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FILLING BY HOLOMORPHIC CURVES IN

SYMPLECTIC 4-MANIFOLDS

RUGANG YE

Abstract. We develop a general framework for embedded (immersed) J-
holomorphic curves and a systematic treatment of the theory of filling by
holomorphic curves in 4-dimensional symplectic manifolds. In particular, a
deformation theory and an intersection theory for J-holomorphic curves with
boundary are developed. Bishop’s local filling theorem is extended to al-
most complex manifolds. Existence and uniqueness of global fillings are given
complete proofs. Then they are extended to the situation with nontrivial J-
holomorphic spheres, culminating in the construction of singular fillings.

0. Introduction

In this paper we undertake a systematic study of filling by holomorphic curves
(especially disks) in symplectic 4-manifolds. Here is an account of the main results.

A. Deformation of Embedded J-Holomorphic Curves. We develop a gen-
eral framework for treating embedded (or immersed) J-holomorphic curves, with or
without boundary. Embedded (or immersed) J-holomorphic curves can be treated
in terms of J-holomorphic parametrizations. We present a more geometric ap-
proach, in which embedded (or immersed) J-holomorphic curves are considered as
submanifolds. One advantage of this approach is that the Teichmüller spaces of
conformal structures and automorphism groups can be avoided. The deformation
theory becomes cleaner and more transparent.

Generic regularity. It is well-known that generic almost complex structures are
“regular” or “Fredholm regular”, meaning surjectivity of the linearized Cauchy-
Riemann operator along simple closed J-holomorphic curves. This easily extends to
curves with boundary on a fixed supporting surface. We prove that for each given
almost complex structure, generic supporting surfaces are regular; see Theorem
3.3. This result is used in this paper for obtaining our general result on filling by
holomorphic disks in the presence of nonconstant J-holomorphic spheres.

Regularity (genericity) under a Chern class (Maslov class) condition.
In many situations, it suffices to use perturbation to generic parameters (almost
complex structures and/or supporting surfaces). But in some important situations,
such as filling by holomorphic disks, it is crucial to be able to show that a given
parameter is regular or generic along a certain class of J-holomorphic curves. In [G],
Gromov formulated a “genericity” result for closed embedded J-holomorphic curves
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in 4 dimensions. Basically, genericity along a curve follows if the Chern class of the
curve satisfies a natural inequality. We provide a proof of this result. Moreover,
we extend the result to J-holomorphic curves with boundary: see Theorems 2.9
and 2.10. Our set-up is actually more general; namely, we handle a general linear
Cauchy-Riemann operator on a complex line bundle over a Riemann surface. In
the case of curves with boundary, the Chern class is replaced by the Maslov class.1

B. Positivity of Intersections and the Adjunction Formula. Two important
tools in the theory of pseudo-holomorphic curves (in dimension 4) are positivity of
intersection and the adjunction formula. In the case of closed curves, they were
established by McDuff [M1] [M2] [M5], see also [MW]. Positivity of intersection for
J-holomophic curves with boundary (in some crude formulation) has been known
in the case when the almost complex structure J is integrable and the supporting
surface is real analytic. It was an open problem in the general situation.

Based on the asymptotic analysis in [Y1], we prove positivity of boundary inter-
sections for J-holomorphic curves with boundary. Combined with McDuff’s result,
this yields positivity of intersection for J-holomorphic curves with boundary. We
would like to emphasize that even the concept of intersection number for curves
with boundary is nontrivial, and has not been well-understood before. We introduce
a rigorous definition of it and show that it is a homotopy invariant.

In particular, this invariant is important for formulating the adjunction formula
for J-holomorphic curves with boundary. (Unlike the adjunction formula for closed
curves, where the classical situation is well-known, the case of curves with boundary
does not seem to be a classical topic.) We establish the adjunction formula for J-
holomorphic curves which are immersed along the boundary, which suffices for the
applications in this paper. We plan to treat the general case in a subsequent paper.

The adjunction formula plays an important role in filling by holomorphic disks,
especially in the presence of nonconstant J-holomorphic spheres.

C. Extension of Bishop’s Theorem. Let M be a 4-dimensional almost complex
manifold with almost complex structure J , and S a 2-dimensional submanifold in

M . Let p0 ∈
◦
S be an elliptic complex point. We have the following:

Theorem 1. There is a unique (up to reparametrizations in t) smooth 1-parameter
family of mutually disjoint, embedded J-holomorphic disks {Ft}0<t<1 in M such
that ∂Ft ⊂ S\{p0} for all t and Ft converges to p0 as t→ 0. The family {Ft}0<t<1

yields a smooth embedding of B × (0, 1), where B denotes the unit disk in R2.
Moreover, N = (

⋃
t Ft)∪{p0} is a C1 embedded J-flat half 3-ball (it is smooth away

from p0).

This is a generalization of the fundamental result of E. Bishop in [B] for complex
manifolds. The higher dimensional version will appear elsewhere. We note that
extension of Bishop’s result to almost complex manifolds has resisted resolution for
quite some time. The proof of Theorem 1 goes along lines which are rather different
from the arguments in [B]. The existence part is obtained by deforming suitable
nearly J-holomorphic disks. The subtlety here is the degeneracy in the deforma-
tion set-up. The key for overcoming this difficulty is to balance the deformations
in different directions carefully. On the other hand, the uniqueness follows from

1Added in proof: Hofer-Sikarov-Lizan and Lorek independently obtained similar results by
different methods. Their preprints appeared after the present paper was circulated.
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stability of intersections, which is a consequence of positivity of intersection and
the homotopy invariance of intersection.

D. Global Filling. The family {Ft} is a local filling of S by J-holomorphic disks.
One attempts to extend it to a global filling under suitable assumptions on S and
M . We consider the case that J is tamed by a symplectic form ω, i.e. the quadratic
form ω(·, J) is positive definite everywhere. Moreover, we assume that (M,ω, J)
has bounded geometry, i.e., (M, g) has uniformly bounded sectional curvatures and
positive injectivity radius, and J has uniformly bounded covariant derivative, where
g is the Riemannian metric obtained from symmetrizing ω(·, J). (The bounded ge-
ometry condition automatically holds if M is compact.) We call such a J uniformly
tamed (by ω). We shall first prove

Theorem 2. Assume that J is uniformly tamed, M has a J-convex boundary, S
is diffeomorphic to the 2-sphere S2, S ⊂ ∂M , and S has exactly 2 complex points
p1 and p2 which are elliptic. If M contains no non-constant J-holomorphic sphere,
then there exists a unique (up to reparametrizations in t) smooth family of mutually
disjoint, embedded J-holomorphic disks {Ft}0<t<1 in M such that ∂Ft ⊂ S\{p1, p2}
for all t, limt→0 Ft = p1 and limt→1 Ft = p2. The family {Ft}0<t<1 yields a smooth
embedding of B × (0, 1). Moreover, N = (

⋃
Ft) ∪ {p1, p2} is a C1 embedded J-flat

3-ball with S as boundary (it is smooth away from p1 and p2).

For convenience, we shall henceforth call a surface S ⊂ M simple, provided
that it is diffeomorphic to S2 and has exactly two complex points which are ellip-
tic. Theorem 2 was stated by M. Gromov in [G] with a sketch of some ideas for
proof. We point out that our proof can be extended to cover the case that ∂M is
only weakly J-convex. The details will be presented elsewhere. Besides Theorem
1, another fundamental ingredient in proving Theorem 2 (and the other results
below) is Gromov’s compactness theorem for pseudoholomorphic curves, which we
proved fully in [Y1]. Other tools are positivity and stability of intersection, and the
adjunction formula mentioned before.

Note that the hypersurface N in Theorem 2 or 1 is J-flat or Levi flat in the
sense that it has vanishing Levi form; see Section 5. If M is Kähler, we can define
the complex mean curvature of N at a point p ∈ N to be the trace of the second
fundamental form of N on the complex plane contained in TpN . Then Levi-flatness
means that the complex mean curvature of N vanishes everywhere. Hence Levi flat
surfaces can be compared with minimal surfaces. The condition of Levi flatness
gives rise to a quasilinear degenerate elliptic system. Analytically, this system is
more subtle than the classical minimal surface system.

A useful consequence of the proof of Theorem 2 is the following filling result
(such a consequence was first observed by Eliashberg [E2]):

Theorem 3. Assume that J is unformly tamed, and M has a J-convex boundary
and contains no nonconstant J-holomorphic sphere. Let f be a J-holomorphic curve
with boundary such that the image of its boundary is an embedded curve L in ∂M .
We further assume that L bounds an embedded disk S in M which has exactly one
complex point p0, which is elliptic. Then f is a (possibly branched) covering onto an
embedded disk. If f is an immersion, then it is actually an embedding. Moreover,
there is a unique smooth 1-parameter family of mutually disjoint, embedded J-
holomorphic disks {Ft}0<t≤1 such that ∂Ft ⊂ S\{p0} for all t, Ft converges to p0

as t → 0, and F1 is the image of f . The family {Ft} along with the limit point p0
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yields a C1 embedding of the (upper) half unit ball in R3. In particular, image(f)
is embedded and unknotted.

We would also like to mention the following basic application of filling by holo-
morphic disks due to Gromov: symplectically fillable 3-dimensional contact man-
ifolds are tight. The proof of Theorem 2 can be applied directly to yield this
result. Moreover, there seems to be hope to extend it to weak contact structures
(confoliations in the terminology of Eliashberg). This will be pursued in the future.

E. Global Filling in the Presence of Nonconstant J-Holomorphic Spheres.
The assumption in Theorem 2 (and Theorem 3) about J-holomorphic spheres is
rather restrictive, because non-constant J-holomorphic spheres are often present.
Non-constant J-holomorphic spheres constitute a main class of obstructions to
global filling. It is important to understand these obstructions and obtain global
filling in the presence of non-constant J-holomorphic spheres. There are three main
problems here:

Problem 1. Characterize the obstructions.

Problem 2. Can one extend the local fillings (provided by Theorem 1) beyond
obstructions to obtain global fillings with singularities?

Problem 3. Can one use suitable perturbation procedures to kill obstructions?

We solve all the three problems for rationally regular J . First, we introduce some
terminology.

Definition 1. An “exceptional J-holomorphic sphere” in M is an embedded J-
holomorphic sphere F with Chern class c(F ) = 1. An “exceptional J-cusp-curve”
for a given surface S is a J-cusp-curve C consisting of an embedded J-holomorphic
disk F0 with boundary on S∗ = S\{complex points of S} and exceptional J-
holomorphic spheres F1, ..., Fk (at least one) with the following properties. First,
these spheres are mutually disjoint and disjoint from S. Second, each Fi, i ≥ 1,
intersects F0 at a single point transversally. Third, the Maslov class µ(C) = 2, i.e.
µ(F0) = 2− 2k.

Definition 2. Let a symplectic form ω be given. An “exceptional symplectic
sphere” is a symplectically embedded 2-sphere F with self-intersection number
F ·F = −1. An “exceptional symplectic cusp-curve” C for a given surface S ⊂ ∂M
is the union of a symplectically embedded disk F0 with ∂F0 ⊂ S, TpF0 6⊂ Tp∂M
for all p ∈ ∂F0 and exceptional symplectic spheres F1..., Fk (at least one) with the
following properties. First, these spheres are mutually disjoint and disjoint from
∂M . Second, each Fi, i ≥ 1, intersects F0 at a single point transversally. Third, the
self-intersection number C •C is equal to 0, i.e. F0 •F0 = −2k. (For the definition
of • we refer to Section 7.)

It turns out that exceptional J-cusp-curves are the only obstructions to smooth
global filling in the case that J is rationally regular. Indeed we have the follow-
ing result for smooth global filling in the presence of non-constant J-holomorphic
spheres:

Theorem 4. Assume that J is unformly tamed and rationally regular, and M has
a J-convex boundary. Then the conclusion of Theorem 2 holds for every simple
S ⊂ ∂M for which no exceptional J-cusp-curve exists. On the other hand, given S,
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if an exceptional J-cusp-curve for S exists, then there is no smooth global filling of
S. Consequently, the conclusion of Theorem 2 holds for every simple S ⊂ ∂M for
which no exceptional symplectic cusp-curve exists.

A corresponding version of Theorem 3 holds; we omit the statement. Rational
regularity is a generic property, i.e. the set of rationally regular (and uniformly
tamed) J is a countable intersection of open and dense sets. Here one can restrict
to the space of J which coincide with a given J0 along ∂M .

As a corollary of Theorem 4 we obtain

Theorem 5. Assume that (M,ω) is minimal, i.e. it contains no exceptional sym-
plectic sphere, J is rationally regular and uniformly tamed by ω, and M has a
J-convex boundary. Then the conclusion of Theorem 2 holds for every simple
S ⊂ ∂M .

A corresponding version of Theorem 3 holds. We remark that, in general, mini-
mal manifolds may contain nonconstant J-holomorphic spheres. Hence Theorem 5
does not follow from Theorem 2. On the other hand, consider (M,ω, J), where J is
uniformly tamed by ω and M has a J-convex boundary. By the results in [M3], one
can blow down a maximal collection of disjoint exceptional symplectic spheres to
obtain a minimal (M1, ω1, J1) such that J1 coincides with J along ∂M1 = ∂M . This
combined with Theorem 5 gives strong information on the structure of (M,ω, J);
see [E1]. For example, one obtains the following result of Eliashberg:

Corollary. Assume that J is tamed by ω, and ∂M is J-convex and diffeomorphic
to the 3-sphere S3. Then M is diffeomorphic to the connected sum of the 4-ball B4

and several copies of CP 2 with the negative orientation. If (M,ω) is minimal, then
M is diffeomorphic to B4.

By a recent result of Eliashberg, (M,ω) is actually, symplectomorphic to a pseu-
doconvex domain in C2 with a few points blown up. Another corollary of Theorem
4 is the following result (a corresponding version of Theorem 3 holds):

Theorem 6. Assume that J is uniformly tamed and rationally regular, and M has
a J-convex boundary. Let S ⊂ ∂M be simple. If J is rationally S-regular (either in
the embedding set-up or in the parametric set-up), then the conclusion of Theorem
2 holds for S.

The case of the embedding set-up is more involved than that of the parametric
set-up. It is needed e.g. for proving Theorem 7 below. For the meaning of “ra-
tionally S-regular” we refer to Section 3. By generic regularity mentioned before,
this theorem implies that for a fixed S, the obstruction of J-holomorphic spheres
to smooth global filling disappears after a suitable perturbation of J . On the other
hand, for a given J and an isotopy class S of S ⊂ ∂M , there is a generic family
of S in S such that J is rationally S-regular in the embedding set-up for every
S in this family. Thus, the obstruction of J-holomorphic spheres also disappears
after a suitable perturbation of S while J is being kept fixed. But we emphasize
that in general the obstruction of J-holomrophic spheres cannot be killed simuta-
neously for a family of S by perturbing J . On the other hand, a family of disjoint
S may develop intersections after perturbations of S for the purpose of killing the
obstruction. The 4-ball B4 with one point blown up is a simple example.

