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LOCAL BOUNDARY REGULARITY

OF THE SZEGŐ PROJECTION

AND BIHOLOMORPHIC MAPPINGS

OF NON-PSEUDOCONVEX DOMAINS

PEIMING MA

Abstract. It is shown that the Szegő projection S of a smoothly bounded
domain Ω, not necessarily pseudoconvex, satisfies local regularity estimates at
certain boundary points, provided that condition R holds for Ω.

It is also shown that any biholomorphic mapping f : Ω → D between
smoothly bounded domains extends smoothly near such points, provided that
a weak regularity assumption holds for D.

1. Preliminaries

Throughout, Ω denotes a smoothly bounded domain in Cn and r a C∞ defining
function of Ω. The notation W s(Ω), s ∈ R, stands for the Sobolev space of order
s. The closure of C∞0 (Ω) in W s(Ω), s > 0, is denoted by W s

0 (Ω) with dual space
W−s(Ω). The norm of W−s(Ω) is then

‖u‖−s = sup{|〈u, φ〉|;φ ∈ C∞0 (Ω), ‖φ‖s = 1}, u ∈W−s(Ω).

Also the dual space (W s(Ω))∗ of W s(Ω) is defined, and the norm of u ∈ (W s(Ω))∗,
is

‖u‖∗−s = sup{|〈u, φ〉|;φ ∈ C∞(Ω̄), ‖φ‖s = 1}.
Certainly (W s(Ω))∗ ⊂ W−s(Ω), and ‖u‖−s ≤ ‖u‖∗−s for u in (W s(Ω))∗. How-

ever, if u is harmonic then ‖u‖∗−s ≤ C‖u‖−s with C independent of u. Following

Boas [12], the norm ‖ · ‖(∗)
s is defined to be ‖ · ‖s if s ≥ 0, and ‖ · ‖∗s if s < 0.

W s(∂Ω), s ∈ R, denotes the boundary Sobolev space. Any function in W s(∂Ω)
is identified with a harmonic function in W s+1/2(Ω) via the Poisson integral with
equivalent norms:

C−1‖u‖s+1/2 ≤ ‖u‖
Ws(∂Ω)

≤ C‖u‖s+1/2,(1.1)

where C is a constant independent of u (The letter C in this paper denotes a
positive constant which may vary at each of its occurrences.) There is also a local
equivalence of these two norms. If ζ1, ζ2 are in C∞0 (Cn) and ζ2 ≡ 1 near supp ζ1,
the support of ζ1, then

‖ζ1u‖s ≤ C(‖ζ2u‖
Ws−1/2(∂Ω)

+ ‖u‖
W−M (∂Ω)

),

‖ζ1u‖Ws(∂Ω)
≤ C(‖ζ2u‖s+1/2 + ‖u‖−M),

(1.2)
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where M > 0 is an arbitrary integer and C independent of u.
For each integer t ≥ 0, let Pt be the orthogonal projection of W t(Ω) to its

closed subspace consisting of holomorphic functions. Note that P0 = P is the
usual Bergman projection. If K(w, z) is the Bergman kernel function, Pu(z) =
〈u,K(·, z)〉 for u ∈ L2(Ω). The Szegő projection S is the orthogonal projection
from L2(∂Ω) = W 0(∂Ω) onto the closed subspace consisting of functions whose
Poisson integrals are holomorphic in Ω. Similarly, the Szegő projection Su of u is
represented by integration against the Szegő kernel S(z, w):

Su(z) = 〈u, S(·, z)〉
L2(∂Ω)

=

∫
∂Ω

S(z, w)u(w) dσw , u ∈ L2(∂Ω),

where dσw is the differential surface element on ∂Ω.

Definition ([9]). A domain Ω satisfies condition R, if the Bergman projection P
of Ω maps C∞(Ω̄) into C∞(Ω̄); and Ω satisfies local condition R at z0 ∈ ∂Ω, if
P maps C∞(Ω̄) to a subspace of holomorphic functions on Ω which are smoothly
extendible to the boundary near z0.

For example, smoothly bounded pseudoconvex domains of finite type in the sense
of D’Angelo and also Reinhardt domains satisfy condition R (see [13],[2], and [7]).
The latter need not be pseudoconvex.

Condition R was introduced by Bell and Ligocka in [9], and has proved to be
extremely useful in the study of biholomorphic and proper holomorphic mappings
between smoothly bounded domains. Results on regularity of the Bergman projec-
tion are often derived from the ∂̄-Neumann theory through Kohn’s formula ([18])
which relates them.

