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ABSTRACT. It is shown that any bounded weight sequence which is good for
all probability preserving transformations (a universally good weight) is also a
good weight for any Li-contraction with mean ergodic (ME) modulus, and for
any positive contraction of L, with 1 < p < co. We extend the return times
theorem by proving that if S is a Dunford-Schwartz operator (not necessarily
positive) on a Lebesgue space, then for any g bounded measurable {S™g(w)} is
a universally good weight for a.e. w. We prove that if a bounded sequence has
”Fourier coefficents”, then its weighted averages for any Lj-contraction with
mean ergodic modulus converge in Li-norm. In order to produce weights,
good for weighted ergodic theorems for Lj-contractions with quasi-ME mod-
ulus (i.e., so that the modulus has a positive fixed point supported on its
conservative part), we show that the modulus of the tensor product of Li-
contractions is the product of their moduli, and that the tensor product of
positive quasi-ME Lj-contractions is quasi-ME.

1. INTRODUCTION

Let (X, F,n) be a o-finite measure space, T : L1(X) — L1(X) be a linear
contraction, and 7 be its linear modulus [CK]. T* will denote the adjoint of T'. The
average - 5170 T* will be denoted by A, (T).

Recall that T is called a Dunford-Schwartz (DS) contraction if it is an L1 — Loo-
contraction, and a mean ergodic operator (or ME operator) if A, (T)h converges in
Li-norm for all h € Ly [Kr].

Definition. We will call a contraction T quasi-mean ergodic (quasi-ME) if there
exists h € Ly (X) such that Th = h and |h| > 0 a.e. on C;, the conservative part of
7 =|T| . An ME positive contraction is quasi-ME, but T' = —I shows that T' may
be ME (and even its modulus is), without being quasi-ME. It is well-known that a
DS contraction on a probability space is ME; in fact its modulus is ME.

If the modulus of a contraction T" has a o-finite subinvariant measure equivalent
to u, then T is equivalent to a DS contraction by a change of measure, and A, (T) f
converges a.e. for every f € L1(X). Although this convergence need not hold if T
is a contraction only in L; (or only in L) [Kr], it was shown in [CL],[C] that if the
linear modulus 7 is ME, then T is also ME, and both A,,(T) f and A, (7)f converge
a.e. for every f € L1(X). This result had been established for T positive by Y. Ito
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[I] and C.-W. Kim [K]. It is also shown in [CL] that there are ME L;-contractions
whose linear modulus need not be ME.

Definition. A linear contraction 7" on L; is called quasi-Dunford-Schwartz (quasi-
DS) if its modulus has an equivalent o-finite invariant measure on its conservative
part C (i.e., if C is non-null, the restriction of T to L1 (C) is equivalent to a DS con-
traction). Dunford-Schwartz contractions and contractions with quasi-ME modulus
are quasi-DS.

Theorem A. Let T be a quasi-DS contraction on Li(X). Then for all f € Ly,
A (T)f and A, (7)f converge a.e.

Proof. Let C and D be the conservative and dissipative parts of the modulus 7.
For f € Li(X), A,(T)f — 0 a.e. on D, since Y o° |T*f| < 307 7%| f| < 0o a.e. on
D. Since T is quasi-DS, there is 0 < u < co with {u > 0} = C and 7u = u. The
convergence of A, (T)f a.e. on C now follows from Chacon’s general ratio limit
theorem [Kr, p. 164]. O

Remarks. 1. Theorem A shows that pointwise ergodic theorems depend basically
only on the behavior on the conservative part. It includes both the Dunford-
Schwartz theorem and the result of [CL].

2. Examples of quasi-DS contractions T' which are neither DS nor ME are easy to
construct: starting with a conservative positive DS contraction, we add a disspative
part which can enter the conservative part, but has a subset that remains in the
dissipative part. Since the dissipative part is not absorbing, T is not DS [Kr, p.
131]. Since the dissipative part is not totally absorbed in the conservative part, T
is not ME [Kr, p. 175].

In this article our purpose is to study weighted ergodic theorems (i.e., sequences
a for which we have a.e. convergence for every f € Ly of

n—1
An(T,a)f = % > Tt f)
k=0

for Lq-contractions with (quasi-) ME modulus. Weighted ergodic theorems were
previously obtained by several authors [BO],[BL],[JO2] for Dunford-Schwartz oper-
ators. In section 2 we show that universally good weight sequences are good also
for any Lj-contraction with ME modulus, and deduce that they are good also for
any positive contraction of L,, 1 < p < oc. In section 3 we extend the return times
theorem [B],[R] by proving that if S is a Dunford-Schwartz operator (not necessar-
ily positive) on a Lebesgue space, then for any g bounded measurable {S"g(w)} is
a universally good weight for a.e. w. We also characterize (weakly) almost periodic
sequences by their generation by dynamical systems. In section 4 we show that
A, (T,a)f converges in Li-norm for every Li-contraction T' with ME modulus and
every f € Ly if (and only if) for every A with [A| = 1 the sequence 1 Eg:_ol ap\F
converges. In section 5 we show that the modulus of the tensor product of L;-
contractions is the product of their moduli, and that the tensor product of positive
quasi-ME contractions is quasi-ME. We then apply these results to produce sev-
eral classes of weights, good for weighted ergodic theorems for contractions with
quasi-ME modulus.

