
we first extend Lemma A from k& = 1 to the general k. Define the numbers A? by
the recursive formulas

A)=1, A=A+ AT o+ AT (2 0k > 1),

As shown in [Z, p.77], we have

Ak — <J+/€> _ (j+k)(j+kk_!1)...(j+1) N]]:

J j T
Moreover,
(1.2) AE<(k+DHD" Gk 20)
Let Ai5(&, q) = AF~P for 1 < 3 <k, and 0 otherwise. For o> 2, set
Aop(6q) = > AL AR AR AL

81,82, ,8a—121;120
S$1+82++sa—1+t+68=k
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Then )\Zﬁ(g,q) =0 for B >k, A\, (£,9) = 0 for k > 2, and )\Zﬁ(g,q) = 0 for
a+ (> k+1. An elementary calculation gives

)‘]1641;};1 (2", Q) =1

A2 g Z/\ 2", (1< B <k);
2" —1
A2 Z AE ) 5(2m0) +Z)\Zﬁ(2”,t) (a > 2; all B);
=0
2" —1
M 2mq) = Z (27, (1< B <k allg).

Based on these, the followmg extension of Lemma A can easily be derived.

Lemma 1.1. Let j=p-2"+q withp > 0 and 0 < g < 2™. Then for all k > 1 and
for all x € I, we have

k k
=3 ST ML (2", @) DS (2"2) DG, (x) + wy(2"x) D (x).

a=1 =1

Proof of Lemma 1.1. The proof will be carried out by induction on k. Lemma A
guarantees the case k = 1. We have

—12"—1 q
D () Z > DEyui @)+ Dyouyi(2)
r=0 t=0 t=0
If this lemma holds for k&, then forall 0 <r<p—1and 0 <t <2" —1,
(1.3)  Dfgupy(@ Z Z Ao o(2"2) D5 (2) + w,(2") Df ().
a=1p=1
Moreover,

M=

(L4)  Dpoyea() = DY Mp(2" 1) Dy (2"0) D3y (2) + wp(2"2) Df ().

15=1
Summing (1.3) and (1.4) with respect to r and ¢ results in

Df“(x):zgk:{QilA (2", 1) }{ZD } b (x)

[0}

a=1p4=1 \ t=0
k k q
+> {Z Al (2m, t)} DY (2"x)DY, _,(x)
a=1 5:1 t=0
p—1 2" —1
+{Zwr(2”x)}{z Df(aj)}—l—wp (2"x) {ZDf }
r=0 t=0
k+1 k+1
=N NN @ ) DS, (2" %) DS, () + wy(2"x) DI ().
a=1 =1

Thus, the desired result follows by induction on k. O
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To extend Lemma B, we introduce the sequence {Qx(x) : k > 0} of rational
functions defined on [0, 1) below. Set

B
Do =r S @h)

Let I(ny,--- ,ng) denote the open interval
ko ok ko k k
> Dre > B+ D
7j=1s=j 7j=1s=j s=1
Then the interval I(nq,--- ,ny) can be obtained in the following way. Divide the
open interval (0, 1) into the open subintervals I(1), I(2), I(3), - , with the partition

points 1/2,1/4,1/8,---, where
Take the interval I(ng). Then I(ng) = (27,27 +1). Divide the interval I(ny)

into the open subintervals I(1,n), I(2,ng), I(3,nk),- -, with the partition points
9=k 4 9~mk—l 9=mk 4 9=me=2 9=mk 4 9=me=3 ... here

I(1,ng) = (277" 427771 277t

I(2,np) = (27 272 27"k 4 97"kl

I(3,mp) = (27" 427773 27k 4 27T,
and so on. We have |I(1,ng)| = |I(ng)l/2,|1(2,nk)] = |[I(ng)|/4,|1(3,nk)| =
[I(nk)|/8,---, where | - | denotes the length of the interval. Continue this pro-
cess for I(ng—1,ng), I(ng—o,nkg—_1,nk),--. After k steps, we get I(ny,---,ng). Set
Ey = ¢ and E; = {0}. For k > 2, let Ej be the set consisting of 0 and those
partition points to get all I(ny, - ,ng—1), where ny,--- ,ng_1 > 1. Then Ej is a

countable subset of I and
IN\NEp = JI(n,... ,nx_1),

where the union is disjoint and runs over all positive integers nq,--- ,ng—1. More-
over, the following properties can easily be derived:

(1.5) I(ny,---,ng) C (0,1) for all ny, -+ ,mp > 1;

(1.6) I(n1, - ,ng) C I(ng, - ,ng);

(L.7) 2™ I(ny, - ,ng)—1=1I(n1, - ,ng—1);

(1.8) I(ny,---,ng)NI(ny, - ,ng)=¢ if (ni, - ,ng) # (07, - ,ng).

