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ON THE CLASSIFICATION OF IRREGULAR SURFACES

OF GENERAL TYPE WITH

NONBIRATIONAL BICANONICAL MAP

FABRIZIO CATANESE, CIRO CILIBERTO, AND MARGARIDA MENDES LOPES

Abstract. The present paper is devoted to the classification of irregular sur-
faces of general type with pg ≥ 3 and nonbirational bicanonical map. Our
main result is that, if S is such a surface and if S is minimal with no pencil of
curves of genus 2, then S is the symmetric product of a curve of genus 3, and
therefore pg = q = 3 and K2 = 6.

Furthermore we obtain some results towards the classification of minimal
surfaces with pg = q = 3. Such surfaces have 6 ≤ K2 ≤ 9, and we show that
K2 = 6 if and only if S is the symmetric product of a curve of genus 3. We
also classify the minimal surfaces with pg = q = 3 with a pencil of curves of
genus 2, proving in particular that for those one has K2 = 8.

Introduction

It is well known that the bicanonical map of a curve of genus g ≥ 2 fails to be
birational if and only if g = 2. This exception reproduces itself in dimension 2;
namely if a surface S of general type has a pencil of curves of genus 2, i.e. it has
a rational map to a curve whose general fibre F is irreducible of genus 2, then the
line bundle OS(KS) ⊗OF is special on F , and therefore the bicanonical map φ of
S cannot be birational.

We shall refer to the above exception to the birationality of the bicanonical map
φ as the standard case. A non-standard case will be the case of a surface of general
type S for which φ is not birational, but there is no pencil of curves of genus 2.
Bombieri (see [B], thm. 5) proved that if K2 ≥ 10 and pg ≥ 6, then all surfaces
for which φ is not birational present the standard case. He also gave an example
(see [B], pg. 194), already found by Du Val (see [D]), of a minimal surface with
K2 = 9, pg = 6 exhibiting the non-standard case. Later on I. Reider proved in [R]
that the hypothesis K2 ≥ 10 alone ensures that one has a standard case if φ is not
birational.

From these results it follows that there are only a finite number of families of
minimal surfaces of general type presenting the non-standard case. It is a general
paradigm in the theory of surfaces that one has good results holding for surfaces with
sufficiently high values of the numerical invariants K2 and pg. On the other hand,
any theory must include results holding for many concrete interesting cases, and
most frequently the surfaces one can encounter have small values of the numerical

Received by the editors February 22, 1996.
1991 Mathematics Subject Classification. Primary 14J29.

c©1998 American Mathematical Society

275



276 F. CATANESE, C. CILIBERTO, AND M. MENDES LOPES

invariants. It therefore makes sense to try to completely classify the non-standard
cases.

In the case, much more extensively treated by the classical geometers, of regular
surfaces, i.e. those surfaces S with q := h1(S,OS) = 0, an attempt to classify the
non-standard cases with pg ≥ 2 was made by Du Val in [D]. In the recent paper
[CFM] the non-standard cases with pg ≥ 4 were completely classified, essentially
confirming Du Val’s list. In particular, if pg ≥ 4 all non-standard cases have q = 0.

Also Xiao Gang (see [X1]) studied the general problem of classifying the non-
standard cases, by taking the point of view of the projective study of the image
of the bicanonical map. He thus determined some properties and found a list of
numerical possibilities for the invariants of the cases which might occur.

The present article is devoted to the classification of the non-standard cases for
irregular surfaces, and this is our main result:

Theorem A. Let S be a minimal irregular surface with pg ≥ 3 for which the
bicanonical map is not birational. Then S presents the non-standard case if and
only if S is isomorphic to the symmetric product of a smooth irreducible curve of
genus 3. In particular, pg = q = 3 and K2 = 6.

Indeed, concerning surfaces with pg = q = 3 we obtain here some steps toward
their classification, namely:

Theorem B. Let S be a minimal surface with pg = q = 3. Then 6 ≤ K2 ≤ 9,
and K2 = 6 if and only if S is isomorphic to the symmetric product of a smooth
irreducible curve of genus 3. Moreover if S admits a morphism f : S → B to
a smooth curve of genus b ≥ 1 with connected fibres of genus g, i.e. a so-called
irrational pencil, then either b = 1 and g ≥ 3, or b = g = 2 and S has an unramified
double cover which is the product of two smooth irreducible curves of genera 2 and
3. In the last case K2 = 8, and this is the only standard case for pg = q = 3.

Concerning the non-standard case for irregular surfaces, the only other example
we know of is the case of the double covering of a principally polarized abelian
surface (A,Θ) branched along a divisor algebraically equivalent to 2Θ. We consider
it very likely that this might be the only non-standard case for irregular surfaces
with pg = 2.

The organization of the paper is as follows. In §0 we recall the many results and
techniques which are systematically used in the proof but are not, in our opinion,
necessarily well known to the algebraic geometer in the street. In particular we
give complete proofs of some results about continuous systems of curves of low self-
intersection on a surface, which are perhaps known to the experts but for which
we could not find an appropriate reference. We mention that these results, which
turn out to be essential to handle the cases q = 1, 2, seem to be susceptible of
extensions and developments. In §1 we analyse the minimal non-standard cases S
with K2 = 9, pg ≥ 3, proving that such an S is isomorphic to the Du Val-Bombieri
surface, which has q = 0. We use here a combination of Reider’s method, as
presented by Beltrametti and Sommese in [BS], and a more refined analysis carried
out in [CFM]. In §2 we prove that for q = 1, 2 only the standard case can occur.
The main idea here is to consider the paracanonical system of the surface S, i.e.
the family of curves which are algebraically equivalent to a canonical divisor of
S, and the two related continuous systems given respectively by the fixed part Fη
and the movable part |Mη| of |KS + η|, for η ∈ Pic0(S). Here we use the generic
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vanishing of [GL] as well as the aforementioned results on continuous systems of low
self-intersections, to deduce that, if φ is not birational, there is a pencil of curves
of genus 2 on the surface.

In §3 we concentrate on surfaces S with pg = q = 3, with particular attention
to the structure of the Albanese map a : S → Alb(S). Standard inequalities
concerning irrational pencils lead to the classification of those existing in our case.
A key ingredient is proposition (3.1) relating the base point scheme for H0(S,Ωi

S),
i = 1, 2. In the case where K2 = 6 it follows that the map a is unramified on the
canonical model of S (the proof is an easy consequence of proposition (3.1) if the
canonical model is smooth; it is slightly more complicated otherwise). At this point
we apply a beautiful theorem of Debarre’s extending to abelian varieties the well
known Fulton-Hansen connectedness theorem (see [De2]). Debarre’s result ensures
that a is an embedding on the canonical model, whence the first part of theorem
B follows easily. The remaining cases pg = q = 3, K2 = 7, 8, need a more intricate
analysis, which, roughly speaking, is divided into the following steps:

(i) The case when there is a fixed part F of |KS | can be excluded by a combi-
natorial and geometric analysis relying on the fact that rational curves on S are
contained in F and they are very few (see [Mi]).

(ii) If |KS | has no fixed component, then the bicanonical map has degree 2 and
K2 = 8, and the base point scheme of |KS| has degree 4. We use both the base
point scheme and the involution provided by the bicanonical map in order to prove
the existence of linear pencils of reducible canonical curves.

(iii) Finally we prove that the existence of these canonical pencils contradicts
the geometrical information which we get from the Albanese morphism.

We should make one final comment on the differences between the irregular and
the regular case. As the present paper illustrates, quite a variety of techniques must
be used and are necessary in the irregular case. This contrasts with the regular case,
where, as we shall see in a forthcoming paper, since the bicanonical system cuts
out a complete series on the canonical curves, it suffices, for classification purposes,
to establish the existence of pencils of reducible canonical curves.
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Notation and conventions

We will denote by S a projective algebraic surface over the complex field. Usually
S will be smooth, minimal, and of general type.

We denote by KS , or simply by K if there is no possibility of confusion, a
canonical divisor on S. As usual, for any sheaf F on S, we denote by hi(S,F) the
dimension of the cohomology space H i(S,F), and by pg and q the geometric genus
and the irregularity of S.

By a curve on S we mean an effective, nonzero divisor on S. We denote by
pa(C) the arithmetic genus of C. We denote by C · D the intersection number of
the divisors C, D on S, and by C2 the self-intersection of the divisor C. We denote
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by ≡ the linear equivalence for divisors on S and by ∼ the numerical equivalence.
|D| will be the complete linear system of the effective divisors D′ ≡ D, and φD :
S → P(H0(S,OS(D))∨) = |D|∨ the natural rational map defined by |D|. More
generally, if L is a line bundle on a variety X and V ⊂ H0(X,L) is a nonzero
subspace, we denote by |V | the linear system determined by V , and by |L| the
complete linear system determined by L.

A base point p of a linear system C on a smooth surface S is said to be a base point
of multiplicity h, or an h-tuple base point, if the general curve of C has multiplicity
h at p. If h = 1, we say that p is a simple base point.

If p is a simple base point for C, it is said to be of species k, if two general curves
of C have at p multiplicity of intersection equal to k. In other words, p is of species
k if and only if C has k − 1 successive base points infinitely near to p. If k = 1, we
say that p is simple and ordinary. Note that by blowing up a simple base point p of
species k ≥ 2 of a linear system C on a surface S and by taking the strict transform
C′ of C on the blown up surface S′, the linear system C′ has a simple base point p′

of species k − 1 lying on the exceptional divisor E of S′ corresponding to p.
We will denote by φ the bicanonical map φ2K . We will set Σ := φ(S) and, when

Σ is a surface, we will denote by σ the degree of the map φ : S → Σ. If η is a
point in Pic(S) and D is a divisor on S, we will briefly denote by D+ η any divisor
corresponding to the line bundle OS(D)⊗ η. A divisor D is numerically effective,
briefly nef, if D · C ≥ 0 for every curve C on S. We denote by ωX the dualizing
sheaf for any variety X . We will denote by Alb(S), or simply by A if no confusion
arises, the Albanese variety of S and by a : S → A the Albanese morphism.

The symbol ' denotes in general an isomorphism between objects under consid-
eration.

0. Auxiliary results

In the present section we are going to recall a few facts which will be used in the
rest of the paper.

Let S be a smooth projective surface, B a smooth projective curve of genus b. A
surjective rational map f : S → B with connected fibres is called a pencil of genus
b, or a genus b pencil, of curves on S. We refer to B as the base of the pencil and
to the fibres of f as the curves of the pencil. We recall that all the curves of the
pencil are linearly equivalent if and only if b = 0, in which case the pencil is called
a rational pencil. If b > 0 one says that the pencil is an irrational pencil, and in
this case f is a morphism. In particular, if b = 1 one says that the pencil is an
elliptic pencil. We will usually denote by g the arithmetic genus of the fibres of f ,
and we will say that f : S → B is a pencil of curves of genus g.

(0.1) (Xiao, [X2]). Let S be a minimal surface of general type and let |K| be com-
posed with a pencil of genus b. Then either b = q = 1 or b = 0 and q ≤ 2.

(0.2) (Xiao, [X3]). Let S be an irregular surface with Kodaira dimension κ ≥ 0.
If S has a positive-dimensional linear system of curves whose general element is
irreducible of geometric genus g, then 2q ≤ g + 1.

(0.3) (Pirola, [P]). Let S be an irregular surface whose Albanese image is a surface.
Then there is no rational system of hyperelliptic curves on S.

(0.4) (Debarre, [De1]; Horikawa, [Ho]). Let S be a minimal irregular surface of gen-
eral type. One has:
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(i) K2 ≥ 2pg;
(ii) if K2 ≤ 3χ(OS)− 1 [resp. if K2 < 8

3χ(OS)] then the Albanese map a : S →
Alb(S) factors through an irrational pencil f : S → B of hyperelliptic curves of
genus g ≤ 3 [resp. g=2].

(0.5) (Green-Lazarsfeld, [GL]; Beauville, [Be2]). Let S be a minimal irregular sur-
face of general type. One has:

(i) if the image of the Albanese map a : S → Alb(S) is a surface and η ∈ Pic0(S)
is a general point, then h1(S, η) = 0;

(ii) if q is odd and on S there is no irrational pencil of curves of genus g > q
2 ,

then for a general curve C ∈ |K| one has h0(C,OC(KS)) = pg

(0.6) (Beauville, [Be1], pg. 343; Barth-Peters-van de Ven, [BPV], pg. 97). Let S be
a minimal surface and let f : S → B be a genus b pencil of curves of genus g. Then

K2 ≥ 8(g − 1)(b− 1),

equality holding only if the curves of the pencil have constant modulus. Moreover,

c2(S) = 4(g − 1)(b− 1) +
∑
F

(e(F ) + 2g − 2),

where F varies among the curves of the pencil, e(F ) is the topological Euler-
Poincaré characteristic of F , one has e(F ) + 2g − 2 ≥ 0, and equality holds, in
case g ≥ 2, if and only if f is smooth along F . Finally,

q ≤ g + b,

and equality holds if and only if S is birationally equivalent to the product of B with
the general fibre of f .

(0.7) Lemma. Let S be a minimal surface of general type with nonbirational bi-
canonical map, presenting the non-standard case. If S has an irrational pencil
f : S → B of curves of genus g, then B has genus 1 and g ≥ 3.