In studying operators in Lo, (like Dunford-Schwartz operators), it is often useful
to have these operators induced by transition measures. The next theorem [H]
provides such a tool.
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Theorem B. Let (X, F, ) be a probability space. Then there exists a compact
Hausdorff space K with the following properties:

(i) There is an order preserving isometric algebra isomorphism ® of Loo (X, F, p)
onto C(K).

(ii) Let F be the Baire o-algebra in K, and i = ®* . Then every Baire-
measurable bounded function is equivalent to a continuous function mod-fi, and
there is an order preserving isometric algebra isomorphism ¥ of Lo (X, F, p) onto
Loo (Ka Fa :a) .

(iii) Let fn € Loo with sup,, ||fullce < c0. Then fn, — f a.e. p if and only if
Uf, = VUf ae f.

(iv) If T is a linear operator on Lo (X, F, 1), the operator T := ®T®~ ! is an
operator in C(K), given by a transition measure Q. If |T|* preserves countable ad-
ditwity (i.e., T is a dual of an L1 () operator), the operator W¥TW—" in Lo (K, F, i)
is given by the (same) transition measure Q.

The only part which is not proved in [H] is the u a.e. convegence of f,, if U f,
converges [i a.e. It can be proved by similar methods, so we omit the proof.

Remark. In order to get transition measures on the original space, one needs the
measure space to be a Lebesgue space. Parts (iii) and (iv) of Theorem B allow
us to assume transition measures for proving a.e. convergence in general measure
spaces (with no separability conditions).

2. ALMOST EVERYWHERE CONVERGENCE OF WEIGHTED AVERAGES

If (X, F,p) is a probability space and T is a linear operator on L;(X), then a
sequence a = (a,,) is called a good weight for T if for every f € L1(X), the sequence
A, (T,a)f = % EZ;& apT* f converges p-a.e. A sequence a is a universally good
weight if it is a good weight for every Dunford-Schwartz operator on a probability
space. If a is a bounded universally good weight, then A, (T,a)f converges also in
Li-norm for every Dunford-Schwartz operator T" on a probability space.

Remark. A universally good weight is a good weight also for all Dunford-Schwartz
operators on o-finite measure spaces. This follows from the fact that L;(D) is
also invariant under the modulus 7 [Kr, p. 131], and the conservative part is
decomposed into two invariant sets, where on one 7 has an invariant probability,
and on the second A, (7)f converges to zero a.e.

Theorem 2.19 in Baxter-Olsen [BO] says that if a is a bounded good weight for
every operator induced by an invertible measure preserving point transformation,
then it is a good weight for all Dunford-Schwartz operators on probability spaces,
and thus for all Dunford-Schwartz operators. However, part (iv) of their proof, as
written, implicitly assumes that the DS operator is defined on a Lebesgue space.
First, they assume that the operator and its modulus can be given by transition
measures. Theorem B allows us to obtain transition measures on another space
and transfer back the convergence of the weighted averages (for bounded func-
tions), without any additional assumptions. Secondly, their proof of the following
proposition (see also [JO1]) requires a Lebesgue space. We give a proof which does
not require it. Thus, the result of [BO] is valid for all DS operators.

Proposition 2.1. Let S be a contraction on Lo (€2, X, m) with modulus o such that
S is given by a transition measure Q(w, A) and o is given by a transition probability
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P(w, A). There exists a bi-measurable function v on Q x Q, with |v| <1 a.e., such
that for a.e. w

Sgw) = [ 9w, ') = [ g (o) Plw,ds)
Proof. Define
p(Ax B) = [ 14(w)P(w, Bdm(w)
and
a4 % B) = [ 14@)Qw, B)dm(e).

These extend to measures on ¥ ® ¥ [N, II1.2], and for any F € ¥ ® ¥ we have
lg(E)| < p(E) (the collection of sets E with this property contains all finite unions
of disjoint rectangles, and is closed under monotone limits). Let v = dg/dp be the
Radon-Nikodym derivative. Then v is ¥ ® X-measurable, and |[v] <1 m xm
almost everywhere, so we may assume everywhere. Fix B € X. Then for every
A € ¥ we have

focnis-sasi-f [ o

- /A [ 180l ") Pl d)) dim().

