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DOUBLE WALSH SERIES WITH COEFFICIENTS

OF BOUNDED VARIATION OF HIGHER ORDER

CHANG-PAO CHEN AND CHING-TANG WU

Abstract. Let Dk
j (x) denote the Cesàro sums of order k of the Walsh func-

tions. The estimates of Dk
j (x) given by Fine back in 1949 are extended to

the case k > 2. As a corollary, the following properties are established for the
rectangular partial sums of those double Walsh series whose coefficients satisfy
conditions of bounded variation of order (p, 0), (0, p), and (p, p) for some p ≥ 1:
(a) regular convergence; (b) uniform convergence; (c) Lr-integrability and Lr-
metric convergence for 0 < r < 1/p; and (d) Parseval’s formula. Extensions to
those with coefficients of generalized bounded variation are also derived.

0. Introduction

Let I ≡ [0, 1). Denote by {ωn(t)} the Paley-Walsh orthonormal system defined
on I. Consider the double Walsh series

∞∑
j=0

∞∑
k=0

cjkωj(x)ωk(y) (x, y ∈ I),(0.1)

where {cjk : j, k ≥ 0} satisfies the following conditions for some positive integer p:

cjk −→ 0 as max{j, k} → ∞,(0.2)

lim
k→∞

∞∑
j=0

|∆p0cjk| = 0,(0.3)

lim
j→∞

∞∑
k=0

|∆0pcjk| = 0,(0.4)

∞∑
j=0

∞∑
k=0

|∆ppcjk| <∞.(0.5)

The finite-order differences ∆pqcjk are defined by

∆00cjk = cjk;

∆pqcjk = ∆p−1,qcjk −∆p−1,qcj+1,k (p ≥ 1);

∆pqcjk = ∆p,q−1cjk −∆p,q−1cj,k+1 (q ≥ 1).
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We have

∆pqcjk =

p∑
s=0

q∑
t=0

(−1)s+t

(
p

s

)(
q

t

)
cj+s,k+t.

Conditions (0.3)–(0.5) are known as conditions of bounded variation of order (p, 0),
(0, p), and (p, p), respectively. For p = 1, conditions (0.3) and (0.4) are excessive,
because they can be derived from (0.2) and (0.5). Obviously, conditions (0.3)–(0.5)
generalize the concept of monotone sequences.

For m,n ≥ 0, the rectangular partial sums smn(x, y) and the first arithmetic (or
Cesàro) means σmn(x, y) of series (0.1) are defined as

smn(x, y) =

m∑
j=0

n∑
k=0

cjkωj(x)ωk(y),

σmn(x, y) =
1

(m + 1)(n+ 1)

m∑
j=0

n∑
k=0

sjk(x, y).

If the cjk are the Walsh-Fourier coefficients of some f ∈ L1(I2), we shall write
smn(f ;x, y) and σmn(f ;x, y) instead of smn(x, y) and σmn(x, y), respectively.

Let Ω ⊆ I2. As in [CH], we say that smn converges uniformly on Ω to f in
the unrestricted sense (or briefly, converges uniformly on Ω to f) if smn converges
uniformly on Ω to f as min{m,n} → ∞. In contrast, smn is said to converge
uniformly on Ω to f in the restricted sense if for all 0 < a < b <∞,

lim
a≤m/n≤b
m,n→∞

smn(x, y) = f(x, y) uniformly on Ω.(0.6)

We also say that smn(x0, y0) converges unrestrictedly (or restrictedly) to f(x0, y0)
if smn converges uniformly on Ω to f in the unrestricted (or restricted) sense, where
Ω = {(x0, y0)}. The above definitions will apply to other sequences of functions,
such as σmn. Conventionally we say that series (0.1) has the mentioned prop-
erty whenever smn does. If series (0.1) converges unrestrictedly to f(x, y), the
row series

∑∞
j=0 cjkωj(x)ωk(y) converges for each fixed k, and the column series∑∞

k=0 cjkωj(x)ωk(y) converges for each fixed j, then we shall say that series (0.1)
converges regularly to f(x, y), (cf. [H]). Set

‖f‖r ≡
(∫ 1

0

∫ 1

0

|f(x, y)|r dxdy
)1/r

.

Note that ‖ · ‖rr defines a metric for 0 < r < 1, and ‖ · ‖r is a norm for r ≥ 1.
In this paper, we are concerned with the following convergence problems for

suitable r:

(0.7) where smn(x, y) converges uniformly to f(x, y),
(0.8) where smn(x, y) converges regularly to f(x, y),
(0.9) whether f ∈ Lr(I2) and ‖smn − f‖r → 0 as min{m,n} → ∞.

We also investigate the validity of the following Parseval’s formula for suitable φ
and Ωεδ:

lim
ε,δ↓0

∫∫
Ωεδ

f(x, y)φ(x, y) dxdy =

∞∑
j=0

∞∑
k=0

cjk φ̂
∗
Ω(j, k),(0.10)
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where {Ωεδ : 0 < ε, δ < 1} is a decreasing family of subsets of I2 and

φ̂∗Ω(j, k) ≡ lim
ε,δ↓0

∫∫
Ωεδ

φ(x, y)ωj(x)ωk(y) dxdy.

These problems were investigated by many mathematicians, including Balašov [B],
Fine [F], Móricz [M1], Móricz-Schipp [MS1], Rubinštein [R], Šneider [S], Yano [Y]
for the one-dimensional case, and Chen [C2], [C3], [C4], [C5], Móricz [M2], [M3],
Móricz-Schipp [MS2], Móricz-Schipp-Wade [MSW1] for higher dimensions. They
were thoroughly discussed in [C5] for those series of type (0.1) whose coefficients
cjk satisfy conditions of bounded variation of order (p, 0), (0, p), and (p, p) with the

weight (jk)p−1, where ξ̄ ≡ max{ξ, 1}. The purpose of this paper is to relax these
weight conditions to (0.2)–(0.5) or to more generalized conditions. Details on these
are stated below. The first main result reads as follows.

Theorem 0.1. Assume that conditions (0.2)–(0.5) are satisfied for some p ≥ 1.
Then series (0.1) converges regularly to some measurable function f(x, y) for all
x, y ∈ I \Ep, and the convergence is uniform on any compact subset Ω of (I \Ep)

2,
where Ep is a suitable countable set of dyadic rationals. Moreover, the following
statements are true.

(i) For all 0 < r < 1/p, we have f ∈ Lr(I2) and ‖smn−f‖r → 0 as min{m,n} →
∞.

(ii) Let {Ωεδ : 0 < ε, δ < 1} be a decreasing family of compact subsets of (I \Ep)
2.

Assume that φ : [0, 1]× [0, 1] 7→ C is measurable and locally bounded in (0, 1]×
(0, 1], φ̂∗Ω(j, k) exists for all (j, k), and the condition

sup
j,k≥0

0<ε,δ<1

∣∣∣∣∣
∫∫

Ωεδ

φ(x, y)Dp
j (x)Dp

k(y) dxdy

∣∣∣∣∣ <∞(0.11)

is satisfied. Then formula (0.10) holds.