Proof. By Reider’s results in [R], we may assume that K2 ≤ 9. The assertion
follows from (0.6) and the fact that g ≥ 3, since we are assuming we are in the
non-standard case. ♦

(0.8) (Miyaoka, [Mi]). If S has nef canonical divisor and Z1, ..., Zh are disjoint fun-
damental cycles on S, then

h∑
i=1

m(Zi) ≤ 3c2 −K2,

where, with the usual notation for the type of a fundamental cycle (see [BPV], pg.
77), one has

m(Ar) = 3(r + 1)− 3

r + 1
, m(Dr) = 3(r + 1)− 3

4(r − 2)
, r ≥ 4,

m(E6) = 21− 1

8
, m(E7) = 24− 1

16
, m(E8) = 27− 1

40
.
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(0.9) (Ramanujam, [Ra]; Catanese, [Ca], remark 6.8). Let D be an effective, 1-con-
nected curve on a smooth surface. If D has arithmetic genus g < q, by the exact
sequence

0→ H1(S,OS(−D))→ H1(S,OS)→ H1(C,OD)→ ...

one has h1(S,OS(−D)) > 0.
Assume in general that h1(S,OS(−D)) > 0. Then the intersection matrix

(Di ·Dj) of the irreducible components D1, ..., Dh of D is negative semi-definite. If
it is not negative definite, then D2 = 0 and there is an irrational pencil f : S → B
such that a multiple of D is a curve of the pencil.

If h1(S,OS(−D)) = q > 0, then the Albanese morphism of S contracts D to a
point. If in addition D2 = 0, then B as above is the image of the Albanese map,
and as such it is a smooth curve of genus b = q.

(0.10) (Ciliberto-Francia-Mendes Lopes, [CFM], 1.5-1.6). (a) Let L and N be line
bundles on S. Assume that the general curve C of |L| is irreducible, that the
restriction of N to C is trivial, and that either

(i) the general curve C of |L| sits in a pencil P with at least a simple base point,
and moreover N is numerically trivial on S; or

(ii) the general curve C of |L| sits in a pencil P with a base point and no reducible
curves.

Then N is trivial.
(b) Let S be a surface, let µ ∈ Pic0(S) and let C be a curve on S such that

C2 > 0. Then µ is trivial if and only if µ|C is trivial.

(0.11) (Ciliberto-Francia-Mendes Lopes, [CFM], A.4). Let D be an m-connected
curve on a surface S and let D = D1 + D2 with D1, D2 curves. If D1 ·D2 = m,
then D1 and D2 are [(m + 1)/2]-connected.

(0.12) (Mendes Lopes, [M]). Let S be a surface and let D be a curve on S. Then:
(a) If D is 1-connected, a multiple point x of D is a base point of |K+D| if and

only if D decomposes as a sum of two curves A, B satisfying:
(i) A · B = 1;
(ii) x is a non-singular point of A and OA(x) ' OA(B);
(iii) either A ∩B = {x} or A ≤ B.
(b) If D is 2-connected, two distinct multiple points x and y of D are not sepa-

rated by |K+D| if and only if D decomposes as a sum of two curves A, B satisfying:
(i) A · B = 2;
(ii) x, y are non-singular points of A and OA(x + y) ' OA(B);
(iii) either A ∩B = {x, y} or A ≤ B.
(c) Suppose that D is 2-connected and that x is a point of D such that multD(x) ≥

3. Let r be the rank of the differential of ϕKS+D at x.
If r = 1, then D has a decomposition D = A + B, where A, B are curves such

that A ·B = 2, A∩B = {x} or A ≤ B and x is either a non-singular point of A or
a double point of A.

If r = 0, then D has a decomposition D = A1 +A2 +A3, where A1, A2, A3 are
curves such that:

(i) A1 · A2 = A1 ·A3 = A2 ·A3 = 1;
(ii) OA1(2x) ' OA1(A2 +A3) and OA2(x) ' OA2(A3);
(iii) x is a non-singular point of A1, A2;
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(iv) either A1 ∩ (A2 +A3) = {x} or A1 ≤ (A2 +A3), and either A2 ∩ A3 = {x}
or A2 ≤ A3.

We notice that property (iv) of the decomposition in part (c) of the statement
above is not contained in the statement of theorem (3.3) of [M], but its proof easily
follows from the same arguments used in that paper.

(0.13) (Beltrametti-Sommese [BS]). Let L be a nef divisor on a surface S. Assume
that L2 ≥ 4k+1. Given any 0-dimensional scheme Z of length k on S, then either
the natural restriction map

H0(S,OS(K + L))→ H0(S,OZ(K + L))

is surjective, or there exist an effective divisor D on S and a nonempty subscheme
Z ′ of Z of length k′ ≤ k, such that:

(i) the map

H0(S,OS(K + L))→ H0(S,OZ′(K + L))

is not surjective;
(ii) Z ′ is contained in D and there is an integer m such that m(L − 2D) is

effective;
(iii) one has

L ·D − k′ ≤ D2 <
L ·D

2
< k′

If k = 1 then either L · D = 0 and D2 = −1, or L · D = 1 and D2 = 0, and in
either case D is 1-connected.

Proof. For the proof we refer to [BS]. Only the statement concerning the 1-
connectedness of D in the case k = 1 needs some further explanation. Suppose
that L · D = 0 and D2 = −1. If D = A + B, with curves A and B, one has
L ·A = L ·B = 0 since L is nef. Then the index theorem yields A2 < 0 and B2 < 0.
This implies −1 = D2 = A2 + 2A · B +B2 ≤ 2A ·B − 2, i.e. A ·B > 0. The proof
is similar in the case L ·D = 1 and D2 = 0. ♦

We will now prove a few results concerning families of curves on a surface, which
we will need later. They are certainly known to the experts, but we prove them
here for lack of references.

Let S be a smooth projective surface and let T be a connected scheme. Recall
that a family of curves on S parametrized by T is an effective relative Cartier divisor
C ⊂ T × S. We will refer to the family C → T if we want to put into evidence the
parameter space T .

Let t ∈ T be any closed point and let Γt be the fibre of pr1 over t. Then
Ct := pr2(Γt) is a Cartier divisor on S which is called the curve of the family C
parametrized by t. Notice that pa(Ct) and the numerical equivalence class of Ct
are independent on t ∈ T . If T is irreducible and t is a general point of T , we will
say that Ct is a general curve of C.

Given a family C → T of curves on S, we can consider the biggest subdivisor
F of C not dominating S via the second projection pr2 : C → S. The family F is
constant, i.e. the curve F := Ft is independent of t ∈ T , and it is called the fixed
part of C, inasmuch as F is contained in any curve Ct of the family C.

Given a family C → T as above, and given any point x ∈ S, we can consider the
locus Tx := {t ∈ T : x ∈ Ct}, which has an obvious structure of closed subscheme of
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T . The family Cx → Tx induced by C on Tx is the family of all curves in C passing
through x. Notice that if T is irreducible and x is a general point of S, then any
irreducible component of Tx has codimension one in T .

As a particular case, we will consider the situation in which T is a subscheme
of the Hilbert scheme of curves of given arithmetic genus g on S, and C → T is
induced by the universal family. We will always consider the case in which T is
a closed, reduced subscheme of the Hilbert scheme. In this case we will say that
C → T is a system of curves on S. If T is irreducible of dimension r, we will say
that the system of curves is irreducible of dimension r. Moreover we will say that
the system is complete if T is an irreducible component of the Hilbert scheme. If S
is a regular surface, then complete irreducible systems on S coincide with complete
linear systems.

The r-dimensional system C → T is said to be composed with the ri-dimensional
systems Ci, i = 1, ..., h, if the general, or equivalently any, curve C of C can be
expressed as C = C1 + ... + Ch, with Ci a curve of Ci, i = 1, ..., h. Notice that
r ≤ r1 + ... + rh and the equality holds if and only if the general curve C of C can
be expressed as C = C1 + ...+Ch, with Ci the general curve of Ci, i = 1, ..., h. If in
the above setting the curves Ci of Ci are the irreducible components of C, we will
say that C is irreducibly composed with the systems Ci, i = 1, ..., h. If in addition
one has r = r1 + ...+ rh, then we will say that C is completely irreducibly composed
with the systems Ci, i = 1, ..., h. If Ci = D, i = 1, ..., h, one says that C is composed
with the system D. In particular if D is a base point free pencil, i.e. it is formed
by the fibres of a surjective morphism f : S → B of S to a curve B, then any curve
C of C is such that C2 = 0.

We are going to list in the following lemma a few basic properties of irreducible
systems which have no fixed part. Before stating the lemma, we make a definition.
Let B1, B2 be smooth irreducible projective curves, and consider the product B1×
B2. The two projection morphisms pi : B1 × B2 → Bi give rise to two base point
free pencils Pi, i = 1, 2, on B1 × B2. We call the curves of Pi the i-th coordinate
curves of B1×B2. We also notice the 2-dimensional system P of curves on B1×B2

which is completely irreducibly composed with the systems Pi, i = 1, 2. We will
call P the system of pairs of coordinate curves of B1 ×B2. We have:

(0.14) Lemma. Let C → T be an irreducible r-dimensional system of curves on a
surface S and let C be the general curve of C. Suppose that C has no fixed part; in
particular, r ≥ 1. Then:

(i) one has C2 = 0 if and only if C is composed with a pencil without base points;
(ii) if C is complete, if x is a general point of S and if the subsystems of Cx → Tx

induced on the irreducible components of Tx all have a fixed part, then either r = 1
or r ≥ 2 and C is completely irreducibly composed with r irreducible 1-dimensional
systems Ci, i = 1, ..., r;

(iii) in case (ii) one has either C2 = 0 or C2 ≥ r. Moreover C2 = r ≥ 2 if
and only if r = 2 and Ci, i = 1, 2, are base point free pencils such that C1 · C2 = 1
for Ci the general curve in Ci, i = 1, 2. Then there is a birational morphism
f : S → B1 × B2, where B1, B2 are smooth irreducible projective curves, and f
maps C to the family P of pairs of coordinate curves on B1 ×B2.

Proof. Let C be the general curve of C. We write C = C1 + ... + Ch, h ≥ 1, where
C1, ..., Ch are the irreducible components of C. They all move, since C has no fixed
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component; therefore all of them are nef. Then

C2 =

h∑
i=1

C2
i + 2

h∑
1≤i<j≤h

Ci · Cj(0.15)

Hence C2 ≥ 0, and C2 = 0 if and only if Ci · Cj = 0 for all 1 ≤ i ≤ j ≤ h. So
C2 = 0 implies that all components of C describe, as C moves in C, one and the
same base point free pencil, and C is composed with it. We have thus proved (i).

In order to prove (ii) we start by remarking that if r ≥ 2, if the general curve C
of C is irreducible, and if x is a general point of S, then the subsystems of Cx → Tx
induced on the irreducible components of Tx all have no fixed part. In fact, any
such irreducible component has dimension r − 1 ≥ 1 and parametrizes the general
curve of C, which is irreducible.

Again let C = C1 + ...+Ch, h ≥ 1, be the general curve of C, where C1, ..., Ch are
its irreducible components. As C describes C, the curve Ci also varies, describing
an irreducible system contained in some complete system Ci of dimension ri, i =
1, ..., h. Since C has no fixed part, we have ri > 0, i = 1, ..., h. Since C is complete,
it is completely irreducibly composed with the systems Ci, i = 1, ..., h.

If ri > 1 for some i = 1, ..., h, then for x general in S, all irreducible components
of Ci,x have no fixed part. This clearly yields the existence of irreducible components
of Cx with no fixed part. Hence if all irreducible components of Cx have a fixed
part, we must have ri = 1, i = 1, ..., h, and therefore h = r since r = r1 + ... + rh.
We have thus proved (ii).

To prove (iii), we notice that C ·Ci ≥ 0 for all i = 1, ..., r, since the Ci’s are nef.
If for some i = 1, ..., r one has C ·Ci = 0, then Ci ·Cj = 0, for all j = 1, ..., r. Then
Ci is a base point free pencil and C is composed with it, which implies C2 = 0.
Otherwise we have C · Ci > 0 for all i = 1, ..., h, which yields C2 ≥ r. Assume
C2 = r ≥ 2. This means that C ·Ci = 1 for all i = 1, ..., r. We claim that C2

i = 0 for
all i = 1, ..., r. Otherwise we have an i ∈ {1, ..., r} such that C2

i = 1 and Ci ·Cj = 0,
for all j = 1, ..., r, j 6= i, contradicting the index theorem. Furthermore, for any
i = 1, ..., r, there is a unique j ∈ {1, ..., r}, j 6= i, such that Ci · Cj = 1, whereas
Ci · Ck = 0 for all k = 1, ..., r, j 6= k. This clearly forces r = 2 and C = C1 + C2,
with C2

i = 0, C1 ·C2 = 1. Then Ci, i = 1, 2, are base point free pencils fi : S → Bi,
with Bi smooth projective curves. The map f = f1 × f2 : S → B1 × B2 is the
required birational morphism. ♦

Now we have the following:

(0.16) Proposition. Let C → T be an irreducible r-dimensional family of curves
on a surface S, with r ≥ 1, and let C be the general curve in C. If C has no fixed
part, then:

(i) either C2 = 0 or C2 ≥ r − 1;
(ii) one has C2 = r − 1, with r ≥ 2, if and only if C is a complete, base point

free, linear system |C| of curves of arithmetic genus zero such that the morphism
φ|C| : S → Σ ⊆ Pr is birational to its image Σ, which is a rational normal surface
of degree r − 1.

Proof. Since C is nef, we have C2 ≥ 0. Let us assume C2 > 0. Assertion (i) is
trivial if r = 1, and assertion (ii) is empty in that case. Hence we may assume
C2 ≥ 1 and r ≥ 2. If r = 2 then (i) is clear again. If C2 = 1, we have that C is
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irreducible; otherwise by (0.15) we would have Ci · Cj = 0, for all 1 ≤ i < j ≤ h
and, say, C2

1 = 1, C2
i = 0, i = 2, ..., h. This would contradict the index theorem.