Set Qo(z) =1 and Qq(x) = 2/x. For k > 2, define

0 ( ) 0 if =€ Eg,
k\T) = k— _ _ .
Pk(x_zj:% @Sz;ns) k if 136](711,"' ank—l)v
where ny, - ,ng_1 run over all possibilities of positive integers. The numbers pg

are defined by the recursive formulas: pg = 1, p; = 2, and for k£ > 2,

pr = 2’“(1 + ) 2(k- B+ 2)2apa>.
a+B<k+1
a<k,3>2
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By (1.6) and (1.7), we easily prove that

a/k
(1.9) Qul) < pa (Qp—("”)) G<a<k-1),
k
a/k
(L10)  Qu(z—1) <27, (Q’“—”) G<a<k-1),
Pk
where k > 2,z € I(n1,--- ,nk—1), and n = ni_1. Moreover, we have

Lemma 1.2. Let k>0 and 0 <r < 1/k. Then

1 1/r
(/ |Qr(2)[" dx) = (1= kr)~Y/r(2i=kr —)A=R)/r)
0

Proof of Lemma 1.2. The cases k = 0 and k = 1 are trivial. Assume that k& > 2.
We have 1 — kr > 0, and so the definition of Qx(x) gives

1/r
(/ Q)" dw) =27 Gasecen U (1 )T
I(n17.. ,’ﬂkfl)

Therefore,

(/ 1 Qe ds) "

0o o 1/r
— { Z Z /I(nl,...,nkl) |Qr(x)|" d;v}

ni=1 nk,1:1
o o 1/r
= { Z . Z 2_(Z1§s<k ns)(l—kr)} (1 _ kr)—l/rpk
n1:1 nk71:1
i 1/r o0 1/r
=(1- k,r)—l/rpk{ Z 2—n1(1—k7’)} .. { Z 2—nk1(1—kr)}
’I’L1:1 nk71:1

— (1 _ k,r)—l/r(21—kr _ 1)(1—k)/rpk'

Theorem 1.3. Let k > 0. Then for all j > 0 and all x € I\ E}, we have
(1.11) 1D} ()] < Qu(x),

and so the inequality (1.11) holds for almost all x € I. Moreover, for 0 <r < 1/k
and for all j,

1 1/r
(1.12) </ |Df($)|r dx) <(1- k,r)—l/r(zl—kr . 1)(1_k)/rpk-
0

Proof of Theorem 1.3. We first prove (1.11). The case k = 0 follows from the fact
that |D?(x)| = |w;(z)| = 1. For general k, we use induction on k. Lemma B ensures
the case k = 1. Assume that (1.11) holds for any positive integer < k — 1, where
k > 2. For x € I\ Ej, we have © € I(ny, -+ ,ni_1) for some positive integers
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Ny, -+ ,Ng—1. Write j =p-2" + ¢ with p > 0 and 0 < ¢ < 2", where n = ni_;. By
Lemma 1.1, we obtain

ko k
IDE@) < D0 Ms(2",q) Dy (2"2) D3 (2)| + |wp(272) DY ()]
a=1g8=1

= J1 + Ja,say.