The set Ep and the Cesàro sums Dk
j (x) will be defined in §1. We say that

{Ωεδ : 0 < ε, δ < 1} is a decreasing family of subsets of I2 if whenever ε1 ≤ ε2 and
δ1 ≤ δ2, we have Ωε1δ1 ⊇ Ωε2δ2 . For Ω and Ωεδ, a wider class is allowed in a more
general setting. This will be proved in §2. In [C4], [C5], the Parseval’s formula
involved there corresponds to the case Ωεδ = [ε, 1) × [δ, 1). Theorem 0.1 and its
extension generalize [C5, Theorems 2.1 & 4.1], [F, Theorem X], [M2, Theorems 1
& 2], [R], and [S]. For regular convergence and mean convergence, the cases p = 1
and 2 of Theorem 0.1 were proved in [M2]. Those proofs were based on suitable
estimates for the Walsh-Dirichlet kernels D1

j (x) and the Walsh-Fejér kernels Kj(x).
These estimates were given by Fine in [F]. The obstacle to extending the results of
Móricz [M2] to p > 2 is that an analogous estimate for Dk

j (x) with k > 2 has not
been found yet. We shall set up such a result in §1.

Obviously, condition (0.5) implies any of the following conditions:

lim
λ↓1

lim sup
n→∞

∞∑
j=0

[λn]∑
k=n+1

[λn] + 1− k

[λn]− n
|∆ppcjk| = 0,(0.12)

lim
λ↓1

lim sup
m→∞

[λm]∑
j=m+1

∞∑
k=0

[λm] + 1− j

[λm]−m
|∆ppcjk| = 0.(0.13)
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Conditions (0.12) and (0.13) have appeared in many places. They were originally
taken into consideration in the development of pointwise convergence of double
trigonometric series, (cf. [C1], [CH], [CMW]). The second main result of this paper
is the following.

Theorem 0.2. Assume that conditions (0.2)–(0.4) and (0.12)–(0.13) are satisfied
for some p ≥ 1. Then the following statements are true.

(i) Let Ω be a compact subset of (I \ Ep)
2. If σmn(x, y) converges uniformly on

Ω to f(x, y), then so does smn(x, y).
(ii) If ‖σmn − f‖r → 0 unrestrictedly for some r with 0 < r < 1/p, then

‖smn − f‖r → 0 as min{m,n} → ∞.

Theorem 0.2 generalizes [M3, Theorems 1 & 1′]. The particular case Ω =
{(x0, y0)} of Theorem 0.2 (i) reduces to a pointwise convergence property. Let
CW (I2) be the collection of all uniformly W -continuous functions f : I2 7→ R.
Then CW (I2) is the uniform closure of the double Walsh polynomials (cf. [SSW,
pp. 156-158]). As proved in [M3, Lemma 4], σmn(f ;x, y) converges uniformly on
I2 to f(x, y) for all f ∈ CW (I2). Given n ∈ N and x ∈ I, let Jn(x) denote the
dyadic interval of length 2−n which contains x. Set

f#(x, y) = sup
n∈N

1

|Jn(x)|
∣∣∣∣∫

Jn(x)

f(t, y) dt

∣∣∣∣ (f ∈ L1(I2)).

Recently, Weisz [W1] extended a result of Móricz-Schipp-Wade [MSW2] from f ∈
L1 log+ L1(I2) to f# ∈ L1(I2). He proved that if f# ∈ L1(I2), then

σmn(f ;x, y) −→ f(x, y) a.e. as min{m,n} → ∞.

As for f ∈ L1(I2), the Riemann-Lebesgue lemma ensures (0.2). By the Hölder
inequality and the two-dimensional extension of [M], we find that

‖σmn − f‖r ≤ ‖σmn − f‖1 −→ 0 as min{m,n} → ∞,

where 0 < r < 1/p. Using these, we obtain the following result, which generalizes
[M3, Theorems 2 & 2′, Corollaries 1, 2 & 2′].

Corollary 0.3. Let cjk be the Walsh-Fourier coefficients of f ∈ L1(I2). Assume
that conditions (0.3)–(0.4) and (0.12)–(0.13) are satisfied for some p ≥ 1. Then
the following statements remain true.

(i) If f# ∈ L1(I2), then smn(f ;x, y) → f(x, y) a.e. as min{m,n} → ∞.
(ii) If f ∈ CW (I2), then smn(f ;x, y) converges uniformly on any compact subset

Ω of (I \ Ep)
2 to f(x, y).

(iii) If f ∈ L1(I2), then for all 0 < r < 1/p, ‖smn(f)− f‖r → 0 as min{m,n} →
∞.

It is clear that Theorem 0.2 and Corollary 0.3 will apply to the following case:

cjk = ajbk (j, k ≥ 0), aj = 0 except perhaps for a finite number of j, and
{bk : k ≥ 0} is a null sequence satisfying the property stated below for some
positive integer p:

lim
λ↓1

lim sup
n→∞

1

[λn]− n

[λn]∑
k=n+1

([λn]− k + 1)|∆pbk| = 0.
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The differences ∆pbk are defined in a way similar to those for ∆pqcjk. A special
example of {aj} is as follows: a0 = 1 and aj = 0 for all j > 0. This particular case
of Corollary 0.3 generalizes [M1, Theorems 1 & 2].

The definition of restricted convergence given in (0.6) means that smn(x, y) con-
verges uniformly on Ω to f(x, y) as both m and n tend to infinity in such a way
that a ≤ m/n ≤ b. For restricted convergence, we need the following concept of
restricted limit superior, introduced in [CH]:

lim sup
a≤m/n≤b
m,n→∞

dmn ≡ inf
a≤m/n≤b
m,n≥1

( sup
a≤j/k≤b
j≥m,k≥n

djk) = lim
m→∞( sup

a≤j/k≤b
j≥m,k≥m

djk),

where {djk : j, k ≥ 0} is a double sequence of extended real numbers. In the
sequel, we drop “m,n → ∞” under the sign “lim sup”. Instead of (0.3)–(0.4) and
(0.12)–(0.13), we consider the following weaker conditions:

lim sup
a≤m/k≤b

m∑
j=0

|∆p0cjk| = 0,(0.14)

lim sup
a≤j/n≤b

n∑
k=0

|∆0pcjk| = 0,(0.15)

lim
λ↓1

lim sup
a≤m/n≤b

m∑
j=0

[λn]∑
k=n+1

[λn] + 1− k

[λn]− n
|∆ppcjk| = 0,(0.16)

lim
λ↓1

lim sup
a≤m/n≤b

[λm]∑
j=m+1

n∑
k=0

[λm] + 1− j

[λm]−m
|∆ppcjk| = 0,(0.17)

where 0 < a < b <∞. We have

Theorem 0.4. Assume that conditions (0.2) and (0.14)–(0.17) are satisfied for
some p ≥ 1 and for all 0 < a < b <∞. Then the following statements hold.

(i) Let Ω be a compact subset of (I \ Ep)
2. If σmn(x, y) converges uniformly on

Ω in the restricted sense to f(x, y), then so does smn(x, y).
(ii) If ‖σmn− f‖r → 0 restrictedly for some r with 0 < r < 1/p, then ‖smn− f‖r

converges restrictedly to 0.

Recently, Weisz [W2] proved that σmn(f ;x, y) converges almost everywhere to
f(x, y) in the restricted sense for any f ∈ L1(I2). As explained in the paragraphs
before Corollary 0.3, the following is a consequence of Theorem 0.4, which general-
izes Corollary 0.3 for restricted convergence.

Corollary 0.5. Let cjk be the Walsh-Fourier coefficients of f ∈ L1(I2). Assume
that conditions (0.14)–(0.17) are satisfied for some p ≥ 1 and for all 0 < a < b <∞.
Then the following statements remain true.

(i) If f ∈ L1(I2), then smn(f ;x, y) → f(x, y) restrictedly for almost all (x, y) ∈
I2.

(ii) If f ∈ CW (I2), then smn(f ;x, y) converges uniformly on Ω in the restricted
sense to f(x, y) for all compact subsets Ω of (I \ Ep)

2.
(iii) If f ∈ L1(I2), then for all 0 < r < 1/p, ‖smn(f)− f‖r converges restrictedly

to 0.