Since this holds for every A, we have that Q(w = [1p(w W P(w,dw")
for a.e. w (the null set depending on B). Since the approxunatlon of ¢ bounded

measurable by simple functions uses only countably many sets, the claim follows.
|

Theorem 2.19 of [BO] for general measure spaces now follows from Proposition
2.1 and Theorem B, and will be used in the next proof.

Proposition 2.2. Let a = (an)n>0 be a bounded universally good weight. Then
the shifted sequence 8a = (an41)n>0 s also a universally good weight.

Proof. Let 1 be an invertible measure preserving transformation on a probability
space (X, F,p), and T f(x) = f(¢pz). Since a is good for T', so is fa, since

|
—_

n

1 k 1 fet1gn—1
An(T,0a)f = o kZ:O a1 T f = - Z a1 T T f
n+1
= Api1 (T, a)T ™1 T'f).
L (T - ]
By Theorem 2.19 of [BO], fa is a universally good weight. O

It has been proved that uniform sequences [BK], bounded Besicovitch sequences
[R-N], and certain sequences having a mean and a correlation [BL], are good weights
for operators induced by invertible measure preserving transformations, and hence
[BO] for all Dunford-Schwartz operators (i.e., are universally good weights). A
simple direct proof that Besicovitch sequences are good for all DS operators is given
in [JO2] (see also [O1]), and the limit was identified in [O2]. We note that [T], which
deals with group actions, seems to be the first published use of Besicovitch functions
for weighted ergodic theorems, including the identification of the limit. However,
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when applied to Z, the results of [T] do not yield the results for Dunford-Schwartz
operators.

Assani [Al] used the return times theorem [B, Appendix], [R] to obtain that
for any positive Dunford-Schwartz operator S on a Lebesgue space (€2,3,m) and
g € Loo(Q), for a.e. w € Q the sequence {S™g(w)} is a universally good weight. In
the next section we’ll show that positivity is not necessary.

Theorem 2.3. Let a = (ai) be a bounded universally good weight sequence. If T
is an L1(X)-contraction with ME linear modulus, then for every f € L1, An(T,a)f
converges a.e. and in L1(X).

Proof. Let T be as in the theorem, and let C' and D be the conservative and
dissipative parts of the modulus 7. Since the case that 7 is dissipative is trivial
(imT™f = 0 a.e.), we assume C non-empty. Since A, (T,a)f converges a.e. on D
(just by the boundedness of a), we have to prove convergence a.e. on C.

Now L;(C) is invariant under 7 and T'. Since 7 is ME, by a change of measure
the restrictions of 7 and T to L;(C) are Dunford-Schwartz in a probability space.
Since a is universally good, we now have a.e. convergence on C for f € Li(C).
Thus we have to prove a.e. convergence on C for f supported in D.

Let 0 < f € Ly1(D), and define g; = 1p7? f and hj = 1¢T7 f. For n > j we have

n—1
1
An(Ta a)f = ﬁ Z ag ka
k=0
14 n—j , , n—j - ,
== TFf+ — A, (T,0a)lcT f + —=A,,_(T,07a)1pT f.
nk;k f+ == An (T, 02) 1T f + —= An (T, 0"a) 1 pT" f

For n,m > j we obtain

|An(T7 a)f - Am(T7 a)fl

J ., J n—j ; m—j ;
< alloo (4 ) A (D] + == An s (T, 0a)hy = ——= Ay (T, 072) |

+ llallco[An—j(T)gj + Am—;(7)g;]

As n,m — oo, the first term obviously converges to zero a.e., and the second
term converges a.e. to 0, since the function h; is supported on C' (and thus, for j
fixed, A,(T,67a)h; converges a.e., as #7a is universally good by Proposition 2.2).
Using Theorem A we conclude that a.e.

limsup |A,(T,a)f — Apn(T,a) f] < 2||a||o lim Ay (7)g;-
n,m— 00 n

Since 7*"1p — 0 a.e. by Helmberg’s criterion of mean ergodicity [Kr, p. 175],
we obtain (7" f, 1p) = (f, 7"1p) — 0, so |lgj][1 — 0 as j — oco. By Fatou’s
lemma we now obtain

[ imsup A, (T )f — A0 (T ) die < 2952 — 0.
This shows that A, (T,a)f(x) is a.e. a Cauchy sequence, so a.e. convergence is
proved. Integrating the inequality obtained for [A, (T, a)f — A (T, a) f|, we easily
prove that A, (T, a)f is Cauchy in norm, since A, (T, 6’a)h; converges in norm. [
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Remark. The above proof of almost everywhere convergence works for T' quasi-DS
if we assume that the dissipative part that can enter C' disappears (i.e., Dy = D N
{lim,, 7*"1¢ > 0} satisfies 7*"1p, — 0 a.e.), since L1(D — Dy) is always 7-invariant
[F, p. 18] (and a is a good weight for the restriction of T to L;(C U (D — Dy)),
because after a change of measure this restriction is Dunford-Schwartz).