Now assume that Ω is a smoothly bounded domain in Cn, not necessarily pseu-
doconvex.

Definition ([20]). A point z0 on the boundary ∂Ω of Ω is an extreme boundary
point if there is a bounded pseudoconvex domain D in Cn such that

i) D contains Ω and ∂D coincides with ∂Ω near z0;
ii) z0 is a point of finite type of D in the sense of D’Angelo [14].

By definition, there is a neighborhood U of z0 so that D ∩ U = Ω ∩ U . For U
sufficiently small, if f is in C∞(Ω̄) and supported in Ω̄ ∩ U , the equation ∂̄φ = f
is solvable in W s(Ω) for any s with ‖φ‖s ≤ C‖f‖s. This follows from the local
∂̄-theory of pseudoconvex domains of finite type (see [13]).

For any given Ω, there exist strictly pseudoconvex domains containing Ω, with
boundaries tangential to the boundary of Ω. Then it can be shown that these
tangent points are extreme boundary points.

2. Background

Suppose that Ω is pseudoconvex and z0 a boundary point of finite type. It
follows from Catlin’s subelliptic estimates [13] for the ∂̄-Neumann problem that
there exists a neighborhood U of z0 so that if ζ1 and ζ2 are real-valued functions
in C∞0 (U) and ζ2 ≡ 1 near supp ζ1, the Bergman projection P satisfies

‖ζ1Pu‖s ≤ C(‖ζ2u‖s + ‖u‖), u ∈ L2(Ω), s ≥ 0.(2.1)

And if, in addition, Ω satisfies condition R, then

‖ζ1Pu‖s ≤ C(‖ζ2u‖s + ‖u‖∗−N), u ∈ L2(Ω), s ≥ 0,(2.2)
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for any integer N (see Bell [4], or Boas [11]). If all boundary points of Ω are of
finite type, thus condition R implied, it follows from (2.1) or (2.2) by simply taking
U = Cn that ‖Pu‖s ≤ C‖u‖s. Then it is also true that for some small ε, 0 < ε ≤ 1

2 ,

‖ζ1(u− Pu)‖s ≤ C(‖ζ2∂̄u‖s−ε + ‖u‖∗−N).(2.3)

More information on the above results can be obtained from [4], [10] and [11].
Boas extended (2.1) to Sobolev space projections and the Szegő projection in

1985 and 1987:

Theorem A ([10], [12]). Let Ω be a smoothly bounded pseudoconvex domain of
finite type. If ζ1, ζ2 are real-valued functions in C∞0 (Cn) with ζ2 ≡ 1 near supp ζ1,
then for u ∈ W t(Ω), t a positive integer,

‖ζ1Ptu‖s ≤ C(‖ζ2u‖s + ‖u‖t), s ≥ t.(2.4)

Let Ω be a smoothly bounded pseudoconvex domain and z0 a boundary point of
finite type so that a compactness estimate holds for the ∂̄-Neumann problem. Then
for some neighborhood U of z0, if ζ1, ζ2 are real-valued functions in C∞0 (U) with
ζ2 ≡ 1 near supp ζ1 and if N > 0 is an arbitrary positive integer, then for u
harmonic in Ω,

‖ζ1Su‖Ws(∂Ω)
≤ C(‖ζ2u‖Ws(∂Ω)

+ ‖u‖
W−N (∂Ω)

), s ≥ 0.(2.5)

Also, globally, ‖Su‖
Ws(∂Ω)

≤ C‖u‖
Ws(∂Ω)

.

When the domain Ω is not pseudoconvex, it is well-known that the Bergman
and the Szegő projections and, more generally, the Sobolev space projections may
not satisfy the global regularity estimates (see Barrett [1] and Barrett and Fornæss
[3]) Nevertheless, it is shown in [20] that (2.1) can be extended to any smoothly
bounded domains at extreme boundary points:

Theorem B. For some neighborhood U of an extreme boundary point z0, if ζ1, ζ2
are real-valued functions in C∞0 (U) with ζ2 ≡ 1 near supp ζ1, then the Bergman
projection P of Ω satisfies

‖ζ1Pu‖s ≤ C(‖ζ2u‖s + ‖u‖), s ≥ 0,(2.6)

for all u ∈ L2(Ω), where the global term ‖u‖ can be replaced by ‖u‖∗−N for arbitrary
N > 0 if Ω satisfies condition R.