Throughout this paper C and Cp denote constants, which are not necessarily the
same at each occurrence.
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1. Magnitude of the Cesàro sums Dk
j (x)

Let D0
j (x) = ωj(x) and Dk

j (x) denote the Cesàro sums of order k of the sequence

{D0
j (x)} (cf. [Z] for this terminology). Then

Dk
j (x) =

j∑
u=0

Dk−1
u (x) (j ≥ 0; k ≥ 1).

For the sake of convenience, we also define Dk
j (x) = 0 for j < 0 or k < 0. The

number D1
j (x) is known as the Walsh-Dirichlet kernel of order j, and Kj(x) ≡

D2
j (x)/(j + 1) is called the jth Walsh-Fejér kernel. In [F, §6-§7], Fine established

the following expansions and estimates.

Lemma A. Let j = p · 2n + q with p ≥ 0 and 0 ≤ q < 2n. Then for all x, we have

D1
j (x) = D1

p−1(2
nx)D1

2n−1(x) + ωp(2
nx)D1

q(x).

Lemma B. Let n ≥ 1. Then for all j and for x ∈ (2−n, 2−n+1), we have

|D1
j (x)| < 2

x
,

|D2
j (x)| < 4

x(x − 2−n)
+

4

x2
.

In [C5], the first author used the estimate for |D1
j (x)| to derive the inequality

|Dk
j (x)| ≤ 2k(k+1)/2 min{(j)k, (j)k−1x−1},(1.1)

where x ∈ I, j ≥ 0, and k ≥ 1. The purpose of this section is to get an estimate
like the second one given in Lemma B, which is better than (1.1) for use. To do so,
we first extend Lemma A from k = 1 to the general k. Define the numbers Ak

j by
the recursive formulas

A0
j ≡ 1, Ak

j ≡ Ak−1
0 +Ak−1

1 + · · ·+Ak−1
j (j ≥ 0; k ≥ 1).

As shown in [Z, p.77], we have

Ak
j =

(
j + k

j

)
=

(j + k)(j + k − 1) · · · (j + 1)

k!
' jk

k!
.

Moreover,

Ak
j ≤ (k + 1)(j)k (j, k ≥ 0).(1.2)

Let λk1β(ξ, q) ≡ Ak−β
q for 1 ≤ β ≤ k, and 0 otherwise. For α ≥ 2, set

λkαβ(ξ, q) ≡
∑

s1,s2,··· ,sα−1≥1;t≥0
s1+s2+···+sα−1+t+β=k

As1
ξ−1A

s2
ξ−1 · · ·Asα−1

ξ−1 At
q.
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Then λkαβ(ξ, q) = 0 for β > k, λkkk(ξ, q) = 0 for k ≥ 2, and λkαβ(ξ, q) = 0 for
α+ β > k + 1. An elementary calculation gives

λk+1
1,k+1(2

n, q) = 1;

λk+1
1β (2n, q) =

q∑
t=0

λk1β(2n, t) (1 ≤ β ≤ k);

λk+1
αβ (2n, q) =

2n−1∑
t=0

λkα−1,β(2n, t) +

q∑
t=0

λkαβ(2n, t) (α ≥ 2; allβ);

λk+1
k+1,β(2n, q) =

2n−1∑
t=0

λkkβ(2n, t) (1 ≤ β ≤ k; all q).

Based on these, the following extension of Lemma A can easily be derived.

Lemma 1.1. Let j = p · 2n + q with p ≥ 0 and 0 ≤ q < 2n. Then for all k ≥ 1 and
for all x ∈ I, we have

Dk
j (x) =

k∑
α=1

k∑
β=1

λkαβ(2n, q)Dα
p−α(2nx)Dβ

2n−1(x) + ωp(2
nx)Dk

q (x).

Proof of Lemma 1.1. The proof will be carried out by induction on k. Lemma A
guarantees the case k = 1. We have

Dk+1
j (x) =

p−1∑
r=0

2n−1∑
t=0

Dk
r·2n+t(x) +

q∑
t=0

Dk
p·2n+t(x).

If this lemma holds for k, then for all 0 ≤ r ≤ p− 1 and 0 ≤ t ≤ 2n − 1,

Dk
r·2n+t(x) =

k∑
α=1

k∑
β=1

λkαβ(2n, t)Dα
r−α(2nx)Dβ

2n−1(x) + ωr(2
nx)Dk

t (x).(1.3)

Moreover,

Dk
p·2n+t(x) =

k∑
α=1

k∑
β=1

λkαβ(2n, t)Dα
p−α(2nx)Dβ

2n−1(x) + ωp(2
nx)Dk

t (x).(1.4)

Summing (1.3) and (1.4) with respect to r and t results in

Dk+1
j (x) =

k∑
α=1

k∑
β=1

{
2n−1∑
t=0

λkαβ(2n, t)

}{
p−1∑
r=0

Dα
r−α(2nx)

}
Dβ

2n−1(x)

+
k∑

α=1

k∑
β=1

{
q∑

t=0

λkαβ(2n, t)

}
Dα
p−α(2nx)Dβ

2n−1(x)

+

{
p−1∑
r=0

ωr(2
nx)

}{
2n−1∑
t=0

Dk
t (x)

}
+ ωp(2

nx)

{
q∑

t=0

Dk
t (x)

}

=

k+1∑
α=1

k+1∑
β=1

λk+1
αβ (2n, q)Dα

p−α(2nx)Dβ
2n−1(x) + ωp(2

nx)Dk+1
q (x).

Thus, the desired result follows by induction on k.
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To extend Lemma B, we introduce the sequence {Qk(x) : k ≥ 0} of rational
functions defined on [0, 1) below. Set

β⊕
s=α

ns ≡ 2−(
∑
α≤s≤β ns) (α ≤ β).

Let I(n1, · · · , nk) denote the open interval k∑
j=1

k⊕
s=j

ns,

k∑
j=1

k⊕
s=j

ns +

k⊕
s=1

ns

 .

Then the interval I(n1, · · · , nk) can be obtained in the following way. Divide the
open interval (0, 1) into the open subintervals I(1), I(2), I(3), · · · , with the partition
points 1/2, 1/4, 1/8, · · · , where

I(1) = (1/2, 1), I(2) = (1/4, 1/2), I(3) = (1/8, 1/4), · · · .
Take the interval I(nk). Then I(nk) = (2−nk , 2−nk+1). Divide the interval I(nk)
into the open subintervals I(1, nk), I(2, nk), I(3, nk), · · · , with the partition points
2−nk + 2−nk−1, 2−nk + 2−nk−2, 2−nk + 2−nk−3, · · · , where

I(1, nk) = (2−nk + 2−nk−1, 2−nk+1),

I(2, nk) = (2−nk + 2−nk−2, 2−nk + 2−nk−1),

I(3, nk) = (2−nk + 2−nk−3, 2−nk + 2−nk−2),

and so on. We have |I(1, nk)| = |I(nk)|/2, |I(2, nk)| = |I(nk)|/4, |I(3, nk)| =
|I(nk)|/8, · · · , where | · | denotes the length of the interval. Continue this pro-
cess for I(nk−1, nk), I(nk−2, nk−1, nk), · · · . After k steps, we get I(n1, · · · , nk). Set
E0 = φ and E1 = {0}. For k ≥ 2, let Ek be the set consisting of 0 and those
partition points to get all I(n1, · · · , nk−1), where n1, · · · , nk−1 ≥ 1. Then Ek is a
countable subset of I and

I \Ek =
⋃

I(n1, . . . , nk−1),

where the union is disjoint and runs over all positive integers n1, · · · , nk−1. More-
over, the following properties can easily be derived:

(1.5) I(n1, · · · , nk) ⊂ (0, 1) for all n1, · · · , nk ≥ 1;
(1.6) I(n1, · · · , nk) ⊂ I(n2, · · · , nk);
(1.7) 2nkI(n1, · · · , nk)− 1 = I(n1, · · · , nk−1);
(1.8) I(n1, · · · , nk) ∩ I(n∗1, · · · , n∗k) = φ if (n1, · · · , nk) 6= (n∗1, · · · , n∗k).
Set Q0(x) = 1 and Q1(x) = 2/x. For k ≥ 2, define

Qk(x) =

{
0 if x ∈ Ek,

ρk(x−
∑k−1

j=1 ⊕k−1
s=j ns)

−k if x ∈ I(n1, · · · , nk−1),

where n1, · · · , nk−1 run over all possibilities of positive integers. The numbers ρk
are defined by the recursive formulas: ρ0 = 1, ρ1 = 2, and for k ≥ 2,

ρk = 2k
(

1 +
∑

α+β≤k+1
α<k,β≥2

2−α(k − β + 2)2αρα

)
.
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By (1.6) and (1.7), we easily prove that

Qα(x) ≤ ρα

(
Qk(x)

ρk

)α/k
(1 ≤ α ≤ k − 1),(1.9)

Qα(2nx− 1) ≤ 2−nαρα

(
Qk(x)

ρk

)α/k

(1 ≤ α ≤ k − 1),(1.10)

where k ≥ 2, x ∈ I(n1, · · · , nk−1), and n = nk−1. Moreover, we have

Lemma 1.2. Let k ≥ 0 and 0 < r < 1/k. Then(∫ 1

0

|Qk(x)|r dx
)1/r

= (1− kr)−1/r(21−kr − 1)(1−k)/rρk.

Proof of Lemma 1.2. The cases k = 0 and k = 1 are trivial. Assume that k ≥ 2.
We have 1− kr > 0, and so the definition of Qk(x) gives(∫

I(n1,... ,nk−1)

|Qk(x)|r dx
)1/r

= 2−(
∑

1≤s<k ns)(1−kr)/r(1− kr)−1/rρk.

Therefore,(∫ 1

0

|Qk(x)|r dx
)1/r

=

{ ∞∑
n1=1

· · ·
∞∑

nk−1=1

∫
I(n1,··· ,nk−1)

|Qk(x)|r dx
}1/r

=

{ ∞∑
n1=1

· · ·
∞∑

nk−1=1

2−(
∑

1≤s<k ns)(1−kr)
}1/r

(1− kr)−1/rρk

= (1− kr)−1/rρk

{ ∞∑
n1=1

2−n1(1−kr)
}1/r

· · ·
{ ∞∑
nk−1=1

2−nk−1(1−kr)
}1/r

= (1− kr)−1/r(21−kr − 1)(1−k)/rρk.

Theorem 1.3. Let k ≥ 0. Then for all j ≥ 0 and all x ∈ I \ Ek, we have

|Dk
j (x)| ≤ Qk(x),(1.11)

and so the inequality (1.11) holds for almost all x ∈ I. Moreover, for 0 < r < 1/k
and for all j,(∫ 1

0

|Dk
j (x)|r dx

)1/r

≤ (1 − kr)−1/r(21−kr − 1)(1−k)/rρk.(1.12)

Proof of Theorem 1.3. We first prove (1.11). The case k = 0 follows from the fact
that |D0

j (x)| = |ωj(x)| = 1. For general k, we use induction on k. Lemma B ensures

the case k = 1. Assume that (1.11) holds for any positive integer ≤ k − 1, where
k ≥ 2. For x ∈ I \ Ek, we have x ∈ I(n1, · · · , nk−1) for some positive integers
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n1, · · · , nk−1. Write j = p · 2n + q with p ≥ 0 and 0 ≤ q < 2n, where n = nk−1. By
Lemma 1.1, we obtain

|Dk
j (x)| ≤

∣∣∣∣∣∣
k∑

α=1

k∑
β=1

λkαβ(2n, q)Dα
p−α(2nx)Dβ

2n−1(x)

∣∣∣∣∣∣+ |ωp(2nx)Dk
q (x)|

= J1 + J2, say.

We have x ∈ (2−n, 2−n+1). Paley’s lemma says D1
2n−1(x) = 0. On the other hand,

λkαβ(2n, q) = 0 for all α + β > k + 1. Hence,

J1 ≤
∑

α+β≤k+1
α<k,β≥2

|λkαβ(2n, q)| · |Dα
p−α(2nx)| · |Dβ

2n−1(x)|.(1.13)

Let α < k, β ≥ 2, and α + β ≤ k + 1. By (1.2), we get

|λkαβ(2n, q)| ≤
{ ∑

s1,··· ,sα≥0
s1+···+sα=k−β

(s1 + 1) · · · (sα + 1)

}
2n(k−β)

≤ 2−α(k − β + 2)2α2n(k−β)(1.14)

≤ 2k−α−β(k − β + 2)2αxβ−k.

We have

|Dβ
2n−1(x)| ≤ 2n

(
sup

0≤j<2n
|Dβ−1

j (x)|
)
≤ 22n

(
sup

0≤j<2n
|Dβ−2

j (x)|
)

≤ · · · ≤ 2nβ ≤ 2βx−β .
(1.15)

The induction hypothesis, (1.7), and (1.10) together imply

|Dα
p−α(2nx)| = |Dα

p−α(2nx− 1)| ≤ Qα(2nx− 1)

≤ 2−nαρα

(
Qk(x)

ρk

)α/k

≤ xαρα

(
Qk(x)

ρk

)α/k
.

(1.16)

It is clear that

xα−k
(
Qk(x)

ρk

)α/k
≤ Qk(x)

ρk
,

so (1.13)–(1.16) together yield

J1 ≤ 2k


∑

α+β≤k+1
α<k,β≥2

2−α(k − β + 2)2αραx
α−k

(
Qk(x)

ρk

)α/k
≤ (

2k

ρk
)

( ∑
α+β≤k+1
α<k,β≥2

2−α(k − β + 2)2αρα

)
Qk(x).

The same argument as (1.15) also implies

J2 ≤ (q + 1)

(
sup

0≤j≤q
|Dk−1

j (x)|
)
≤ · · · ≤ (q + 1)k ≤ 2kx−k ≤ 2kQk(x)

ρk
.
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From here, we get

|Dk
j (x)| ≤ (

2k

ρk
)

(
1 +

∑
α+β≤k+1
α<k,β≥2

2−α(k − β + 2)2αρα

)
Qk(x) = Qk(x),

which concludes (1.11). Combining (1.11) with Lemma 1.2 results in (1.12). This
finishes the proof.

2. Generalizations of main results and proofs

Let Ω be a subset of (I \ Ep)
2. Denote by dj(Ω) the shortest distance from

Ωj ∩ I(n1, · · · , np−1) to the left endpoint of I(n1, · · · , np−1) for all n1, · · · , np−1 ≥
1, where Ω1 and Ω2 are the projections of Ω to the x-axis and to the y-axis,
respectively. Set d(Ω) = min{d1(Ω), d2(Ω)}. Notice that for p = 1, dj(Ω) is
defined as the distance from Ωj to 0. Obviously, if Ω is compact, then Ω1 and
Ω2 are compact subsets of I \ Ep. For p = 1, we have d(Ω) > 0. As for p ≥
2, {I(n1, · · · , np−1) : n1, · · · , np−1 ≥ 1} is an open cover of Ω1 and of Ω2, so a
finite number of I(n1, · · · , np−1) will cover both Ω1 and Ω2. For this case, we
also have d(Ω) > 0. Hence, the following result generalizes Theorem 0.1. For
Ωεδ = [ε, 1)× [δ, 1), it extends [C5, Theorem 4.1].