Theorem 2.4. Let a = (ax) be a bounded universally good weight sequence. If T is
an Ly(X)-contraction, 1 < p < oo, such that for some positive L,(X)-contraction
S we have |T'f| < S|f| Vf € Ly, then for every f € L,, A,(T,a)f converges a.e.
and in L,(X).

Proof. We fix 1 < p < oo. If S is a positive contraction of L,, then S* is a
positive contraction of L, for ¢ = p/(p —1). If 0 < f € L, satisfies Sf = f,
then S*fP~! = fP=! € L,. This shows that the maximal support of S-invariant
functions is the same as the maximal support of S*-invariant functions, which will
be denoted by Y; and let Z = X —Y. We then have that both L,(Z) and L,(Y)
are S-invariant subspaces, and || 4, (S)|f| ||, — 0 if and only if f is supported on
Z.

Let T and S be as in the theorem, and let X = Y UZ be the above decomposition
for S. Let f € L,(Z). By Akcoglu’s pointwise ergodic theorem [K, pp. 190-191],

It remains to prove convergence for functions supported in Y. Note that L,(Y) is
also T-invariant. Let 0 < ¢ € L, have support Y and satisfy S*¢ = ¢, and define
dv = ¢dp. Then

[1ssiav < [ sisiar= [1715"oau= [ \7iav

which shows that T and S are (extendable to) contractions of L1 (Y, v). Since T and
S are mean-ergodic in L, (Y, i), they are mean ergodic in L (Y, v). The domination
of T by S and mean-ergodicity of S in Lq(Y,v) imply that the linear modulus of
T in L1 (Y,v) is also mean ergodic. By the previous theorem, A, (T,a)f converges
a.e. for any f € L1(Y,v), so in particular for any f € L, (Y, ).

By Akcoglu’s theorem sup,, |4, (T,a)f| € Ly(X) for f € L,(X), which yields
the norm convergence. O

Remarks. 1. Our proof works for T' dominated by a positive mean-bounded oper-
ator S such that S* has a strictly positive invariant function ¢.

2. For T positive, the previous result was proved by Assani [A2], using a com-
pletely different method.

We now look at the problem of obtaining sequences which are good for all quasi-
DS contractions.

A bounded sequence a is called (weakly) almost periodic if its orbit {#™a} is
(weakly) conditionally compact in I (6 is the shift, as before). Let H be the
complex linear span of {(ax) : ay = A* for some A with |A\| = 1}. The sequences in
H are called trigonometric polynomials. B, the l,,-norm closure of H, is precisely
the space of all Bohr-almost periodic sequences [BL]. Any Bohr-almost periodic
sequence is almost periodic (but the converse, true on Z, is false for one-sided
sequences [BL]). In fact, we have that the space AP of almost periodic sequences is
the direct sum of ¢y (the space of sequences converging to 0) and B (this classical
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result can be seen as a corollary of the Jacobs-deLeeuw-Glicksberg decomposition
[Kr] of AP induced by 6).

Theorem 2.5. Let (ar)k>0 be an almost periodic sequence. Then for every quasi-
DS contraction T on L1(X) and every f € L1(X), the sequence %ZZ;& apT" f(x)
converges a.e.

Proof. Fix T as in the theorem, with 7 its modulus. Let A be in the unit circle and
f € Li(X). Apply Theorem A to AT, which also has modulus 7, to obtain that
LSy AFT* f() converges for a.e. z. By linearity, we see that for all f € Ly (X)
and for all a €H, lim A, (T,a)f(z) = lim L S>30 a7 f(x) exists for a.e. z. It is
easy to show now that any sequence in the [,,-norm closure of H is good for T'.

To complete the proof, we show that any a € ¢ is good for T'. Fix € > 0. For
n > N we have |a,| < e. Hence

n—1 N n—1
1 1 1
|An(T,a)f| = |g S anTHf| < EZ|ak|7—k|f| +o > Jarl|f|
k=0 k=0 k=N+1
LN . ol LN
SEZ|ak|Tk|f|+ﬁ > |Tk|f|§ﬁZ|ak|Tk|f|+€An(T)|f|-
k=0 k=N41 k=0

Using Theorem A, we obtain limsup,, |4, (T, a)f| < elim,, A, (7)|f| a.e. As € was
arbitrary, lim,, A, (T,a)f =0 a.e. O

We have not been able to extend Theorem 2.5 to all weakly almost periodic
sequences. In section 4 we produce some weakly almost periodic sequences which
are good for every contraction with quasi-ME modulus.