The main result of §3 is Theorem 3.1, which says that under the assumption of
condition R, estimate (2.3) holds at extreme boundary points. Theorem 3.13 ex-
tends Boas’ local estimates (2.4) and (2.5) to arbitrary domains at extreme bound-
ary points, with the assumption of condition R. The proof uses Theorem 3.1 as
an essential tool. If the domain is actually pseudoconvex, the condition in Theo-
rem 3.13 is loosened in comparison to Boas’ theorems, since condition R can be
inferred from the compactness of the ∂̄-Neumann problem or from the finite type
of the domain. There is, however, a loss of control on the derivative of the global
term in the estimate for the Szegő projection.

Now let f : Ω → D be a biholomorphic mapping between smoothly bounded
domains. Suppose one of the domains is pseudoconvex (as a consequence, so is
the other). A theorem of Bell [5] says that if Ω satisfies local condition R at a
boundary point z0, then f extends smoothly to the boundary near z0. There are
also theorems about boundary extendibility of the mapping with domains not being
assumed pseudoconvex (see Bell [6], Lempert [19], Forstnerič and Rosay [17]).
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In §4 the local boundary behavior of biholomorphic mappings near an extreme
boundary point is studied. Theorem 4.1 states that if f is biholomorphic then f is
smoothly extendible to the boundary near any extreme boundary point, assuming
that for a fixed point w in the target domain D the Bergman kernel K(·, w) of D
is in L2+ε(D) for an arbitrarily small ε > 0.

3. The Szegő projection and the Sobolev space projections

Following [4], if the global term of an estimate is of the form ‖ · ‖ or, ‖ · ‖∗−N ,
the estimate will be referred as “weak pseudolocal estimate” or “strong pseudolocal
estimate” respectively.

The following theorem, together with Theorem B, shows that the Bergman pro-
jection behaves similarly in a non-pseudoconvex domain at extreme boundary points
as if in a pseudoconvex domain at boundary points of finite type.

Theorem 3.1. Let Ω be any smoothly bounded domain in Cn satisfying condition
R, and z0 an extreme boundary point. Then the orthogonal projection I−P admits
a strong pseudo-local estimate at z0. Namely, there is a neighborhood U of z0 and
a number ε, 0 < ε ≤ 1

2 , so that if ζ1, ζ2 are real-valued functions in C∞0 (U) with
ζ2 ≡ 1 near supp ζ1, then

‖ζ1(u− Pu)‖s ≤ C(‖ζ2∂̄u‖s−ε + ‖u‖∗−N), s ≥ 0,(3.2)

for all u in L2(Ω).

Proof. It suffices to show the estimates for u ∈ C∞(Ω̄), since an approximation
argument implies the general case (see Proposition 3.2 of [20]). LetD be a smoothly
bounded pseudoconvex domain of finite type contained in Ω with the property that
∂D coincides with ∂Ω near z0. The existence of such a domain is shown, for
example, in [4]. Let PD be the Bergman projection associated to D. Choose a
neighborhood U of z0 so that Ω ∩ U = D ∩ U and (2.6) holds.

Let ηj , j = 1, 2, 3, be real-valued functions in C∞0 (U) so that ζ2 ≡ 1 near supp η3,
ηj+1 ≡ 1 near supp ηj , j = 1, 2, and η1 ≡ 1 near supp ζ1. Set v = η2u. Then
ζ1v = ζ1u and

‖ζ1(u− Pu)‖s ≤ ‖ζ1(v − Pv)‖s + ‖ζ1P (v − u)‖s.(3.3)

Applying (2.6) to the last term gives

‖ζ1P (v − u)‖s ≤C(‖η1(v − u)‖s + ‖v − u‖∗−N
=C‖(1− η2)u‖∗−N ≤ C‖u‖∗−N .