We have x € (277,27 "*1). Paley’s lemma says D1, _;(z) = 0. On the other hand,
)\’;ﬁ(Z",q) =0 for all « + 3 > k + 1. Hence,

(1.13) S Y M@ o)l DY (20)] - DSy ()]
a+B<k+1
a<k,f>2

Let o <k, >2,and a+ 3 < k+ 1. By (1.2), we get

|>\]z§zﬁ(2"7Q)| < { Z (51 +1) (54 + 1)}2n(k_g)

S1,0r >0
s1++sa=k—p
(1.14) <27k — B4 2)22n(=H)
< 2b0m Bk — B4 2)20 0 h,
We have
ary P () <2 (L 0f0)

<... < onp < 288
The induction hypothesis, (1.7), and (1.10) together imply
[Dp—a(2"2)] = |Dp_o (2" — 1)| < Qu(2"z — 1)
1.16 a/k alk
(1.16) p— (ka) < oo, (Qm)) |
Pk Pk
It is clear that

)

a/k
po—k (Qk(x)> < 9@
Pk Pk
so (1.13)—(1.16) together yield

a/k
Jl S 2k Z 2_a(k _ 6"’ 2)2apa$a_k <Qk($)>

a+B<k+1 Pk
a<k,>2

k

<<2—>( > 2-“<k—ﬁ+2>2apa)czk<x>.
Pk a+pB<k+1
a<k,3>2

The same argument as (1.15) also implies

s 1) (s D) << 1)t < 2t < 29
k

0<j<q B
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From here, we get

2k — (o7
Dh@I < Co(1+ 3 2= 54270 ) Qule) = Qula)
Pk at+B<k+1
a<k,B>2
which concludes (1.11). Combining (1.11) with Lemma 1.2 results in (1.12). This
finishes the proof. O

2. GENERALIZATIONS OF MAIN RESULTS AND PROOFS

Let © be a subset of (I \ E,)?. Denote by d;(2) the shortest distance from
Q;NI(ny,--- ,np_1) to the left endpoint of I(ny,--- ,np—1) for all ny,--- ,np—1 >
1, where Q; and Q9 are the projections of Q to the z-axis and to the y-axis,
respectively. Set d(©2) = min{di(Q),d2(2)}. Notice that for p = 1, d;(Q) is
defined as the distance from €; to 0. Obviously, if Q is compact, then €; and
2y are compact subsets of I \ E,. For p = 1, we have d(?) > 0. As for p >
2, {I(n1, - ,np—1) : n1,--+,np—1 > 1} is an open cover of Oy and of Oy, so a
finite number of I(ny,---,np—1) will cover both €y and Q,. For this case, we
also have d(2) > 0. Hence, the following result generalizes Theorem 0.1. For
Oes = [e,1) x [6,1), it extends [C5, Theorem 4.1].

Theorem 2.1. Assume that conditions (0.2)—(0.5) are satisfied for some p > 1.
Then series (0.1) converges regularly to some measurable function f(x,y) for all
z,y € I\ E,, and the convergence is uniform on any subset Q of (I \ E,)? with
d(2) > 0. Moreover, the following statements are true.
(i) For all0 <1 < 1/p, we have f € L"(I?) and ||Smn— f|l — 0 as min{m,n} —
00.
(i) Let {Qes : 0 < €,6 < 1} be a decreasing family of subsets of (I \ E,)* with
d(Qes) > 0 for all0 < €,6 < 1. Assume that ¢ : [0,1] x [0, 1] — C is measurable
and locally bounded in (0,1] x (0,1], ¢ (4, k) exists for all (j,k), and (0.11)
is satisfied. Then formula (0.10) holds.

Proof of Theorem 2.1. The proof is essentially same as that given in [C5]. We first
prove that (0.3) and (0.5) together imply

(0.3") > Apocjk| < oo forall k.
j=0

Condition (0.3) ensures the existence of a positive integer N so that

(0.3") Z |Apocjr] < oo forall k> N.
j=0
Let M = [a;] be the (N + 1) x (N + 1) matrix defined by
(=1 (7)) if 0<j<k<min{N,j+p},
Qg =
i 0 otherwise.
Since det M = 1, there exist ag, a1, -+ ,an, depending on p and N only, such that

[aﬂaalv'“ ,OCN]M: [1307 70]
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This guarantees the existence of 31, - - , 35, depending on p and N only, such that
for all 7,k > 0,

Apocir =00 AppCik + 1 Bppcj ki1 + -+ ANDppCi kN

+ B1ApoCj i+ N+1 + - F BpApoCj i+ N+p-

Thus, by (0.3”) and (0.5), we obtain

oo N fe'e) P fe'e)
D 1800kl <Y1l O 1A krsl) + D 18O 1800 ki v1]) < 00
=0 s=0  j=0 =1 =0