3. GENERATION OF BOUNDED UNIVERSALLY GOOD WEIGHT SEQUENCES

In this section we study the generation of different types of universally good
bounded sequences. The return times result [B, appendix] yields that if ¢ is a
measure preserving transformation of a Lebesgue space (©,X,m) and g € Lo (Q),
then for a.e. w € Q, the dynamically generated sequence {g(¥™w)} is good for all
operators induced by probability preserving transformations (see also [R]), and is
therefore a universally good weight. We use this result to extend it to Dunford-
Schwartz operators on probability spaces, without the positivity assumption made
by Assani [Al].

Proposition 3.1. Let (2, X, m) be a probability space, and {gn(w)} a sequence of
bounded measurable functions with |gn(w)| < K a.e. for every n. If for almost
every w the sequence {g,(w)} is good for a (every) Dunford-Schwartz operator T,
then the sequence an = [ gn(w)dm(w) is good for (every) T.

Proof. Let T be Dunford-Schwartz on L1 (X, ). Fix f € L1(X, p). For a.e. w we
have pi-a.e. convergence of Hy (w, z) = +X8_; gi(w)T* f(x), so by Fubini’s theorem
(gn(w)T™ f(x) is bi-measurable) Hy converges m Xy a.e. Hence for a.e. z Hy(w, )
converges m-a.e., and also f*(x) = supy>; An(7)|f](x) < oo by the ergodic theo-
rem. For such  we have also |Hy (w,z)| < K+Z8_ 7%|f|(z) < K f*(z) m-a.e., so

by Lebesgue’s theorem [ Hy(w,z)dm = &30, [ gi(w)dmT* f(z) converges. [
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Theorem 3.2. Let (2, X, m) be a Lebesgue space, and let S be a Dunford-Schwartz
operator on L1(Q,X,m). For g € Loo(Q) there exists a null set Qo such that for
any w ¢ Qo the sequence {S™g(w)} is a universally good weight.

Proof. We first prove the theorem for S positive with S1 = 1. Since (Q,3,m) is
a Lebesgue space, its non-atomic part is pointwise isomorphic to the unit interval
with Lebesgue measure [Ro, §2.4]. After removing a set of measure 0 and using
that isomorphism, we may assume that there exists a transition probability P(w, E)
such that Sg(w) = [g(w')P(w,dw’) a.e. for any bounded measurable g [N, p.
192]. Let 6 be the Markov shift for P, defined on © = QN and denote by P,(.)
the probability on € of the chain starting at w. Since m is invariant for P, the
probability m(-) = [ P,(-) dm(w), which corresponds to the chain with initial
distribution m, is invariant for §. We also have S"g(w) = [ §(0"@)P,(dw), with
3(@) = g(wo) for @ = {w;}. The invariance of m implies that (Q,7) is also a
Lebesgue space [Ro, §3.4]. By the return times theorem [B] (or [R]), there is E C Q
with m(E) = 0 such that for @ ¢ E the sequence {G(f"@)} is a universally good
weight sequence. Since m(E) = [ P,(E) dm(w), there is Qo C Q with m(Q) = 0,
such that P,(F) =0 for w ¢ Qg. For such w, the sequence {S™g(w)} is universally
good by Proposition 3.1 (applied to the probability space (Q, P,) ).

We now prove the theorem for S positive. We then have S1 < 1, and m is a
subinvariant measure for S. Let C' and D be the conservative and dissipative parts
of S. Then both Li(C) and L;(D) are invariant under S [K, p. 131], so we may
assume either m(D) = 0 or m(C) = 0. In the first case S1 = 1, and the previous
part of the proof applies. In the second case, since m is finite, X5 (S"g(w) < oo
a.e, so S"g(w) — 0 a.e, so it is a universally good sequence.

The proof of the general case uses the construction of [BO] (see [JO1] for more
details), and needs the following lemma.

Lemma 3.3. Let (T, \) be the unit circle with Lebesgue measure, and let 6 be mea-
sure preserving in a probability space (0,3, m). Let r(w), ¢(w) be measurable func-
tions on §, with 0 < r < 1. Then the operator R defined on L1(2 x T',m x \) by
Rg(w,7) = r(w)g(8w, €*“)~) is a positive Dunford-Schwartz operator.

Proof. Clearly R is positive, and Rl(w,vy) = r(w) < 1, so R is a contraction of
Loo(QxT,mxA). For 0<ge Li(QxT,mx ) we have

n@mzﬁmn%mwﬁwwwwmwsﬁ%m%ﬁwwwwwn

:/Q[/Fg(@w,’y)d/\]dm(w) =/F[/Qg((ﬁc«w)dm(w)ldA
= [1] st mam)ar= . o

Continuation of the proof of Theorem 3.2. Let o be the modulus of S. By the argu-
ment for the positive case, we have to prove the theorem only when ¢ is conservative,
in which case o1 = 1, and again we assume (after removing a set of measure 0) that
o is given by a transition probability P, and S is given by a transition measure Q.
We now obtain v satisfying the properties in Proposition 2.1.