(3.4)

For the first term on the right side of (3.3), since v is supported in D, by the triangle
inequality

‖ζ1(v − Pv)‖s ≤ ‖ζ1(v − PDv)‖s + ‖ζ1(PDv − Pv)‖s.(3.5)

On the support of η1, ∂̄v = ∂̄u. Since D is pseudoconvex of finite type, (2.3) yields
that

‖ζ1(v − PDv)‖s ≤C(‖η1∂̄v‖s−ε + ‖v‖∗
W−N (D)

)

≤C(‖η1∂̄u‖s−ε + ‖v‖∗
W−N (D)

)

≤C(‖ζ2∂̄u‖s−ε + ‖u‖∗−N),

(3.6)
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where the inequality ‖v‖∗
W−N (D)

≤ C‖u‖∗−N is used, whose validity is clear since v

is supported away from Ω \D. Estimates (3.3)–(3.6) imply

‖ζ1(u− Pu)‖s ≤ C(‖ζ2∂̄u‖s−ε + ‖u‖∗−N) + ‖ζ1(PDv − Pv)‖s.(3.7)

For the last term in (3.7), by extending PDv to be defined on Ω \ D via zero
extension, then PDv ∈ L2(Ω) and PPDv = Pv. Therefore if w = ζ2PDv, then

‖ζ1(PDv − Pv)‖s = ‖ζ1(PDv − PPDv)‖s
≤ ‖ζ1(w − Pw)‖s + ‖ζ1P (PDv − w)‖s.(3.8)

As before, from (2.6) it follows that for some arbitrary integer N > 0,

‖ζ1P (PDv − w)‖s ≤C(‖η1(PDv − w)‖s + ‖PDv − w‖∗−N )

=‖PDv − w‖∗−N ≤ C‖PDv‖∗−N .
(3.9)

The function PDv vanishes on Ω \D; thus

‖PDv‖∗−N ≤ ‖PDv‖∗
W−N (D)

≤ C‖v‖∗
W−N (D)

≤ C‖u‖∗−N .(3.10)

Summarizing (3.7)–(3.10) gives

‖ζ1(u − Pu)‖s ≤ C(‖ζ2∂̄u‖s−ε + ‖u‖∗−N) + ‖ζ1(w − Pw)‖s.(3.11)

The function ∂̄w = (∂̄ζ2)PDv is in C∞(Ω̄) since v is in C∞(D̄) and since ∂̄ζ2 is
supported in Ω̄ ∩ U . Thus there is a function ψ ∈ W s(Ω) solving the equation
∂̄ψ = ∂̄w and satisfying

‖ψ‖s ≤ C‖∂̄w‖s = C‖(∂̄ζ2)PDv‖s.
Recall that v = η2u, and since the intersection of supp ∂̄ζ2 and supp η2 is empty,
(2.2) implies that

‖(∂̄ζ2)PD(η2u)‖s ≤C(‖(1 − η3)η2u‖s + ‖η2u‖∗
W−N (D)

)

≤‖η2u‖∗
W−N (D)

≤ C‖u‖∗−N .
So ‖ψ‖s is bounded by a constant times ‖u‖∗−N . The function ψ−w is holomorphic
in Ω. So Pψ − Pw = ψ − w. It follows from (2.6) that

‖ζ1(w − Pw)‖s ≤ C(‖ζ1ψ‖s + ‖ζ1Pψ‖s)
≤ C(‖ζ1ψ‖s + ‖ζ1ψ‖s + ‖ψ‖)
≤ C‖ψ‖s ≤ C‖u‖∗−N .

(3.12)

Now (3.2) follows by combining (3.11) and (3.12).

The estimate (3.2) implies that when a square-integrable function is decomposed
into the sum of the holomorphic part and its orthogonal complement, locally at
an extreme boundary point the holomorphic part is more closely related to the
function. The next theorem gives local boundary regularity of the Szegő projection
and of all the Sobolev space projections at extreme boundary points. In its proof
(3.2) is applied in a key step.

Theorem 3.13. Under the same hypotheses of Theorem 3.1, the Szegő projection
S and all Sobolev space projections Pt, where t > 0 is an integer, satisfy a weak
pseudo-local estimate at any extreme boundary point z0. Namely, there is a neigh-
borhood U of z0 so that if ζ1, ζ2 are real-valued functions in C∞0 (U) with ζ2 ≡ 1
near supp ζ1, then
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i) For any s ≥ 0, if u ∈ L2(∂Ω), then

‖ζ1Su‖Ws(∂Ω)
≤ C(‖ζ2u‖Ws(∂Ω)

+ ‖u‖
L2(∂Ω)

).(3.14)

ii) For any s ≥ t, if u ∈ W t(Ω), then

‖ζ1Ptu‖s ≤ C(‖ζ2u‖s + ‖u‖t).
The proofs of i) and ii) are similar, using the methods developed by Boas in

[10] and [12]. Besides relying on Theorem 3.1, the proofs also employ a local
approximation argument, which is different from Boas’ proofs. Only the proof of i)
will be given.