Finally, we have the following general result on singular fillings:
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Theorem 7. Assume that J is uniformly tamed and rationally regular, and M
has a J-convex boundary. Let S ⊂ ∂M be simple. Then there is a unique (up to
reparametrizations) singular filling of S, which is smooth if and only if there is no
exceptional J-cusp-curve for S. Consequently, there is a J-flat hypersurface N with
finitely many interior singularities whose boundary is S.

Indeed, all the previous theorems on global filling can be considered as conse-
quences of this result. Roughly speaking, a singular filling is a global filling with
finitely many singularities in the interior (the singular set may be empty). Singular
fillings are significant from both the geometric and the analytic point of view. For
example, the singular filling of S captures all J-holomorphic curves with non-empty
boundary on S; see Theorem 8.8 and the Remark to Proposition 5.6.

F. Singularity Structure. We have a rather complete understanding of the struc-
ture of the singularities in singular fillings. In particular, the blow-up limit at a
singularity is unique; see Theorem 8.7. This implies in particular Hausdorff con-
vergence of smooth leaves in a singular filling to singular leaves with blow-up limits
attached, which are nonconstant J-holomorphic spheres. This is an important
property.

From the point of view of comparison with minimal surfaces as mentioned before,
we should like to point out that blow-up in singular filllings is analogous to blow-
up of minimal spheres as studied in [SU] as well as blow-up of J-holomorphic
curves (see e.g. [Y1]). One can also compare with tangent cone blow-up of area-
minimizing varieties and energy-minimizing maps; see [S1] [S2] and [S3]. A basic
question in those theories is whether blow-up limits are unique. Allard-Almgren
[AA] and Simon [S1] [S2] [S3] have obtained fundamental unique blow-up results for
area-minimizing varieties and energy-minimizing maps. Their techniques are very
profound. Besides these results, very few results on unique blow-up are known. Our
unique blow-up result for singular fillings can be viewed from this perspective. The
existence and uniqueness of singular fillings can also be viewed in this comparison.

In [BK], Bedford and Klingenberg obtained global filling in the presence of hyper-
bolic complex points. Their result is valid for Stein manifolds. With the framework
developed in this paper at hand, it is reasonable to believe that their results should
generalize to almost complex manifolds. The difficulty here is that the behavior
of (J-)holomorphic disks at a hyperbolic complex point is very intricate. We shall
treat this problem in a subsequent paper.

A general theory of filling by holomorphic disks has been formulated by Eliash-
berg in [E1]. Applications of filling by holomorphic disks are also given in [E1] (see
also [E2]). In [H], Hofer presented an independent treatment of filling by holomor-
phic disks and an application to the Weinstein conjecture. Another independent
treatment and an application to the camel problem were given by McDuff and
Traynor in [MT]. Earlier results on global filling were obtained e.g. by Bedford and
Gaveau [BG]. Further references can be found in [E1].

We would like to mention that we obtained those parts of the proof of Theorem
2 other than Theorem 1 quite some time ago.

I am grateful to Y. Eliashberg for introducing me to the subject of filling by
holomorphic curves. The writing of the previous version of this paper [Y2], which
contains Theorems 1 and 2, was finished and also part of the remaining results were
obtained at Centre de Mathématiques et de Leurs Applications, ENS Cachan and
Université de Paris Sud. Part of the results were obtained at Forschungsinstitut für
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Mathematik, ETH. I thank all three institutions for their support and hospitality.
Specifically, I thank Professors J. Moser and J. M. Coron for the kind invitations. I
also acknowledge a visit to Newton Institute for Mathematical Sciences, Cambridge,
during which the exposition in this paper was improved.

1. Complex Tangency

Consider S ⊂ M as described at the beginning of the introduction. A complex
point of S is a point p such that the tangent plane TpS is complex, i.e. J(TpS) =
TpS. If TpS ∩J(TpS) = {0}, then p is called a real point. Note that points of S are
either complex or real.

Fix a complex point p0 ∈ S. We choose local coordinates around p0 such that
p0 corresponds to the origin and S (near p0) is represented by the (x1, x2)-plane.
Moreover, Jp0 induces the standard almost complex structure J0 on R4, i.e.

Jp0

∂

∂x1
=

∂

∂x2
, Jp0

∂

∂x2
= − ∂

∂x1
,(1.1)

Jp0

∂

∂x3
=

∂

∂x4
, Jp0

∂

∂x4
= − ∂

∂x3
.

Such coordinates will be called “preferred”. It is convenient to work on the domain
U of the chosen coordinates, which is a neighborhood of the origin in R4. We
still use the same letter J to denote the induced almost complex structure on U .
Consider the matrix funtion (Jij) defined as follows:

J
∂

∂xi
=

4∑
j=1

Jij
∂

∂xj
, 1 ≤ i ≤ 4.

Along the (x1, x2)-plane we have

J13 = ax1 + bx2 +O(x2
1 + x2

2),
J14 = cx1 + dx2 +O(x2

1 + x2
2),

(1.2)

for some constants a, b, c and d.
It is easy to see that

J23 = J14 +O(|x|2),
J24 = −J13 +O(|x|2),

(1.3)

where x = (x1, x2, x3, x4). Hence the expansion (1.2) yields a similar expansion for
J23 and J24 along the (x1, x2)-plane.

Definition 1.1.

ind(p0) = 1 if ad− bc > 0,

ind(p0) = −1 if ad− bc < 0,

ind(p0) = 0 if ad− bc = 0.

Lemma 1.2. ind(p0) is an invariant, i.e. it is independent of the choice of pre-
ferred coordinates.
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Proof. This follows from an elementary computation. Set

J2 =

(
J13 J14

J23 J24

)
.

Consider new coordinates x′ and let A = (aij) be the Jacobian of the coordinate
transformation, i.e.

∂

∂x′i
=

4∑
j=1

aij
∂

∂xj
, 1 ≤ i ≤ 4.

Then A has the following form along the (x1, x2)-plane:

A =

(
A1 0
A3 A4

)
.

It follows that J′2 = A1J2A
−1
4 . On the other hand, since J ′(0) = J0, we have

A1(0) =

(
α −β
β α

)
, A4(0) =

(
α1 −β1

β1 α1

)
.

for some α, β, α1, β1 with α2 +β2 > 0 and α2
1 +β2

1 > 0. Consequently, as far as the
change of J2 along the (x1, x2) -plane is concerned, modulo higher order terms the
coordinate transformation can be assumed to have the following form:

x1 = αx′1 + βx′2,
x2 = −βx′1 + αx′2,
x3 = α1x

′
3 + β1x

′
4,

x4 = −β1x
′
3 + α1x

′
4.

(1.4)

We deduce (along the (x1, x2)-plane)

J ′13 =
1

α2
1 + β2

1

{[(αα1 − ββ1)(aα− bβ)− (αβ1 + βα1)(cα− dβ)]x′1

+ [(αα1 − ββ1)(aβ + αb)− (αβ1 + βα1)(cβ + αd)]x′2}
+O((x′1)

2 + (x′2)
2),

(1.5)

J ′14 =
1

α2
1 + β2

1

{[(αβ1 + βα1)(aα− bβ) + (αα1 − ββ1)(cα− dβ)]x′1

+ [(αβ1 + βα1)(aβ + αb) + (αα1 − ββ1)(cβ + αd)]x′2}
+O((x′1)

2 + (x′2)
2).

(1.6)

To simplify computations, we decompose the transformation into two steps: first
assume α1 = 1, β1 = 0; then assume α = 1, β = 0. It is easy to check that ind(p0)
is invariant in both steps.

Remark. It is not hard to show that ind(p0) equals the intersection index of the
Gauss map of S with complex Grassmannians as discussed in [E1].

Definition 1.3. The complex point p0 is called elliptic, hyperbolic or parabolic, if
ind(p0) = 1,−1 or 0 respectively.
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It is easy to see that this definition agrees with the classical definition for complex
manifolds. By a transversality argument one can show that parabolic complex
points do not occur generically. In other words, a suitable small perturbation of a
given surface has no parabolic complex points.

Next we simplify the expansion (1.2) by suitable coordinate changes. First we
achieve a+ d = 0. If this does not hold, we perform the transformation (1.4) with
α = 1, β = 0, α1 = c−b

a+d and β1 = 1. In the new coordinates we then have a+ d = 0.

Now assume a + d = 0. If a 6= 0, we perform (1.4) with α1 = 1, β1 = 0, β = 1 and
α being a solution of the equation α2 − b+c

a α − 1 = 0. In the new coordinates we
then have a = d = 0. We arrive at

Lemma 1.4. We can choose preferred coordinates such that a = d = 0.

This elementary lemma is important for constructing nearly J-holomorphic disks.

2. Deformation of embedded J-holomorphic curves

A C1 map f from a Riemann surface Σ into M is called J-holomorphic if J ◦df =
df ◦ j, where j is the almost complex structure of Σ. A J-holomorphic f is called
a J-holomorphic curve. If f is an immersion, we can consider the equivalence class
of immersions [f ] containing f . (Two immersions are equivalent if they differ by a
diffeomorphism of the domain.) We say that [f ] is an immersed submanifold.

Definition 2.1. [f ] is called J-holomorphic, provided that the image of (df)z is a
complex plane for every z ∈ Σ and f ∈ [f ]. If f is an embedding, we identify [f ]
with image(f).

If [f ] is J-holomorphic, then there is a Riemann surface Σ and a J-holomorphic

map f̃ : Σ → M such that f̃ ∈ [f ]. This follows from the integrability of almost
complex structures in dimension 2.

We shall present a treatment of embedded J-holomorphic curves. With slight
modifications, it also applies to immersed curves; we leave the details to the reader.
To begin with, let us extend J to 2-vectors: J(v1∧v2) = Jv1∧Jv2, and then extend
it linearly. Let g be a Riemannian metric on M and gJ its associated Hermitian
metric: 2gJ(·, ·) = g(·, ·)+g(J ·, J ·). We use gJ in the following discussion. Consider
an oriented embedded surface F . Locally on F , choose an oriented orthonormal
tangent frame field v1, v2. The simple 2-vector field v1 ∧ v2 is independent of the
choice of the frame. Hence we obtain a global 2-vector field w = v1 ∧ v2 on F .
Indeed, at every p ∈ F , there is a unique oriented simple 2-vector of unit length
which is tangent to F .

Lemma 2.2. F is J-holomorphic if and only if w − J(w) = 0.

Proof. If F is J-holomorphic, then the equation is obvious if we choose v2 = Jv1.
On the other hand, if TpF is not J-invariant at some point p ∈ F , then v1, v2, Jv1
and Jv2 consititute a base at p, whence Jv1 ∧ Jv2 and v1 ∧ v2 are two distinct
members in a base for the space of 2-vectors at p.

We chooseH(F ) = w−J(w) to be our nonlinear Cauchy-Riemann operator. (Of
course, it depends on the choice of the metric g.) The 2-vector field H(F ) is anti-J-
invariant, i.e. J(H(F )) = −H(F ). Let Λ(M) denote the bundle of anti-J-invariant
2-vectors. Its fiber dimension is 2. Indeed, let v, Jv, ṽ and Jṽ be a base of TpM for
some p. Then a base of Λp(M) is given by v ∧ ṽ − Jv ∧ Jṽ and v ∧ Jṽ + Jv ∧ ṽ.
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Lemma 2.3. Let F be J-holomorphic and V the normal bundle of F . Then there
is a natural isomorphism Φ : Λ(M)|F → Λ0,1(V ), where the last denotes the bundle
of anti-complex linear maps from (TpF, J) to (Vp, J), p ∈ F .

Proof. Using duality we can define the interior product b of a tangent vector to a
2-vector. The desired isomorphism is then given by Φ(w)(v) = vbw.

Now consider an embedded J-holomorphic curve F . We assume that either F
is closed or its boundary lies on S∗ = S\{complex points of S} for a compact
surface S. In the following, we present a treatment of the latter case in detail. It
applies directly to the former case: one just forgets the boundary and makes the
related easy modifications. Choose a small positive number ε such that ∂F ⊂ Sε ≡
{p ∈ S∗ : dist(p, S\S∗) > ε}. Choose a Riemannian metric gS,ε on M such that
J(TpS)⊥TpS for every p ∈ Sε (see [Y1] for the simple construction). From now on
we choose g in the above discussion to be gS,ε and let V0 be the one-dimensional
boundary subbundle V |∂F ∩ TS|∂F . We denote the Maslov class µ(V, J, V0) by
µ(V, V0). Note that it is independent of the choice of the Riemannian metric gS,ε.

For later reference, we insert a definition here.

Definition 2.4. Let f : Σ → M be a J-holomorphic curve. If f is closed, then
the Chern class c(f) of f is the first Chern class c1(f

∗(TM, J)). If f has its
boundary on S∗ for a surface S, then the Maslov class µ(f) of f is the Maslov class
µ(f∗(TM, J), f |∗∂Σ(TS)). We set µ(f) to be 2c(f) if f is closed.

Next consider an embedded J-holomorphic curve F . Choose a normal bundle V
for F as above. If F has its boundary on S∗ for a surface S, then choose V along
with a boundary bundle V0 as above. The “normal Maslov class” µo(F ) of F is
µ(V, V0) in this case. If F is closed, then µo(F ) is twice the “normal Chern class”
co(F ) = c1(V ) = c1(V, J).

Note that co([f ]) and µo([f ]) are defined for J-holomorphic immersions f in a
similar way.

Next we choose a Riemannian metric g1 such that S is totally geodesic. Let
exp denote the exponential map of g1. Then exp(ϕ) is an embedded surface with
boundary on S for any sufficiently small C1 section ϕ of V whose boundary values
lie in V0. Choose local coordinate frame fields ∂

∂x1
and ∂

∂x2
on F such that the

second is the image of the first under J . We set

X =
∂

∂x1
exp(ϕ) ∧ ∂

∂x2
exp(ϕ).

Then the oriented unit simple 2-vector field w on exp(ϕ) is given by w = X(|X |−1).
Choose a small neighborhood U of the zero section of V such that exp|U is a

diffeomorphism onto a neighborhood U0 of F . Then it is easy to construct a smooth
field of J-linear isomorphisms Θ on U0, such that Θp maps TpM to Tπ(v(p))M , where

p ∈ U , v(p) = exp|−1
U (p) and π is the projection of V . Moreover, Θp = id for p ∈ F .

Indeed, we have Θp = Θo
p ◦ τp, where τp denotes the parallel transport from p to

π(v(p)) along the geodesic exp(tv(p)), and Θo is some isomorphism of Tπ(v(p))M
onto itself.