Since H0(C,OC(C)) is the tangent space to the Hilbert scheme of curves on S at
the point representing C, and the Hilbert scheme, containing C, has dimension at
least 2, one has h0(C,OC(C)) ≥ 2. Since C2 = 1, we have that h0(C,OC(C)) = 2
and C is complete. Moreover C is rational and S, having a 2-dimensional system of
rational curves with positive self-intersection, is rational. By looking at the exact
sequence

0→ H0(S,OS)→ H0(S,OS(C))→ H0(C,OC(C))

→ H1(S,OS)→ H1(S,OS(C))→ ...
(0.17)

we see that |C| is base point free of dimension 2; hence |C| coincides with C and
(ii) easily follows in this case.

Let us now assume r ≥ 3 and argue by induction to prove (i) and (ii). Let x be a
general point of S. By lemma (0.14, iii), we may assume that there is an irreducible

component T
(1)
x of Tx such that the induced system C(1)

x → T
(1)
x has no fixed part.

Let µ ≥ 1 be the multiplicity at x of the general curve of C(1)
x . Let p : S′ → S be

the blow-up of S at x and let E be the exceptional divisor. Let us consider the

strict transform C′ → T
(1)
x of C(1)

x → T
(1)
x on S′, i.e. C′ is the system whose general

curve is given by C ′ = p∗(C)− µE, where C is the general curve in C(1)
x . We have

that C′ is irreducible, of dimension r− 1 ≥ 2, and without fixed part, since C(1)
x has

no fixed part and E also does not appear in its fixed locus. By induction we have
either C ′2 = 0 or C′2 ≥ r − 2.

Suppose that C′2 = 0. Then C′ is composed with a pencil D whose general
curve we denote by D. Hence the general curve C′ of C′ is of the form C′ =
D1 + ... + Dk, with Di, i = 1, ..., k, its irreducible components, curves of D. Since
0 < µ = C′ · E = kD · E, we have D · E > 0. Since C′ has dimension r − 1
we have k ≥ r − 1; hence µ = kD · E ≥ r − 1. On the other hand we have
C2 = p∗(C)2 = (kD + µE)2 = 2kµD · E − µ2 = µ2 ≥ (r − 1)2 > r − 1. If instead
C ′2 ≥ r − 2, then r − 2 ≤ C′2 = C2 − µ2, which yields C2 ≥ r − 1. We have thus
proved (i).

Assume now that C2 = r− 1, which in our setting yields C′2 = r− 2 and µ = 1.
By induction, C′ is a complete, base point free linear system of curves of arithmetic
genus zero on S′, which is rational. So also S is rational. The general curve C′ of
C′ is smooth, irreducible and rational, which implies that also the general curve C
of C is smooth, irreducible and rational. By looking at the sequence (0.17) we see
that C is a complete, base point free linear system |C| of curves of arithmetic genus
zero on S. Finally, the last assertion about the map determined by |C| is clear. ♦

Next we are going to characterize the systems C as above for which C2 = r.
First we recall another definition. Given an irreducible 1-dimensional family

C → T of curves on a surface S, the index ν := νC of C is the degree of the second
projection pr2 : C → S, or, equivalently, the number of curves of C passing through
the general point of S. Notice that ν = 0 if and only if pr2 : C → S is not dominant,
which never occurs if we consider a system. Moreover, ν = 1 if and only if C is
birational to S, in which case there is a rational map f : S → T , i.e. a pencil, and
C is clearly composed with the system of the fibres of f .
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Let C be a smooth projective curve and let C(2) be its symmetric product, i.e.
the Hilbert scheme of divisors of degree two on C. We denote by Cx the curve on
C(2) described by all divisors of the form x+ y, when y varies in C. This is called a
coordinate curve on C(2). The system of coordinate curves on C(2) is 1-dimensional,
of index two, parametrized by C.

(0.18) Proposition. Let C be an irreducible 1-dimensional system of curves on a
smooth projective surface S, without fixed part. If the general curve C of C is such
that C2 = 1, then it is irreducible, smooth and:

(i) either C is a subsystem of a complete, base point free, linear system |C| of
dimension 2 such that the morphism φ|C| : S → P2 is a sequence of blow-ups of the
plane;

(ii) or C is a complete linear system with one transversal base point;
(iii) or C has genus g > 0 and there is a birational map S → C(2) which sends

C to the system of coordinate curves on C(2).

Proof. Let C = C1 + ... + Ch be the general curve of C, where C1, ..., Ch, h ≥ 1,
are the irreducible components of C. Using (0.15) we see that C2 = 1 and h ≥ 2
contradict the index theorem. So C is irreducible.

The section of H0(C,OC(C)) corresponding to the infinitesimal deformation of
C inside C is non-zero and it is well known to vanish at every singular point of C.
Since C is irreducible and C2 = 1, then C must be smooth.

Suppose C is a subsystem of a linear system |C|. If |C| has a base point, we are
in case (ii). Otherwise, by looking at the sequence (0.17), we see that |C| is base
point free of dimension 2, its general curve C is smooth and rational, and we are
in case (i).

Suppose that C is not a subsystem of a linear system, and let us prove that ν = 2.
We have ν ≥ 2, because ν = 1 and C not a subsystem of a linear system forces C
to be an irrational pencil, and then C2 = 0, a contradiction. Suppose that ν ≥ 3.
Let x be a general point of S and let C1, ..., Cν be the curves of C through x. By
(0.10, b) one deduces that, for all i ∈ {1, ..., ν}, the curves C1, ..., Ci−1, Ci+1, ..., Cν
are linearly equivalent. Since we are assuming ν ≥ 3, this yields that C1, ..., Cν
are linearly equivalent, and this in turn implies that all curves in C are linearly
equivalent, a contradiction.

Notice that C is base point free, as otherwise we would have ν = 1. Moreover C
has genus g > 0, since we are assuming that C is not a subsystem of a larger linear
system. Let C, C ′ be two general curves of C. Let x be a general point of C and
let D be the curve in C different from C through x. Let y be the intersection point
of D with C ′. Hence we have a birational map x ∈ C → y ∈ C′, i.e. C and C′ are
isomorphic. Finally, let x be a general point in S and let C′, C ′′ be the two curves
in C passing through x. Let y and z be the intersection points of C ′ and C ′′ with
C. The map x ∈ S → y + z ∈ C(2) is the required birational map. ♦

Before proving our classification result for the systems C of dimension r with
C2 = r, we need one more lemma:

(0.19) Lemma. Let S be a smooth projective surface and let C be a smooth irre-
ducible elliptic curve on S with C2 = r > 0. Then S is birationally ruled, and
C belongs to a unique irreducible complete r-dimensional system C of curves on S
such that either:

(i) C is a linear system, or
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(ii) q = 1 and C consists of a 1-dimensional system of complete linear systems
of dimension r − 1.

Proof. First of all, K · C = −r implies S is birationally ruled. Since h1(C,OC(C))
= 0, the Hilbert scheme of curves on S is smooth of dimension h0(C,OC(C)) = r
at C. Hence C belongs to a unique complete system C of dimension r. Suppose
that C is not a linear system, so that h0(S,OS(C)) ≤ r. By looking at the sequence
(0.17) we see that S must be irregular. But since C2 > 0, the curve C dominates
the image of the Albanese map, and therefore we have q = 1. The sequence (0.17)
yields that |C| has dimension r − 1, proving (ii). ♦

Now we are ready to prove our classification theorem:

(0.20) Theorem. Let C → T be an irreducible r-dimensional system of curves on
a smooth projective surface S, without fixed part and such that the general curve C
of C has C2 = r ≥ 1 and arithmetic genus g. Then C is irreducible and smooth,
and:

(i) either C is not complete, in which case C is a subsystem of a complete, base
point free, linear system |C| of dimension r + 1 of curves with g = 0 such that the
morphism φ|C| : S → Σ ⊆ Pr+1 is a sequence of blow-ups of a rational normal
scroll;

(ii) or C is complete, in which case either:
(ii1) C is a linear system; or
(ii2) r = 1, the curve C has genus g > 0 and there is a birational map S → C(2)

which sends C to the system of coordinate curves on C(2); or
(ii3) r ≥ 2 and then either:
(ii3,1) g = r = 2 and there is a birational map S → A, where A ' Jac(C) is

birational to C(2), sending C to the system of theta divisors on A; or
(ii3,2) g = 1, the system C consists of a 1-dimensional system of complete linear

systems of dimension r − 1 and there is a birational map S → C(2); or
(ii3,3) r = 2 and there is a birational morphism f : S → B1 ×B2, where B1, B2

are smooth irreducible projective curves and f maps C to the system P of pairs of
coordinate curves on B1 ×B2.

Proof. For r = 1 the assertion follows by proposition (0.18). If C is not complete the
assertion follows by proposition (0.16). So we may assume r ≥ 2 and C complete.

Let x be a general point of S. If the systems induced by Cx → Tx on the
irreducible components of Tx all have a fixed part, we are in case (ii3,3) by lemma

(0.14, iii). So we may assume that there is an irreducible component T
(1)
x of Tx

such that the induced system C(1)
x → T

(1)
x has no fixed part. Let µ ≥ 1 be the

multiplicity of the general curve of C(1)
x at x.

Let p : S′ → S be the blow-up of x and let E be the exceptional divisor. Let C′
be the strict transform of C(1)

x via p. The general curve C′ of C′ is C′ = p∗(C)−µE,

where C is the general curve in C(1)
x . If C ′2 = 0 then, as we saw in the proof of

proposition (0.16), we have C2 ≥ (r − 1)2. When C2 = r we must have r = 2. On
the other hand we have 0 = C ′2 = C2 − µ2 = 2− µ2, a contradiction.

So we have r − 2 ≤ C′2 = C2 − µ2 = r − µ2 by proposition (0.16). Hence µ = 1
and C ′2 = r − 1. By induction C′ is smooth and irreducible, hence so is C.

Suppose C′ is a subsystem of a linear system. Then all curves in C(1)
x are linearly

equivalent. As x varies on S, the family C(1)
x , which has no fixed part, varies in C
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describing a 2-dimensional family of irreducible subvarieties of codimension one. A
general curve C in C belongs to a one-dimensional family of systems of the type

C(1)
x , which sweep out the whole of C. Hence all curves of C are linearly equivalent

and we are in case (ii1).
So we may assume that C′ is not a subsystem of a linear system, so C is not a

linear system. Take again a general curve C of C. By Hilbert scheme considerations,
we have h0(C,OC(C)) ≥ r. If h0(C,OC(C)) ≥ r+1, then C would be rational and
C and C′ would be subsystems of linear systems, a contradiction. Thus we have
h0(C,OC(C)) = r. Since r ≥ 2, we have either r = 2 and C is hyperelliptic, or
g = 1.

If g = 1 the first part of (ii3,2) follows by lemma (0.19). As for the second part,
it is immediately proved by induction, since it holds for r = 1 and the induction
can be applied to C′, proving that S′, and therefore S, is birational to C(2).

Finally let us assume r = 2 and g ≥ 2. By proposition (0.18) we have a birational
map f : S′ → C(2) sending C′ to the family of coordinate curves on C(2). The map
f cannot contract the exceptional divisor E, as otherwise the self-intersection of
the images via f of the curves of C′ would be at least 2. Hence E is sent to a curve
R representing all the divisors of degree 2 in a g1

2 on C. For such a curve one has
R2 = 1 − g. Notice that f has no fundamental point on E; otherwise C(2) would
contain some other rational curve besides R, which is impossible because there is
no more than one g1

2 on C. Hence we have R2 = −1; thus g = 2. Furthermore, R is
also an exceptional curve on C(2) and, by contracting it, we have the Abel-Jacobi
morphism C(2) → A ' Jac(C). The existence of the birational map S′ → C(2)

yields the existence of a birational map S → A ' Jac(C) which sends the general
curve C of C to the Abel-Jacobi image of C in A. This proves that we are in case
(ii3,1). ♦

We finish this section with the following very simple lemma:

(0.21) Lemma. Let S be a smooth projective surface and let f : S → B be an
irrational pencil on S. Let Γ be an irreducible curve on S of geometric genus
g, not contained in any curve of the pencil and passing through distinct points
x1, ..., xh having respective multiplicities m1, ...,mh for the fibres of the pencil. Then

2g ≥ 2+
∑h

i=1(mi−1). In particular, if the irrational pencil contains some multiple
fibre, then all elliptic and rational curves on S are contained in curves of the pencil.

Proof. Let C be the normalization of Γ. The morphism f induces a morphism
φ : C → B of positive degree. The assertion follows by applying Hurwitz’s formula
to φ and by taking into account that b ≥ 1. ♦

1. The case K2 = 9

In [R] I. Reider proved that if S is a minimal surface of general type with K2 ≥ 10
and the bicanonical map is not birational, then S presents the standard case. He
also remarks that the same holds even if K2 = 9 unless the canonical system is
numerically divisible by three. We can make this remark more precise in the case
pg ≥ 3. Recall that a reduced curve C on a surface S has non-essential singularities
if it has only A-D-E singularities (see [BPV], pg. 87). We have the following:

(1.1) Proposition. Let S be a minimal surface of general type with K2 = 9 and
pg ≥ 3 such that the bicanonical map is not birational. Assume that S presents the
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non-standard case. Then pg = 6, q = 0, and S is the minimal model of a double
cover ϕ : S′ → F2 = Proj(OP1 ⊕ OP1(−2)) with branch curve B sitting in the
linear system |14F + 8C0|, where F is a fibre and C0 is the (−2)-section of F2.
Moreover the curve B breaks up as C0 +B′, where B′ is such that:

(i) B′ ∩ C0 = ∅;
(ii) B′ is reduced and has at most non-essential singularities.