Proof. The space W s(∂Ω) can be identified with W s+1/2(Ω) by harmonic extension
with equivalent norms. Thus it suffices to show, by (1.1) and (1.2), that

‖ζ1Su‖s+1/2 ≤ C(‖ζ2u‖s+1/2 + ‖u‖1/2)

for u ∈ W 1/2(Ω) and harmonic in Ω.
For u ∈ L2(Ω), let Tu =

∫
∂Ω
K(·, w)u(w)dσw . The integral is well-defined since

K(z, ·) ∈ C∞(Ω̄) for fixed z ∈ Ω, which follows from condition R on Ω. By Stokes’
theorem,

Tu =

∫
Ω

K(·, w)∆(ru)(w) dVw ,

where ∆ = 4
∑

∂2

∂zj∂z̄j
is the usual Laplacian operator and r the normalized defining

function, i.e., the gradient of r is equal to 1 on ∂Ω. It is clear that TSu = Tu by
Fubini’s theorem.

Claim. a) For any s ≥ 0, M ≥ 0 and any u ∈ C∞(Ω̄) and harmonic in Ω,

‖ζ1Tu‖s−1/2 ≤ C(‖ζ2u‖s+1/2 + ‖u‖−M ).(3.15)

b) For any s and h ∈W 1/2(Ω) and holomorphic in Ω,

‖ζ1h‖s+1/2 ≤ C(‖ζ2Th‖s−1/2 + ‖h‖−M).(3.16)

The theorem is now a consequence of the claim. In fact, it is again sufficient to
prove (3.14) for u ∈ C∞(Ω̄) and harmonic in Ω. From the claim, for such a u, if
η is a smooth cut-off function so that ζ2 ≡ 1 near supp η and η ≡ 1 near supp ζ1,
then

‖ζ1Su‖s+1/2 ≤C(‖ηTSu‖s−1/2 + ‖Su‖1/2)

≤C(‖ηTu‖s−1/2 + ‖u‖1/2)

≤C(‖ζ2u‖s+1/2 + ‖u‖1/2).

Thus the proof of the theorem will be completed when the claim is established.

Proof of the Claim. Fix a sequence of smooth functions η0, η1, · · · , such that η0 =
ζ1 and ηj+1 ≡ 1 near supp ηj , j = 0, 1, · · · , and ζ2 ≡ 1 on supp ηj for all j. For
any φ ∈ C∞0 (Ω) and u a harmonic function in C∞(Ω̄),

〈ζ1Tu, φ〉 =〈∆(ru), P (ζ1φ)〉
=〈η1∆(ru), η2P (ζ1φ)〉+ 〈∆(ru), (1 − η1)P (ζ1φ)〉.

Hence,

|〈ζ1Tu, φ〉| ≤ |〈η1∆(ru), η2P (ζ1φ)〉|+ |〈∆(ru), (1 − η1)P (ζ1φ)〉|.(3.17)
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Since u is harmonic, ∆(ru) involves its derivatives of at most first order. From the
estimate dual to (2.6) it follows that

|〈η1∆(ru), P (ζ1φ)〉 ≤C‖η1∆(ru)‖s−1/2‖η2P (ζ1φ)‖∗−s+1/2

≤C(‖η2u‖s+1/2 + ‖u‖−M)‖φ‖(∗)
−s+1/2.

(3.18)

For the last term in (3.17), since Ω satisfies condition R and the support of (1− η1)
does not meet the support of ζ1,

|〈∆(ru), (1 − η1)P (ζ1φ)〉| ≤C‖∆(ru)‖∗−N−1‖(1− η1)P (ζ1φ)‖(∗)
N+1

≤C‖u‖−N‖φ‖(∗)
−t+1/2.

(3.19)

Combining (3.17)–(3.19) and taking the supremum over all φ ∈ C∞0 (Ω) satisfying

‖φ‖(∗)
−t+1/2 = 1 gives (3.15).

The proof of (3.16) is by induction. Let ε > 0 be as in Theorem 3.1. Assume that
‖ηj+3h‖s−ε+1/2 < +∞ and (3.16) holds with ηj+3, ηj+6, s − ε in place of ζ1, ζ2, s.
It will be shown that ‖ηjh‖s+1/2 < +∞ and (3.16) holds with ηj , ηj+3 in place of
ζ1, ζ2.