Theorem 2.1. Assume that conditions (0.2)–(0.5) are satisfied for some p ≥ 1.
Then series (0.1) converges regularly to some measurable function f(x, y) for all
x, y ∈ I \ Ep, and the convergence is uniform on any subset Ω of (I \ Ep)

2 with
d(Ω) > 0. Moreover, the following statements are true.

(i) For all 0 < r < 1/p, we have f ∈ Lr(I2) and ‖smn−f‖r → 0 as min{m,n} →
∞.

(ii) Let {Ωεδ : 0 < ε, δ < 1} be a decreasing family of subsets of (I \ Ep)
2 with

d(Ωεδ) > 0 for all 0 < ε, δ < 1. Assume that φ : [0, 1]×[0, 1] 7→ C is measurable

and locally bounded in (0, 1] × (0, 1], φ̂∗Ω(j, k) exists for all (j, k), and (0.11)
is satisfied. Then formula (0.10) holds.

Proof of Theorem 2.1. The proof is essentially same as that given in [C5]. We first
prove that (0.3) and (0.5) together imply

∞∑
j=0

|∆p0cjk| <∞ for all k.(0.3′)

Condition (0.3) ensures the existence of a positive integer N so that

∞∑
j=0

|∆p0cjk| <∞ for all k > N.(0.3′′)

Let M ≡ [αjk] be the (N + 1)× (N + 1) matrix defined by

αjk =

{
(−1)k−j

(
p

k−j
)

if 0 ≤ j ≤ k ≤ min{N, j + p},
0 otherwise.

Since det M = 1, there exist α0, α1, · · · , αN , depending on p and N only, such that

[α0, α1, · · · , αN ]M = [1, 0, · · · , 0].
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This guarantees the existence of β1, · · · , βp, depending on p and N only, such that
for all j, k ≥ 0,

∆p0cjk =α0∆ppcjk + α1∆ppcj,k+1 + · · ·+ αN∆ppcj,k+N

+ β1∆p0cj,k+N+1 + · · ·+ βp∆p0cj,k+N+p.

Thus, by (0.3′′) and (0.5), we obtain

∞∑
j=0

|∆p0cjk| ≤
N∑
s=0

|αs|(
∞∑
j=0

|∆ppcj,k+s|) +

p∑
t=1

|βt|(
∞∑
j=0

|∆p0cj,k+N+t|) <∞.

This verifies (0.3′). Similarly, (0.4) and (0.5) together imply (0.4′):

∞∑
k=0

|∆0pcjk| <∞ for all j.(0.4′)

The summation by parts yields

smn(x, y) =

m∑
j=0

n∑
k=0

(∆ppcjk)D
p
j (x)Dp

k(y)

+

p−1∑
t=0

m∑
j=0

(∆ptcj,n+1)D
p
j (x)Dt+1

n (y)

+

p−1∑
s=0

n∑
k=0

(∆spcm+1,k)D
s+1
m (x)Dp

k(y)

+

p−1∑
s=0

p−1∑
t=0

(∆stcm+1,n+1)D
s+1
m (x)Dt+1

n (y).

(2.1)

Assume that x, y ∈ I \ Ep. Then (1.6) implies that x, y ∈ I \ Ek for all 0 ≤ k ≤ p.
By Theorem 1.3, we get

m∑
j=0

n∑
k=0

∣∣(∆ppcjk)D
p
j (x)Dp

k(y)
∣∣ ≤

 m∑
j=0

n∑
k=0

|∆ppcjk|
Qp(x)Qp(y)(2.2)

and

p−1∑
t=0

m∑
j=0

∣∣(∆ptcj,n+1)D
p
j (x)Dt+1

n (y)
∣∣

≤
p−1∑
t=0

t∑
v=0

(
t

v

) m∑
j=0

|∆p0cj,n+v+1|
Qp(x)Qt+1(y)

≤
(

sup
n<k≤n+p

m∑
j=0

|∆p0cjk|
)
Qp(x)

( p−1∑
t=0

2tQt+1(y)

)
.

(2.3)
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Similarly, we have

p−1∑
s=0

n∑
k=0

∣∣(∆spcm+1,k)D
s+1
m (x)Dp

k(y)
∣∣

≤
(

sup
m<j≤m+p

n∑
k=0

|∆0pcjk|
)( p−1∑

s=0

2sQs+1(x)

)
Qp(y)

(2.4)

and
p−1∑
s=0

p−1∑
t=0

∣∣(∆stcm+1,n+1)D
s+1
m (x)Dt+1

n (y)
∣∣

≤
p−1∑
s=0

p−1∑
t=0

s∑
u=0

t∑
v=0

(
s

u

)(
t

v

)∣∣∆00cm+u+1,n+v+1

∣∣
×Qs+1(x)Qt+1(y)

≤
(

sup
j>m,k>n

|cjk|
)( p−1∑

s=0

p−1∑
t=0

2s+tQs+1(x)Qt+1(y)

)
.

(2.5)

Putting (0.2)–(0.5) and (2.1)–(2.5) together, we infer that smn(x, y) converges un-
restrictedly to some measurable function f(x, y) for x, y ∈ I \ Ep. Summation by
parts gives

m∑
j=0

cjkωj(x)ωk(y) =

m∑
j=0

(∆p0cjk)D
p
j (x)ωk(y)

+

p−1∑
s=0

(∆s0cm+1,k)D
s+1
m (x)ωk(y).

A similar argument says that
∑∞

j=0 cjkωj(x)ωk(y) converges for each fixed k. The

same conclusion also holds for each column series. Thus, series (0.1) converges
regularly to f(x, y) for x, y ∈ I \ Ep. Let Ω be any subset of (I \ Ep)

2 with
d(Ω) > 0. Denote by Ω1 and Ω2 the projections of Ω to the x-axis and to the
y-axis, respectively. By (1.6),

|Qk(x)| ≤ ρkd(Ω)−k <∞ (0 ≤ k ≤ p ; x ∈ Ω1 ∪ Ω2).

By (0.2)–(0.5) and (2.1)–(2.5), we confirm that (0.1) converges uniformly on Ω to
f(x, y). Indeed, the same argument also verifies that

f(x, y) =

∞∑
j=0

∞∑
k=0

(∆ppcjk)D
p
j (x)Dp

k(y) uniformly on Ω.(2.6)

Let 0 < r < 1/p. Then Lemma 1.2 tells us that

µrk ≡
∫ 1

0

|Qk(x)|r dx <∞ (0 ≤ k ≤ p).(2.7)

By (0.5), (2.2), and (2.6), we infer that∫ 1

0

∫ 1

0

|f(x, y)|r dxdy ≤
{ ∞∑
j=0

∞∑
k=0

|∆ppcjk|
}r

(µrp)
2 <∞.
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Set Λmn ≡ {(j, k) ∈ (N ∪ {0})× (N ∪ {0}) : j > m or k > n}. By (0.2)–(0.5) and
(2.1)–(2.6), we obtain

‖smn − f‖rr

≤
(∑

Λmn

|∆ppcjk|
)r

(µrp)
2 +

(
sup
k>n

m∑
j=0

|∆p0cjk|
)r

(

p−1∑
t=0

2trµrpµ
r
t+1)

+

(
sup
j>m

n∑
k=0

|∆0pcjk|
)r

(

p−1∑
s=0

2srµrs+1µ
r
p)

+

(
sup

j>m,k>n
|cjk|

)r

(

p−1∑
s=0

p−1∑
t=0

2(s+t)rµrs+1µ
r
t+1)

−→ 0 as min{m,n} → ∞.