Next we use the construction of the Markov shift for P as before. For @ = {w;} €
Q we define u(@©) = v(wop,w1). As before, for g bounded measurable on Q we define
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(@) = g(wp). We then obtain (see [JO1]) that for every n > 0 and a.e. w
n—1
Sg(w) = /g(a%) [] u@o) dp..
j=0
Let (@) = |u(@)], and ¢ = arg(r/u) where u # 0, with ¢ = 0 if u = 0. Define R
on L1(2 x I',m x \) by
Rh(@,7) = 1(@)h(02, ")),

By the lemma, R is a positive Dunford-Schwartz operator. For g(w) bounded
measurable on Q we take h(@,v) = vg(@). By induction we obtain

R@,7) = ([[ @5)) §@ @)y ([] €40 = r3675) [] u(e').
=0 j=0 3=0

Since R is a positive Dunford-Schwartz operator, the first part of the proof yields
that for m x A almost every (@, ), the sequence { R"h} is a universally good weight.
Hence for a.e. v, the sequence vg(6"@) H?:_()l u(6/@) is a universally good weight
for m almost every ©. By choosing one such v, we have that §(6"@) H?:_()l u(07 D)
is a universally good weight for m almost every @. Hence it is a universally good
weight P,-a.e. for m almost every w. The formula for S"g(w) and Proposition 3.1
yield that for such w the sequence S™g(w) is a universally good weight. |

Remark. Theorem B allows us to assume transition probabilities on the represen-
tation space so that almost everywhere convergence of norm-bounded sequences of
L functions is preserved. However, since we want to prove another property of
{S™g(w)} (i.e., being good), we need that the transition measures P and @ be ob-
tained on the space §2 itself, which is why we need at the very beginning to assume
that (€2, 3, m) is a Lebesgue space.

We next look at the generation of (weakly) almost periodic sequences. Note that
the Fourier coefficients of a complex measure on the unit circle form a weakly almost
periodic sequence [Bu, p. 37]. Weakly almost periodic sequences are Besicovitch,
but the converse is false (e.g., [LO]). A dynamical model for generating Besicovitch
sequences is given in [BL].

Definition. A vector x in a Banach space B is (weakly) almost periodic for a linear
contraction T' on B if the orbit {T"x} is (weakly) conditionally compact. If every
vector is (weakly) almost periodic for T', we call T (weakly) almost periodic.

Thus, a bounded sequence a is (weakly) almost periodic if it is (weakly) almost
periodic for the shift 6 in [.

Theorem 3.4 [Bu, p. 36]. Let T be a contraction in a Banach space B, and let
x be a weakly almost periodic vector for T. Then for any x* € B*, the sequence
ar = (T*z,x*) is weakly almost periodic. If x is almost periodic, (ay) is almost
periodic.

Theorem 3.5. Let a be a (weakly) almost periodic sequence. Then there exists a
continuous self-map ¥ of a compact metric space Q@ such that Sf = fow) is (weakly)
almost periodic on C(9), and ai, = g(v*w) for some g € C() and w € Q.
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Proof. Note first that every weakly almost periodic sequence a can be obtained as in
the previous theorem [E], by taking T' = 6 on I, © = a, and z* = (1,0,0,...) € I%_.

We may assume that B is the closed linear manifold generated by the orbit of x.
Then B is a separable Banach space invariant under 7', and thus 2, the unit ball
of B*, is a compact metric space in the weak-* topology. 1, the restriction of T*
to €, is a continuous map, and we define Sf = f o1 on C(Q).

Let n; be a sequence of positive integers. Then there is a subsequence r; = nj,
with T"ix converging weakly in B. Clearly T"*y converges weakly in B for any
y € B. Denoting f,(y*) = (y,y*), we obtain that S™ f, converges pointwise to a
continuous function. Clearly {f € C(Q2) : S™ f converges pointwise to a continuous
function} is a closed subalgebra which separates points and contains the constants
(and is self-adjoint in the complex case), so it is C'(£2). Hence S is weakly almost
periodic, since weak convergence in C(€) is equivalent to pointwise convergence to
a continuous limit. If x is almost periodic for 7', then the above arguments show
that S is almost periodic.

If g(y*) = (x,y*) on Q, and w = 2*, then aj, = g(T**z*) = g(yp*w). |

Remark. The previous theorem gives a precise characterization of the generation of
(weakly) almost periodic sequences, since by Theorem 3.4, every sequence produced
by ¢ as in Theorem 3.5 is (weakly) almost periodic.