Again let φ ∈ C∞0 (Ω). Choose a sequence u1, u2, · · · in C∞(Ω̄) such that uj → h

in L2(Ω) and ηj+4uj → ηj+4h in W s−ε+1/2(Ω). Let hj = Puj . Then hj ∈ C∞(Ω̄),

and (2.6) implies that ηj+3hj → ηj+3h in W s−ε+1/2(Ω). Now

〈ηj+1Th,φ〉 = 〈h, P (ηj+1φ)〉∂Ω

=〈ηj+3h, P (ηj+1φ)〉∂Ω + 〈h, (1 − ηj+3)P (ηj+1φ)〉∂Ω

= lim〈ηj+3hk, P (ηj+1φ)〉∂Ω + 〈h, (1 − ηj+3)P (ηj+1φ)〉∂Ω.

(3.20)

The last term can be estimated by using (2.6) as follows:

|〈h, (1− ηj+3)P (ηj+1φ)〉∂Ω| = C|〈∆(rh), (1 − ηj+3)P (ηj+1φ)〉|
≤C‖∆(rh)‖∗−N−1‖(1− ηj+3)P (ηj+1φ)‖N+1

≤C‖h‖−N‖φ‖(∗)
−s+1/2.

(3.21)

Write the term whose limit is taken in (3.20) as

〈ηj+3hk, P (ηj+1φ)〉∂Ω = 〈∆(rηj+3hk), P (ηj+1φ)〉
= 〈ηj+1P∆(rηj+3hk), φ〉
= 〈ηj+1∆(rηj+3hk), φ〉 − 〈ηj+1(∆(rηj+3hk)− P∆(rηj+3hk)), φ〉.

(3.22)

Now, because of Theorem 3.1 and because [∂̄,∆r] is of order 1 when applied to hk,

‖ηj+1(∆(rηj+3hk)− P∆(rηj+3hk))‖s−1/2

≤ C(‖ηj+2∂̄∆(rhk)‖s−ε−1/2 + ‖∆(rηj+3hk)‖∗−N−1)

≤ C(‖ηj+2[∂̄,∆r]hk‖s−ε−1/2 + ‖hk‖−N)

≤ C(‖ηj+3hk‖s−ε+1/2 + ‖hk‖−N ).

(3.23)

Hence the absolute value of the last inner product in (3.22) is bounded by a constant
times

(‖ηj+3hk‖s−ε+1/2 + ‖hk‖−N)‖φ‖(∗)
−s+1/2.

Passing to the limit in (3.22) and (3.23) and combining (3.20)–(3.23), we get

|〈ηj+1∆(rh), φ〉| ≤ C|〈ηj+1Th, φ〉|+ C(‖ηj+3h‖s−ε+1/2 + ‖h‖−N)‖φ‖(∗)
−s+1/2.
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Taking the supremum over all φ ∈ C∞0 (Ω) with ‖φ‖(∗)
−s+1/2 = 1 yields

‖ηj+1∆(rh)‖s−1/2 ≤ C(‖ηj+1Th‖s−1/2 + ‖ηj+3h‖s−ε+1/2 + ‖h‖−N).(3.24)

Since h is holomorphic, it follows from Lemma B.8 of [10] that

‖ηjh‖s+1/2 ≤ C(‖ηj+1∆(rh)‖s−1/2 + ‖h‖−N).(3.25)

Finally, (3.24) and (3.25), together with a reduction procedure, imply (3.16).

4. Biholomorphic mappings of non-pseudoconvex domains

The proof of the following theorem follows mainly from the transformation for-
mulae of the Bergman projection and kernel.

Theorem 4.1. Let Ω, D be smoothly bounded domains in Cn and z0 an extreme
boundary point of Ω. Suppose that for some open subset O of D and any w ∈ O
there exists an ε > 0 such that the Berman kernel K(·, w) of D is in L2+ε(D).
Then any biholomorphic mapping f : Ω → D extends smoothly to the boundary
near z0.

Also, it follows easily from the proof of the main theorem in [9] that if D satis-
fies condition R and Ω satisfies local condition R at a boundary point z0, then a
biholomorphic mapping f : Ω → D extends smoothly to the boundary near z0.

Proof. Let F be the inverse of f . Assume that u = det[f ′] and U = det[F ′]
are the Jacobian determinants of f and F . Let Pj and Kj(·, ·), j = 1, 2, be the
Bergman projections and kernels of Ω and D respectively. They obey the following
transformation rules:

u (P2φ) ◦ f = P1(uφ ◦ f),

K1(z, F (w))U(w) = u(z)K2(f(z), w).