It remains to prove (ii). Set

Φst
jk(ε, δ) ≡

∫∫
Ωεδ

φ(x, y)Ds
j (x)Dt

k(y) dxdy.

Then condition (0.11) is same as

sup
j,k≥0

0<ε,δ<1

|Φpp
jk(ε, δ)| <∞.(2.8)

For s, t ≥ 1, we have

Φst
jk(ε, δ) =

j∑
u=0

Φs−1,t
uk (ε, δ) =

k∑
v=0

Φs,t−1
jv (ε, δ) =

j∑
u=0

k∑
v=0

Φs−1,t−1
uv (ε, δ),

and so (0.11) is equivalent to the existence of constant C such that

sup
j,k≥0

0<ε,δ<1

|Φst
jk(ε, δ)| ≤ C <∞ for all 0 ≤ s, t ≤ p.(2.9)

We have φ̂∗Ω(j, k) = limε,δ↓0 Φ00
jk(ε, δ), and φ̂∗Ω(j, k) exists for all (j, k). Therefore,

the limit ζstjk ≡ limε,δ↓0 Φst
jk(ε, δ) exists for all s, t, j, k, and (2.9) implies that

|ζstjk| ≤ C (j, k ≥ 0; 0 ≤ s, t ≤ p).(2.10)

Since d(Ωεδ) > 0, the set Ωεδ is contained in some compact subset of (0, 1]× (0, 1].
We have assumed that φ is locally bounded in (0, 1]× (0, 1], so it follows from (2.6),
with Ωεδ in place of Ω, that as min{m,n} → ∞,

m∑
j=0

n∑
k=0

(∆ppcjk)Φ
pp
jk(ε, δ) −→

∫∫
Ωεδ

f(x, y)φ(x, y) dxdy.(2.11)

Putting (0.5) and (2.9)–(2.11) together, we infer that

lim
ε,δ↓0

∫∫
Ωεδ

f(x, y)φ(x, y) dxdy =

∞∑
j=0

∞∑
k=0

(∆ppcjk)ζ
pp
jk .
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The above limit of the double integral exists, and the double series on the right is
absolutely convergent. For m,n ≥ 0, we have

λmn ≡
m∑
j=0

n∑
k=0

cjk φ̂
∗
Ω(j, k) = lim

ε,δ↓0

∫∫
Ωεδ

smn(x, y)φ(x, y) dxdy.

It follows from (2.1) that

λmn =

m∑
j=0

n∑
k=0

(∆ppcjk) ζ
pp
jk +

p−1∑
t=0

m∑
j=0

(∆ptcj,n+1) ζ
p,t+1
jn

+

p−1∑
s=0

n∑
k=0

(∆spcm+1,k) ζ
s+1,p
mk +

p−1∑
s=0

p−1∑
t=0

(∆stcm+1,n+1) ζ
s+1,t+1
mn .

As mentioned before, the series
∑∞

j=0

∑∞
k=0(∆ppcjk) ζ

pp
jk converges absolutely. On

the other hand, (0.2)–(0.4) and (2.10) imply

p−1∑
t=0

m∑
j=0

|∆ptcj,n+1||ζp,t+1
jn | ≤ C

p−1∑
t=0

t∑
v=0

(
t

v

) m∑
j=0

|∆p0cj,n+v+1|

≤ Cp

(
sup
k>n

m∑
j=0

|∆p0cjk|
)

−→ 0 as min{m,n} → ∞,

p−1∑
s=0

n∑
k=0

|∆spcm+1,k||ζs+1,p
mk | ≤ Cp

(
sup
j>m

n∑
k=0

|∆0pcjk|
)

−→ 0 as min{m,n} → ∞,

and

p−1∑
s=0

p−1∑
t=0

|∆stcm+1,n+1||ζs+1,t+1
mn | ≤ Cp

(
sup

j>m,k>n
|cjk|

)
−→ 0 as min{m,n} → ∞.

Hence, as min{m,n} → ∞, λmn tends to
∑∞

j=0

∑∞
k=0(∆ppcjk)ζ

pp
jk . This gives

(0.10), and the proof is complete.

With the help of Theorem 1.3, we get

sup
j,k≥0

0<ε,δ<1

∣∣∣∣∣
∫∫

Ωεδ

φ(x, y)Dp
j (x)Dp

k(y) dxdy

∣∣∣∣∣ ≤ ‖φ(x, y)Qp(x)Qp(y)‖1.

Hence, if φ(x, y)Qp(x)Qp(y) ∈ L1(I2), then (0.11) holds. Moreover, from the in-
equality |φ(x, y)|ρ2

p ≤ |φ(x, y)Qp(x)Qp(y)|, we find that φ ∈ L1(I2). Using these
facts, we obtain the following extension of [C5, Corollary 4.2].

Corollary 2.2. Assume that conditions (0.2)–(0.5) are satisfied for some p ≥ 1.
If φ : [0, 1]× [0, 1] 7→ C is locally bounded in (0, 1]× (0, 1] and φ(x, y)Qp(x)Qp(y) ∈
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L1(I2), then f(x, y)φ(x, y) ∈ L1(I2) and∫ 1

0

∫ 1

0

f(x, y)φ(x, y) dxdy =

∞∑
j=0

∞∑
k=0

cjk φ̂(j, k),

where f is the limit function of the series (0.1).

Proof of Corollary 2.2. It follows from (2.6) and Theorem 1.3 that

|f(x, y)φ(x, y)| ≤
( ∞∑
j=0

∞∑
k=0

|∆ppcjk|
)
|φ(x, y)Qp(x)Qp(y)| (x, y ∈ I \ Ep).

Since φ(x, y)Qp(x)Qp(y) ∈ L1(I2), we know that f(x, y)φ(x, y) ∈ L1(I2). Choose
a decreasing family {Ωεε : 0 < ε < 1} of compact subsets of (I \ Ep)

2 with⋃
0<ε<1

Ωεε = (I \ Ep)
2.

Then, by applying the Lebesgue dominated convergence theorem, we find that

φ̂∗Ω(j, k) = φ̂(j, k) for all j, k ≥ 0. Therefore, Theorem 2.1 gives us∫ 1

0

∫ 1

0

f(x, y)φ(x, y) dxdy = lim
ε↓0

∫∫
Ωεε

f(x, y)φ(x, y) dxdy

=

∞∑
j=0

∞∑
k=0

cjk φ̂(j, k),

which is the desired result.

To prove Theorem 0.2, we introduce the following three sums for λ > 1:

Σλ
10(m,n;x, y) ≡

[λm]∑
j=m+1

n∑
k=0

[λm] + 1− j

[λm]−m
cjkωj(x)ωk(y),

Σλ
01(m,n;x, y) ≡

m∑
j=0

[λn]∑
k=n+1

[λn] + 1− k

[λn]− n
cjkωj(x)ωk(y),

Σλ
11(m,n;x, y) ≡

[λm]∑
j=m+1

[λn]∑
k=n+1

[λm] + 1− j

[λm]−m
· [λn] + 1− k

[λn]− n
cjkωj(x)ωk(y).