4. NORM CONVERGENCE OF WEIGHTED AVERAGES

Theorem 2.3 shows that if a is a universally good weight sequence and T is a
contraction of L; with mean ergodic modulus, then the averages A,, (T, a) f converge
also in norm for every f € L;. This raises the question: for which sequences a do
the weighted averages A,,(T,a)f converge in norm for every contraction T of L;
with ME modulus and every f € L1? A complete solution (for bounded sequences)
is obtained in Theorem 4.2.

We want to deal here also with certain unbounded sequences. Following [Be]
(where the definition is made for R), we define for 1 < p < oo the set W, of
complex sequences,

N-1
. 1
W, ={a=(an): hj{/njgopﬁ nZ:;J lan|P < oo}

Wp clearly contains all bounded sequences. On W, we have a semi-norm (the

p-semi-norm), defined by ||a||€vp =limsupy_ % Ziv:_ol |ag|?.

Definition. A sequence a = (a,,) has Fourier coefficients if for every A with |A| = 1,
1~k

the sequence % Zivzol A ay converges as N — oo, say to C(A). We then call the

function C'(A) the Fourier coefficient function of a.

Theorem 4.1. Let 1 < p < oo, and let a = (a,) be a sequence in W, which has
Fourier coefficients. Then for every weakly almost periodic operator T in a Banach
space B, {A,(T,a)} converges in the strong operator topology.

Proof. By the Jacobs-deLeeuw-Glicksberg decomposition [Kr, p. 105] we have B =
B() (&) Bl, with

B; = closed linear manifold generated by {u € B : Tu = Au for some |\| = 1},
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2

1

By={weB: N (T w,v*)| — 0 Vo* € B*}.

>
Il
=]

The existence of Fourier coefficients implies the norm convergence of A, (T, a)u for
u with Tu = Au. Since T is weakly almost periodic, it is power-bounded. Since
W, C W1, for every n we have ||A,(T,a)|| < sup, ||T7]| supy & S5 |ax|. Hence
we have strong convergence on Bj.

Since T is power-bounded, by a change of norm we may take [|T| < 1. Let
g = p/(p—1) be the dual index. In order to prove the convergence for w € By, we use
the arguments of Jones and Lin [Kr, p. 109], with some modification since a is not
assumed bounded. On 2, the unit ball of B* (with the weak-* topology), we define
a continuous map ¥ (v*) = T*v*, and a continuous function f(v*) = [{w,v*)|?. For
each v* € Q we have that f(y)"v*) converges to zero along a subsequence of density
1 (depending on v*), so & S " f(Fv*) — 0 for any v* € Q. This yields weak
convergence to 0 of % Ziv:_ol f o9F, and hence strong convergence by the mean
ergodic theorem. Thus,

Now for w € By we use Holder’s inequality to obtain

n—1

1
|An(T,a)w| = sup |— (akaw,v*>|
e T l;O
1 n—1 1 n—1
< sup (= 3 Jax?)/2(= 37 [(TFw, 0|97 — 0.
v e M " =0

Theorem 4.2. Let 1 < p < oo. The following are equivalent for a € W,:

(i) The sequence a has Fourier coefficients.

(ii) For every weakly almost periodic operator T in a Banach space, {A,(T,a)}
converges in the strong operator topology.

(iii) For every contraction T in Ly with mean ergodic modulus, {A,(T,a)f}
converges strongly for every f € Ly.

(iv) For every contraction T in Ly induced by an ergodic probability preserving
transformation, {A,(T,a)f} converges strongly for every f € Ly.

Proof. (iii) trivially implies (iv), and (iv) implies (i) by taking, for a given A of
modulus 1, the rotation by A on the unit circle (and f(z) = z ). (i)=(ii) is Theorem
4.1.

We prove (ii)=-(iii). We first observe that a Dunford-Schwartz operator T in a
finite measure space is weakly almost periodic: For f € Lo the sequence {T"f}
is weakly conditionally compact in Ly, hence in L;. A standard approximation
argument will finish the proof.

Let T be a contraction of Lq(X,F, ) with modulus 7 which is ME. If 7 is
dissipative, then ||[T™f|| < ||7"|f|]| — 0 for any f € L1, so T is obviously almost
periodic, and Theorem 4.1 applies. Thus, we assume that C', the conservative part of
7, has positive measure. The restrictions of 7 and T to L1 (C) are Dunford-Schwartz
after a change of (finite) measure, since 7 has a finite invariant measure supported
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on C, by mean ergodicity. Hence A, (T,a)f converges in norm for f € L1(C) by
Theorem 4.1. Now the convergence has to be proved only for f supported in D, and
we proceed as in the proof of Theorem 2.3: define g; = 1p77|f| and h; = 1TV f.
For n > j we have

j—1

1 — . ) — ) .
AT,a)f = = anTFf + n—n]An_j(T, 07a)lcTi f + "—njAn_j(T, 07a)lpTV f.
k=0