Proof. Let x, y be two general points of S such that φ(x) = φ(y). By (0.13) there
is an effective divisor D on S such that x, y ∈ D and, moreover,

−4 ≤ 2K ·D − 4 ≤ 2D2 ≤ K ·D ≤ 3.(1.2)

Therefore 1 ≥ D2 ≥ −2. As x and y vary, the divisor D also varies, describing an
irreducible system D of curves on S, which has a movable part M and a fixed part
F .

Claim 1. F = 0, D2 = 1 and K ∼ 3D; moreover the general curve D of D is
smooth and irreducible. Of course M2 ≥ 0. One cannot have M2 = 0. In fact (1.2)
yields 3 ≥ K ·D ≥ K ·M > 0, and therefore we would have K ·M = 2, i.e. S would
present the standard case. Hence M2 > 0, which implies, by the index theorem,
M2 = 1 and K ∼ 3M . Since 3 = K ·M ≤ K · D ≤ 3, we have also K · D = 3
and D2 = 1 by (1.2). The index theorem again implies K ∼ 3D; hence F ∼ 0, i.e.
F = 0. The rest of the assertion follows by proposition (0.18).

Claim 2. D is 2-connected. Since K ∼ 3D, the divisor D is nef. Moreover by
(0.11) it is also 1-connected, since K is 2-connected. Suppose that D = A+B with
A, B effective and such that A · B = 1. Since 1 = D2 = D · A + D · B, then, say,
D · A = 1 and D · B = 0; hence A2 = 0. But since K · A = 3D · A = 3, we have a
contradiction.

Claim 3. The family D is a linear system of dimension 1 with a transversal base
point p, and the bicanonical map φ is non birational on the curves of D. The first
assertion follows by proposition (0.18). In fact the only other possibility would be
that S is isomorphic to the symmetric product of a smooth curve of genus g, which

is known to have pg = g(g−1)
2 , K2 = 4g2 − 13g + 9, and this is incompatible with

our hypotheses pg ≥ 3 and K2 = 9. The second assertion follows from the first and
the fact that pairs of points (x, y) ∈ S × S such that φ(x) = φ(y) lie on curves of
D.

Claim 4. Any irreducible curve D ∈ D is hyperelliptic. Let us consider the exact
sequence

0→ OS(K −D)→ OS(K)→ OD(K)→ 0.

Since OD(K) has degree 3 and D has arithmetic genus 3, one has h0(D,OD(K)) ≤
2. Therefore h0(S,OS(K −D)) > 0. Consider now the exact sequence

0→ OS(2K −D)→ OS(2K)→ OD(2K)→ 0.

Since h0(S,OS(K−D)) > 0, there are effective divisors in |K−D|. Since K−D ∼
2D, any divisor C in |K−D| is 1-connected by (0.11) applied to the decomposition
K = C + D. Furthermore one has (K −D)2 > 0. Hence h1(S,OS(2K −D)) = 0,
and therefore the map H0(S,OS(2K)) → H0(D,OD(2K)) is surjective. Since the
degree of OD(2K) is 6 and D has arithmetic genus 3, by claim 3 we have the
assertion.

Claim 5. Let D be the general curve in D. The base point x of D is a Weierstrass
point on D. Furthermore K ≡ 3D. Let η be the hyperelliptic line bundle on D.
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Since OD(2K) ≡ η⊗3 and OD(K+D) ≡ η⊗2, the base point x of D is a Weierstrass
point. Now OD(K +D) ' η⊗2 ' OD(4D), and the conclusion follows by (0.10, a).

Let σ : S′ → S be the blow-up of S at x and let E be the exceptional divisor. We
denote by p : S′ → P1 the morphism determined by the pull-back on S′ of the pencil
D. Since every curve C ∈ D is 2-connected by claim 2 and h0(C,OC(2x)) ≥ 2 by
semicontinuity, we have h0(C,OC(2x)) = 2 (see proposition (A.5) of the Appendix
of [CFM]). So the sheaf p∗(OS′(2E)) is a locally free sheaf of rank 2. Moreover we
have h0(P1, p∗(OS′(2E))) = 1; hence p∗(OS′(2E)) ' OP1 ⊕OP1(−e), where e is a
positive integer. As usual, we set Fe = Proj(OP1 ⊕OP1(−e)); we denote by F a
fibre of the structure map Fe → P1, and by C0 the curve of Fe such that C2

0 = −e.
For every curve C ∈ P the sheaf OC(2x) is generated by global sections (see

proposition (A.6) of the Appendix in [CFM]). Hence the natural map p∗p∗(OS′(2E))
→ OS′(2E) is surjective and defines a morphism π : S′ → Fe over P1 such that
π∗OFe(C0) ' π∗OFe(1) ' OS′(2E). The morphism π is generically finite of degree
2. Since π∗(C0) = 2E, the curve C0 is a component of the branch locus of π and
e = −C2

0 = −2E2 = 2.
Now

σ∗(KS) ≡ 3σ∗(C) = 3(π∗(F ) + E) ≡ π∗(C0 + 3F ) + E

and, by the ramification formula, the branch curve B of π sits in the linear system
|14F + 8C0|. As we saw, B = C0 + B′, with B′ a curve, and we compute
B′ · C0 = 0. This yields B′ ∩ C0 = ∅. If B′ has only non-essential singularities,
then pg = h0(F2,OF2(C0 + 3F )) = 6 and K2

S = (π∗(C0 + 3F ) +E)2 = 9; therefore
q = 0 by (0.4, i). Since we are assuming K2 = 9, there is no other possibility than
the one above. ♦

We want to point out that the surface with pg = 6, K2 = 9, presenting the non-
standard case, which we met in the statement of proposition (1.1), already appears
in [D] as well as in [B], pg. 193. Notice also that, with the above notation, one has
h0(S,OS(2D)) = 4 and the map φ2D is a morphism of degree two of S to a quadric
cone Q in P3 (see [CFM], surface of type (H1), §2).

2. The cases q = 1, 2

We recall that, in view of the quoted results of [CFM], all non-standard cases
with pg ≥ 4 have q = 0. Therefore in this section we may limit ourselves to the
case pg = 3 and we will prove the following:

(2.1) Proposition. Let S be a minimal surface of general type with 1 ≤ q ≤ 2
and pg = 3 such that the bicanonical map is not birational. Then S presents the
standard case.

Before proving the proposition, we need some preliminaries. Let S be a minimal
irregular surface of general type with pg = 3, such that the bicanonical map is
not birational and S presents the non-standard case. By lemma (0.7), if q ≥ 2 we
can exclude the existence of irrational pencils f : S → B of genus b ≥ 2. Hence
the image of the Albanese map a : S → Alb(S) is a surface. If η ∈ Pic0(S) is a
general point, one has h1(S, η) = 0 and dim|K + η| = χ(OS)− 1 = 3− q. This is a
consequence of (0.5) if q ≥ 2, and it is obvious for q = 1.



290 F. CATANESE, C. CILIBERTO, AND M. MENDES LOPES

If η ∈ Pic0(S), we will denote by Cη a curve in |K + η|. Let us write |K + η| =
Fη + |Mη|, where Fη is the fixed part of |K + η| and |Mη| is the movable part. We
denote Fη and Mη by F and M if no confusion arises.

We will need the following:

(2.2) Lemma. Fix η ∈ Pic0(S) and let x, y be points on S such that φ(x) = φ(y),
with y not lying in the base locus of |K − η|. In particular one may assume that
x, y are general points such that φ(x) = φ(y). Then x belongs to a curve Cη in
|K + η| if and only if y ∈ Cη.

Proof. Assume that x ∈ Cη. Then y ∈ Cη+C−η ∈ |2K| for any curve C−η ∈ |K−η|.
Since y does not lie in the base locus of |K − η|, we have that y /∈ C−η for C−η
general in |K − η|. Hence y sits on Cη. ♦

The above claim certainly applies also to the case q = 3, but it could have empty
meaning. In fact for η ∈ Pic0(S) general, there could be no pair of points x, y on
S such that φ(x) = φ(y) and such that x lies on the unique curve in |K + η| while
y does not lie on the unique curve in |K − η|.

Now we can start the

Proof of proposition (2.1). We argue by contradiction and assume that S presents
the non-standard case. We will discuss the two cases q = 1 and q = 2 separately.
Notice that K2 ≥ 6 by (0.4).

Case q = 2. We assume first that, for η ∈ Pic0(S) general, the general curve in
|Mη| is irreducible of arithmetic genus g. We notice that g ≥ 3. This follows by
(0.2) or by the following easy argument: we have

2g − 2 = (K +M) ·M = (F + 2M) ·M ≥ 2 + 2M2;

hence g = 2 would imply M2 = 0, and |M | would be a pencil of curves of genus 2,
a contradiction.

Let us fix a general point η ∈ Pic0(S) and consider the map µη which sends the
general point η′ ∈ Pic0(S) to OS(Mη′ −Mη) ∈ Pic0(S). Since it depends on η
only up to a translation, the dimension of its image is independent of η. Abusing
notation, we will simply denote it by µ.

Let us assume first that dimIm(µ) ≤ 1. This is equivalent to saying that Fη has
some component Gη which varies with η: we denote it by G, hoping that there is
no danger of confusion. We make our first claim:

Claim 1. If G is as above, then K ·G ≤ 3. In fact if K ·G ≥ 4, then F ·M+M2 =
K ·M = K2−K ·F ≤ K2−K ·G ≤ 4, because by proposition (1.1) we may assume
K2 ≤ 8. Since F ·M is positive and even, the only possibilities are F ·M = 2,
1 ≤ M2 ≤ 2, and F ·M = 4, M2 = 0. In either case we have dimIm(µ) = 0.
Otherwise M would describe a family M of dimension r ≥ 2 of curves which is
not contained in a linear system. By proposition (0.16) we would have M2 = 2,
and by theorem (0.20), since q ≤ 2, the surface S would not be of general type, a
contradiction. Since dimIm(µ) = 0, there is some curve F ′ contained in F , varying
in a 2-dimensional family of curves on S not contained in a linear system, and such
that all components of F ′ move with it.

If F ·M = 4, one has K2 = 8 and K ·F = K ·G = 4. Thus any component G′ of
F −G is such that K ·G′ = 0; thus G′ is not movable. Hence G is the only movable
component of F , and therefore G = F ′. Since the irreducible curve G moves in
a 2-dimensional family of curves on S not contained in a linear system, one has
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G2 ≥ 3 (see again proposition (0.16) and theorem (0.20)). On the other hand, the
index theorem and (0.4, i) say that 16 = (K ·G)2 ≥ K2 ·G2 ≥ 24, a contradiction.

If F ·M = 2, since M2 ≥ 1 one has K ·M ≥ 3 and thereforeK ·F ≤ 5. If K ·G ≥ 4,
then any component G′ of F −G is such that K · G′ ≤ 1 and therefore G′2 ≤ −1.
Thus G is again the only movable component of F . Since both M and G move,
one has M ·G ≥ 0; but M ·G = 0 is impossible because M moves in a linear pencil
and G moves in a non-linear system of dimension 2. Also M ·G = 1 is impossible,
because otherwise the curves G would be rational. Since M · G ≤ M · F = 2, one
has M ·G = 2.

Consider the rational map

ρ : η ∈ Pic0(S)→ OM (Gη) ∈ Pic2(M).

Its image, by the above discussion, lands in the image of M (2) in Pic2(M). By
(0.10, b) the map ρ must be dominant, but this is a contradiction since M (2) is a
surface of general type. This ends the proof of claim 1.

Let G be a movable component of F . The index theorem and claim 1 yield
9 ≥ (K · G)2 ≥ K2 · G2 ≥ 6 · G2, namely G2 ≤ 1. The case G2 = 1 is impossible:
in fact by proposition (0.18) the surface S would be isomorphic to the symmetric
product of a curve of genus g ≥ 3, which never has invariants pg = 3, q = 2 and
K2 ≤ 8. So we have G2 = 0. Since K · G ≤ 3, one has indeed K · G = 2 and S
would present the standard case, a contradiction which concludes the discussion of
the case dimIm(µ) ≤ 1.

Now we discuss the case dimIm(µ) = 2. First of all we make:
Claim 2. If η ∈ Pic0(S) is general, then M2

η > 0. Since Mη is irreducible

and moves, the only alternative would be M2
η = 0. But this is incompatible with

dimIm(µ) = 2 and dim|Mη| = 1 (see lemma (0.14, i)).
By lemma (2.2), the morphism φ is not birational on a general curve Mη and

the degree of the morphism φ : Mη → Γη = φ(Mη) coincides with the degree σ of
the bicanonical map. By (0.5, i) one has h1(S,OS(K − η)) = 0 if η ∈ Pic0(S) is
general. Then the linear system |K + Mη − η| cuts out on Mη a complete linear
series ξη of degree 2g−2. By claim 2 and (0.10, b) the linear series ξη is not special;
hence it has dimension g − 2. Since |K + Mη − η| is contained in |2K|, there is a
complete linear series γη on Γη such that its pull-back via φ is the movable part of
ξη. In conclusion we have

2g − 2

σ
≥ deg(γη) ≥ dim(γη) = dim(ξη) = g − 2,

and hence

σ ≤ 2 +
2

g − 2
.(∗)

Let us first discuss the case g ≥ 5. Then σ = 2 and the linear series γη on Γη has
dimension g − 2 and degree at most g − 1; hence Γη has arithmetic genus at most
1. Indeed Γη is smooth of genus 1 by (0.3).