They involve those cjkωj(x)ωk(y) with (j, k) lying between the two rectangles
[0, λm] × [0, λn] and [0,m] × [0, n]. The coefficients corresponding to the terms
cjkωj(x)ωk(y) have absolute value not greater than 1. As indicated in [CMW, p.
639], we have

smn − σmn =
[λm] + 1

[λm]−m
(σ[λm],n − σmn) +

[λn] + 1

[λn]− n
(σm,[λn] − σmn)

+
[λm] + 1

[λm]−m
· [λn] + 1

[λn]− n
(σ[λm],[λn] − σ[λm],n − σm,[λn] + σmn)(2.12)

− Σλ
01(m,n;x, y)− Σλ

10(m,n;x, y)− Σλ
11(m,n;x, y)
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and

Σλ
11(m,n;x, y) =

1

[λm]−m

[λm]∑
u=m+1

(Σλ
01(u, n;x, y)− Σλ

01(m,n;x, y))(2.13)

=
1

[λn]− n

[λn]∑
v=n+1

(Σλ
10(m, v;x, y)− Σλ

10(m,n;x, y)).

Obviously, (2.13) implies

|Σλ
11(m,n;x, y)| ≤

{
2 supm≤u≤[λm] |Σλ

01(u, n;x, y)|,
2 supn≤v≤[λn] |Σλ

10(m, v;x, y)|.(2.14)

By (2.12) and (2.14), we easily prove

Theorem 2.3. (i) Let Ω ⊆ I2. Assume that (2.15)–(2.16) are satisfied:

lim
λ↓1

lim sup
m,n→∞

(
sup

(x,y)∈Ω

|Σλ
01(m,n;x, y)|

)
= 0,(2.15)

lim
λ↓1

lim sup
m,n→∞

(
sup

(x,y)∈Ω

|Σλ
10(m,n;x, y)|

)
= 0.(2.16)

If σmn(x, y) converges uniformly on Ω to f(x, y), then so does smn(x, y).
(ii) Assume that (2.17)–(2.18) hold for some r ≥ 1:

lim
λ↓1

lim sup
m,n→∞

‖Σλ
01(m,n;x, y)‖r = 0,(2.17)

lim
λ↓1

lim sup
m,n→∞

‖Σλ
10(m,n;x, y)‖r = 0.(2.18)

If ‖σmn − f‖r → 0 unrestrictedly, then ‖smn − f‖r → 0 as min{m,n} → ∞.

Here the limit superior of a double sequence {djk : j, k ≥ 0} of extended real
numbers is defined as

lim sup
m,n→∞

dmn ≡ inf
m,n≥1

( sup
j≥m,k≥n

djk) = lim
m→∞( sup

j≥m,k≥m
djk).

We shall use (i) of Theorem 2.3 to establish (i) of Theorem 0.2. For (ii) of Theorem
0.2, the range of r is different from that in (ii) of Theorem 2.3, so we shall prove it
by a different method. It is unknown whether the conclusion (ii) of Theorem 2.3
holds for 0 < r < 1.

Proof of Theorem 2.3. With the help of (2.14), we find that (2.15) implies

lim
λ↓1

lim sup
m,n→∞

(
sup

(x,y)∈Ω

|Σλ
11(m,n;x, y)|

)
= 0.(2.19)
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Assume that σmn(x, y) converges uniformly on Ω to f(x, y). Then by (2.12), we
get

lim sup
m,n→∞

(
sup

(x,y)∈Ω

|smn(x, y)− σmn(x, y)|
)

≤ lim sup
m,n→∞

(
sup

(x,y)∈Ω

|Σλ
01(m,n;x, y)|

)
+ lim sup

m,n→∞

(
sup

(x,y)∈Ω

|Σλ
10(m,n;x, y)|

)

+ lim sup
m,n→∞

(
sup

(x,y)∈Ω

|Σλ
11(m,n;x, y)|

)
,

where λ > 1. The quantity on the left-hand side is independent of λ. Thus, the
same inequality will remain true after taking “λ ↓ 1”. This indicates that (i) follows
from (2.15)–(2.16) and (2.19). For (ii), by (2.13), we obtain

‖Σλ
11(m,n;x, y)‖r

≤ 1

[λm]−m

[λm]∑
u=m+1

(‖Σλ
01(u, n;x, y)‖r + ‖Σλ

01(m,n;x, y)‖r)

≤ 2
(

sup
m≤u≤[λm]

‖Σλ
01(u, n;x, y)‖r

)
.

Thus, (2.17) implies

lim
λ↓1

lim sup
m,n→∞

‖Σλ
11(m,n;x, y)‖r = 0.

To replace sup(x,y)∈Ω by ‖ · ‖r, we find that the preceding proof also verifies (ii).
This completes the proof.

As explained before, the following generalizes Theorem 0.2.

Theorem 2.4. Assume that conditions (0.2)–(0.4) and (0.12)–(0.13) are satisfied
for some p ≥ 1. Then the following statements are true.

(i) Let Ω be any subset of (I \ Ep)
2 with d(Ω) > 0. If σmn(x, y) converges

uniformly on Ω to f(x, y), then so does smn(x, y).
(ii) If ‖σmn − f‖r → 0 unrestrictedly for some r with 0 < r < 1/p, then

‖smn − f‖r → 0 as min{m,n} → ∞.

Proof of Theorem 2.4. We show (i) first. Let Ω be any subset of (I \ Ep)
2 with

d(Ω) > 0. Denote by Ω1 and Ω2 the projections of Ω to the x-axis and to the
y-axis, respectively. Then Ωj ⊆ I \ Ep for j = 1, 2. By (1.6) and Theorem 1.3,

|Dk
j (x)| ≤ |Qk(x)| ≤ ρkd(Ω)−k <∞ (0 ≤ k ≤ p ; x ∈ Ω1 ∪ Ω2).
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For (x, y) ∈ Ω, summation by parts yields

|Σλ
01(m,n;x, y)|

≤
m∑
j=0

[λn]∑
k=n+1

[λn] + 1− k

[λn]− n
|∆ppcjk|Qp(x)Qp(y)

+
1

[λn]− n

p−1∑
t=0

m∑
j=0

[λn]∑
k=n+1

|∆ptcj,k+1|Qp(x)Qt+1(y)(2.20)

+

p−1∑
t=0

m∑
j=0

|∆ptcj,n+1|Qp(x)Qt+1(y)

+

p−1∑
s=0

[λn]∑
k=n+1

[λn] + 1− k

[λn]− n
|∆spcm+1,k|Qs+1(x)Qp(y)

+
1

[λn]− n

p−1∑
s=0

p−1∑
t=0

[λn]∑
k=n+1

|∆stcm+1,k+1|Qs+1(x)Qt+1(y)

+

p−1∑
s=0

p−1∑
t=0

|∆stcm+1,n+1|Qs+1(x)Qt+1(y)

= Iλ1 (m,n;x, y) + Iλ2 (m,n;x, y) + I3(m,n;x, y)

+ Iλ4 (m,n;x, y) + Iλ5 (m,n;x, y) + I6(m,n;x, y), say.

We have

Iλ1 (m,n;x, y) =

 m∑
j=0

[λn]∑
k=n+1

[λn] + 1− k

[λn]− n
|∆ppcjk|

Qp(x)Qp(y)

and

Iλ2 (m,n;x, y) ≤ sup
n<k≤[λn]

p−1∑
t=0

m∑
j=0

|∆ptcj,k+1|Qp(x)Qt+1(y)

≤ sup
n<k≤[λn]

p−1∑
t=0

t∑
v=0

(
t

v

)( m∑
j=0

|∆p0cj,k+v+1|
)
Qp(x)Qt+1(y)

≤
 sup

n<k≤[λn]+p

m∑
j=0

|∆p0cjk|
Qp(x)(

p−1∑
t=0

2tQt+1(y)).