This verifies (0.3"). Similarly, (0.4) and (0.5) together imply (0.4):

(0.4 Z |Aopcjk| < oo forall j.

k=0

The summation by parts yields

Smn (T, Y) ZZ ppCik) D )Dp( )

7=0 k=0
p—1 m

+ Z (Aptcj,n+1)D§(33)DfL+l(y)
t=0 j=0

(2.1) o1 n

+ DY (Agplmpr ) Dy (@) DR (y)
s=0 k=0
p—1p—1

+ (AstCmsr,nt1) Dy () D (y).
s=0 t=0

Assume that z,y € I\ E,. Then (1.6) implies that z,y € I\ Ej for all 0 < k < p.
By Theorem 1.3, we get

(2.2) ZZ| ppCik) D DZ(y)| < ZZ |Appciil | @p(@)Qp(y)

j=0 k=0 J=0 k=0
and
p—1 m
33 (A i) D) DL )
t=0 j=0
p—1 t ¢ m
(2.3 =595 BI [ D D IR——) EREEN

Jj=0

p—1
g( sup Z|Apgcjk)Qp (ZQQtH )

n<k<n-+p =0
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Similarly, we have

p—1 n
Z|(Aspcm+l,k)Dvsrj—l (CE)DZ(y)’
s=0 k=0
(2.4) . -
< ( sp 3 |Aopcjk|) (Z 2%23“(:@) Q)
m<j<m-+p k=0 s=0
and
p—1lp—1
Z Z‘(Astcm+l,n+1)Dvsyj—l(z)ij—l(y”
s=0 t=0

(2.5) = pz_:l pi XS: Zt: (z) (Z) | Ao0Cm tuttntot]

s=0 t=0 u=0 v=0
X Qs+1(2)Qt+1(y)

< ( sup |Cjk|) (251525”@ +1(2)Qe41(y ))

ji>m,k>n 5—0 t—0

Putting (0.2)—(0.5) and (2.1)—(2.5) together, we infer that s, (z,y) converges un-
restrictedly to some measurable function f(z,y) for z,y € I\ E,. Summation by
parts gives

> eppwi(@wi(y) =Y (Apocsr) DY (x)wi ()
j=0 Jj=0
p—1
+) (AsoCmtrk) D™ (2)wi (y).
s=0

A similar argument says that Z;‘)io cjrw;(z)wy(y) converges for each fixed k. The
same conclusion also holds for each column series. Thus, series (0.1) converges
regularly to f(z,y) for z,y € I\ E,. Let Q be any subset of (I \ E,)? with
d(Q2) > 0. Denote by ©; and s the projections of Q to the z-axis and to the
y-axis, respectively. By (1.6),

|Qr(2)] < prd(Q)™F < 0 (0<k<p;xzeQUQ).

By (0.2)-(0.5) and (2.1)—(2.5), we confirm that (0.1) converges uniformly on € to
f(z,y). Indeed, the same argument also verifies that

(2.6) ZZ ppCik) DY (2) DY (y) uniformly on Q.
7=0 k=0

Let 0 < r < 1/p. Then Lemma 1.2 tells us that

(2.7) "y = / Qu(@)"dz <00 (0<k<p).

y (0.5), (2.2), and (2.6), we infer that

1 1 oo o r
| [ ister iy < {ZDAWW} (L)
0 Jo =0 k=0
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Set A, = {(J, k) € NU{0}) x (NU{0}) : 5 > mor k > n}. By (0.2)—(0.5) and
(2.1)—(2.6), we obtain

| $mmn — flI7
p—1

<Z |Appcjk|> )2 <2up Z |ApOCJk|> (Z 2trﬂ;ﬂ:+1)
mn t:O
(sup > |A0pcjk|> Z 2% g tap)

j>m
T p—1p-—1
+ < sup |Cjk|> 222(8+t "1 M)
j>muk>n 5—0 =0
—0 as min{m,n} — oo.

It remains to prove (ii). Set

wie.8)= [[ ow)D5()Dhty) dody

Then condition (0.11) is same as

(2.8) s]tlp |27 (¢, 8)| < oo.
Oj<e 0<1

For s,t > 1, we have

Z(I)s 1t Z(I)st 166 ZZ(I)S 1,t— 166

u=0v=0

and so (0.11) is equivalent to the existence of constant C' such that

(2.9) Sll;lp [@57.(e,6)] < C <0 forall 0<s,t<p.