We set H0(ϕ) = Θ(H(exp(ϕ)), which is a section of the bundle Λ(M)|F . Note
that H0(0) = 0. Let ∇ be the connection of gJ . Replace ϕ by tϕ. By a simple
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computation we derive at t = 0:

∂

∂t
H0(tϕ) = ∇ ∂

∂t
H(w) = J(∇ ∂

∂x1

ϕ) ∧ ∂

∂x1

− ∂

∂x2
∧ J(∇ ∂

∂x2

ϕ) +∇ ∂
∂x1

ϕ ∧ ∂

∂x2
+

∂

∂x1
∧ ∇ ∂

∂x2

ϕ+ a(ϕ),

(2.1)

where a is a certain field of linear maps (a tensor field). Choosing a local frame
field n, Jn for V and writing ϕ = ϕ1n+ ϕ2Jn, we then deduce (at t = 0)

∂

∂t
H0(tϕ) = (

∂ϕ1

∂x1
− ∂ϕ2

∂x2
)(n ∧ ∂

∂x2
− Jn ∧ J ∂

∂x2
)

+ (
∂ϕ1

∂x2
+
∂ϕ2

∂x1
)(n ∧ ∂

∂x1
− Jn ∧ J ∂

∂x1
) + a1(ϕ),

(2.2)

where a1 is a section of the bundle V ′ ⊗ Λ(M)|F , with V ′ denoting the dual of
V . This yields a linearization of the nonlinear operator H . A more convenient
linearization can be obtained by using the isomorphism Φ given in Lemma 2.3.
Choose a connection ∇o on V . An easy computation using the above result then
leads to (at t = 0)

∂

∂t
Φ(H0(tϕ)) = J∇oϕ−∇o

Jϕ+ a2(ϕ),(2.3)

with a2 denoting a section of the bundle V ′ ⊗ Λ0,1(V ). Let L(ϕ) denote the right
hand side of this equation. L is a Cauchy-Riemann operator with respect to the
complex structure J on V and TF . L acts e.g. between the Soblev spaces:

L : W k,σ(V, V0) →W k−1,σ(Λ0,1(V ))

with k ≥ 1 and σ > 1. Let

L∗ : W k,σ(Λ0,1(V ), V ∗0 ) →W k−1,σ(V, V0)

be the adjoint operator as introduced in [MS], where the adjoint boundary bundle
V ∗0 is defined to be {η ∈ Λ0,1(V )|∂F : η(v) ∈ V0 for all v ∈ T∂F}. (The formulation
in [MS] is slightly different, but applies directly here. One can also convert into
that formulation easily.) Then L∗ is also a Cauchy-Riemann operator. From the
results in [MS], the above deformation set-up and the implicit function theorem we
deduce

Proposition 2.5. The index of L is given by

ind L = 2− 2γ − l + µ(V, V0) = 2− 2γ − l+ µo(F ),

where γ denotes the genus of F and l the number of boundary components of F .
(If F is closed, then l = 0 and we replace µ(V, V0) by 2c1(V ), which is also µo(F )
by the definition.) If L is surjective (equivalently, kerL∗ is trivial), then there is a
C1 neighborhood of F such that the J-holomorphic curves (with boundary on S) in
it constitute a smooth manifold F of dimension ind L. Indeed, coordinates for F
are given by F (t1, ..., tk) = exp(t1ϕ

1 + ...+ tkϕ
k + ϕ0(t1, ..., tk)), where k = ind L,

|ti| < ε0 for a positive number ε0, ϕ
1, ..., ϕk are a base of kerL, and ϕ0 is orthogonal

to kerL in W 0,2 with ϕ(0) = 0.

Corollary. If L is surjective, then µo(F ) ≥ 2γ + l − 2.
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We also have

Proposition 2.6. Assume that L is surjective and ind L ≥ 2. Then for each
ε ∈ (0, ε0], the union

⋃
Fε of the members in Fε contains an open set in the interior

of M , where Fε means the restriction of the F in Proposition 6.1 to parameters with
absolute value not exceeding ε. Indeed,

⋃
Fε contains a neighborhood of F\ϕ−1(0)

for any nontrivial element ϕ of kerL.

Proof. To prove the first claim it suffices to show that for some p ∈
◦
F , ϕ1(p) and

ϕ2(p) are linearly independent. Choose a domain Ω in the interior of F such that
ϕ1 has no zero in Ω. Assume that there is a function h on Ω such that (in Ω)
ϕ2 = hϕ1. Then h is smooth. Since Lϕ1 = 0 and Lϕ2 = 0, one readily derives
that the gradient of h vanishes everywhere. Hence h is a constant. Consequently,
ϕ2 − hϕ1 is an element in ker L and vanishes in Ω. Then ϕ2 = hϕ1, contradicting
the fact that ϕ1 and ϕ2 are linearly independent. We conclude that ϕ1(p) and
ϕ2(p) are linearly independent for some p ∈ Ω. The second claim follows from the
argument.

It is important to know when L is surjective or kerL∗ is trivial. The following
proposition is the key here; it applies to an arbitary complex line bundle over a Rie-
mann surface, a Cauchy-Riemann operator and a totally real boundary subbundle
(if the Riemann surface has boundary).

Proposition 2.7. Assume that ϕ ∈ ker L is not identically zero. Then we have

µ(V, V0) = 2m0 +m1,

where m0 denotes the number of interior zeros of ϕ and m1 the number of boundary
zeros of ϕ, both counted with multiplicity. (If F is closed, then m1 = 0 and we
replace µ(V, V0) by 2c1(V ). This case is due to Gromov [G].)

Proof. By the arguments in [Y1] for asymptotic behavior of pseudo holomorphic
curves near branch points, one easily derives that ϕ has isolated zeros. Moreover,
if z0 is a zero of ϕ, then

ϕ(z) = α(z − z0)
l +O(|z − z0|l+1)(2.4)

for an integer l ≥ 1 and a nonzero complex number α. Here, we use suitable local
coordinates z = x1 +

√
−1x2 on F and suitable local coordinates w = ϕ1 +

√
−1ϕ2

for ϕ. Indeed, near a boundary zero, we choose the coordinates ϕ1 and ϕ2 such
that V0 is represented by ϕ2 = 0.

We extend F to a slighly larger surface Fε. The complex vector bundle V is then
extended to Ṽ over Fε. We extend ϕ by a suitable reflection across ∂F to obtain a
section ϕ̃ such that ϕ̃ has no zero in Fε\F (cf. the proof of Lemma 5.2 in Section

5). Let Ṽ0 denote the subbundle over ∂Fε generated by ϕ̃|∂Fε . By the asymptotic
expansion (2.4) one readily derives

µ(Ṽ , Ṽ0) = µ(V, V0) +m1.(2.5)

Now we choose loops of complex isomorphisms Φp : Ṽp → C, p ∈ ∂Fε, such that

Φp(Ṽ0|p) = R. Using Φ, we glue the trivial bundle pairs (B×C, ∂B×R) to (Ṽ , Ṽ0)
along each component of ∂Fε. The resulting complex vector bundle over a closed
surface is denoted by V̄ . The section ϕ̃ extends to a section ϕ̄ of V̄ such that the
zeros of ϕ̄ are the same as those of ϕ̃ or ϕ. The Euler class e(V̄ ) of V̄ is equal to
1
2µ(Ṽ , Ṽ0). This follows from the additivity of the Maslov class: the Maslov class
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µ(V̄ ) is the sum of µ(Ṽ , Ṽ0) and several µ(B×C, ∂B×R), but the former is equal
to 2c1(V̄ ) = 2e(V̄ ) and the latter are zero. It can also be derived from a direct
computation. On the other hand, e(V̄ ) equals the number of zeros of ϕ̄ counted
with (signed) multiplicities. We deduce that

µ(Ṽ , Ṽ0) = 2m0 + 2m1.(2.6)

The desired formula follows from (2.5) and (2.6). Alternatively, we can glue a copy

of (Ṽ , Ṽ0) to itself and argue in the same way.

Lemma 2.8. The Maslov class µ(Λ0,1(V ), V ∗0 ) is equal to −4 + 4γ+ 2l−µ(V, V0).

Proof. This formula can be proven by a direct computation. An easy way to see it is
as follows. On the one hand, the index of L∗ is given by 2−2γ− l+µ(Λ0,1(V ), V ∗0 ).
On the other hand, it is equal to −ind L. The result follows.

Theorem 2.9. 1) If µ(Λ0,1(V ), V ∗0 ) < 0, then kerL∗ = {0} and hence L is surjec-
tive. Consequently, L is surjective provided that µ(V, V0) > −4 + 4γ + 2l.

2) If µ(V, V0) = 0, then dim kerL = 1. Moreover, if ϕ ∈ kerL and is not
identically zero, then ϕ has no zeros.

(If F is closed, then l = 0 and we replace µ(V, V0) by 2c1(V ) and µ(Λ0,1(V ), V ∗0 )
by 2c1(Λ

0,1(V )).)

This is an immediate consequence of Proposition 2.7 and Lemma 2.8. Note that
this theorem applies in the generality mentioned for Proposition 2.7.

To have a complete picture, we would also like to consider deformations of
parametrized J-holomorphic curves (which are not necessarily embedded or im-
mersed). The nonlinear Cauchy-Riemann operator is simply J ◦ df ◦ j + df , where
f denotes a map from a Riemann surface Σ with almost complex structure j. The
linearized Cauchy-Riemann operator L0 : W k,σ(f∗TM) → W k−1,σ(Σ⊗ f∗TM) at
a J-holomorphic curve f is naturally defined; see [M4] or [MS]. For a Riemann
surface (Σ, j), let µ(Σ) denote the Maslov class of the bundle pair (TΣ, T ∂Σ). It
is easy to see that µ(Σ) = 4 − 4γ − 2l, where γ denotes the genus of Σ and l the
number of its boundary components. If Σ is closed, then µ(Σ) means twice the
Euler class of Σ.

Theorem 2.10. Let f : Σ → M be J-holomorphic such that f(∂Σ) ⊂ S in case
∂Σ is nonempty. If f is immersed, then the linearized Cauchy-Riemann operator
L0 along f is surjective if and only if µ(f) > 0.

The “if” part follows from Theorem 2.9 and a simple decomposition argument for
the operator L0 (one decomposes L0 into the tangential and normal components).
The “only if ” part is contained in Lemma 3.7 and Proposition 3.8 below.

3. Generic Regularity

In this section we first consider the effect of perturbing J or S on the surjectivity
of the linearized Cauchy-Riemann operator L introduced in the last section. Note
that the set-up for L depends only on the choice of the Riemannian metrics gS,ε
and g1. Such a choice will be called a set-up choice.

Definition 3.1. Let S be given. J is called “(rationally) S-regular in the embed-
ding set-up” if for some set-up choice, the operator L is surjective for an arbitary
embedded J-holomorphic curve (disk) F with boundary on S∗.
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Let J denote the space of smooth almost complex structures on M . For a given
J0, set JJ0 = {J ∈ J : J |∂M = J0|∂M}. For a given symplectic form ω, set
Jω = {J ∈ J : J is uniformly tamed by ω}. For J ∈ Jω we denote by gω,J the
symmetrization of ω(·, J). We introduce a topology on Jω in the following way.
For each J ∈ Jω, set XJ = {K : K is a smooth section of End(TM) such that
JK +KJ = 0, and ‖ K ‖<∞} with

‖ K ‖=‖ K ‖C1(M) +
∞∑
k=1

εk ‖ K ‖Ck(Ωk),(3.1)

where the Ωk are an increasing sequence of compact sets of M whose union is M ,
the εk are a sufficiently rapidly decreasing sequence of positive numbers, and the
Ck norms are defined in terms of the metric gω,J . This is a direct generalization of
the smooth norm of Floer [F] [MS]. XJ is a separable Banach space and dense in
the space of W 0,1-sections K of End(TM) with JK +KJ = 0 (cf. [MS]). There is
a natural map Θ : B1 ≡ {K ∈ XJ : ‖ K ‖< 1} → Jω ,

Θ(K) = J ◦ (Id+K) ◦ (Id−K)−1;(3.2)

see [A]. We set UJ = Θ(B1) and equip it with the topology induced by Θ.

Proposition 3.2. Let ω and a closed surface S with isolated complex points be
given. For each J1 ∈ Jω, the set of rationally S-regular (in the embedding set-up)
J in UJ1 is a countable intersection of open and dense sets. If ∂M is J0-convex for
some J0, then the set of rationally S-regular (in the embedding set-up) J in UJ1∩JJ0

is a countable intersection of open and dense sets for every J1 ∈ JJ0 ∩ Jω. The
same holds if “rationally S-regular” is replaced by “S-regular”. For convenience,
e.g. in the first case, we shall simply say (by abuse of terminology) that the set of
rationally S-regular J is a countable intersection of open and dense sets in Jω. We
shall adopt this convention also in other similar contexts below.

Remark. A similar result holds without ω.

The proof is similar to the proof of Proposition 3.6 below; we leave the details to
the reader. To deal with perturbations of (compact) S with a fixed J , we introduce
a topology on the space of smooth S in a way similar to (3.1), replacing Ωk by S
for all k.

Theorem 3.3. Assume that ∂M is J-convex. Let S be an isotopy class of S ⊂
∂M which have isolated complex points. For each given J , there is a countable
intersection of open and dense sets of S in S such that J is (rationally) S-regular
in the embedding set-up.

Proof. We consider the space N of pairs (F, S) with ∂F ∈ S∗, where S belongs
to S and F belongs to a given isotopy class A. For a small positive number ε, set
Nε = {(F, S) ∈ N : diamg1S > 2ε, distg1(∂F, S\S∗) > ε}, where g1 is some metric.
Let π be the projection to the second factor, i.e. π((F, S)) = S. We define a
Banach manifold struture on Nε as follows. Consider (F, S) ∈ Nε and a sufficiently
small neighborhood U of (F, S). An element S′ of π(U) can be written as exp(ϕS′)
for a small section ϕS′ of VS , where the normal bundle VS of S in ∂M and the
exponential map are both defined in terms of a metric g0 under which S0 and ∂M
are totally geodesic.

To proceed, choose a continuous linear extension map α which extends sections
of TM |∂F to sections of TM |F . Then we set FS′ = image(fS′), where fS′ =
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exp(α(ϕS′ |F )). For each S′, choose a metric gS′ such that S′ and ∂M are totally
geodesic, and let expS′ be its exponential map. We can choose gS′ such that it
depends smoothly on S′ and gS = g0. For an elment (F ′, S′) ∈ U we can then
represent F ′ as expS′(ϕF ′) for a section ϕF ′ of the normal bundle V (FS′) of FS′

which is defined in the same way as the normal bundle V of F in the last section.
(In particular, V (F ) = V .) Note that we can choose the metric gS′,ε in a smooth
way. Now we choose a complex linear isomorphism ΥS′ : V (FS′) → V , such that it
depends smoothly on S′. We set

Π(F ′, S′) = (ΥS′(ϕF ′ ), S).

Along with the Banach manifold structure of S, this induces a Banach manifold
structure on Nε (restricting to sections ϕF ′ in the Sobolev space W k,σ for a large
k).