For any h ∈ C∞(D̄), holomorphic in D, let ψ be in C∞(D̄), vanish to infinite order
at all boundary points of D, and satisfy P2ψ = h. The existence of such a ψ is
shown, for example, in [21]. Then u h ◦ f = u (P2ψ) ◦ f = P1(uψ ◦ f).

Since z0 is an extreme boundary point, it is shown by Diederich and Fornæss
in [16] that there exists a smooth function φ on Ω such that i) locally φ defines
Ω near z0; ii) Ω is contained in {z;φ(z) < 0}; and iii) the function −(−φ)δ is
plurisubharmonic in Ω for some δ > 0.

For w in D, let ρ(w) = −(−φ)δ(F (w)). Then ρ(w) is plurisubharmonic in D.
By the Hopf lemma, there is a positive constant C such that ρ(w) ≤ −Cd(w, ∂D).
If U is some small neighborhood of z0, it follows from i) above that

z ∈ Ω ∩ U =⇒ d(f(z), ∂D)1/δ ≤ C d(z, ∂Ω).(4.2)

Let ζ1, ζ2 be as in (2.6). The transformation formula and (2.6) yield that for any
s ≥ 0

‖ζ1(u h ◦ f)‖s = ‖ζ1P1(uψ ◦ f)‖s ≤ C(‖ζ2(uψ ◦ f)‖s + ‖uψ ◦ f‖).(4.3)

The function uψ ◦ f is square integrable. So the last term of the above estimate is
bounded. Since ζ2(uψ◦f) is supported in U , for any l and any index α the inequality
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∣∣∣ ≤ Cl,αd(w, ∂D)l holds for some constant Cl,α. Letting l = 2(n+1+ s)/δ,

from (5.2) we get

‖ζ2(uψ ◦ f)‖s ≤C
[∫

Ω1

d(z, ∂Ω1)
−2(n+1+s)d(f(z), ∂Ω2)

l dVz

]1/2

≤C
[∫

Ω1

d(z, ∂Ω1)
−2(n+1+s)d(f(z), ∂Ω2)

2(n+1+s)
δ dVz

]1/2

=C < +∞.

(4.4)

The integer s is arbitrary, so (5.3) and (5.4) give that ζ1(u h ◦ f) is in C∞(Ω̄).
Taking h = 1, we see that u is smooth near z0.

Claim. The Jacobian determinant u vanishes to at most finite order at z0.

The proof of the main theorem in [8] or [15] shows that if the claim is proved
then a division theorem implies the smooth extension of f near z0.

Fix a w ∈ O \ f(Γ) with K2(·, w) ∈ L2+ε(D) for some ε. Let t be a large number
so that 2

t < ε, and set gw(z) = u(z)tK2(f(z), w)t+1. The function gw(z) is in

L
1
t (Ω). Indeed, by the Cauchy-Schwarz inequality∫

Ω

|gw(z)| 1t dVz =

∫
Ω

|u(z)K2(f(z), w)
t+1
t | dVz

=

∫
D

|K2(λ,w)
t+1
t U(λ)| dVλ

≤C
(∫

D

|U(λ)|2 dVλ
) 1

2
(∫

D

|K2(λ,w)|2+ 2
t dVλ

) 1
2

,

(4.5)

so it is therefore bounded. Since gw(z) is holomorphic, |gw(z)| ≤ C d(z, ∂Ω)−(n+1)t.
In view of the transformation formula of the Bergman kernel the following equality
holds:

u(z)gw(z) =
(
U(w)K1(z, F (w))

)t+1

.(4.6)

Since Ω satisfies local condition R at z0, the function K1(z0, F (w)) for w ∈ D\f(Γ)
does not vanish identically. Therefore, for some positive constants C and some
w ∈ O, after possibly shrinking U ,

U(w)K1(z, F (w)) ≥ C−1,

for all z ∈ Ω ∩ U . It follows from (4.6) that for all z close to z0,

C |u(z)| d(z, ∂Ω)−(n+1)t ≥ |u(z)gw(z)| ≥ C−1 > 0.

Hence |u(z)| ≥ C−1 d(z, ∂Ω)(n+1)t, which implies that u vanishes to at most finite
order at z0. Thus the proof of the claim is complete, and so is the proof of the
theorem.
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