J»
0<e,b6<1

We have qZA)g‘z(j, k) = lim 5,0 @22(6,6), and gZ;}‘z(j, k) exists for all (j,k). Therefore,
the limit C;,i = lime 610 @ji(e, 6) exists for all s,t, j,k, and (2.9) implies that
(2.10) Gl <C k=0, 0<s,t<p).

Since d(£2es) > 0, the set Qs is contained in some compact subset of (0,1] x (0, 1].
We have assumed that ¢ is locally bounded in (0, 1] x (0, 1], so it follows from (2.6),
with Qs in place of Q, that as min{m,n} — oo,

(2.11) ZZ ppCik) P2 (€, 6) —>// (@, y)o(z,y) dedy.
0 k=0 56

Jj=

Putting (0.5) and (2.9)—(2.11) together, we infer that

eha%//g flz,y)o :cydzdy—zz ppCik)C 7k'
? es

=0 k=0
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The above limit of the double integral exists, and the double series on the right is
absolutely convergent. For m,n > 0, we have

EZZ jk¢Qj, —hm// Smn (2, y)o(z,y) dedy.
=0 €,610 Qes

m n p—1 m
p,t+1

E E AppCik Cjk + E : E : ptCimn+1)
7=0 k=0 t=0 j=0

p—1 n p—1p—1

2 : s+1,p § : § : +1, t+1

+ spCm+1, k + stCm+1,n+1 CS

s=0 k=0 s=0 t=0

As mentioned before, the series Z;io Yoo (Appcin) Cf,f converges absolutely. On
the other hand, (0.2)—(0.4) and (2.10) imply

p—1 m p—1 t P
D) DIVERIIE NS D) 91 () D DI ERT

t=0 j=0 t=0 v=0 j=0

m
<Gy ( sup Y |Apocsi |)
k>nj:0

—0 as min{m,n} — oo,

p—1 n
Z [AgpCma, 1c||CSle Pl <C ( sup Z |A0pcjk|)
5=0 k=0 Jzmi—o
—0 as min{m,n} — oo,
and
—1p-1
5 it G2 < G sup lea)
5=0 t=0 J>m.k>n
—0 as min{m,n} — oo.

Hence, as min{m,n} — oo, Apy, tends to 3°7°0 307 ((Appeji)Cii.  This gives
(0.10), and the proof is complete. |

With the help of Theorem 1.3, we get

/ / . 9@ ) D () Dy (y) dwdy

Hence, if ¢(z,y)Qp(2)Qp(y) € L'(I?), then (0.11) holds. Moreover, from the in-
equality |¢(z,y)|p2 < (2, y)Qp(x)Qy(y)|, we find that ¢ € L'(I?). Using these
facts, we obtain the following extension of [C5, Corollary 4.2].

sup
J,k=>0
0<e,6<1

< o, y)Qp(2)Qp ()1

Corollary 2.2. Assume that conditions (0.2)—(0.5) are satisfied for some p > 1.
If ¢ :[0,1] x [0,1] — C is locally bounded in (0,1] x (0,1] and ¢(z,y)Qp(z)Qp(y) €
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LYI?), then f(z,y)p(x,y) € L'(I?) and
//fxy é(x,y) dwdy—Zchkm, :
7=0 k=0

where f is the limit function of the series (0.1).
Proof of Corollary 2.2. Tt follows from (2.6) and Theorem 1.3 that
oot < (23 el )o@ (e 1\ED,
7=0 k=0

Since ¢(x,y)Qp(x)Qp(y) € L' (I?), we know that f(z,y)¢(x,y) € L'(I?). Choose
a decreasing family {Q : 0 < € < 1} of compact subsets of (I \ E,)? with

U Qee = (I\Ep)2~

0<e<1

Then, by applying the Lebesgue dominated convergence theorem, we find that
0504, k) = ¢(j, k) for all 5,k > 0. Therefore, Theorem 2.1 gives us

//fa:y :cydzdy—hm// F(z,y)o(z, y) dedy
:i jké(m k),

which is the desired result. O

To prove Theorem 0.2, we introduce the following three sums for A > 1:

[Am]

[Am] —|— 1—j
E10(m n;x,y) = Z Z cjkwj(x)wk(y),
j=m+1 k=0
m ] )\n —i— 1-—
E01 m,n;T,y) Z Z C]kwj(x)wk(y)u
=0 k=n+1

[Am] [An]

)\m—i-l—j ] +1-k
YN (myn;x,y) = Z Z — Dl —n cjpw; () wi (y).
j=m+1 k=n+1

They involve those c¢jrw;(z)wk(y) with (j,k) lying between the two rectangles
[0, \m] x [0, An] and [0,m] x [0,n]. The coefficients corresponding to the terms
cjrwj(T)wr (y) have absolute value not greater than 1. As indicated in [CMW, p.
639], we have

. _ [Am]+1

An] +1
— m(U[Am])n — Omn) + [[/\n]]i_n(am,pn] — Omn)

[Am]+1 [Mn]+1
[)\m] “m . [)\TL] — n(a[)\m],[)\n] — Oam],n — Om,[An] + Umn)

(2.12)

- Eél(ma n,x,y) - Ei\()(mvn; xz, y) - Ei\l(ma nvxvy)
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and
1 [Am]
(213) Ei\l (ma n;x, y) = [)\m]——m Z (28\1 (ua n;x, y) - Eél (mv n;x, y))
u=m-+1
1 [An]
“Dmlon Z (Zdo(m, v; 2, y) — 59 (m, s 2,)).
v=n-+1
Obviously, (2.13) implies
. A .
(2-14) |Ei\1 (m, n:z, y)l < 2bupm§u§[)\m] |201(u, n;x, y)|7
2 SUPp<y<[An) |E{\O(m7 v T, y)|

By (2.12) and (2.14), we easily prove

Theorem 2.3. (i) Let Q C I?. Assume that (2.15)—(2.16) are satisfied:

(2.15) limlimsup [ sup |E3,(m,n;z,9)| | =0,
All m,n— 00 (Ly)EQ

(2.16) limlimsup | sup |27y(m,n;z,y)| | = 0.
I mmn—oco (z,y)€N

If 0pn(x,y) converges uniformly on Q to f(x,y), then so does Spmn(,y).
(i) Assume that (2.17)—(2.18) hold for some r > 1:

(2.17) ll\iljrlllimsup 1201 (m, n; 2, 9) |- = 0,
(2.18) lgrlllimsup 122 (m, n; 2, 9) ||, = 0.

If lomn — fllr — 0 unrestrictedly, then ||$mn — f|l» — 0 as min{m,n} — oo.

Here the limit superior of a double sequence {d; : j,k > 0} of extended real
numbers is defined as

limsupdmn, = inf ( sup djx) = lim ( sup djx).
m,n—00 mn2l j>m k>n M=00 j>m,k>m

We shall use (i) of Theorem 2.3 to establish (i) of Theorem 0.2. For (ii) of Theorem
0.2, the range of r is different from that in (ii) of Theorem 2.3, so we shall prove it
by a different method. It is unknown whether the conclusion (ii) of Theorem 2.3
holds for 0 < r < 1.

Proof of Theorem 2.3. With the help of (2.14), we find that (2.15) implies

Lmn—oo \ (z,9)€Q

(2.19) lgnlimsup< sup |E?1(m,n;x,y)|> =0.
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Assume that o,,,(x,y) converges uniformly on Q to f(x,y). Then by (2.12), we
get

lim sup ( Sup  [Smn(z,y) — amn(x,y)|>
(

m,n—0o0 z,y)EQ

<hmsup< sup |231<m,n;x,y>|> +hmsup< sup |z%o<m,n;x,y>|>
(

m,n—oo z,y)EQ m,n—0o0 \ (z,y)€N

+limsur>< sup Izﬁ(m,n;x,yM),
(

m,n— 00 z,y)EQ

where A > 1. The quantity on the left-hand side is independent of A. Thus, the
same inequality will remain true after taking “A | 17. This indicates that (i) follows
from (2.15)—(2.16) and (2.19). For (ii), by (2.13), we obtain

1221 (m, 2, )
(Am]

> U0 (wns 2, 9) [l + 1250 (m, s 2, 9)])
u=m-+1

.
~ [Am]—m

<2( sup %0y (uniz, )l
m<u<[Am]

Thus, (2.17) implies

lgmlimsup 23 (m,n; 2, )| = 0.