The nonlinear Cauchy-Riemann operator H extends naturally to Nε. The auxil-
iary isomorphisms Θ can also be extended by using the parallel transport along the
geodesics exp(α(tϕ(p))), p ∈ F (composed with suitable auxiliary isomorphisms at
p) and the corresponding auxiliary isomorphisms for FS′ . Then we obtain a lin-

earization L̃ of H at any given (F, S) with F being J-holomorphic, which acts be-
tween the tangent space T |(F,S)Nε and W k−1,σ(Λ0,1(V )). A subspace of T |(F,S)Nε

can be identified with the space W k,σ(V, V0); for elements ϕ of this space we have

L̃ϕ = Lϕ,

where L is the linearized Cauchy-Riemann operator introduced in the last section.
We claim that the image of L̃ is dense. Let ψ be an element in a suitable dual
function space which annilates image(L̃) (see [MS] for details). In particualar, ψ
annilates the image of W k,σ(V, V0) under L. By the basic linear theory [MS], ψ
must be a smooth solution of the equation L∗ψ = 0 with boundary values in V ∗0 .
Now consider an arbitary section ϕ of V |∂F . It is clear that there is a smooth path
(Ft, St) in U with Ft = [exp(α(tϕ))] and S0 = S. Let ϕ̃ denote the initial tangent
vector of this path. Then we have

L̃ϕ̃ ≡ ∂

∂t
Φ(H0(tα(ϕ)))|t=0 = Lα(ϕ).

It follows that ψ annilates Lα(ϕ). Since ψ satisfies the equation L∗ψ = 0 and
the boundary values of α(ϕ) are arbitary, one easily deduces that the boundary
values of ψ vanish identically. The boundary asymtotical analysis in [Y1] (as has

been used earlier) then implies that ψ vanishes everywhere. Since ψ is arbitary, L̃
has dense image.

Since a restriction of L̃ is the Fredholm operator

L : W k,σ(V, V0) →W k−1,σ(Λ0,1(V )),

it is easy to see that the density of image(L̃) implies that L̃ is surjective and has a

right inverse. (However, L̃ itself is not Fredholm. Its kernel has infinite dimensions.)
Since (F, S) is arbitary, it follows from the implicit function theorem that the “big
moduli space” H−1(0) is a manifold. It is then easy to see that the projection π
is Fredholm. Applying the Sard-Smale transversality theorem as in [MS] or [M4],
we then deduce that there is a countable intersection S∗ε of open and dense sets in
Sε = {S ∈ S : diamg1S > 2ε} such that for S ∈ S∗ε the following holds: for every
J-holomorphic F in π−1(S), the operator L : W k,σ(V, V0) → W k−1,σ(Λ0,1(V ))
is surjective. Choosing a sequence of ε and using the argument in the proof of
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Proposition 3.6 below to deal with all isotopy classes A, we then arrive at the
conclusion of the proposition.

We also need to consider deformations of parametrized J-holomorphic spheres.
The theory here is well-developped [M4] [MS]. The nonlinear Cauchy-Riemann
operator is simply J ◦ df ◦ j + df , where f denotes a map from the sphere S2 and
j the almost complex structure of the sphere. The linearized Cauchy-Riemann
operator L0 : W k,σ(f∗TM) →W k−1,σ(T 0,1S2⊗f∗TM) at a J-holomorphic sphere
f is naturally defined; see [M4] or [MS].

Definition 3.4. A J-holomorphic sphere f is called “simple” if it does not factor
through holomorphic branched coverings of S2, or equivalently, f−1 (f(z)) = {z}
for some z ∈ S2.

Definition 3.5. Let A be a homotopy class of spheres inM . J is called “A-regular”
if the above linearized Cauchy-Riemann operator L0 is surjective for every simple
J-holomorphic sphere f ∈ A. J is called “rationally regular” if it is A-regular for
every A.

Proposition 3.6. The set of rationally regular J in Jω or Jω ∩JJ0 is a countable
intersection of open and dense sets.

Proof. We only treat the first case. The second case is similar. First assume that
M is compact. By e.g. [MS], for each homotopy class A, the set of A-regular
J in Jω is a countable intersection of open and dense subsets of Jω. Gromov’s
compactness theorem (see [Y1]) implies that for each a > 0, there are only finitely
many homotopy classes A with ω(A) ≤ a which contain J-holomorphic spheres.
Hence the set of rationally regular J in Jω is a countable intersection of open and
dense sets. If M is non-compact, we represent it as a countable union of increasing
compact domains and restrict to J-holomorphic spheres contained in them.

The following fact is well-known:

Lemma 3.7. If f is J-regular, i.e. L0 is surjective at f , then c(f) ≥ 1.

Proof. The index of L0 is given by 4 + 2c(f) [G] [MS]. If L0 is surjective, then this
is equal to kerL0. But dim kerL0 ≥ 6, because the dimension of the automorphism
group of S2 is 6.

One can formulate a similar deformation set-up for parametrized J-holomorphic
curves with boundary. The notion of “(rationally) S-regular in the parametric set-
up” is defined in a natural way; we leave the details to the reader. The above
arguments for spheres lead to (note that the arguments in [M4] and [MS] apply
directly to disks)

Proposition 3.8. 1) For a given S ⊂ ∂M (and J0) the set of (rationally) S-regular
J in Jω or Jω ∩ JJ0 is a countable intersection of open and dense sets.

2) If a J-holomorphic disk f is J-regular, then µ(f) ≥ 1.

We also have a result similar to Theorem 3.3:

Proposition 3.9. Let S be an isotopy class of S ⊂M which have isolated complex
points. For each given J , there is a countable intersection of open and dense sets
of S in S such that J is (rationally) S-regular in the parametric set-up.

Note that unlike Theorem 3.3, here one cannot restrict to S ⊂ ∂M .
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4. Deformation of nearly J-holomorphic disks

Our goal in this section is to prove the existence part of Theorem 1. Consider
an elliptic complex point p0 ∈ S and choose preferred coordinates around p0 such
that a = d = 0. Performing (1.4) with α1 = −1, α = 1 and β = β1 = 0 if necessary,
we can in addition assume b > 0 and c < 0. Set λ1 = −c and λ2 = b. Then the
quadratic form Q(x1, x2) = 1

2λ1x
2
1+ 1

2λ2x
2
2 is positive definite. We set Ω = {Q ≤ 1}.

Let U be the euclidean domain of the chosen preferred coordinates. We consider
the dilation TR(x) = Rx for R > 0. Set UR = T−1

R (U) and let JR be the almost
complex structure on UR induced from J . Then

(JR)x
∂

∂xi
=

4∑
j=1

Jij(Rx)
∂

∂xj
, 1 ≤ i ≤ 4.

We are going to construct JR-holomorphic disks with boundary on the (x1, x2)-
plane, because they yield the desired J-holomorphic disks through the dilation TR.

For small R, we introduce initial disks f0 : Ω → UR with

f0
1 = x1, f

0
2 = x2, f

0
3 = R(Q− 1) and f0

4 = 0.

These disks are embedded. We have the following tangent vector fields for f0 :

v0
1 = e1 +Rλ1x1e3,
v0
2 = e2 +Rλ2x2e3,

and transversal vector fields

n1 = λ1x1e1 + λ2x2e2 +R(Q− 1)e3,
n2 = e4.

Here e1 = ∂
∂x1

, e2 = ∂
∂x2

, e3 = ∂
∂x3

and e4 = ∂
∂x4

.

The disks f0 are nearly JR-holomorphic, but we need not check it at this stage.
Our goal is to deform f0 into JR-holomorphic. The deformation set-up in the
last section can also be applied to nearly J-holomorphic disks. However, since the
(x1, x2)-plane becomes complex in the limit as R→ 0, the boundary conditions in
the set-up are very delicate. Moreover, it is not very handy for computations. We
shall adopt a different approach. Consider an embedded disk F in M . Choose a
tangent frame field v, ṽ and a vector field n along F which is non-tangential to F
everywhere. We have

Lemma 4.1. F is J-holomorphic if and only if the following equations hold:

Jv ∧ v ∧ ṽ ∧ n = 0,(4.1)

Jṽ ∧ v ∧ ṽ ∧ n = 0.(4.2)

Proof. It is easy to see that (4.1) and (4.2) imply

Jv = a1v + b1ṽ + c1n,
Jṽ = a2v + b2ṽ + c2n.

If either c1 or c2 is not zero at a point, then the subspace spanned by v, ṽ and n at
that point would be invariant under J . This is impossible. Hence (4.1) and (4.2)
imply that F is J-holomorphic. On the other hand, the J-holomorphic property
clearly implies (4.1) and (4.2).
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For C1 functions ϕ1, ϕ2 on Ω with ϕ2|∂Ω = 0 we define a disk f by setting

f1 = x1(1 + λ1ϕ1), f2 = x2(1 + λ2ϕ1),
f3 = R(Q − 1)(1 + ϕ1), f4 = Rϕ2.

(4.3)

If R,ϕ1 and ϕ2 are sufficiently small, the disk f is also embedded. We obtain its
tangent vector fields

v1 = (1 + λ1ϕ1 + λ1x1
∂ϕ1

∂x1
)e1 + λ2x2

∂ϕ1

∂x1
e2

+R[(Q− 1)
∂ϕ1

∂x1
+ λ1x1(1 + ϕ1)]e3 +R

∂ϕ2

∂x1
e4,

(4.4)

v2 = λ1x1
∂ϕ1

∂x2
e1 + (1 + λ2ϕ1 + λ2x2

∂ϕ1

∂x2
)e2

+R[(Q− 1)
∂ϕ1

∂x2
+ (λ2x2(1 + ϕ1)]e3 +R

∂ϕ2

∂x2
e4.

(4.5)

By Lemma 4.1, image(f) is JR-holomorphic if and only if the following equations
hold:

JRv1 ∧ v1 ∧ v2 ∧ n2 = 0,(4.6)

JRv2 ∧ v1 ∧ v2 ∧ n2 = 0,(4.7)

assuming that R is small enough for n2 to be nontangential to f everywhere.
We compute

v1 ∧ v2 ∧ n2 = L12e1 ∧ e2 ∧ e4 + L13e1 ∧ e3 ∧ e4
+L23e2 ∧ e3 ∧ e4,

(4.8)

where

L12 = 1 + (λ1 + λ2)ϕ1 + λ1x1
∂ϕ1

∂x1
+ λ2x2

∂ϕ1

∂x2

+λ1λ2ϕ
2
1 + λ1λ2x1ϕ1

∂ϕ1

∂x1
+ λ1λ2x2ϕ1

∂ϕ1

∂x2
,

(4.9)

L13 = Rλ2x2 +Rλ2x2(1 + λ1)ϕ1

+Rλ1λ2x1x2
∂ϕ1

∂x1
−R[λ2

1x
2
1 + (1 −Q)]

∂ϕ1

∂x2

+R(λ1λ2x2ϕ
2
1 + λ1(Q − 1)ϕ1

∂ϕ1

∂x2
− λ2

1x
2
1ϕ1

∂ϕ1

∂x2
),

(4.10)

L23 = −Rλ1x1 −Rλ1x1(1 + λ2)ϕ1 +R[λ2
2x

2
2 + (1−Q)]

∂ϕ1

∂x1

−Rλ1λ2x1x2
∂ϕ1

∂x2
+R[λ2

2x
2
2ϕ1

∂ϕ1

∂x1
+ (1−Q)λ2ϕ1

∂ϕ1

∂x1

−λ1λ2x1x2ϕ1
∂ϕ1

∂x2
].

(4.11)
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It follows that

JRv1 ∧ v1 ∧ v2 ∧ n2 = (1 + λ1ϕ1 + λ1x1
∂ϕ1

∂x1
)(J13L12 − J12L13 + J11L23)

λ2x2
∂ϕ1

∂x1
(J23L12 − J22L13 + J21L23)

R[(Q− 1)
∂ϕ1

∂x1
+ (1 + ϕ1)λ1x1](J33L12 − J32L13 + J31L23)

R
∂ϕ2

∂x1
(J43L12 − J42L13 + J41L23),

(4.12)

and

JRv2 ∧ v1 ∧ v2 ∧ n2 = λ1x1
∂ϕ1

∂x2
(J13L12 − J12L13 + J11L23)

+ (1 + λ2ϕ1 + λ2x2
∂ϕ1

∂x2
)(J23L12 − J22L13 + J21L23)

+R[(Q− 1)
∂ϕ1

∂x2
+ λ2x2(1 + ϕ1)](J33L12 − J32L13 + J31L23)

+R
∂ϕ2

∂x2
(J43L12 − J42L13 + J41L23),

(4.13)

where Jij stands for Jij(Rf). We have



J11 = RA11(x1, x2, ϕ1, ϕ2, R),
J12 = 1 +RA12(x1, x2, ϕ1, ϕ2, R),
J13 = Rλ2x2(1 + λ2ϕ1) +R2A13(x1, x2, ϕ1, ϕ2, R),
J21 = −1 +RA21(x1, x2, ϕ1, ϕ2, R),
J22 = RA22(x1, x2, ϕ1, ϕ2, R),
J23 = −Rλ1x1(1 + λ1ϕ1) +R2A23(x1, x2, ϕ1, ϕ2, R),
J31 = RA31(x1, x2, ϕ1, ϕ2, R),
J32 = RA32(x1, x2, ϕ1, ϕ2, R),
J33 = RA33(x1, x2, ϕ1, ϕ2, R),
J41 = RA41(x1, x2, ϕ1, ϕ2, R),
J42 = RA42(x1, x2, ϕ1, ϕ2, R),
J43 = −1 +RA43(x1, x2, ϕ1, ϕ2, R),

(4.14)

where Aij are smooth functions of their arguments. These formulas easily follow
from the properties of Jij which were given in section 1.

We deduce that

J13L12 − J12L13 + J11L23 = Rλ2x2(λ2 − 1)ϕ1

+R[λ2
1x

2
1 + λ2

2x
2
2 + (1 −Q)]

∂ϕ1

∂x2

+RC1(x1, x2, ϕ1,
∂ϕ1

∂x1
,
∂ϕ1

∂x2
, R)

+R2A1(x1, x2, ϕ1, ϕ2,
∂ϕ1

∂x1
,
∂ϕ1

∂x2
, R),

(4.15)
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J23L12 − J22L13 + J21L23 = Rλ1(1− λ1)x1ϕ1 −R[λ2
1x

2
1 + λ2

2x
2
2

+(1−Q)]
∂ϕ1

∂x1
+RC2(x1, x2, ϕ1,

∂ϕ1

∂x1
,
∂ϕ1

∂x2
)

+R2A2(x1, x2, ϕ1, ϕ2,
∂ϕ1

∂x1
,
∂ϕ1

∂x2
, R),

(4.16)

J33L12 − J32L13 + J31L23 = RA3(x1, x2, ϕ1, ϕ2,
∂ϕ1

∂x1
,
∂ϕ1

∂x2
, R),(4.17)

J43L12 − J42L13 + J41L23 = −1− (λ1 + λ2)ϕ1 − λ1x1
∂ϕ1

∂x1
− λ2x2

∂ϕ1

∂x2

+RA4(x1, x2, ϕ1, ϕ2,
∂ϕ1

∂x1
,
∂ϕ1

∂x2
, R),

+C4(x1, x2, ϕ1,
∂ϕ1

∂x1
,
∂ϕ1

∂x2
)

(4.18)

where Ai are smooth functions and Ci are quadratic forms in ϕ, ∂ϕ1

∂x1
, ∂ϕ1

∂x2
with

smooth functions of x1, x2 and R as coefficients.
Now it is easy to derive from the equations (4.12) (4.13), (4.15), (4.16), (4.17)

and (4.18) the following lemma.