Then we consider the linear series δη,η′ cut out on a general Mη by the linear
system |Mη′ | for η′ ∈ Pic0(S) general. The generic vanishing (0.5, i) implies again
that δη,η′ is complete. By lemma (2.2), the movable part of δη,η′ also comes as a
pull-back of a complete linear series γη,η′ of Γη. Since δη,η′ has dimension 1, then

δη,η′ = φ∗(γη,η′) + ϕη,η′ ,
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where γη,η′ is a complete linear series of dimension 1 on Γη and ϕη,η′ is the fixed
part.

Claim 3. The divisor ϕη,η′ , for η′ general, does not depend on η′ ∈ Pic0(S).
In fact the support of ϕη,η′ is the intersection of Mη with the base locus of |Mη′ |.
Under our assumption, i.e. that the general curve Mη is irreducible, this base locus
is finite. Hence the support of ϕη,η′ consists of the points of S which belong to
every sufficiently general curve Mη. This clearly implies our assertion.

We can now set ϕη,η′ = ϕη. Let us look at the restriction map

µ′ : η′ ∈ Pic0(S)→Mη′|Mη
∈ Pic0(Mη) ⊂ Pic(Mη).

By the above discussion, this coincides, up to a translation, with the map

ρ′ : η′ ∈ Pic0(S)→ φ∗(γη,η′) ∈ Pic(Mη).

This yields a contradiction. In fact, the image of the map ρ′ is of dimension d ≤ 1
since Γη is elliptic, whereas the map µ′ has image of dimension 2 by (0.10, b) and
by the assumption dim(imµ) = 2.

Now we discuss the cases g = 3, 4. If g = 3, then (∗) yields 2 ≤ σ ≤ 4. If σ = 2,
we conclude as above. If σ = 3, then the linear series ξη is a g1

4 with a base point p.
Hence γη is a g1

1 on Γη, which is therefore rational. This yields that the bicanonical
image, possessing the 2-dimensional family of rational curves Γη, is rational. Hence
the curves Mη would be linearly equivalent, a contradiction. If σ = 4, again we
find that γη is a g1

1 on Γη, and we reach the same contradiction. If g = 4, then ξη
is a g2

6 . If ξη has a base point, then it has two base points because it is composite,
and then Mη is hyperelliptic, contradicting (0.3). If ξη has no base points, then we
have 2 ≤ σ ≤ 3. In any case Γη has arithmetic genus at most 1. The conclusion is
then as above.

Finally we have to discuss the case in which the general curve Mη is reducible.
Since |Mη| is a linear pencil, it has to be composed with an irrational pencil f :
S → B, with B, as we know, of genus 1. Moreover Mη ∼ 2G, where G is a fibre
of f . In fact OS(Mη) is the pull-back, via f , of a line bundle µη of degree 2 on B.
We have 8 ≥ K2 = K · Fη + 2K · G ≥ 8, since K · G ≥ 4 because S presents the
non-standard case. The above inequality proves that K · G = 4 and K · Fη = 0,
which yields that Fη does not depend on η because it is a union of fundamental
cycles. This implies that the map

η ∈ Pic0(S)→ µη ∈ Pic2(B)

should be generically injective, a contradiction.
Case q = 1. Since q = 1, we have χ(OS) = 3, hence K2 ≤ 8 < 3χ(OS). Since we

are in the non-standard case, by applying (0.4, ii) we see that the Albanese pencil
a : S → Alb(S) is a pencil of hyperelliptic curves of genus 3 and K2 = 8. Since
h0(S,OS(2K)) = 11 and (2K)2 = 32 and |2K| is base point free, the degree of the
bicanonical map is 2. Therefore there is an involution ι on S such that a general
pair (x, y) of points of S exchanged by ι are such that φ(x) = φ(y). We refer to ι
as to the bicanonical involution of S.

Claim 4. For η any point in Pic0(S) and for any pair (G,G′) of fibres of a, one
has h0(S,OS(K + η −G−G′)) = 0. Otherwise we have K ∼ 2G+H , where H is
an effective divisor. Then 8 = K2 = 2K ·G+K ·H = 8+K ·H , whence K ·H = 0,
and the components of H are rational. Therefore H · G = 0, contradicting the
connectedness of the canonical divisors.
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Claim 5. Let η ∈ Pic0(S) be a general point and let G be a general fibre of the
Albanese map a. Then h0(S,OS(K + η − G)) > 0, i.e. K + η ≡ G + Aη,G, with
Aη,G a curve on S. Assume, on the contrary, that h0(S,OS(K+η−G)) = 0. Then
the restriction map

ρη,G : H0(S,OS(K + η))→ H0(G,ωG)

is an isomorphism, since it is injective, and h0(S,OS(K + η)) ≥ 3.
Now we make the following remark:

Remark 1. For η ∈ Pic0(S), the fixed divisor Fη of |K + η| is contained in a union
of fibres of a but does not contain any fibre of a. Hence it does not depend on η,
for η ∈ Pic0(S) a general point. Since ρη,G is an isomorphism, we have Fη ·G = 0,
and therefore Fη is contained in a union of fibres of a. Assume that Fη = Gη +F ′

η,
with Gη a fibre, and F ′

η not containing any fibre by claim 4. Then

8 = K2 = K ·Gη +K · F ′
η +K ·Mη

= 4 +K · F ′
η +Gη ·Mη +Mη · F ′

η +M2
η = 8 +K · F ′

η +Mη · F ′
η +M2

η

and hence K · F ′
η = Mη · F ′

η = M2
η = 0. Therefore |Mη| is composed of a pencil,

whose general curve we denote by L, i.e. Mη ∼ iL, i ≥ 2. Since Mη · G = 4,
and since the only irrational pencil on S is the Albanese pencil, we have that |L|
is a rational pencil, hence i = 2. Since K ·Mη = 4, we would have K · L = 2,
contradicting the fact that we are in a non-standard case. This proves the remark.

As a consequence we have

Remark 2. For η ∈ Pic0(S) general the linear system |K + η| is not composed of a
pencil. Suppose to the contrary that |Mη| is composed of a pencil, so that |Mη| =
|iLη|, with i ≥ 2. Since Mη ·G = 4, we have i = 2 and |Lη| is a rational pencil. Then
8 = K2 = K ·Fη +2K ·Lη ≥ 2K ·Lη implies 4 ≥ K ·Lη = Fη ·Lη +2L2

η ≥ 1+2L2
η.

Hence 1 ≥ L2
η ≥ 0. By the remark above, the curve Lη varies, as η varies in

Pic0(S) in a 2-dimensional irreducible system of curves on S, not contained in a
linear system, whose general curve is irreducible. By lemma (0.14) and proposition
(0.16) we find a contradiction.

Now there are two cases to be considered according to whether the bicanonical
involution ι fixes the general fibre G of the Albanese map a or not. First we
suppose that ι does not fix the general fibre G of a. Let G′ = ι(G) 6= G. If D is
a general canonical divisor on G, let D′ = ι(D) be the corresponding divisor on
G′. By remark 2 above, the general curve Mη is irreducible. Then for the general
η ∈ Pic0(S) there is one single curve in |Mη| containing D and D′, and the general
such curve is irreducible. Let M be the family described by these curves, which is
parametrized by Pic0(S). Since M2

η ≤ K2 = 8 and since the degree of D + D′ is
8, two general curves of M only meet at the base points D and D′. Hence M is a
pencil with base points on S, i.e. it is a rational pencil, contradicting remark 1.

Next we consider the case in which ι fixes the general fibre G of the Albanese
map a.

The map φK+η : S → P2, which is surjective by remark 2, restricts on G to the
canonical map. Hence the curves of the Albanese fibration are mapped by φK+η to
conics in the plane. We claim that deg(φK+η) > 2. Otherwise let C be the family of
conics in the plane which are images of the fibres of a via φK+η, let p be a general
point in P2 and let x, y be the two points of S such that φK+η(x) = φK+η(y) = p.
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Then, by our assumption on ι, we have that x, y belong to a unique fibre G of a,
and the conic φK+η(G) would be the unique curve of C passing through p. Hence C
would be a linear pencil, which in turn would imply that the fibres of a are linearly
equivalent, a contradiction.

But if deg(φK+η) > 2, with the same argument as above we also come to a
contradiction by finding a systemM of curves parametrized by Pic0(S), with base
points and no variable intersections. Claim 5 is thus proved.

Finally we prove the following claim, which contradicts claim 4:
Claim 6. The curve A := Aη,G contains some fibre of the Albanese map. Since

A · G = 4, we have A2 = 0. Since A moves on S we can write A = B + C, where
B is the fixed part and C the movable part. Let C2 > 0. Since K · C ≤ 4, by the
index theorem the only possible cases are either C2 = 1 and K · C = 3 or C2 = 2
and K ·C = 4. The former case can be excluded by using, as we did already before,
proposition (0.18). In the latter case we have K · B = 0; hence B · G = 0 and
C · G = A · G = 4. Then 4 = K · C = C2 + C · B + C · G ≥ 6, a contradiction.
Therefore we have C2 = 0. The assertion follows from the fact that A moves in a
non-linear system and the Albanese pencil is the only irrational pencil on S. ♦

3. The case q = 3

Again we recall that, by [CFM], all non-standard cases with pg ≥ 4 have q = 0.
Hence we may assume pg = 3. In this section we are going to classify the smooth
minimal surfaces S with pg = q = 3 and with the bicanonical map φ not birational.
First we will deal with the non-standard case. In view of proposition (1.1) and
(0.4,i), we may assume that 8 ≥ K2 ≥ 6. First we will exclude the cases K2 = 7, 8,
and then we will prove in proposition (3.22) that if S is a surface with pg = q = 3
and K2 = 6, then S is the symmetric product of a curve of genus 3. This proves
the first part of theorem B of the introduction. Finally we will classify the standard
cases, concluding the proof of theorem B.

Notice that h0(S,OS(2K)) = K2 + 1; hence the bicanonical image Σ of S is a

surface of degree deg(Σ) = 4K2

σ in PK2

. This shows that σ ≤ 4 and that σ is even

if K2 > 6.
First of all we prove

(3.1) Proposition. Let S be a surface of general type with pg = q = 3. Then:
(i) If there is an irrational pencil f : S → B with B a smooth curve of genus b

and fibres of genus g, then either b = 1 and g ≥ 3, or b = g = 2, K2 = 8, the map
f is smooth and the curves of the pencil have constant modulus.

(ii) The image of the Albanese map a : S → S′ ⊆ Alb(S) is a surface.
Let ∆ be the subscheme of S where a drops rank, and suppose there is no irra-

tional pencil f : S → B with B a smooth curve of genus b = 2. Then:
(iii) The natural map w : ∧2H0(S,Ω1

S) → H0(S,Ω2
S) is an isomorphism, and

∆ is the base point scheme of |K| and is also the scheme defined by the condition
that Ω1

S is not generated by the global sections there. In particular any curve of
S contracted by a, e.g. any rational curve, is contained in the base locus of |K|.
Moreover, if the differential of a is zero at p ∈ ∆, then p is a multiple base point
for |K|;

(iv) If, in addition, |K| has no fixed component, then ∆ is finite of length δ =
2(K2 − 6).
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(v) If, in addition, φ := φ2K is not birational, then either K2 = 6 and |K| is
base point free, or K2 = 8, and this is the only case in which |K| may have a base
point of multiplicity 2. If K2 = 8 and |K| has a base point of multiplicity 2, then
there is a curve K0 ∈ |K| having at p a point of multiplicity at least 3.

Proof. Let us prove (i). If b = 1 the assertion follows by the last part of (0.6).
Suppose b ≥ 3. By (0.6) we would get K2 ≥ 16, contradicting the Miyaoka-Yau
inequality, which in the present case reads out as K2 ≤ 9. If b = 2, arguing as above
and using (0.6) again, we have that the only possibility is as stated. We observe
that (ii) follows by (i) since, if the image of a were a curve, its genus would be 3.

In order to prove (iii) we remark that if w is not an isomorphism, then there
is a non-zero indecomposable tensor ω1 ∧ ω2 ∈ ∧2H0(S,Ω1

S) in the kernel of w.
According to Castelnuovo-De Franchis’ theorem ([BPV], pg. 123), there is then an
irrational pencil f : S → B with B a smooth curve of genus b ≥ 2. By (i) and by
the assumption we have a contradiction.

Let p be a point of S and let (x, y) be coordinates with origin at p. Let (ω1, ω2, ω3)
be a basis of H0(S,Ω1

S), and write ωi = fi(x, y)dx + gi(x, y)dy, i = 1, 2, 3, around
p. The equations of ∆ around p are

rk

(
f1 f2 f3

g1 g2 g3

)
≤ 1

It is clear that these same equations define the scheme where Ω1
S is not generated

by the global sections. In view of the isomorphism w : ∧2H0(S,Ω1
S)→ H0(S,Ω2

S),
a basis of H0(S,Ω2

S) is given by (w(ωi ∧ ωj))1≤i<j≤3. This shows that the base
locus of |K| is given around p by the same equations as ∆ and that if a has zero
differential at p, then p is a multiple base point for |K|. This proves (iii).

As for (iv), we assume |K| has no fixed component. By (0.1), the general
canonical curve is irreducible and reduced. The choice of the basis (ω1, ω2, ω3)
of H0(S,Ω1

S) determines a map O3
S → Ω1

S , whose cokernel we denote by T . By
theorem 1.22 of [Ca] one has length(T ) = K2 − c2(S) = 2K2 − 12. We now prove
that δ := length(∆) = length(T ). Working locally, and using the Hilbert-Burch
theorem, we see that there is an exact sequence

0→ TS → O3
S → I∆(K)→ 0,

where TS is the tangent sheaf of S. Dualizing the above sequence, we get

0→ OS(−K)→ O3
S → Ω1

S → T → 0.