' mn—co

To replace sup, ,ycq by || - |-, we find that the preceding proof also verifies (ii).
This completes the proof. O

As explained before, the following generalizes Theorem 0.2.

Theorem 2.4. Assume that conditions (0.2)—(0.4) and (0.12)—(0.13) are satisfied
for some p > 1. Then the following statements are true.

(i) Let Q be any subset of (I \ E,)* with d(Q) > 0. If omn(z,y) converges
uniformly on Q to f(x,y), then so does spmn(T,y).

(i) If lomn — fllr — O wunrestrictedly for some r with 0 < r < 1/p, then
I$mn — fll» — 0 as min{m,n} — oc.

Proof of Theorem 2.4. We show (i) first. Let Q be any subset of (I \ E,)? with

d(f2) > 0. Denote by €y and Qs the projections of Q to the z-axis and to the
y-axis, respectively. Then Q; C I'\ E, for j =1,2. By (1.6) and Theorem 1.3,

|D¥ ()] < |Qx(x)| < prd()™F < 0 (0<k<p;reQ U
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For (z,y) € Q, summation by parts yields

[An] +1—

D] — |A;Dpcjk|Qp( )Qp(y)

p—1 m [An]

S S A |Qp(@) Qe (9)

=0 k=n+1

1

(2.20) T

t

i
o

+ Z Z |AptCiint1|Qp(2)Qry1(y)
—0

A —k
+ %mwcmﬂ,k@sﬂ(z)@p(y)

p—1p—1 [An]

nZZ > 1Aemi1 ke 1|Qus1 (2)Qeg1 ()
s=0

1
t=0 k=n+1
p—1p—1

+3 0 Astemitn1| Qe (2) Qe (v)

s=0 t=0
= Il)\(man7x7y) + I;(m,n,:z:,y) =+ Ig(m,n;x,y)
+ I3 (m, s 2, y) + I3 (m, n; 2, y) + Is(m,m; @, y), say.

We have

m Q] )\n —i— 1-—
Il (m,n;z,y) (Z Z |Appcjk|) p(2)Qp(y)
=0 k=n+1

and

p—1 m

IQ’\(m,n;x,y) sup ZZ |Aptcj k1] @p(2)Qet1(y)

n<k<[An] ; 0 ;=0

p—1 ¢

< S5()) (O 18mesisra) Q@)@ (v

n<k<[An] 320 y=0

p—1
< sup Z |ApOCJk| Qp )(Z 2tQt+l(y))
t=0

n<k<[An]+p =0

Similarly, we also have

p—1
Is(m,n;z,y) < ( sup Z|Apocak| Qp(x 22 Qi+1(y
n<k<n+p
[An] p—1

Dimmizg) <( s S [Bopeu) (3 2°Qurs (@)@ (),
s=0

m<j<m+p k=n-+1
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p—1lp—1

Bmmwy) < swp > > [Agemitrit|Qop1 (@) Qi (y)
n<k<[An] o 1=0

p—1p—1
<( sup |ejil) ZZQS+th+1 )Qe+1(y)),
j>mik>n —0t=0
p—1p—1
I(m,niz,y) < ( sup o)D) 27 Qe (@) Qe (1)),
j>mik>n 5—0 1—0

Combining these with (0.2)—(0.4) and (0.12) results in (2.15). Replacing (0.12) by
(0.13), we get (2.16). Thus, (i) follows from (i) of Theorem 2.3.