Lemma 4.2. The equations (4.6) and (4.7), after being divided by R, can be writ-
ten in the following way:

[λ2
1x

2
1 + λ2

2x
2
2 + (1−Q)]

∂ϕ1

∂x2
− ∂ϕ2

∂x1
+ λ2(λ2 − 1)x2ϕ1

+RA(x1, x2, ϕ1, ϕ2,
∂ϕ1

∂x1
,
∂ϕ1

∂x2
,
∂ϕ2

∂x1
, R)

+C(x1, x2, ϕ1, ϕ2,
∂ϕ1

∂x1
,
∂ϕ1

∂x2
,
∂ϕ2

∂x1
, R) = 0,

(4.19)

[λ2
1x

2
1 + λ2

2x
2
2 + (1−Q)]

∂ϕ1

∂x1
+
∂ϕ2

∂x2
+ λ1(λ1 − 1)x1ϕ1

+RÃ(x1, x2, ϕ1, ϕ2,
∂ϕ1

∂x1
,
∂ϕ1

∂x2
,
∂ϕ2

∂x2
, R)

+C̃

(
x1, x2, ϕ1, ϕ2,

∂ϕ1

∂x1
,
∂ϕ1

∂x2
,
∂ϕ2

∂x2
, R

)
= 0,

(4.20)

where A, Ã are smooth functions and C, C̃ are quadratic forms in ϕ1, ϕ2,
∂ϕ1

∂x1
, ∂ϕ1

∂x2
,

∂ϕ2

∂x1
and ∂ϕ2

∂x2
with smooth coefficients.

The equations (4.19) and (4.20) are the desired Cauchy-Riemann system. Setting
ϕ1 = ϕ2 = 0, we see that the initial disks f0 are JR-holomorphic up to a multiple
of R2. It is convenient to replace ϕ1 by [λ2

1x
2
1 + λ2

2x
2
2 + (1−Q)]−1ϕ1 in (4.19) and

(4.20). The resulting equations are

G2 ≡
∂ϕ1

∂x2
− ∂ϕ2

∂x1
+ αϕ1 +RA+ C = 0,(4.21)

G1 ≡
∂ϕ1

∂x1
+
∂ϕ2

∂x2
+ α̃ϕ1 +RÃ+ C̃ = 0,(4.22)

where the functions α, α̃, A, C, C̃ and B̃ are defined in an obvious way. We consider
the operator G = (G1, G2),

G : W k,σ(Ω× R2, ∂Ω× R) →W k−1,σ(Ω× R2),
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where R is identified with R × {0}. The linearization L = G′ at the zero section
reads

Lϕ = L0ϕ+RL(R)ϕ

for ϕ = (ϕ1, ϕ2), where L(R) is a suitable first order operator with smooth param-
eter R and

L0ϕ =

(
∂ϕ1

∂x1
+
∂ϕ2

∂x2
+ α̃ϕ1,

∂ϕ1

∂x2
− ∂ϕ2

∂x1
+ αϕ1

)
.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Existence. The operator L0 is a Cauchy-Riemann operator
with respect to the conjugate complex structure on R2. On can convert it into the
formulation of linear theory in the last section or [MS], but that’s not necessary. It
is clear that the Maslov class µ(Ω×R2, ∂Ω×R) = 0. Hence ind L0 = 1, and L0 is
surjective on account of Theorem 2.9. It follows that ind L = 1 and L is surjective,
provided that R is sufficiently small. Moreover, the following elliptic estimate holds
(see [MS]):

||ϕ||Wk,σ ≤ C(||Lϕ||Wk−1,σ + ||ϕ||Lσ ),(4.23)

where ϕ ∈ W k,σ(F × R2, ∂F × R), assuming that R is small enough. Here and in
the sequel, C denotes suitable positive constants independant of R. Now choose
a small R0 and set LR0 = L0 + R0L(R0). Let K0 denote the kernel of LR0 and
W k,σ(F × R2, ∂F × R) = K0 ⊕K⊥

0 a decomposition. It follows from (4.23) that

||ϕ||Wk,σ ≤ C||Lϕ||Wk−1,σ(4.24)

for ϕ ∈ K⊥
0 , provided that R0 and R are small. One also sees that L|K⊥

0
is surjective

as long as R0 and R are small. We fix an R0 > 0 such that all the above facts hold
for R0 and 0 < R ≤ R0.

Now we consider the operator G̃ = G|K⊥
0

with R ≤ R0. By the above facts

G̃′(0) is an isomorphism with uniformly bounded inverse. By the implicit function

theorem, G̃ is a diffeomorphism on a neighborhood V of the zero section such
that G̃(V) contains the ball Bδ(G̃(0)) for a positive number δ independent of R.

But ||G̃(0)|| ≤ CR; hence 0 ∈ Bδ(G̃(0)) whenever R is small enough. For such

R,ϕR = G̃|−1
V (0) is a solution of (4.21) and (4.22). We have

||ϕR|| ≤ CR,(4.25)

as well as

|| ∂
∂R

ϕR|| ≤ CR.(4.26)

Let fR be the corresponding disks given by the formula (4.3). It follows from
the above estimate that fR are embedded for small R. Hence image (fR) are JR-
holomorphic with boundary on the (x1, x2)-plane. By elliptic regularity, fR (or
ϕR) are smooth. The family ϕR is smooth as a family in a fixed Sobolev space.
Applying the implicit function theorem in different Sobolev spaces, we deduce that
ϕR and hence fR are smooth families as smooth mappings.

Through the dilation of factor R and the coordinate map, the fR yield J-
holomorphic disks FR with boundary on S\{p0} such that FR → p0 as R → 0.

The parametrization induced by fR will be denoted by f̃R. For a fixed R1 we con-
sider deformations of F = FR1 in the set-up of Section 2 or Section 3. It is easy
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to see that µ(V, V0) = 0 here. The family FR for R near R1 can be represented
by a family of sections ϕ(R) of V with boundary values in V0. It follows that the
derivative ϕ′(R1) satisfies the equation

Lϕ′(R1) = 0.

Using the formula (4.3), one readily shows that ϕ′(R1) is not identically zero. Since
µ(V, V0) = 0, we conclude from Theorem 2.9 that ϕ′(R1) has no zero. Since R1 is

arbitary, we deduce from Theorem 2.9 that the family f̃R defines an immersion of
Ω× (0, R′0) for some R′0 > 0.

We claim that the union N = (
⋃

0<R≤R′0 FR) ∪ {p0} is a C1 embedded 3-ball,

provided that R′0 has been chosen small enough. Consider the smooth map

Φ(x1, x2, x3) = (x1(1 + λ1(ϕR)1(
x1

R
)), x2(1 + λ2(ϕR)1(

x′

R
)),

(Q(x′)−R2)(1 + (ϕR)1(
x′

R
)), R2(ϕR)2(

x′

R
)),

(4.27)

where x′ = (x1, x2), (x1, x2, x3) ∈ Ω\{0} with Ω = {(x1, x2, x3) ∈ R3 : Q(x1, x2)

≤ (R′0)
2, 0 ≥ x3 ≥ Q(x1, x2) − (R′0)

2}, and R = R(x1, x2, x3) =
√
Q(x1, x2)− x3.

It is easy to see that image(Φ) =
⋃
R FR; indeed Ω\{0} is foliated by an obvious

family of parabloids and Φ sends them to the family {FR}. By the estimate (4.23),
Φ extends continuously to the origin with Φ(0) = 0. An easy computation combined
with the estimates (4.23) and (4.24) then shows that the first order derivatives of
Φ extend continuously to the origin with

∂

∂x1
Φ(0) = (1, 0, 0, 0),

∂

∂x2
Φ(0) = (0, 1, 0, 0),

∂

∂x3
= (0, 0, 1, 0).

It follows that Φ is an embedding near the origin. By Proposition 5.3 below, N is
J-flat.

5. Uniqueness

Consider two nonconstant J-holomorphic curves f1 : Σ1 →M and f2 : Σ2 →M
such that f1(∂Σ1) ⊂ S∗ and f2(∂Σ2) ⊂ S∗ for a surface S. Assume f1(z1) =
f2(z2) = p for some z1 ∈ ∂Σ1 and z2 ∈ ∂Σ2. For convenience, we shall say that the
pointed maps (f1, z1) and (f2, z2) intersect at p.

Definition 5.1. We say that (f1, z1) and (f2, z2) intersect at p from one side of S,
provided that there is an orientable hypersurface N containing a neighborhood of
p in S, such that f1(z) and f2(z

′) approach N from the same side as z approaches
∂Σ1 around z1 and z′ approaches ∂Σ2 around z2. Moreover, image(df1|z1) 6⊂ TpN
and image(df2|z2) 6⊂ TpN (in particular, neither z1 nor z2 is a branch point).

Now consider (f1, z1), z1 ∈ ∂Σ1, and (f2, z2), z2 ∈ ∂Σ2, as above, which intersect
at p from one side of S. Since the one side intersection is a local property, we can

assume that Σ1 = B+ =
◦
B ∩ {Im z ≥ 0} as well as Σ2 = B+. Let fk : Σ1 → M

be a sequence of C1 maps such that fk(∂Σ1) ⊂ S∗, each fk intersects f only at
isolated points (e.g. they are all J-holomorphic), and the fk converge to f1 in C1

as k→∞.

Lemma 5.2 (stability of one side intersections). Assume that the images of f1 and
f2 near z1 and z2 do not overlap. For k large enough, fk intersects f2 near p.
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Proof. If f1 intersects f2 transversally at p, then the boundary of f1 intersects the
boundary of f2 transversally (considered as curves on S). Hence the assertion of the
lemma follows easily. Now we assume that the f1 and f2 intersect nontransversally
at p. Restricting f1 and f2 suitably, we may assume that f1 and f2 are embedded.
By restricting fk suitably, we can then assume that the fk are all embedded. Let
Fi = fi(Σi), i = 1, 2, and F k = fk(Σ1). We choose local coordinates (x1, x2, x3, x4)
around p = f1(z1) = f2(z2) with the following properties: p corresponds to the
origin, F2 is represented by the closed upper half (x1, x2)-plane, S is represented
by the (x1, x3)-plane, J ∂

∂x1
= ∂

∂x2
and J ∂

∂x3
= ∂

∂x4
. Restricting F1 and F2 suitably,

we can represent F1 as the graph of a function w = h(z) over a closed disk type
domain Ω0 in the closed upper half (x1, x2)-plane such that I0 = ∂Ω0 ∩ {x2 = 0}
is an interval containing the origin, where z = x1 +

√
−1x2 and w = x3 +

√
−1x4.

This follows from the nontransversal and one side assumptions. For k large we can
then represent (a portion of) F k as the graph of a function w = hk(z) over Ω0 such
that the hk converge to h in C1. Notice that Im (h|I0 ) ≡ 0 and Im(hk|I0) ≡ 0,

because f(∂Σ1) ⊂ S and fk(∂Σ1) ⊂ S. Let Ω−0 = {z : z̄ ∈ Ω0} and Ω̃0 = Ω0 ∪ Ω−0 .

We extend h to a function h̃ on Ω̃0 by requiring h̃(z) = h̃(z̄). Because Im(h|I0) ≡ 0,

this is a continuous extension. We extend hk to h̃k in the same fashion.
By the arguments for the asymptotic behavior of pseudo holomorphic curves in

[Y1], we have

h(z) = αzl +O(|z|l+1)

for an integer l ≥ 2 and a nonzero complex number α. (The integer l is at least
2, because F1 and F2 are tangent at p.) Here we have used the non-overlapping
assumption to rule out the possibility that h is identically zero. Because Im (h|I0) ≡
0, α is real, whence

h̃(z) = αzl +O(|z|l+1).

Consequently,

h̃k(z) = αzl +O(|z|l+1) + εk(z),

where εk(z) → 0 as k →∞. By the mapping degree theory, h̃k has l zeros near the

origin whenever k is large enough. Since h̃k(z) = h̃k(z̄), hk has at least [ l2 ] zeros

near the origin. This means that fk intersects f2 near p.

Remark. A (homotopy invariant) quantitative formulation of this result will be
given in Section 7.

Next we consider an orientable hypersurface N in M . Let ξ be the field of
complex planes on N . Following [E1], we say that N is J-convex if dα(Jv, v) > 0
(or dα(Jv, v) < 0) for all nonzero vectors v ∈ ξp, p ∈ N, where α is a 1-form such
that ξ = {v ∈ TN : α(v) = 0}. We say that N is J-flat, if dα(Jv, v) = 0 for all
v ∈ ξ. A simple computation along with Frobenius’ theorem leads to the following
fact.

Proposition 5.3. N is J-flat if and only if N is foliated by embedded J-holomorphic
curves.

Now we assume that N is J-convex. For a function h in a neighborhood of N
such that dh 6= 0 everwhere and N = {h = 0}, we can set α = Jdh ≡ dh ◦ J . We
choose an h such that d(Jdh)(Jv, v) > 0 for all v ∈ ξ. The side of N where h ≤ 0
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will be called the convex side of N . The other side is called the concave side of
N . We call h a level function of N . Moreover, if N = ∂M and the convex side of
N is the inside, then we say that M has J-convex boundary ∂M .

Let f : Σ →M be a J-holomorphic curve. We have

Lemma 5.4. If f(z0) ∈ N and f is tangent to N at z0, then ∆(h ◦ f) ≥ 0 in a
neighborhood of z0, where ∆ is the Laplacian of some conformal coordinates around
z0. Moreover, ∆(h ◦ f)(z) > 0 for z in this neighborhood, provided that df(z) 6= 0.

Proof. It follows from the local expansion of f near its branch points in [Y1] that
there is a continuous field of tangent planes ξ0 along f such that ξ0(z) is the image
of df(z) whenever z is not a branch point. By the assumption, ξ0(z0) = ξf(z0).

We set ξ̃ = {α = 0}, which is an extension of ξ to a neighborhood of N . Let P

denote the orthogonal projection to ξ̃. Then there are a neighborhood U of N and
a positive number δ such that

d(Jdh)(Jv, v) > 0(5.1)

for v ∈ TpM, p ∈ U with v 6= 0 and ||Pv|| ≥ (1−δ)||v||. Now we have, for conformal
coordinates x1, x2 around z0,

∆(h ◦ f) = d(jd(h ◦ f))

(
∂

∂x2
,
∂

∂x1

)
= d(Jdh)

(
J
∂f

∂x1
,
∂f

∂x1

)
,(5.2)

where j denotes the almost complex structure of Σ. Since ξ0(z0) = ξf(z0), there is

a neighborhood of z0 in which ||P ∂f
∂x1

|| ≥ (1 − δ)|| ∂f∂x1
||. Then the conclusions of

the lemma follow from (5.1) and (5.2).