Similarly, we also have

I3(m,n;x, y) ≤ ( sup
n<k≤n+p

m∑
j=0

|∆p0cjk|)Qp(x)(

p−1∑
t=0

2tQt+1(y)),

Iλ4 (m,n;x, y) ≤ ( sup
m<j≤m+p

[λn]∑
k=n+1

|∆0pcjk|)(
p−1∑
s=0

2sQs+1(x))Qp(y),
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Iλ5 (m,n;x, y) ≤ sup
n<k≤[λn]

p−1∑
s=0

p−1∑
t=0

|∆stcm+1,k+1|Qs+1(x)Qt+1(y)

≤ ( sup
j>m;k>n

|cjk|)(
p−1∑
s=0

p−1∑
t=0

2s+tQs+1(x)Qt+1(y)),

I6(m,n;x, y) ≤ ( sup
j>m;k>n

|cjk|)(
p−1∑
s=0

p−1∑
t=0

2s+tQs+1(x)Qt+1(y)).

Combining these with (0.2)–(0.4) and (0.12) results in (2.15). Replacing (0.12) by
(0.13), we get (2.16). Thus, (i) follows from (i) of Theorem 2.3.

It remains to show (ii). Assume that ‖σmn − f‖r converges unrestrictedly to 0
for some r with 0 < r < 1/p. We have

‖smn − f‖rr ≤ ‖smn − σmn‖rr + ‖σmn − f‖rr,

and so it suffices to show that ‖smn − σmn‖rr → 0 as min{m,n} → ∞. By (2.12),

‖smn − σmn‖rr
≤ (

[λm] + 1

[λm]−m
)r‖σ[λm],n − σmn‖rr + (

[λn] + 1

[λn]− n
)r‖σm,[λn] − σmn‖rr

+ (
[λm] + 1

[λm]−m
)r(

[λn] + 1

[λn]− n
)r‖σ[λm],[λn] − σ[λm],n − σm,[λn] + σmn‖rr

+ ‖Σλ
01(m,n;x, y)‖rr + ‖Σλ

10(m,n;x, y)‖rr + ‖Σλ
11(m,n;x, y)‖rr

= Jλ1 (m,n) + Jλ2 (m,n) + Jλ3 (m,n)

+ Jλ4 (m,n) + Jλ5 (m,n) + Jλ6 (m,n), say.

The hypothesis on σmn guarantees that |Jλk (m,n)| −→ 0 as min {m,n} −→ ∞,
where λ > 1 and k = 1, 2, 3. Notice that (2.20) holds for x, y ∈ I \ Ep, (see
Theorem 1.3). For |Jλ4 (m,n)|, we have

|Jλ4 (m,n)| ≤ ‖Iλ1 (m,n;x, y)‖rr + ‖Iλ2 (m,n;x, y)‖rr + ‖I3(m,n;x, y)‖rr
+ ‖Iλ4 (m,n;x, y)‖rr + ‖Iλ5 (m,n;x, y)‖rr + ‖I6(m,n;x, y)‖rr

≤
 m∑

j=0

[λn]∑
k=n+1

[λn] + 1− k

[λn]− n
|∆ppcjk|

r

(µrp)
2

+ 2

 sup
n<k≤[λn]+p

m∑
j=0

|∆p0cjk|
r

µrp(

p−1∑
t=0

2trµrt+1)

+

 sup
m<j≤m+p

[λn]∑
k=n+1

|∆0pcjk|
r

(

p−1∑
s=0

2srµrs+1)µ
r
p

+ 2

(
sup

j>m;k>n
|cjk|

)r

(

p−1∑
s=0

p−1∑
t=0

2(s+t)rµrs+1µ
r
t+1),
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where µrk is defined by (2.7). Lemma 1.2 tells us that µrk < ∞ for all 0 ≤ k ≤ p.
By (0.2)–(0.4) and (0.12), we conclude that

lim
λ↓1

lim sup
m,n→∞

|Jλ4 (m,n)| = 0.

Similarly, conditions (0.2)–(0.4) and (0.13) will imply

lim
λ↓1

lim sup
m,n→∞

|Jλ5 (m,n)| = 0.

If we substitute u for m in (2.20), the inequality (2.14) gives us

|Jλ6 (m,n)| ≤ 2r

 sup
m≤u≤[λm]

u∑
j=0

[λn]∑
k=n+1

[λn] + 1− k

[λn]− n
|∆ppcjk|

r

(µrp)
2

+ 2r+1

 sup
m≤u≤[λm]
n<k≤[λn]+p

u∑
j=0

|∆p0cjk|


r

µrp(

p−1∑
t=0

2trµrt+1)

+ 2r

 sup
m<j≤[λm]+p

[λn]∑
k=n+1

|∆0pcjk|
r

(

p−1∑
s=0

2srµrs+1)µ
r
p

+ 2r+1

(
sup

j>m;k>n
|cjk|

)r

(

p−1∑
s=0

p−1∑
t=0

2(s+t)rµrs+1µ
r
t+1).

By (0.2)–(0.4) and (0.12), we infer that

lim
λ↓1

lim sup
m,n→∞

|Jλ6 (m,n)| = 0.

Therefore, ‖smn−σmn‖r −→ 0 as min{m,n} −→ ∞, and the desired result follows.

Let 0 < a < b < ∞. For a ≤ m/n ≤ b, we have a/(p + λ) ≤ u/v ≤ (p + λ)b for
all m ≤ u ≤ [λm] + p and for all n ≤ v ≤ [λn] + p, where λ > 1. Following the
proofs of Theorems 2.3 and 2.4, we can easily extend Theorem 0.4 in the following
way.

Theorem 2.5. (i) Let Ω ⊆ I2. Assume that for all 0 < a < b <∞ the conditions

lim
λ↓1

lim sup
a≤m/n≤b

(
sup

(x,y)∈Ω

|Σλ
01(m,n;x, y)|

)
= 0,(2.21)

lim
λ↓1

lim sup
a≤m/n≤b

(
sup

(x,y)∈Ω

|Σλ
10(m,n;x, y)|

)
= 0(2.22)

are satisfied. If σmn(x, y) converges uniformly on Ω in the restricted sense to
f(x, y), then so does smn(x, y).

(ii) Suppose there exists some r ≥ 1 such that for all 0 < a < b <∞
lim
λ↓1

lim sup
a≤m/n≤b

‖Σλ
01(m,n;x, y)‖r = 0,(2.23)

lim
λ↓1

lim sup
a≤m/n≤b

‖Σλ
10(m,n;x, y)‖r = 0.(2.24)

If ‖σmn − f‖r → 0 restrictedly, then ‖smn − f‖r converges restrictedly to 0.
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Theorem 2.6. Assume that conditions (0.2) and (0.14)–(0.17) are satisfied for
some p ≥ 1 and for all 0 < a < b <∞. Then the following statements hold.

(i) Let Ω be any subset of (I \ Ep)
2 with d(Ω) > 0. If σmn(x, y) converges

uniformly on Ω in the restricted sense to f(x, y), then so does smn(x, y).
(ii) If ‖σmn− f‖r → 0 restrictedly for some r with 0 < r < 1/p, then ‖smn− f‖r

converges restrictedly to 0.
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[S] A. A. Šneider, On series with respect to Walsh functions with monotone coefficients,
Izv. Akad. Nauk. SSSR, Ser. Mat. 12 (1948), 179-192 (in Russian) MR 10:34d

[SSW] F. Schipp, P. Simon, and W. R. Wade, Walsh series, An Introduction to Dyadic Har-
monic Analysis, IOP Publishing Ltd, Akadémiai Kiadó, Budapest, 1990. MR 92g:42001
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[W1] F. Weisz, Cesàro summability of two-parameter Walsh-Fourier series, J. Approx. Theory
88 (1997), 168–192. CMP 1997#7
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