It remains to show (ii). Assume that ||y, — f]|» converges unrestrictedly to 0
for some r with 0 < r < 1/p. We have

[$mn = flI7 < I$mn — omally + omn = f1I7,
and so it suffices to show that ||Syn — Gmn||- — 0 as min{m,n} — co. By (2.12),

T
”Smn - Umn”r

[Am]+1 ., [An] +1

< - Umn . " m,An| — Ymn .
= ([)\m] — m) ||U[>\m]7n g ||r + ([)\n] — n) ||U ,[An] g ||r
[Am]+ 1. [An]+1., .
+ ( [)\m] ) ( [)\TL] ) ||U[)\m],[)\n] OAm],n — Om,[An] + Umn”r

+ Hzm(m n; 2, y)|lr + Hzl()(m n;z,y)ll; + ||Ei\1(m,n;x,y)||£
= JM(m,n) + J2(m,n) + J3 (m,n)
+ Jp(m,n) + J2(m,n) + Jg(m,n), say.
The hypothesis on o,,,, guarantees that [J}(m,n)| — 0 as min {m,n} — oo,

where A > 1 and k = 1,2,3. Notice that (2.20) holds for z,y € I\ E,, (see
Theorem 1.3). For |J3(m,n)|, we have

[T (m, )| < 1N m, s, )lI7 + 13 (myms 2, ) 17+ ([ 1 (m s 2, )
12 (my nsa, y) |17+ 18 (myms 2, y) |17+ (s (m, s 2, y)|[7

T

)\n —|— 1-—
Z Z |Appcak| (ﬂ;)z
7=0 k=n+1
T
+2 sup Z PANSY Z 2y )
n<k<[)\n]+pj —0
[An) " op-1
+ sup Z | Aopciil (Z QSTM;-H)N;T)
m<jEmA4p 1 s=0

j>mzk>n

T p—1p—1
+z(‘ wp |cjk|> S ot
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where p, is defined by (2.7). Lemma 1.2 tells us that uj, < oo for all 0 < k < p.
By (0.2)—(0.4) and (0.12), we conclude that

hfn hmsup |J3(m,n)| = 0.

Similarly, conditions (0.2)—(0.4) and (0.13) will imply

lim 1i 2 =0.
lim imsup |JZ (m,n)] =0

m,n— o0

If we substitute u for m in (2.20), the inequality (2.14) gives us

T

[An]+1—k 5
|[J3 (m,n)| <27 sup Bkl | (1)
6 m<u<[Am] jgﬂ k:;}—l [)\TL] -n e P
w2 cutiml > 1Apocs] ZQ”NM
n<k<Pnl+p? ="
[An]

+ 27 sup Z |Aopcin Z 2°" g )
m<j<[Aml+p 7y

T p—1p-1
4o+l ( ~sup |Cjk|> (Z Z 2<S+t)r#§+1#§+1)-
s=0t

j>msk>n —0
By (0.2)—(0.4) and (0.12), we infer that

lim limsup |.J3 (m, n)| = 0.

M1 mn—oo

Therefore, ||Smn — omn|lr — 0 as min{m,n} — oo, and the desired result follows.
O

Let 0 <a <b<oo. Fora<m/n<b, wehavea/(p+ ) <u/v<(p+ N\)b for
all m < u < [Am] +p and for all n < v < [An] + p, where A > 1. Following the
proofs of Theorems 2.3 and 2.4, we can easily extend Theorem 0.4 in the following
way.

Theorem 2.5. (i) Let Q C I?. Assume that for all 0 < a < b < oo the conditions

(2.21) lim limsup | sup |23 (m,n;2,9)| | =0,
ALl a<m/n<b \ (z,y)€EQ

(2.22) lim limsup | sup |[Z3(m,n;2,y) | =0
All a<m/n<b \ (z,y)EQ

are satisfied. If opmn(x,y) converges uniformly on Q in the restricted sense to
f(x,y), then so does spmn(x,y).
(17) Suppose there exists some r > 1 such that for all 0 < a < b < 00

(2.23) lim lim sup ||E(’}1(m,n;x,y)||r =0,
All a<m/n<b

(2.24) lim limsup ||X3,(m,n;z,9)|, = 0.
All a<m/n<b

If lomn — fllr — O restrictedly, then ||Smn — f||» converges restrictedly to 0.
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Theorem 2.6. Assume that conditions (0.2) and (0.14)—(0.17) are satisfied for
some p >1 and for all 0 < a < b < co. Then the following statements hold.
(i) Let Q be any subset of (I \ E,)? with d(Q) > 0. If omn(z,y) converges
uniformly on Q in the restricted sense to f(x,y), then so does smn(Z,y).
(ii) If [|omn — fllr — O restrictedly for some r with 0 < r < 1/p, then ||Smn — f]|~
converges restrictedly to 0.
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