Lemma 5.5. Assume that f is nonconstant and h ◦ f ≤ 0 in a neighborhood of

some z0 ∈ Σ. If z0 ∈
◦
Σ, then h ◦ f(z0) < 0 and hence f(z0) 6∈ N . If z0 ∈ ∂Σ and

f(z0) ∈ N , then f is immersed at z0 and f is not tangent to N at z0.

Proof. The first statement follows from Lemma 5.4 and the maximum principle. In
the second case, it follows from Lemma 5.4 and the Hopf boundary point lemma
that f is not tangent to N at z0 (i.e. ξ0(z0)) 6⊂ Tf(z0)N). If f were not immersed
at z0, then the local expansion given in [Y1] would imply that h ◦ f ≤ 0 could not
hold in any neighborhood of z0.

Now we proceed to prove the uniqueness part of Theorem 1. Consider the disks
FR, 0 < R ≤ R′0, constructed in section 4. We observe that every FR lies in the
region x3 ≤ 0, provided that R′0 has been chosen small enough. This follows easily
from the construction.

Next set h0 = x3, N0 = {x3 = 0}, and let ξ be the field of complex planes on

N0. Then ξp0 = span
(

∂
∂x1

, ∂
∂x2

)
. We compute at p0:

d(Jdh0)

(
J
∂

∂x1
,
∂

∂x1

)
= d(Jdh0)

(
∂

∂x2
,
∂

∂x1

)
=

∂

∂x2
Jdh0(

∂

∂x1
)− ∂

∂x1
Jdh0(

∂

∂x2
)

=
∂

∂x2
dh0

 4∑
j=1

J1j
∂

∂xj

− ∂

∂x1
dh0

 4∑
j=1

J2j
∂

∂xj


=

∂

∂x2
J13 −

∂

∂x1
J23 = b− c = λ1 + λ2 > 0.
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Then also

d(Jdh0)

(
J
∂

∂x2
,
∂

∂x2

)
= d(Jdh0)

(
− ∂

∂x1
,
∂

∂x2

)
= λ1 + λ2.

On the other hand,

d(Jdh0)

(
J
∂

∂x2
,
∂

∂x1

)
= −d(Jdh0)

(
∂

∂x1
,
∂

∂x1

)
= 0,

d(Jdh0)

(
J
∂

∂x1
,
∂

∂x2

)
= d(Jdh0)

(
∂

∂x2
,
∂

∂x2

)
= 0.

It follows that d(Jdh0)(Jv, v) > 0 for all nonzero v ∈ ξpo . By continuity,

d(Jdh0)(Jv, v) > 0

for all nonzero v ∈ ξp whenever p ∈ N0 ∩ U1 for some neighborhood U1 of p0.
Moreover, we can choose U1 such that d(Jdh0)(Jv, v) > 0 for all nonzero v ∈ ξtp, p ∈
Nt∩U1 and t ∈ (−ε, ε), where ε is a positive number, Nt = {x3 = t} and ξt denotes
the field of complex planes on Nt. Thus we have a family of J-convex hypersurfaces

Nt∩U1 along with level functions ht = h0− t. We set S′ =
⋃

0<R≤R1
∂FR for some

R1 such that S′ ⊂ U1.

Proposition 5.6 (One side global uniqueness). Let f : Σ → M be a nonconstant
J-holomorphic curve such that f(I) ⊂ S′ and f(∂I) ⊂ ∂S′, where Σ is a compact
Riemann surface with boundary and I is a nonempty connected subset of ∂Σ (∂I

may be empty). Assume that f(z) approaches S′ in the region x3 ≤ 0 as z →
◦
I and

p0 6∈ image(f). Then f is a holomorphic covering onto FR for some R.

Proof. For R small enough, FR is disjoint from f . On the other hand, f must
intersect some FR along the boundary. Hence we can find anR such that f intersects
FR and is disjoint from FR′ for R′ < R. We claim f is a holomorphic covering onto
FR, which is equivalent to saying that image(f) = FR. Assume that this is not true.
If f intersects FR at an interior point, then it must intersect FR′ at an interior point
for R′ close to R. Indeed, this is clear if the intersection is transversal. If it is not
transversal, we can argue as in the proof of Lemma 5.2. Hence there is no interior
intersection between f and FR. It follows that f must intersect FR at the boundary.
Applying Lemma 5.5 and Lemma 5.2, we then arrive at a contradiction.

Remark. One can remove the assumption that p0 6∈ image(f) by the following fact,
which is easy to verify: the J-flat hypersurface (

⋃
R FR)∪{p0} has arbitarily small

neighborhoods with J-convex boundary. This was pointed out to me by Eliashberg.
This remark also applies to Proposition 6.2 and Theorem 8.8.

To proceed, we choose a neighborhood Ũ of p0 such that Ũ ⊂ U1 and FR1 is

disjoint from Ũ .

Proposition 5.7 (strong local uniqueness). Let f : Σ → M be a compact J-holo-

morphic curve with image contained in Ũ , such that f(∂Σ) ⊂ S in the case ∂Σ 6= ∅.
If f has empty boundary, then f must be constant. If f is nonconstant, then f is
a holomorphic covering onto FR for some R.

Proof. There is a point p1 in the image of f where h achieves its maximal value
t1. Applying Lemma 5.5 with N = Nt1 and h = ht1 , conclude that p1 must be a
boundary point, provided that f is nonconstant. Now assume that f is nonconstant.
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We conclude that the image of f is contained in the region x3 ≤ 0. Arguing as in
the proof of Proposition 5.6, we deduce that image(f) = FR for some R.

Proof of Theorem 1. Uniqueness. The uniqueness assertion follows from Proposi-
tion 5.7.

6. Compactness and Continuation

In this section we prove Theorem 2. First we reformulate Gromov’s compactness
theorem for pseudoholomorphic curves as proved in [Y1] (and some implications of
the proof in [Y1]) in a convenient way. We only need the case of disks here. The
general case can be formulated in a similar way.

Gromov’s Compactness Theorem. Assume that (M,J) has bounded geometry,
i.e. there is an Hermitian metric g with uniformily bounded sectional curvatures and
positive injectivity radius such that J has uniformly bounded covariant derivative.
Let S1 ⊂ M be a compact, totally real surface (i.e. S1 consists of real points)
and fk a sequence of J-holomorphic disks with boundary on S1 and with uniformly
bounded area (measured in g). Then there are a subsequence of fk, which we still
denote by fk, and a finite set Γ ⊂ B, such that fk converges smoothly on B\Γ to
a smooth J-holomorphic disk f0

∞ with boundary on S1. Blow-up limits f1
∞, ..., f

m
∞

arise at points of Γ, which are either non-constant J-holomorphic spheres or disks

with boundary on S1. (J-holomorphic spheres arise at points in Γ ∩
◦
B, while at

least one disk arises at each point in Γ ∩ ∂B.) The curves f0
∞, ..., f

m
∞ constitute a

J-cusp-curve f (in particular the union of their images is connected) such that fk
converge to f in the Gromov topology for cusp-curves. Consequently, we have:

1. area(fk) converges to area(f) =
∑m

i=0 area(f i∞).
2. image(fk) converges to image(f) =

⋃m
i=0 image(f i∞) in the Hausdorff dis-

tance.
3. For large k, the fk are mutually homotopic with boundary confined on S. In

particular the following equation for the Maslov classes holds:

µ(fk) = µ(f) = µ(f0
∞) + ...+ µ(fm∞).

4. For large k, the homology class [fk|∂B ] in S1 is equal to the sum of the
homology classes [f i∞|∂B], where f i∞ runs over all disks in f .

In [Y1] one can find more detailed descriptions of the convergence of fk to f .
We shall need the following fact.

Corollary. Let z0 ∈ Γ ∩ ∂B. Then there are round disks Ak = Brk(zk) of radius
rk → 0 centered at zk → z0 with zk ∈ ∂B\Γ along with conformal injections
ψk : Ak → H ≡ {z ∈ C : Im z ≥ 0} such that ψk(∂Ak ∩ ∂B) ⊂ ∂H,ψk(Ak) → H,
and fk◦(ψk)

−1 converge smoothly away from finitely many points to one component
of f , say f1

∞. Moreover, the fk(∂Ak\∂B) converge to a cusp point p0 of f at which
f0∞ and f1∞ intersect.

From now on we assume that M has J-convex boundary ∂M . Consider a com-
pact and orientable surface S ⊂ ∂M with finitely many complex points. Let η
denote the intersection of ξ with the tangent planes of S∗, where ξ is the field of
complex planes on ∂M . In [E1], η is called the characteristic direction. Since S is
orientable, we can represent η by a nowhere vanishing smooth vector field, which
will also be denoted by η.
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Proposition 6.1 (Smooth Compactness). Assume that (M,J) has bounded geom-

etry and contains no nonconstant J-holomorphic sphere. Let f̃k be a sequence of
embedded (parametrized) J-holomorphic disks in M with boundary on S, such that

f̃k has uniformly bounded area and the boundary of f̃k has uniformly positive dis-
tance from the set of complex points of S. Moreover, assume that for each k, the
homology class [fk|∂B] in S is trivial. Then a subsequence of f̃k ◦ ϕk converges
smoothly to an embedded J-holomorphic disk f with boundary on S, where ϕk is a
suitable sequence of conformal automorphisms of the unit disk.

Proof. For suitable conformal automorphisms ϕk, we have ||dfk(0)|| = 1, where

fk = f̃k ◦ ϕk. We apply Gromov’s compactness theorem to the sequence fk. Since
there exists no nonconstant J-holomorphic sphere, the singular set Γ is contained
in ∂B. In particular, the fk converge smoothly in the interior. Then it follows
from the condition ||dfk(0)|| = 1 that the limit f0∞ is nonconstant. We claim that
Γ is empty. Assume that there is one z0 ∈ Γ. Consider the Ak, ψk, f

1
∞ and p0 as

described in the above corollary. It follows from Lemma 5.4 that f0
∞ and f1

∞ are
immersed along the boundary. One readily sees that p0 ∈ S∗. Let z1, z2 ∈ ∂B
be such that f0

∞(z1) = f1
∞(z2) = p0. By the assumption on the homology class,

fk|∂B bounds a disk in S. Using this fact and the fact that f0
∞, f

1
∞ are immersed

along the boundary, it is easy to see that there are arcs I1, I2 ⊂ ∂B such that

z1 ∈
◦
I1, z2 ∈

◦
I2, f

0
∞|I1 and f1

∞|I2 are embedded, and f0
∞(I1) lies on one side of

f1∞(I2). Consequently, f0∞(I1) and f1∞(I2) are tangent to each other at p0.
Choose a continuous unit tangent vector field X0 on S∗ such that X0 is orthog-

onal to η everywhere. Let τ be a continuous unit tangent vector field of ∂B. By
the convergence of fk to f0

∞ and that of fk ◦ (ψk)
−1 to f1

∞, the bounding property
of fk|∂B and the local structure of f0

∞ and f1
∞ near z1 and z2, we can find for each

large k two points wk ∈ ∂B\Γ and w̃k ∈ ∂B ∩ Ak, such that w̃k are near one end
of ∂Ak ∩ ∂B and wk near the other, fk(wk) → p0, fk(w̃k) → p0, and

limk→∞Yk(wk) = v, limk→∞Yk(w̃k) = −v,

where Yk = ∂fk
∂τ

(∣∣∣∂fk∂τ

∣∣∣−1
)

and v is a unit tangent vector of f0∞(L1) at p0. Observe

that v ·X0(p0) 6= 0, as otherwise v ∈ η and hence f0
∞ would be tangent to N at p0,

contradicting Lemma 5.4. Hence, for large k, the products ∂fk
∂τ (wk) · X0(fk(wk))

and ∂fk
∂τ (w̃k) ·X0(fk(w̃k)) have opposite signs. By the mean value theorem, there is

some w̄k ∈ ∂B such that ∂fk
∂τ (w̄k) ·X0(fk(w̄k)) = 0. But this is impossible, because

by Lemma 5.5, fk|∂B is transversal to the characterstic direction η. We conclude
that Γ is empty.

We would like to present a somewhat different argument under the assumption
that the homology classes [fk|∂B] in S∗ (instead of in S) are indecomposable (this
is the case in the latter applications of this proposition). By Gromov’s compactness
theorem, we have

[fk|∂B] = [f0
∞|∂B] + ...+ [fm∞|∂B]

for large k. By the indecomposabilty assumption, all the terms but one on the
right hand sides are zero. Say [f1∞|∂B ] = 0. As before, f1∞ is an immersion along
the boundary. From the construction of the limit J-cusp-curve f in [Y1] (basically
the above corollary), it is easy to see that the only possible self-intersections of
f1
∞|∂B are one-sided, i.e. one embedded portion meets another from one side (this
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includes the case of covering). Applying a factorization if necessary, we can assume
that f1∞ is not a multiple covering. Because the homology class [f1∞|∂B] equals
zero, f1

∞|∂B bounds a domain in S∗ which is either a disk or a union of several
disks. Using the transversality with η as above, one readily derives that f1

∞|∂B
has no self-intersection, and hence it bounds a single disk Ω in S∗. Because η is
transversal to ∂Ω, it must have a zero inside Ω. This is impossible, because η has
no zeros.

We have shown that the fk converge smoothly on B to f0
∞. Applying the in-

tersection arguments in the proof of Proposition 5.6, we conclude that f0
∞ is an

embedding along the boundary up to a covering map from the unit circle onto it-
self. But the covering map must be a diffeomorphism because the fk are embeddings
and their boundaries are on an orientable surface. Hence f0

∞ is an embedding along
the boundary. By the adjunction formula for J-holomorphic curves with boundary
in the next section, we immediately conclude that f0

∞ is an embedding. It is also
possible to use the adjunction formula for closed J-holomorphic curves in [M1] in
the following way. Embed M into a suitable larger manifold M1 and glue a suitable
embedded disk to each fk in such a way that the resulting sphere hk is a smooth
embedding. Moreover, hk converges smoothly to some h as k goes to infinity in
such a way that the only branch points and self-intersections of h are in the interior
of f . Then we construct almost complex structures Jk on M1 so that they coincide
with J on M and hk is Jk-holomorphic. Moreover, Jk converges smoothly as k goes
to infinity. Now we can apply the adjunction formula in [M1].