Therefore we have T ' Ext1(I∆(K),OS) ' Ext2(O∆,OS(−K)). By local duality
Ext2(O∆,OS)∗ ' Hom(ωS ,O∆) ' O∆, which proves our assertion.

The first part of (v) follows by (iv) and the fact that if K2 = 7, then |K| yields
a map of degree five to P2. Since σ ≤ 4, we find a contradiction.

Let us now prove the second assertion of (v). Let mp be the maximal ideal of
the local ring of S at p. We have a natural map

r : H0(S,OS(KS))→
m2

p

m3
p

Were r surjective, then the length of the base point scheme ∆ of |K| at p would
be 3, contradicting (3.1). Then r is not surjective, and also not injective because

h0(S,OS(KS)) = dim
m2
p

m3
p

= 3. This completes the proof of part (v). ♦
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In our discussion we will distinguish two main cases: (i) |K| has a fixed part;
(ii) |K| has no fixed part, and, according to (0.1) and (3.1), the general canonical
curve is irreducible and reduced and K2 = 6, 8. Let us prove the following lemmas:

(3.2) Lemma. Let S be a minimal surface of general type with pg = q = 3 and no
irrational pencils of curves of genus 2. Suppose that L < K is an effective divisor
such that K · L ≤ 7 and h0(S,OS(L)) = 2. If |L| = Φ + |V |, where Φ is the fixed
part of |L| and |V | is the moving part, then the general curve in |V | is irreducible
and K · V + V 2 ≥ 8. In particular, K · V ≥ 5. If, in addition, K2 = 8 and φ is not
birational, then K · V ≥ 6.

Proof. Suppose that the general curve in |V | is reducible. Then |V | is composed
with an irrational pencil pencil f : S → B, and V ∼ mD, where D is a fibre of f
and m ≥ 2. Since K ·D is even and 2K ·D ≤ mK ·D = K ·V ≤ 7, we get K ·D = 2
and the pencil has fibres of genus 2, a contradiction.

Therefore the general curve in |V | is irreducible. By (0.2) we have K ·V +V 2 ≥ 8.
Since K · V = V 2 + V · Φ, we have 2K · V ≥ 8 + V · Φ, and by 2-connectedness of
the canonical divisors we get the assertion.

Suppose that K2 = 8, φ is not birational and K · V = 5, so that V 2 ≥ 3. Set
Ψ = K − V . Hence 5 = K · V = V 2 + V ·Ψ ≥ V 2 + 2 ≥ 5, and therefore V ·Ψ = 2
and V 2 = 3. From 8 = K2 = Ψ2 + 2V ·Ψ + V 2 = Ψ2 + 7 we deduce that Ψ2 = 1.
Also, Ψ is 1-connected by (0.11). Hence h1(S,OS(KS + Ψ)) = 0. Let V be general
in |V |. Since V 2 = 3, the linear system |V |, which has no fixed components, has
also no multiple base points; hence V is smooth. From the exact sequence

0→ OS(K + Ψ)→ OS(2K)→ OV (2K)→ 0

it follows that |2K| cuts out on V a complete, composed, linear series of degree
10 = 2pa(V ). This implies that V is hyperelliptic, contradicting (0.3). ♦

(3.3) Lemma. Let S be a minimal surface of general type with pg = q = 3. Suppose
that |K| has a fixed part, and write |K| = F + |M |, where F is the fixed part of |K|
and |M | is the movable part. Then:

(i) the general curve M ∈ |M | is irreducible, M2 ≥ 3, and h0(S,OS(K +M)) =
pa(M) ≥ 6. Moreover, if K2 = 6 then M2 ≥ 4;

(ii) if K2 = 8 then K is ample, and if K2 = 7 there is at most one fundamental
cycle on S, which can be of the type (Ai), i = 1, 2;

(iii) if M2 ≥ 4 one has the following numerical possibilities:

K2 K · F K ·M F ·M F 2 M2 pa(M)
(A1) 8 2 6 2 0 4 6
(A2) 7 1 6 2 −1 4 6
(B1) 7 0 7 2 −2 5 7
(B2) 8 1 7 2 −1 5 7
(C) 6 0 6 2 −2 4 6

(iv) in the cases (A) and (C) of the table F is the fixed part of |K+M |, and in the
cases (B) the image of restriction map H0(S,OS(K +M))→ H0(F,OF (K +M))
is at most 1-dimensional;

(v) if M2 = 4, K ·M = 6, and if there is no irrational pencil of curves of genus
2 on S, then the linear system |M | is base point free and F coincides with the fixed
locus of |K +M |;
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(vi) if K2 = 7, 8 and the map φ is not birational, one has M2 ≥ 4. Then either
we are in cases (A) of the table above and the linear system |M | is base point free,
or we are in cases (B) and then |M | has one simple base point. In both cases the
general curve in |M | is non-singular.

Proof. The first assertion of (i) follows by (0.1). By (0.3) we have M2 ≥ 3. Hence
h1(S,OS(K +M)) = 0. Then the theorem of Riemann-Roch yields

h0(S,OS(K +M)) = pa(M)

and one has

pa(M) = h0(S,OS(K +M)) ≥ h0(S,OS(2M)) ≥ dimSym2H0(S,OS(M)) = 6.

(3.4)

Remark that F ·M is an even positive integer becauseK·M+M2 = M ·F+2M2 ≡
0 (mod 2). Moreover K2 = K · F + F ·M +M2 = K · F +K ·M and K is nef. If
K2 = 6 one has F ·M + M2 = K ·M ≤ 6, and M2 ≥ 3 yields M · F = 2. Since
pa(M) ≥ 6 we have M2 ≥ 4, completing the proof of (i).

Assertion (ii) follows from (0.8), and the table in (iii) follows easily by (ii), the
hypothesis M2 ≥ 4 and the fact that M · F is a positive even integer.

By (i) we have h0(S,OS(K+M)) = 6 for (A) and (C) and h0(S,OS(K+M)) = 7
for (B). On the other hand,

h0(S,OS(K +M − F )) = h0(S,OS(2M)) ≥ dimSym2H0(S,OS(M)) = 6,

and thus we have (iv).
Let us now prove (v), for which it suffices to prove that |M | is base point free.

Suppose this is not the case. Then, by (0.3), |M | has one simple base point p. By
(i) and (iii) we have h0(S,OS(K +M)) = 6 and by (3.4) we get h0(S,OS(2M)) =
dimSym2H0(S,OS(M)) = 6. Therefore p is a base point of |2M |, and thus of
|K +M | by (iv). Since p is a base point of |M | and h0(S,OS(M)) = 3, there exists
a curve M ′ in |M | with a double point at p. Then, applying (0.12, a) to M ′, we
obtain a decomposition M ′ = A + B where A, B are curves such that A · B = 1,
p ∈ A ∩B , p a non-singular point of A, OA(p) ' OA(B), and either A ∩B = {p},
in which case also p is a non-singular point of B, or A ⊂ B.

By 2-connectedness of the canonical divisors and M ·F = 2 we get A·F = B ·F =
1. Hence, since M · A ≥ 1 and M · B ≥ 1, we have the following possibilities:

(a) A2 = 0, M · A = 1, K · A = 2, B2 = 2, M · B = 3, K ·B = 4;
(b) A2 = 1, M · A = 2, K ·A = 3, A ∼ B.
Case (a) cannot occur. In fact since A is 1-connected by (0.11), M · A = 1 and

p ∈ A yield that the image of the restriction map H0(S,OS(M))→ H0(A,OA(M))
is 1-dimensional and thus h0(S,OS(B)) = 2. But K · B = 4, and so we have a
contradiction to (3.2).

As for case (b), let us notice that if Γ is an irreducible component of A such that
Γ ·M 6= 0, then 1 ≤ Γ ·M = 2Γ ·A ≤ A ·M = 2; hence Γ ·M = 2 and there is only
one such a component Γ of A. Now remark that by (3.2) we have h0(S,OS(B)) = 1
and therefore h0(A,OA(M)) ≥ 2. Since p is a non-singular point of A, p is a base
point of |M | and pa(A) > 0, the fact that h0(A,OA(M)) ≥ 2 implies that the curve
A, which is 1-connected by (0.11), is not 2-connected. But then A = C +D, where
C, D are curves such that C ·D = 1, and say Γ ≤ C. Then M · C = 2, M ·D = 0,
yielding C2 = 0, D2 = −1. Since K · A = 3 we have K · C = 2, K · D = 1. By
(0.9) there is an irrational pencil f : S → B such that a multiple mC of C is a
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curve of the pencil. Since there is no irrational pencil of curves of genus 2 on S, we
have m ≥ 2, which, in view of the presence on S of the curve D, contradicts (0.21).
Therefore also case (b) cannot occur, and hence |M | is base point free.

Finally, if K2 = 7, 8 and φ is not birational, we have σ even, excluding M2 = 3.
In cases (A) of the table in (iii) the system |M | is base point free by (v). In cases
(B), since σ is even, |M | must have a simple base point. The last assertion follows
by the theorem of Bertini. ♦

Now we first exclude the cases (A) and (B) of the table in (iii) of lemma (3.3);
then we will exclude also the case K2 = 8 and |K| with no fixed components.
Finally we will discuss the case K2 = 6, proving that S is then the symmetric
product of a curve of genus 3.

Case φ not birational, K2 = 7, 8, and |K| having a fixed component.
We now assume φ not birational, and we first discuss, and exclude, the cases (A)

in the table of lemma (3.3, iii). Then |M | has no base points by lemma (3.3, v, vi).
Furthermore, we have

(3.5) Lemma. In case (A1) there is a pencil f : S → E with elliptic base E, and
a multiple mF of F , with m ≥ 2, is a curve of the pencil.

Proof. The curve F is 1-connected by (0.11). Since pa(F ) = 2, it follows that
h1(S,OS(−F )) 6= 0, and (0.9) yields the existence of an irrational pencil f : S → E
such that a multiple mF of F is a curve of the pencil. The rest of the assertion
follows by (0.7). ♦

We can now prove

(3.6) Lemma. In case (A1) the fixed curve F is irreducible, and in case (A2) it is
2-connected.

Proof. Case (A1). By lemma (3.3, ii) we have that K is ample and K · F = 2.
So, if F is reducible, one has F = F1 + F2 with K · Fi = 1, and Fi is irreducible,
i = 1, 2. The index theorem says that F 2

i ≤ −1, hence either F 2
i = −1 or F 2

i = −3.
By lemma (3.5) we have 0 = F · Fi, i = 1, 2; then F 2

1 = F 2
2 = −F1 · F2. Therefore

we have the following possibilities:

F 2
1 F 2

2 F1 · F2

(i) −1 −1 1
(ii) −3 −3 3

Case (i) cannot happen. Indeed since FFi = 0, KFi = MFi, whence M · F1 =
M · F2 = 1, which is excluded since |M | is base point free (see lemma (3.3, v, vi))
and the Fi’s are elliptic.

In case (ii) we apply (0.6) and get

4 = c2(S) ≥ 1 + 2m;

hence m = 1, a contradiction.
Case (A2). Suppose F , which is 1-connected by (0.11), is not 2-connected.

Then F = F1 + F2, with F1 · F2 = 1 and, say, K · F1 = 1, K · F2 = 0. Since
−1 = F 2 = F 2

1 + F 2
2 + 2, we must have F 2

1 = −1, F 2
2 = −2. By 2-connectedness

of the canonical divisors and since M · F = 2, we have M · F1 = M · F2 = 1.
Since F1 · (K − F1) = F1 ·M + F1 · F2 = 2, the curve F1 is 1-connected by (0.11).
Since M has no base points, this yields h0(F1,OF1(M)) ≥ 2, and therefore, as
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pa(F1) = 1, the curve F1 is reducible and not 2-connected (see [CFM], proposition
(A.5)). Therefore F1 = G1 +G2 with G1 ·G2 = 1 and, say, K ·G1 = 1, K ·G2 = 0,
G2

1 = −1, G2
2 = −2. Since F1 · F2 = 1 and F1 · G2 = G1 · G2 + G2

2 = −1, we have
F2 6= G2. By lemma (3.3, ii), we must have that F2 and G2 are (−2)-curves meeting
transversally at one point. Then, since 1 = F2 ·F1 = F2 ·G2 +F2 ·G1 = 1+F2 ·G1,
we have G1 · F2 = 0. By 2-connectedness of K, one has M · G1 = M · F2 = 1,
M · G2 = 0. Then G1, which is 1-connected by (0.11), is not 2-connected and
contains a curve of arithmetic genus zero which is met at one point by the curves of
|M |, i.e. it contains F2 and we have G1 = F2 +H , with H effective and H ·F2 = 1.
But then G1 · F2 = F 2

2 + F2 ·H = −2 + 1 = −1, a contradiction. ♦

(3.7) Corollary. In the cases (A), one has h0(S,OS(M − F )) = 1. Furthermore
if M ′ is the unique curve in |M | containing F , it decomposes as M ′ = A+B with
A, B curves such that A · B = 1, A · F = B · F = 1, and one has the following
possibilities for the decomposition:

M · A A2 M · B B2

(a) 0 −1 4 3
(b) 1 0 3 2
(c) 2 1 2 1 A ∼ B

(3.8)

Proof. Since F is 2-connected with pa(F ) ≥ 1, M is nef and M · F = 2, one has
that the image of the restriction map H0(S,OS(M))→ H0(F,OF (M)) is at most
2-dimensional. But |M | being base-point free forces this image to be 2-dimensional,
so we have the first part of the assertion.

Any intersection point of F with the curve M ′ − F is a multiple point of M ′,
and by lemma (3.3, iv) it is a base point of |K +M |. Then the assertion about the
splitting M = A + B with A · B = 1 follows by (0.12, a). The fact that A · F =
B · F = 1 follows from 2-connectedness of the canonical divisors and M · F = 2.
Since 4 = M2 = A2+B2+2A·B = A2+B2+2 and 0 ≤M ·A = A2+A·B = A2+1
and similarly for B, one easily verifies that the only possibilities are those listed in
table (3.8). ♦

(3.9) Lemma. Also in case (A2) the curve F is irreducible.

Proof. Assume that F is reducible, and let us consider the map

H0(S,OS(K + F ))→ H0(F, ωF ) ' H0(F,OF ) ' C.

It must be surjective, as otherwise F would be in the fixed part of |K+F |, and since
F has some singular point, this is against theorem (0.12, a) and the 2-connectedness
of F . Therefore h0(S,OS(K + F )) = 4 and |K + F | = |2F +M | is base point free,
since |M | is base point free.

Now we look at the morphism φK+F , which contracts F to a point p. Since
(K + F )2 = 8, its degree is either 4 or 2. If it is 4, it maps S to a quadric Q. We
notice that p is a smooth point of Q. Otherwise, since on composing φK+F with
the projection of Q from p to a plane we have the rational map φK = φM , we would
have a contradiction to lemma (3.3, i). Let |L| be the linear system on S whose
general member is the strict transform via φK+F of a general line of a ruling of
Q. Clearly L · F = 0, because F is contracted to a smooth point of Q. Moreover,
since L · (K + F ) = 4, one has K · L = 4. This contradicts lemma (3.2), because
L < M < K. This proves that the degree of φK+F cannot be 4.
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Suppose that the degree of φK+F is 2. Then the degree of φK+F on a curve
of |M | is also 2. On the other hand, since we have equality in formula (3.4) and
the degree of φM is 4, the degree of φ2M is also 4. Since, by (3.3, iv) one has
|K + M | = |2M |+ F and |K + F | + (M − F ) is contained in |K + M |, we find a
contradiction. ♦

We explicitly notice that, since F is irreducible in both cases (A), by proposition
(3.1, iii) there are no smooth rational curves on S.

Now we are ready to prove

(3.10) Proposition. The cases (A) cannot occur.

Proof. Case (A1). Suppose that (a) of table (3.8) happens. Since K ·A = F ·A = 1
and, as noted above, there is no smooth rational curve on S, the curve A will be
irreducible with pa(A) = 1, and the pencil f : S → E, which exists by lemma (3.5),
induces a dominant morphism f : A→ E, contradicting (0.21).

Also (b) cannot occur. In fact since M · A = 1, and since |M | is base point
free, A should have some smooth rational component, whereas there is no smooth
rational curve on S.

In case (c) we have K ·A = K ·B = 3. Now either F ≤ A or F ≤ B, say F ≤ B.
Since F ·(B−F ) = 1, (B−F )2 = −1, K ·(B−F ) = 1, again we have an irreducible
curve of arithmetic genus 1 as in case (a); hence we get a contradiction.

Case (A2). If (a) happens, as in the case (A1) above we see that A is an
irreducible curve of arithmetic genus 1. Since A · F = 1, if we set D := A+ F , we
will have D2 = 0, K · D = 2. By arguing as in the proof of lemma (3.5), we see
that there is a pencil f : S → E with elliptic base E and such that a multiple mD
of D, with m ≥ 2, is a curve of the pencil.

Since |K+B|+A is contained in |K+M | and A 6= F , we see, by lemma (3.3, iv),
that F is a fixed component of |K+B|. Now, since F ≤ B and F · (B−F ) = 2, we
find by (0.12, a) that B is not 2-connected. Then B = B1 +B2, with B1 · B2 = 1.
Since D is nef, by 2-connectedness of the canonical divisorsB1·D ≥ 1 and B2·D ≥ 1.
Therefore, since B ·D = 2, we must have Bi ·D = 1 and K ·Bi = B2

i + 2, i = 1, 2.
If either B1 or B2 were of arithmetic genus 1, we would have a contradiction to

(0.21). Hence K · Bi > 1, i = 1, 2. Therefore, since K · B = 5, we can only have,
say, K ·B1 = 2 and K ·B2 = 3, yielding B2

1 = 0 and B2
2 = 1. By (0.9) there is then

another pencil g : S → E′, with elliptic base E′, such that nB1, n ≥ 2, is a curve of
the pencil. Since B1 · (A+ F ) = B1 ·D = 1 and B1 is nef, we get either B1 ·A = 1
or B1 · F = 1, and so we again find a contradiction to (0.21).

Case (b) is again excluded, since it would imply the existence of base points for
|M |.

As for (c), it also cannot happen. In fact we may assume F ≤ A. We find
(A−F )2 = −2, K · (A−F ) = 2 and M · (A−F ) = 0. If A−F is 1-connected, then
|M − (A−F )| = |B+F | is a pencil. Since K · (B+F ) = 4, we find a contradiction
to lemma (3.2). If A − F is not 1-connected, in particular it is reducible and we
have A − F = A1 + A2 with M · Ai = 0, K · Ai = F · Ai = 1, A2

i = −1, i = 1, 2;
hence A1 · A2 = 0. Since there are no smooth rational curves on S, the curves A1

and A2 are irreducible curves with arithmetic genus 1. If we put D = F + A1, we
have K · D = 2, D2 = 0, and A2 · D = 1, and we find again a contradiction to
(0.21). ♦
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Next we turn to the discussion of the cases (B). Here the general curve in M is
irreducible and non-singular by lemma (3.3, vi). Furthermore, by (3.3, ii) we see
that F is irreducible in case (B2), whereas in case (B1) it is a fundamental cycle of
type (Ai), i = 1, 2. In particular, if F ′ is an irreducible component of F , one has
F · F ′ < 0 and M · F ′ > 0. Thus, by (3.1), every smooth rational curve θ in S is
such that M · θ > 0.

(3.11) Lemma. If p is a base point of |K+M |, there exists an irreducible curve D
passing through p and satisfying D2 = −1, K ·D = 1 and M ·D = 0. Furthermore,
h0(S,OS(M − 2D)) 6= 0.

Proof. Suppose p is a base point of |K + M |. Since M2 = 5 and M is nef, (0.13)
yields the existence of a 1-connected curve D passing through p, such that K ·(M−
2D) ≥ 0 and satisfying either M ·D = 0 and D2 = −1 or M ·D = 1 and D2 = 0.
Since K ·M = 7 we have the following possibilities:

D2 K ·D
(a) −1 3
(b) 0 2
(c) −1 1

Case (a) cannot happen. In fact D is 1-connected and M · D = 0, whence
h0(S,OS(M − D)) = 2 and K · (M − D) = 4, contradicting lemma (3.2). Also
case (b) cannot happen. In fact the same argument as in lemma (3.5) yields the
existence of a pencil f : S → B, with B a curve of genus 1, which has mD, for
some m ≥ 2, as a multiple fiber. Since D · F = 1, this contradicts (0.21).

Therefore only case (c) can happen. Now suppose that D is not irreducible.
Since K ·D = 1, there will be an irreducible component of D which is a (−2)-curve.
But this is impossible. In fact in case (B2) there are no (−2)-curves on S, while in
case (B1) every (−2)-curve θ in S is such that M · θ > 0. But since M ·D = 0 and
M is nef, no (−2)-curve can be a component of D.

The curve D is irreducible with pa(D) = 1, D2 = −1, thus h0(2D,O2D) = 2.
Moreover O2D ' O2D(M), and thus the last assertion is proved. ♦

(3.12) Proposition. Cases (B1) and (B2) do not occur.

Proof. By lemma (3.3, iv) we know that the image of the restriction map r :
H0(S,OS(K + M)) → H0(F,OF (K + M)) is at most 1-dimensional. Since (K +
M) ·F > 0, the linear system |K +M | has at least one base point p on F . Then by
lemma (3.11) there is an irreducible curve D with D2 = −1, K ·D = 1, M ·D = 0,
F ·D = 1 passing through p, and it is clear that D ∩ F = {p}. This implies that
Im(r) is 1-dimensional, and thus h0(S,OS(2M)) = 6: otherwise D would vary, as
p moves on F , in a positive-dimensional family of irreducible curves with D2 = −1.

We first exclude that |K +M | has two distinct base points p, q on F . In fact, if
this happens (3.11) implies the existence of two irreducible curves D and D′ passing
through p and q respectively and such that D2 = D′2 = −1, K ·D = K ·D′ = 1
and F ·D = F ·D′ = 1. Since p 6= q, also D and D′ are distinct. Since D and D′

are contracted by φM , then D ·D′ = 0.
Set N = D′ + F in case (B2) and N = D + D′ + F in case (B1). Then N2 = 0

and K · N = 2, and N is 1-connected by (0.11). As usual (cf. lemma (3.5)) this
yields the existence of a pencil with elliptic base of which mN , for some m ≥ 2, is
a fibre.
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In case (B2) we have a contradiction to (0.21), since D ·N = 1.
In case (B1) consider the long exact sequence obtained from

0→ OS → OS(N)→ ON (N)→ 0.

From h0(N,ON (N)) = 0 and q = 3 we obtain h1(S,OS(N)) ≥ 3. Applying the
theorem of Riemann-Roch to N we obtain

h0(S,OS(K −N)) + h0(S,OS(N)) = h1(S,OS(N)) ≥ 3.

Clearly h0(S,OS(N)) = 1, and since N is not contained in the fixed locus of |K|
we have h0(S,OS(K −N)) = 2 and h1(S,OS(N)) = 3. Let B := K −N . We have
B2 = 3, K · B = 5, and the general curve in |B| is irreducible. In fact let Γ be the
fixed part of |B|. By lemma (3.2) one has K ·Γ = 0, hence N ·Γ = 0, and therefore
B · Γ = 0. Then (B − Γ)2 < 3, contradicting lemma (3.2).

Since B ·F = 0, there exists B′ ∈ |B| such that B′ = A+F with A a curve such
that A · F = 2, A2 = 1 and K · A = 5.

Now consider the restriction map t : H0(S,OS(M+B))→ H0(M,OM (M+B)).
Since h0(S,OS(B − M)) = 0, the image of the map r1 : H0(S,OS(B)) →
H0(S,OM (B)) has dimension equal to h0(S,OS(B)) = 2. Furthermore, the im-
age of r2 : H0(S,OS(M))→H0(S,OM (M)) has also dimension 2. This yields that
the image of t is at least 3-dimensional, which implies h0(S,OS(M + B)) ≥ 5,
whence h1(S,OS(M +B)) ≥ 1.

Notice that |M+B| = |K+A|. Hence h1(S,OS(K+A)) = h1(S,OS(M+B)) > 0
and therefore A is not 1-connected (see [B], pg. 178). Then, since A ·F = 2 and B
is 1-connected (see (0.11)), one obtains A = A1 +A2, where A1, A2 are curves such
that A1 ·A2 = 0, A1 ·F = A2 ·F = 1. By 2-connectedness of the canonical divisors
we have 2 ≤ Ai · (K − Ai) = Ai · F + Ai · N . Since B is nef we get Ai · B ≥ 0,
whence A2

i ≥ −1, for i = 1, 2, and therefore we have either, say, A2
1 = −1, A2

2 = 2
or A2

1 = 0, A2
2 = 1. We saw that K ·Ai ≥ A2

i +2, i = 1, 2, and K ·A = 5. Therefore
in the first case K · A1 = 1 and in the second case K · A1 = 2. This contradicts
(0.21) in both cases. In the first case we would have M ·A1 = 0, and therefore A1 is
irreducible, since M ·θ > 0 for every (−2)-curve θ on S, and in addition A1 ·N = 1.
In the second we would obtain a second irrational pencil with elliptic base, with
mA1, for some m ≥ 2, a curve of the pencil, and in addition A1 · F = 1.

We have proved so far that |K +M | cannot have two distinct base points on F .
Whence, we may now turn to the case in which there is only one base point for
|K + M |. Let p be this base point lying on F and let D be the curve as in (3.11)
passing through p. Now every divisor in |M | is 1-connected and (M −D) ·D = 1,
every divisor in |M − D| is 1-connected (see (0.11)), and (M − D)2 > 0. Thus
h1(S,OS(K + M − D)) = 0 and by Riemann-Roch h0(S,OS(K + M − D)) = 6.
Since h0(S,OS(2M −D)) = 5, the image of the restriction map

ρ : H0(S,OS(K +M −D))→ H0(F,OF (K +M −D))

is 1-dimensional and therefore |K + M − D| has base points on F . Let s be the
restriction to F of the section in H0(S,OS(D)), which is non-zero on F and vanishes
only at p. Then s · Im(ρ) is 1-dimensional and is contained in Im(r), which, as
we saw, is also 1-dimensional. Hence s · Im(ρ) = Im(r). Since the only point
of F where the sections in Im(r) all vanish is p, then the same happens for the
sections in Im(ρ), i.e. p is the unique base point of |K + M − D| on F . Since
(K + M − D) · D = 2, this implies that also the image of the restriction map
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r′ : H0(S,OS(K +M −D))→ H0(D,OD(K +M −D)) is at most 1-dimensional,
and therefore h0(S,OS(K + M − 2D)) ≥ 5. Now let A := M − 2D. Since A2 = 1
and K · A = 5, Riemann-Roch implies h1(S,OS(K +M − 2D)) > 0; thus A is not
1-connected. So A = A1 + A2, where A1 · A2 ≤ 0. Since every divisor in |M | is 1-
connected, we have Ai ·D ≥ 1, and therefore Ai ·D = 1 because D ·A = 2. Then one
has A1 · A2 = 0: otherwise we would have (A1 + D) · (A2 + D) ≤ 0, contradicting
the connectedness of M . By 2-connectedness of the canonical divisors we find
Ai ·F ≥ 0, i = 1, 2, and from A ·F = 0 we deduce Ai ·F = 0, i = 1, 2. Furthermore
A2
i = A ·Ai = K ·Ai− 2, and K ·Ai ≥ 1 since Ai ·F = 0, i = 1, 2. Hence A2

i ≥ −1,
i = 1, 2, and if, say, A2

1 = 0, A2
2 = 1, we contradict the index theorem. So we can

assume that A2
1 = −1, K · A1 = 1.