Note that if f has no interior branch points, then the intersection argument cited
above implies that f is an embedding. Hence another possible (local) argument for
proving the embedding property is to rule out interior branch points first. A local
version of the adjunction formula in Section 7 provides such an argument. On
the other hand, one can also use the results in [M2] and [MW] on knot types of
singularities, at least under the assumption that the normal Maslov class of [fk] is
zero for large k (this is the case in the proof of Theorem 2 below). We omit the
simple argument.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. First we notice that Definition 1.1 extends straightforwardly
to manifolds with boundary. To apply Theorem 1, we extend (M,J) slightly to

obtain a manifold (M̃, J) such that M lies in the interior of M̃ . Let G0 = {Ft}0<t<1

be the local filling family near p1 provided by Theorem 1. We claim that this family
{Ft} is entirely contained in M . Indeed, the hypersurfaces ∂εM = {p ∈ M̃ : h(p) =

ε} in M̃ are J-convex for small ε > 0, where h is a level function of ∂M . Employing
these hypersurfaces and Lemma 5.4, one deduces that all Ft are contained in M .
Similarly, the local filling family G1 near p2 is also contained in M .

Choose a maximal integral curve L0 of the line field η on S\{p1, p2} along with
an (embedded) parametrization β0 on the interval (0, 1) such that β0(t) → p1 as
t → 0. Such a maximal integral curve exists because the family ∂Ft is transversal
to η (Lemma 5.4). Also by this transversality, each Ft intersects L0 at a unique
point. We reparametrize the family {Ft}0<t<1 to obtain {Ft}0<t<ε for some ε > 0
such that β0(t) ∈ Ft. Choose two more maximal integral curves L1 and L2, and
set β1(t) = Ft ∩ L1, β2(t) = Ft ∩ L2. Fix three points z0, z1 and z2 on ∂B, and let
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ft : B → M be the J-holomorphic embedding with ft(B) = Ft, ft(zi) = βi(t), i =
0, 1, 2. Then the family F0 = {ft}0<t<ε yields a smooth embedding of B × (0, ε).

An extension of F0 is defined to be a smooth 1-parameter family F = {ft}0<t<T ,
ε ≤ T < 1 of J-holomorphic disks with boundary on S∗ such that it yields a smooth
embedding of B × (0, T ), ft is the same ft in F0 for t < ε, and ft(zi) = βi(t), i =
0, 1, 2. Let F∗ = {ft}0<t<T∗ be a maximal extension. Set Ft = image(ft). There
are two cases to consider.

Case 1. There is some t0 < T ∗ such that Ft0 intersects some F ∈ G1.
Applying the intersection arguments in the proof of Proposition 5.6, one easily

deduces that Ft0 = F . We apply the deformation theory in Section 2 to F . By
homotopy invariance of the Maslov class, µo(F ) is zero. Hence Proposition 2.5 and
Theorem 2.9 imply that there is a unique 1-parameter family of J-holomorphic
disks with boundary on S around F (modulo reparametrizations). We derive that
the union G of the families {Ft, 0 < t < T ∗} and G1 is a smooth family. Using the
transversality it is then easy to show that the integral curves βi, i = 0, 1, 2, all run
to p2 as t goes to 1. Using these curves, we can parametrize the disks in G to obtain
an extension of F0 which contains F∗. Since the latter is a maximal extension, it
is equal to the former. It follows that F∗ is a desired family. Moreover, it is easy
to see that T ∗ = 1.

Case 2.
⋃

0<t<T∗ Ft is disjoint from every disk in G1.
The taming condition implies that the Ft have uniformly bounded area. Con-

sider a sequence tk < T ∗, tk → T ∗. The assumtion of the case implies that their
boundaries have uniformly positive distance from p2. By Proposition 6.1, a sub-
sequence of Ftk converges smoothly to an embedded J-holomorphic disk F with
boundary on S∗. We apply the deformation theory in Section 2 to F as before.
Again we have µo(F ) = 0, and hence there is a 1-parameter family of embedded

J-holomorphic disks F̂t with boundary on S∗,−ε′ < t < ε′, such that F̂0 = F and
it yields an embedding of F × (−ε′, ε′). Applying Proposition 2.5, we deduce that
the Ftk are members of this family for k large. Then it is easy to see that the
union G of this family with {Ft, 0 < t < T ∗} is a smooth family which covers a
neighborhood of ∂F in S. It follows that the integral curves βi, i = 0, 1, 2, meet ∂F
transversally. Using these curves, we can parametrize G to obtain an extension of
F0 which contains F∗ properly, contradicting the maximality of F∗. We conclude
that Case 2 cannot happen.

The uniqueness of the family F∗ or rather the family {Ft, 0 < t < 1} follows
from Proposition 6.2 below.

We note the following consequence of Theorem 2:

Corollary. The characteristic direction η has no limit cycle. Indeed all its integral
curves run from p1 to p2.

Proposition 6.2 (global uniqueness). Let F∗ = {ft}0<t<1 be the family con-
structed in the above proof. Let f be a nonconstant J-holomorphic curve with
nonempty boundary on S. Assume {p1, p2} 6⊂ image(f). Then f is a holomorphic
covering onto image(ft) for some t.

This is similar to Proposition 5.6. We omit the proof.
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7. The Adjunction Formula

Consider (M,J) and an oriented surface S ⊂ ∂M . Let f : Σ → M be a
continuous map from a Riemann surface Σ with boundary such that f(∂Σ) ⊂ S.
Such an f will be called a parametrized surface with boundary on S. An admissible
parametrized surface is either a parametrized surface with boundary on S or a
countinuous map f from a closed Riemann surface into M . For an admissible
parametrized surface f , let [f ] denote the homotopy class of f , where boundary is
confined in S along homotopies in the case that f is a parametrized surface with
boundary on S. Consider C1 immersed admissible parametrized surfaces f1 and
f2 such that f1 and f2 are nowhere tangent to ∂M and they intersect at isolated
points. Moreover, if (f1, z1) and (f2, z2) intersect at p ∈ S for boundary points z1
and z2, then either they intersect transversally or are tangent to each other at p.
We shall say that f1 and f2 intersect simply. Note that, given homotopy classes
〈f1〉 and 〈f2〉, there always exist f1 ∈ 〈f1〉 and f2 ∈ 〈f2〉 with the above properties.
Indeed, we can actually choose f1 and f2 such that they intersect transversally.

Let f1 and f2 intersect simply. The intersection number (with signed mutiplic-
ity) at an interior intersection point of f1 and f2 or at a transversal boundary
intersection point is well-defined. For a nontransversal boundary intersection point
p of (f1, z1) and (f2, z2), we extend f1 (near z1 ) and f2 (near z2) across S in the
same fashion as in the proof of Lemma 5.2. The intersection number is then defined
to be that of the extended maps.

Definition 7.1. Let m1 denote the total number of boundary intersections of f1
and f2, and m0 the total number of interior intersections. The intersection number
f1 • f2 is defined to be 2m0 +m1.

Lemma 7.2. f1 • f2 is a homotopy invariant.

Proof. Consider another immersion f̄1 ∈ 〈f1〉 which intersects f2 simply. Choose
a homotopy f t, 0 ≤ t ≤ 1, between f1 and f̄1 (f0 = f1), which induces a map
F : Σ1 × [0, 1] →M . By suitable perturbations we can achieve the following: 1) F
is a C1 immersion, 2) for each t, f t is nowhere tangent to ∂M , 3) f2 intersects f t

transversally for each t except finitely many parameters t1, ..., tm, and 4) each f ti

intersects f2 simply. (One can perturb F so that f2 intersects F transversally, but

that is not useful.) It is easy to see that f t •f2 = f t
′ •f2 for t, t′ ∈ [0, 1]\{t1, ..., tm},

provided that no ti lies between t and t′. Hence it suffices to show that f t • f2 =
f ti • f2 for t near ti. We can take i = 1. Consider nontransversal intersection
of (f t1 , z1) and (f2, z2) for z1 ∈ ∂Σ1 and z2 ∈ ∂Σ2. By the extension argument
in the proof of Lemma 5.2, the intersection number 2m0 + m1 counted in small
neighborhoods of z1 and z2 is invariant under small deformation. On the other
hand, transversal boundary intersections are obviously invariant. Next consider
interior intersections of f t1 and f2, whose total multiplicity we denote by m0. For
t near t1, they yield the interior intersections of f t and f2 which have uniform
positive distance (independent of t) from the boundary. The total multiplicity of
the latter is clearly m0. The desired equation follows.

It follows that 〈f1〉 • 〈f2〉 is well-defined. The results in [M1] and [M5] and the
proof of Lemma 5.2 imply the following:
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Theorem 7.3 (Positivity of Intersections). Let f1 and f2 be J-holomorphic curves
which are either closed or have boundary on S∗, and are nowhere tangent to ∂M .
If they have distinct images and intersect each other, then f1 • f2 > 0.

Next we extend • to J-cusp-curves.

Definition 7.4. Let f be a J-cusp-curve with boundary on S∗ and f1, ..., fm its
component J-holomorphic curves. We set f • f =

∑
1≤i,j≤m fi • fj.

Gromov’s compactness theorem (see [Y1] and Section 6) and a simple argument
using homology in the interior lead to the following lemma.

Lemma 7.5. Let f ik, i = 1, 2, be two sequences of J-holomorphic curves such that
f ik, i = 1, 2, have boundary on S∗k for a sequence of surfaces Sk ⊂ ∂M which
converges to a surface S in C1. Assume that f ik converges to a J-cusp-curve f i with
boundary on S∗, i = 1, 2, such that the boundary values of f ik converge smoothly
after being composed with suitable reparametrizations, i.e. no genuine boundary
cusp arises. Then f1

k • f2
k = f1 • f2 for large k.

This lemma holds true without assuming that there is no genuine boundary cusp.
For a Riemann surface Σ with boundary, let µ(Σ) denote the Maslov class of the

bundle pair (TΣ, T ∂Σ). It’s easy to see that

µ(Σ) = 4− 4γ − 2l,(7.1)

where γ denotes the genus of Σ and l the number of boundary compononts of Σ.
Consider next a surface S ⊂ ∂M . We have

Theorem 7.6 (the Adjunction Formula). Let f : Σ → M be a J-holomorphic

curve such that f is an immersion along the boundary, f(
◦
Σ) ⊂

◦
M ,f(∂Σ) ⊂ S∗,

and df(TzΣ) 6⊂ Tf(z)∂M for all z ∈ ∂Σ. Moreover, assume that f does not fac-
tor through branched coverings of Σ, i.e. f is not a multiple covering. Then the
“embedding defect”

D(f) = f • f − µ(f) + µ(Σ)

is a nonnegative even integer, and equals 0 if and only if f is an embedding. More-
over, D(f) is a multiple of 4 if f is embedded along the boundary.

Remark. The general case that f may have boundary branch points will be treated
in a subsequent paper.

Proof. First assume that f is an immersion. Then µ(f) = µo(f) + µ(Σ), where
µo(f) is the normal Maslov class of [f ]; see Definition 2.4. Consider the normal
bundle V of f and the boundary bundle V0 as in Section 2 (now V is over Σ and
V0 is over ∂Σ, as opposed to the embedding situation). Choose a C1 section ϕ of
V with boundary values in V0 such that it has no zero along the boundary and
intersects the zero section transversally. Moreover, we arrange that the zeros of
ϕ are all single points of f . (A single point of f is a point z ∈ Σ such that
f−1((f(z)) = z. By the no factorization assumption and the asymptotical analysis
in [Y1], there are only finitely many points which are not single points.) Then the
argument in the proof of Proposition 2.7 implies that

µo([f ]) = 2m0,(7.2)

where m0 is the number of signed zeros of ϕ. Now we consider f1 = exp(tϕ) for a
small t. The intersection number f • f is then given by counting the intersections



244 RUGANG YE

of f with f1 (with weights). The total intersections resulting from the zeros of ϕ
are given by 2m0 = µo([f ]). Each interior double pair of f gives rise to 2 interior
intersection points between f and f1 with the same multiplicity, and each boundary
double pair gives rise to 2 intersection points with the same multiplicity. (A double
pair of f is a pair of distinct points (z1, z2) such that f(z1) = f(z2).) By the results
in [M1] and [M5], the multiplicity is positive in the former case. By the arguments
in the proof of Lemma 5.2, the multiplicity in the latter case is also positive. Since
µ(f) = µo([f ]) + µ(Σ), the desired conclusion follows.

Next consider the case that f has branch points in the interior. Again by the
asymptotic analysis in [Y1], f has no self-overlapping. By the perturbation and
patching arguments in [M1] and [M5], we can approximate f by an immersed curve
f ′, that coincides with f near the boundary and is J ′-holomorphic for an almost
complex structure which is C1 close to J (in particular it is homotopic to J) and
coincides with J near ∂M . Moreover, f ′ is not embedded. Since f ′ • f ′ = f • f and
µ(f ′) = µ(f) (µ(f ′) is defined in terms of J ′), we arrive at the desired conclusion
by applying the previous argument to f ′.

Remark. The above adjunction formula also covers closed J-holomorphic curves.
Note that D(f) is a multiple of 4 for closed f .

8. Filling in the Presence of J-holomorphic Spheres

In this section we prove Theorems 4, 6 and 7.

Proposition 8.1 (Smooth Compactness). Assume that (M,J) has bounded geom-
etry, J is rationally regular, ∂M is J-convex and S ⊂ ∂M is a compact and ori-
entable surface with finitely many complex points. Moreover, assume that no excep-
tional J-cusp-curve for S exists. Let f̃k be a sequence of embedded (parametrized) J-
holomorphic disks in M with boundary on S such that they have uniformly bounded
area, their boundaries have uniformaly positive distance from the set of complex
points of S, and the Maslov classes µ(fk) = 2. In addition, we assume that for

each k, the homology class [fk|∂B] in S is trivial. Then a subsequence of f̃k ◦ ϕk
converges smoothly to an embedded J-holomorphic disk f with boundary on S, where
ϕk is a suitable sequence of conformal automorphisms of the unit disk.

Proof. We follow the proof of Proposition 6.1. Consider the normalized sequence
fk. The proof of Proposition 6.1 implies that the singular set Γ is contained in
the interior of B. Assume that Γ is non-empty. Then the J-cusp-curve limit f of
fk consists of the J-holomorphic disk f0

∞ and non-constant J-holomorphic spheres
f1
∞, ..., f

m
∞ for some m ≥ 1. The cited proof also implies that f0

∞ is an embedding
along the boundary. By Gromov’s compactness theorem and the assumption on
the Maslov classes we have µ(f) = 2. By Theorem 7.6 and Lemma 7.5,

f • f − µ(f) + 2 = 0.(8.1)

To proceed, we introduce some terminology. A simple J-holomorphic sphere f (1)

is called a generator of a J-holomorphic sphere f (2), if f (2) equals the composition
of f (1) with a surjective holomorphic self-map ϕ of S2. The degree of ϕ is called the
degree of f (2). Let F = {f1, ..., fs} be a maximal collection of distinct generators
of the component spheres of f . The multiplicity ki of f i is defined to be the sum
of the degrees of those spheres in f which are generated by f i. We set f0 = f0

∞.
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By Theorem 7.3, we have, for each i and all k, f i • fk ≥ 0, whence f i • f ≥ 0.
But f • f = 0, which follows from (8.1). We deduce that f i • f = 0 for each i.
Then the connectedness of image(f) and positivity of intersections (Theorem 7.3)
imply that each f i has negative self-intersection number. Applying the rational
regularity assumption, Lemma 3.7, and the adjunction formula, we conclude that
each f i, i ≥ 1 is an exceptional J-holomorphic sphere; in particular, f i • f i = −2
and µ(f i) = 2. Consequently, the identities f i • f = 0 imply

f1 • f0 + k2 f
1 • f2 + ...+ ks f

1 • fs = 2k1,
f2 • f0 + k1 f

2 • f1 + ...+ ks f
2 • fs = 2k2,

......,
f s • f0 + k1 f

s • f1 + ...+ ks−1 f
s • fs−1 = 2ks.

(8.2)

We claim that f i • f0 > 0 and hence f i • f0 ≥ 2 for each i ≥ 1. Indeed,
assume e.g. f1 • f0 = 0. Then f1 must intersect one of the other spheres, say
f2, because image(f) is connected. Then f1 • f2 ≥ 2, and hence (8.2) along
with positivity of intersections implies f1 • f0 = f1 • f3 = ... = f1 • fs = 0 and
f2 • f0 = f2 • f3 = ... = f2 • fs = 0. This implies that f1 and f2 are disjoint
from the remaining curves in f , contradicting the connectedness of image(f). Now,
since f i • f = 0 and f i • f i = −2 for i ≥ 1, we deduce from (8.1) that

(2 + f0 • f0 − µ(f0)) +

s∑
i=1

(f0 • f i − 2) = 0.(8.3)

By the above reasoning, the sum on the left hand side of (8.3) is nonnegative. By
Theorem 7.6, the bracket on the left hand side of (8.3) is also nonnegative. Hence
they both vanish. It follows that f0 is an embedding and f i • f0 = 2 for each i ≥ 1.
Applying (8.2) once again we then derive that f i • f j = 0 for all distinct i, j ≥ 1
and ki = 1 for all i. We conclude that f is an exceptional J-cusp-curve for S. This
is impossible by the assumptions. Hence the singular set Γ is empty. Consequently,
fk converges smoothly to f0

∞. The proof of Proposition 6.1 then implies that f0
∞

is an embedding.

Proof of Theorem 6. By Lemma 3.7 and Proposition 3.8, if J is rationally S-regular
in the embedding set-up or parametric set-up, then µ(f0) ≥ 1 for an arbitary
embedded (paramertrized) J-holomorphic disk f0 with boundary on S∗. Hence no
exceptional J-cusp-curve for S exists, and the result follows from Theorem 4. (In
the case of the parametric set-up, it is not necessary to use Theorem 4, because
no nontrivial J-cusp-curve with Maslov class 2 exists. Then the result follows from
the proof of Theorem 2 and Gromov’s compactness theorem (convergence of the
Maslov classes).)

Proof of Theorem 4. The first statement follows immediately from Proposition 8.1
and the proof of Theorem 2. Next we prove a result which is stronger than the
second statement. Assume that there is an exceptional J-cusp-curve C for S. We
claim that there exists no smooth 1-parameter family of J-holomorphic disks ft, 0 <
t < 1, with boundary on S such that ft(∂B) converges to a point p1 ∈ S\

⋃
t ft(∂B)

as t→ 0 and a point p2 ∈ S\
⋃
t ft(∂B) as t→ 1, and that (

⋃
t ft(∂B))∪{p1, p2} =

S. Assume that such a family exists. Then p1 and p2 are necessarily the two
complex points of S, as can easily be shown by using Lemma 5.4 and Lemma
5.5. Proposition 5.6 then implies that ft is given by Theorem 1 for t near 0 or 1.
Consequently, all ft have Maslov class 2. Moreover, the proof of Theorem 2 implies
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that all ft are embeddings, whence ft • ft = 0 by Theorem 7.6. On the other hand,
a global uniqueness similar to Proposition 6.2 holds, which implies that the disk f
in C is a covering of ft for some t. We deduce that f • f = 0, a contradiction.

Now we proceed to prove Theorem 7. Let M,J and S satisfy the conditions in
Theorem 7.

Consider a J-cusp-curve f whose component J-holomorphic curves are either
disks or spheres. The concept of generators introduced in the proof of Proposition
8.1 naturally extends to disks. Let f0, f1, ..., fs be a maximal collection of distinct
generators of f with multiplicities ki. Let π(f i) denote the equivalence class of
J-holomorphic curves which are compositions of f i with automorphisms of S2 or
B. In the following definition f i stands for π(f i).

Definition 8.2. The formal sum
∑

0≤i≤s kif
i is called the “J-class” of f . The

formal sum
∑

0≤i≤s f
i is called the “reduction” of f . We say that f is “irreducible”,

if its J-class is the same as its reduction. A J-cusp-curve f1 whose J-class is the
same as the reduction of f is called a “reduced J-cusp-curve of f”. Two J-cusp-
curves with the same J-class are said to be J-equivalent.

Lemma 8.3. Let f be a J-cusp-curve which is either closed or has its boundary
on S∗. Assume that f is the limit of a sequence of J-holomorphic curves fk (with
boundary on S∗ in the latter case) such that image(f) 6= image(fk′) for a subse-
quence fk′ . Then f • f ≥ 0. Consequently, a sequence of J-holomorphic curves fk
with negative self-intersection number cannot converge to a nontrivial J-cusp-curve
unless image(fk) are all identical and fk are multiple coverings for large k.

Proof. Let f ′ be an arbitary component J-holomorphic curve in f . Theorem 7.3
implies that f ′ • fk ≥ 0 for all k, whence f ′ • f ≥ 0. Then f • f ≥ 0.

Definition 8.4. A J-holomorphic disk f0 with boundary on S is called “balanced”,
provided that either f0 • f0 = 0, or there is a J-cusp-curve f consisting of f0 and
several (at least one) J-holomorphic spheres f1, ..., fk such that f • f = 0 and
fi • f ≥ 0, 0 ≤ i ≤ k (it follows that fi • fi < 0 for all i). In the latter case, f is
called a “balance” of f0 and we say that f0 is nonstandard.

Definition 8.5. A “singular filling” of S is a one-parameter family F of J-holomor-
phic disks ft, 0 < t < 1, with boundary on S∗ such that the following hold:

1) for t near 0 and 1, ft are given by the local filling families near the two complex
points p1 and p2 of S provided by Theorem 1;

2) the ft are mutually disjoint;
3) there is a finite set T = {t1, ..., tm} ⊂ (0, 1) such that ft is an embedding for

all t 6∈ T , and {ft, t 6∈ T } yields a smooth embedding of B × (0, 1)\T ;
4) all ft are embeddings along the boundary, and ft|∂B, 0 < t < 1, yield a smooth

family of embedded curves in S such that
⋃
t image(ft|∂B) = S\{p1, p2};

5) all ft are balanced;
6) the ft, t 6∈ T , are mutually homotopic with boundary confined in S∗.
(It follows that ft • ft = 0 for t 6∈ T and ft • ft < 0 for t ∈ T .)
The ti ∈ T are called “singular parameters” and fti “singular leaves”. A

reparametrization of F is a collection of orientation-preserving diffeomorphisms
hi : (ti−1, ti) → (ti−1, ti), i = 1, ...,m+ 1, with t0 = 0, tm+1 = 1.

Proof of Theorem 7. Since both S and ∂M are orientable, we can find a sequence
of simple surfaces Sk ⊂ ∂M which are disjoint from S and converge smoothly to
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S. By Theorem 6, modulo small perturbations we can assume that the conclu-
sion of Theorem 2 holds for all Sk. Choose integral curves Lki , i = 0, 1, 2, of the
characteristic direction on S∗k and the associated parametrizations βki , i = 0, 1, 2,
as in the proof of Theorem 2, such that they converge to corresponding Li and βi
on S respectly. For each k, let fkt , 0 < t < 1, be the filling family for Sk as con-
structed in the proof of Theorem 2. Recall that the fkt satisfy a 3-point condition:
fkt (zi) = βki (t), i = 0, 1, 2.

Fix t and set fk = fkt . By Gromov’s compactness theorem (with varing sup-
porting totally real submanifolds, see [Y1]), there is a subsequence, still denoted
fk, which converges to a J-cusp-curve f . The proof of Proposition 6.1 implies that
f consists of a disk f0 with embedded boundary and (possibly) several spheres.
By the 3-point condition, fk converges to f0 smoothly away from a set of finitely
many interior points, which is empty provided that f consists of f0 only. In par-
ticular, f0 satisfies the 3-point condition. By the properties of Sk, the intersections
of f0 and fk can only occur in the interior. We define the intersection numbers
f0 • fk = 〈f0〉 • 〈fk〉 in a similar way to Section 7. By the results in [M1] we have
f0 • fk ≥ 0.

We claim that f0 • f ≥ 0. To see this, we choose an immersed surface f?0 with
boundary on S∗ which is homotopic to f0 with boundary confined in S∗ and whose
boundary is disjoint from that of f0. Then the intersection number f0 • fk can be
computed in the following way. We embed M into a suitable manifold M∞ such
that there are closed surfaces f̃0 , f̃?0 and f̃k in M∞ which are obtained from f0,
f?0 and fk respectively by gluing suitable disks D0, D

?
0 and Dk to them along the

boundary. Moreover, 1) D?
0 is disjoint from D0 and all Dk, and 2) Dk converges to

D0 smoothly as k →∞. It follows that for k large, the homology class [f̃k]∞ equals

[f ]∞ ≡ the sum of [f̃0]∞ and the homology classes generated by the spheres in f ,

where [ ]∞ denotes homology class in M∞. We have f0 •fk = 2[f̃?0 ]∞ · [f̃k]∞, as can

easily be verified. Moreover, f0 • f = 2[f̃?0 ]∞ · [f ]∞. It follows that f0 • fk = f0 • f
for large k, whence f0 • f ≥ 0. Similarly, h • f ≥ 0 for every sphere h in f .
Since f • f = 0, which follows from Theorem 7.6 and Lemma 7.5, we deduce as
in the proof of Proposition 8.1 that all component curves in f have negative self-
intersection number. It follows that f is a balance of f0.

Claim 1. The limit f0 is independent of the (sub)sequence fk.

To prove it, we consider another such limit f ′0 and its balance f ′ which arise from
another sequence (or subsequence) fk,1. For each k, the intersection of fk with f ′0
is nonnegative, and so is its intersection with every possible sphere in f ′. On the
other hand, it is not hard to see that f ′ • fk = 0. Hence the said intersections
all vanish. It follows that the intersections of f ′0 and all the possible spheres in f ′

with f are zero. If f ′0 intersects at least one sphere in f positively, then f ′0 • f0 is
negative. By Theorem 7.3, these two disks have the same image. By the 3-point
condition, they are identical. If f ′0 is disjoint from all the spheres in f (or there
is no sphere in f), then f ′0 • f0 = 0. Since these two disks intersect each other by
the 3-point condition, we again deduce that they have the same image. Then they
coincide with each other. The claim follows. Note that if f contains no sphere,
neither does f ′ (and vice versa). To indicate the dependence on t, we set ft = f0.

We shall say that a parameter t is singular, provided that the above f contains
spheres, i.e. f0 is nonstandard. Let T denote the set of singular parameters. Recall
that ft • ft < 0 for t ∈ T .
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Claim 2. The ft are mutually disjoint.

Indeed, we can apply the above argument for Claim 1 to any given pair ft, ft′

with t′ 6= t to show that ft • ft′ ≤ 0. But these two disks have distinct images, and
so they must be disjoint.

Claim 3. T is finite.

Assume that there are infinitely many singular parameters. They cannot accu-
mulate at 0 or 1. Indeed, by the uniqueness part of Theorem 2 and Theorem 6,
for each k, the filling disks for Sk near its two elliptic complex points are given by
the construction in the proof of Theorem 1. This construction provides a smooth
control of these disks. Since the Sk converge smoothly to S, this smooth control is
independent of k. It follows that these disks converge smoothly as k goes to infinity.
Hence there is no singular parameter near 0 or 1. Now choose a sequence of distinct
singular parameters ti which converges to some t ∈ (0, 1). By Gromov’s compact-
ness theorem and Lemma 8.3, by passing to a subsequence we can assume that fti
converges smoothly to some f∞. Arguing as before we deduce that f∞ = ft. Hence
fti • ft = ft • ft < 0 for large i. This contradicts Claim 2.

It is easy to see that the ft, t 6∈ T , are mutually homotopic with boundary
confined in S∗. Using the above arguments, it is also easy to show that for each
t0 ∈ (0, 1), ft converge smoothly to ft0 in a neighborhood of ∂B. Finally, the proof
of Theorem 2 can be applied to show that ft, t 6∈ T , yields a smooth embedding of
B × (0, 1)\T . We conclude that F = {ft, 0 < t < 1} is a singular filling of S.

The uniqueness follows from Theorem 8.8, below.
If F has a singular leaf ft, then the proof of Proposition 8.1 implies that its

balance f as obtained above is an exceptional J-cusp-curve for S. On the other
hand, if exceptional J-cusp-curves exist, then the uniqueness implies that their
disks must occur as singular leaves of F .

The next results provide an analysis of the singularity structure of the singular
filling.

Proposition 8.6. Let F be the singular filling for S and t0 ∈ T a singular param-
eter. Let tk be a sequence converging to t0. Then a subsequence of ftk converges to
a balance f of ft0 . It also converges to ft smoothly away from finitely many interior
points.

The proof is quite straightforward; we omit it. Note that f can be understood
as a blow-up limit of the map Φ at the singular parameter t0, where Φ(z, t) =
ft(z), t ∈ (0, 1)\T . The J-class of f is called a J-blow-up of F at t.

Theorem 8.7 (Unique Blow-up). At each singular parameter, there is a unique
J-blow-up. Moreover, the associated J-cusp-curve is an exceptional J-cusp-curve
for S.

Proof. Consider two blow up limits f and f ′ at a singular parameter t. The argu-
ments in the proof of Theorem 7 imply that f i • f ′ = 0 for any generator f i of f .
It follows that f i must also be a generator of f ′. Similarly, every generator of f ′ is
a generator of f . Hence the reduction of f is the same as that of f ′. On the other
hand, the proof of Proposition 8.1 implies that f is an exceptional J-cusp-curve.

Finally we have the following
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Theorem 8.8 (Global Uniqueness). Let f be a nonconstant J-holomorphic curve
with nonempty boundary on S. Assume that {p1, p2} 6⊂ image(f), where p1 and
p2 are the two complex points of S. Then f is the composition of some ft with an
automorphism of B or a branched covering of B.

Proof. f must intersect some ft0 . If image(f) = image(ft0) , then we are done.

Otherwise, f • f̃t0 > 0, where f̃t0 = ft0 if t0 6∈ T , and it is a J-cusp-curve associated
with the J-blow-up at t0 otherwise. Since at least one of p1 and p2 is not contained
in image(f), f is disjoint from ft1 for (a nonsingular parameter) t1 near 0 or 1.
Choose such a t1. We have f •ft1 = 0. But the structure of singular filling, Theorem
8.7 and Lemma 7.5 imply that f • ft1 = f • ft0 , a contradiction.
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