This gives rise to a contradiction to (0.21). In fact m(A1 + D), for some m ≥
2, would be a multiple fibre of a pencil with elliptic base (see lemma (3.5)) and
(A1 +D) · F = 1. ♦

Our discussion of cases (A) and (B) is thus concluded.
Case φ not birational, K2 = 8, and |K| with no fixed component.
Let us assume φ not birational, |K| with no fixed component, K2 > 6. By

proposition (3.1, v) we have then K2 = 8, and by (0.1) the general canonical curve
is irreducible and reduced. Furthermore, by lemma (3.1, iii), on S there are no
rational curves at all.

(3.13) Lemma. Let pg = q = 3, K2 = 8, and let |K| have no fixed components. If
φ is not birational, then σ = 2.

Proof. Assume, to the contrary, that σ = 4. Let C be the general curve in |K|.
Then φ(C) would have degree 4 and it should span a P5, a contradiction. ♦

From lemma (3.13) we deduce the existence of the bicanonical involution ι (cf.
the case q = 1 in the proof of proposition (2.1)). Notice that ι acts as the identity
on |K| and |2K|.

(3.14) Lemma. Let the bicanonical map φ have degree 2, and assume that q ≥ 3
and there is no irrational pencil on S of genus at least 2. Then, if i is the involution
associated to φ, then i∗ acts as +1 on H0(OS(K)).

Proof. i∗ on H0(Ω1
S) has an eigenspace of dimension ≥ 2. Thus we get two lin-

early independent 1-forms whose exterior product is non zero, and yields a (+1)-
eigenvector in H0(OS(K)). We conclude since by our assumption we knew that i∗

would act either as +1 or as −1 on H0(OS(K)). ♦

(3.15) Lemma. Same assumptions as in lemma 1, and let Y = S/i, p : S → Y
the double cover. Then p is unramified in codimension 1 if the canonical system of
S has no fixed part.

Proof. Let R be the ramification divisor of p. We have an inclusion R + p∗|KY |
contained in |KS |. But both systems have the same dimension, whence the assertion
easily follows. ♦

(3.16) Proposition. Let pg = q = 3, K2 = 8, and let |K| have no fixed component.
Then, if φ is not birational, S presents the standard case.

Proof. Since |KS| has two simple base points, |KY | has exactly one base point,
which is not a ramification point. Then the involution i acts freely on the general
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canonical curve C of S. Thus C = C/i has genus 5. But its image φ(C), birational
to C, has degree 8 and should span a P5: this is a contradiction. ♦

The case K2 = 6.
Now we examine the case K2 = 6. First we prove

(3.17) Proposition. Let C be a smooth projective connected curve of genus 3.
Then its symmetric product S = C(2) is a smooth minimal surface with pg = q = 3,
K2 = 6, such that the bicanonical map is not birational, of degree 2. Furthermore:

(i) if C is not hyperelliptic, then the canonical system |K| of S is base point free
and the bicanonical involution sends a divisor x+ y to |KC − x− y|;

(ii) if C is hyperelliptic, then the canonical system |K| = F + |M | is of the type
(D) of the table in lemma (3.3, iii). Then the fixed part F of |K| is the rational
(−2)-curve described by the divisors of the g1

2, and the movable part |M | is base
point free. The bicanonical involution sends a divisor x+y to the divisor j(x)+j(y),
where j : C → C is the bicanonical involution;

(iii) in either case S presents the non-standard case.

Proof. It is well known that q = 3, and Alb(S) ' J(C) := Pic0(C). If one fixes a
theta-characteristic κ on C, the Albanese morphism coincides with the Abel-Jacobi
map a : x+y ∈ C(2) → OC(x+y−κ) ∈ J(C). The image of C(2) via a is a symmetric
theta divisor Θ which determines a principal polarization of J(C). Notice that Θ
is smooth if and only if C is not hyperelliptic, whereas, if C is hyperelliptic, it
has a double point which comes from the contraction of the rational (−2)-curve F
described by the divisors of the g1

2 , which is the only rational curve on C(2). In any
event Θ is nothing but the canonical model of S.

From the exact sequence

0→ OJ(C) → OJ(C)(Θ)→ NΘ,J(C) ' ωΘ → 0

and from the fact that h0(J(C),OJ(C)(Θ)) = 1 and h1(J(C),OJ(C)(Θ)) = 0, we

see that pg = h0(Θ, ωΘ) = h1(J(C),OJ(C)) = 3. Furthermore the exact sequence

0→ OJ(C)(Θ)→ OJ(C)(2Θ)→ N⊗2
Θ,J(C) ' ω⊗2

Θ → 0

shows that the map

H0(J(C),OJ(C)(2Θ))→ H0(Θ, ω⊗2
Θ )

is surjective. Since the linear system |2Θ| is composite with the involution induced
by the natural action of Z2 on J(C), the same happens for |ω⊗2

Θ | on Θ, which is
symmetric, i.e. stable for the Z2-action. This proves the first assertion.

By proposition (3.1, i) there is no irrational pencil on S, which proves (iii).
Let us look now at the following chain of isomorphisms:

H0(C,OC(KC))∗ ' ∧2H0(C,OC(KC)) ' ∧2H0(J(C),Ω1
J(C))

' H0(J(C),Ω2
J(C))

a∗−→ H0(C(2),Ω2
C(2)),

which gives rise to a projective transformation

f : P(H0(C,OC(KC))∗)→ |KC(2) |.
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In geometric terms, f is described as follows. A point of P(H0(C,OC(KC))∗) is
a linear series ξ of dimension 1 contained in |KC |. Let Tξ be the curve on C(2)

described by all divisors x+ y such that x+ y < D ∈ ξ. The map f sends ξ to Tξ.
With this description of the canonical curves on S in mind, assertions (i) and (ii)
are clear. Notice that the fact that |M | is base point free in part (ii) also follows
from (3.1, i) and (3.3, v). ♦

(3.21) Remark. The properties of the canonical system of C(2) could also be de-
duced from the isomorphism H0(Θ, NΘ,J(C)) ' H0(Θ, ωΘ). In fact in the hyperel-
liptic case Θ is singular with all its translates. Hence all its infinitesimal deforma-
tions, i.e. all sections of H0(Θ, NΘ,J(C)), vanish at the singular point, showing that
|K| has the fixed component as stated in proposition (3.20). On the other hand, in
the non-hyperelliptic case Θ is smooth, and it is clear that the infinitesimal defor-
mations do not vanish simultaneously at any point of Θ, showing that |K| is base
point free on C(2).

Now we are ready to prove the following proposition:

(3.22) Proposition. Let S be a surface with pg = q = 3 and K2 = 6. Then S is
the symmetric product of a curve of genus 3.

Proof. First we assume that |K| has no fixed components. By proposition (3.1, iii,
iv) the Albanese map a : S → S′ ⊆ Alb(S) is unramified. Then proposition (4.1)
of [De2] implies that a is an embedding.

Let us write S′ ∼ iD, where D is an effective indivisible divisor on Alb(S),
determining a polarization of type (1, d1, d2). Then 6 = K2 = S′3 = i3D3 =
6d1d2i

3, which implies i = d1 = d2 = 1, proving our assertion. In fact a smooth
theta divisor on a principally polarized abelian threefold is the symmetric product
of a curve of genus three.

Assume now that |K| has a fixed component. By lemma (3.3, i) we are in case
(C) of the table in the same lemma (3.3, iii). We have |K| = F + |M |, with F
a fundamental cycle. By lemma (3.3, v), the linear system |M | is base point free.
Let π : S → X be the contraction of F which gives rise to a normal surface X , and
let x be the singular point of x. The Albanese map a : S → S′ ⊆ Alb(S) factors
through π and through a map b : X → S′ ⊆ Alb(S). The map b is unramified at
the smooth points of X because |M | is base point free. In order to again apply
Debarre’s result to b, thus proving the assertion, we have to prove that b is also
unramified at x.

Suppose b is ramified at x. Note that the codifferential of b at x is the map

b∗ : H0(Alb(S),Ω1
Alb(S)) ' H0(S,Ω1

S)→ Ω1
X/mxΩ

1
X ,

where Ω1
X is the sheaf of Kaehler differentials of X and mx is the maximal ideal of

X at x. Note that H0(S,Ω1
S) ' H0(X,Ω1

X) via the map π∗. Then b ramified at x
means that there is a non-zero form η ∈ H0(X,Ω1

X) which is zero at x. Let η1 and
η2 be forms in H0(X,Ω1

X) forming with η a basis of H0(X,Ω1
X). Then the 2-forms

ωi = η ∧ ηi, i = 1, 2, are linearly independent elements of H0(X,Ω2
X), which both

vanish at x.
Now we observe that if ω ∈ H0(X,Ω2

X) vanishes at x, then the form π∗(ω)
vanishes with multiplicity two along F . This is an obvious consequence of the
following remarks:
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(i) A rational double point is locally embedded in C3 with coordinates (x1, x2, x3).
Then a 2-form vanishing at x is of the type ω =

∑
1≤i<j≤3 aijdxi ∧ dxj , with aij

holomorphic functions vanishing at x.
(ii) A rational double point can be resolved with a finite number of blowing-ups

with centres at rational double points.
(iii) Any holomorphic 2-form on C3 pulls back, on the blow-up of C3 at a point,

to a form vanishing along the exceptional divisor.
In conclusion we have that b ramified at x would yield h0(S,OS(K − 2F )) =

h0(S,OS(M − F )) = 2. This in turn would imply that |M | has two base points on
F , against lemma (3.3,v). ♦

The standard case.
Finally we classify the standard cases with pg = q = 3. Actually, improving on

proposition (3.1,i), we prove the following more general result:

(3.23) Theorem. Let S be a minimal surface of general type with pg = q = 3 and
an irrational pencil f : S → B, with B a smooth curve of genus b ≥ 1 and fibres of
genus g. Then either b = 1 and g ≥ 3 or b = g = 2, K2 = 8, the map f is smooth
and the curves F of the pencil have constant modulus. The latter case happens if
and only if there is a commutative diagram

F
pr1←− F × C

pr2−→ C
γ ↓ π ↓ ↓ ϕ
E

g←− S
f−→ B

where ϕ : C → B and γ : F → E are double covers, the first unramified with C
smooth of genus 3, the latter ramified with E smooth of genus 1, and π : F ×C → S
is the unramified double cover obained by pulling back f via ϕ. In other words, there
exist a smooth irreducible curve C of genus 3 and an action of G = Z/2Z on C
and F , free on C, such that B ' C/G and S ' F ×C/G, where G acts diagonally
on F × C.

Proof. The first assertion is (3.1,i). Let us assume now that b = g = 2. Then
Aut(F ) is finite and f is given by a representation ρ : π(B) → Aut(F ). Hence
ker(ρ) corresponds to a finite, unramified, Galois cover ϕ : C → B with Galois
group G := Im(ρ), such that the pull-back of f via ϕ is a product

F × C
π−→ S

pr2 ↓ ↓ f
C

ϕ−→ B

The group G acts on both C and F , and clearly

H0(S,Ω1
S) ' H0(F × C,Ω1

F×C)G ' H0(C,Ω1
C)G ⊕H0(F,Ω1

F )G(3.24)

' H0(B,Ω1
B)⊕H0(E,Ω1

E),

where E = F/G. Therefore, as q = 3, b = 2, the curve E has genus 1. Let us
consider the cover γ : F → E of order m equal to the order of G. Suppose that γ
has k branch points x1, ..., xk, and that γ has a ramification point of order mi at
any one of the m/mi points above xi, for any i = 1, ..., k. The Hurwitz formula
tells us that
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2 =

k∑
i=1

m

mi
(mi − 1).

This immediately implies that mi ≤ 3 for all i = 1, ..., k, and one has the following
possibilities: either k = 1,m = m1, or k = 1, m = 4, m1 = 2, or k = 2, m =
m1 = m2 = 2. In any case G is abelian, and we claim that this implies that γ
cannot be branched at only one point x. Otherwise γ would yield a representation
π1(E − {x}) ' Z ? Z → G which would factor through π1(E) ' Z × Z → G,
implying that γ is unramified, a contradiction. Thus the only possibility is k = 2,
m = m1 = m2 = 2, proving the assertion.

Finally, notice that if we have two smooth irreducible curves C and F , the former
of genus 3, the latter of genus 2, and an action of G = Z/2Z on C and F , free on C,
such that B := C/G has genus 2 and E := F/G has genus 1, then G acts diagonally
on F × C and the action is free. The quotient S ' F × C/G has q = 3 by (3.24)
and χ(OS) = 1

2χ(OF×C) = 1, whence pg = q = 3. ♦
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