Since a € W, C Wy, we have sup,, % ZZ;& |ak| < oo, and we denote this supremum
by «. Hence (all norms are Li-norms)

-1
1% j
IIE Z arTRf| < Eoel\fII,
k=0

n—1

n—j . . 1 i
== An—s(T,0"a)1pT" f|| < IIgZIGkIT'“ Y951l < allgsll-
k=j

For fixed j we have h; € L1(C), and ¢’a € W,,. By applying Theorem 4.1 to the
restriction of T' to L1(C'), we obtain
limsup [|[A,(T,a) f — A (T a) f|| < 2al|g;l| —;—c0 0.

n,m— 00

Hence A, (T,a)f is a Cauchy sequence in Ly, and therefore converges. |

We do not know if Theorem 4.1 is true for p = 1 — our proof clearly fails for
p = 1. However, we can use the method of [T] to obtain the following result for
certain sequences of W7.

Theorem 4.3. Let 1 < p; < oo, and let al) e Wy, have Fourier coefficients.
Let a € Wy satisfy lim; |a — a9 ||y, = 0. Then a satisfies all properties (i)-(iv)
of Theorem 4.2. Moreover, for a given T as in Theorem 4.2, the limit operators
satisfy

| lim A,(T,a) = lim A,(T,a")| < Ja—a®||w, sup |7
n—oo n—oo k

We omit the proof of convergence of A, (T,a), since it is similar to [T]. Let
sup; |T7]| = C and let L and LU) be the limits of A, (T,a) and A, (T,a%)). The
inequality for the limits follows from

N-1 N-1

. ) 1 . ) 1 .
1L = 290l = g 5 37 o = 1T =T |5 D [ax — a1
k=0 k=0
1 N—-1 ) )
< limsup = 37 fax — o [Cl] = Clof 2 — 2% v,
—oe k=0

Recall that we have defined H to be the complex linear span of {a = (ax) :
ar = A\* for some X\ with [A\] = 1}. For 1 < p < oo, the set B, of p-Besicovitch
sequences is defined as the closure of H in the p-semi-norm. Since sequences in
H have Fourier coefficients, Theorem 4.3 yields the norm convergence properties
of 1-Besicovitch sequences (not necessarily bounded). However, for a given T' the
proof of Theorem 4.3 uses just the strong convergence of A, (T,al)) for each j, so
we have the following stronger result.
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Theorem 4.4. Let a be a 1-Besicovitch sequence, and let T be a power-bounded
linear operator on a Banach space such that AT is ME for every |\| = 1. Then
A, (T, a) converges in the strong operator topology.

Since AT is mean ergodic for all A, |A\| = 1, the convergence of LWy in the
proof of Theorem 4.3 is immediate. The limit can be approximated by the limits
obtained for the approximating trigonometric polynomials, using the inequality in
Theorem 4.3, which applies also here, with the same proof. For a € By the limit
was identified in [T] (for group actions), and later in [O2] (in the present set-up).

Remark. An example of a universally good bounded sequence (which then has
Fourier coefficients) that is not in By is given in [BL, p.323].

5. L1-CONTRACTIONS OF PRODUCT SPACES
WITH APPLICATIONS TO WEIGHTED AVERAGES

Let (X, F, ) and (Y, X, m) be o-finite measure spaces and let T"and S be contrac-
tions on Lq(X) and Ly (Y), respectively. By (X', F/, i) we will denote the product
measure space (X X Y, F x X,y x m). Similarly, the map V : L1(X') — L1(X")
will denote the (tensor) product operator T ® S. Clearly V is a linear Lq(X’)-
contraction. In the sequel, T will always denote a linear contraction on Lq(X) and
S will denote a linear contraction on L;(Y). Their linear moduli will be denoted
by 7 and o, respectively.

Theorem 5.1. Let T and S be L1(X)- and L1(Y)-contractions, respectively, and
let T and o, respectively, be their linear moduli. Then the linear modulus of T ® S
18TRO.

Proof. Denote V =T ® S. Then v, the linear modulus of V', is the unique positive
L1 (X")-contraction such that ||T ® S| = ||v|| and |(T ® S)f| < v|f| for all f €
L1(X"). Moreover [CK], for f € LT (X"),

vf(z,w) = sup{ |(T®S)g(x,w)| ‘g€ Ll(X/)v |g| < f}

Obviously 7 ® o is a positive L1 (X’)-contraction, and clearly v < 7 ® o. Hence, it
is enough to show that T ® 0 < v.

Let f = h ® g, where h and g are positive and are finite linear combinations of
characteristic functions in L;(X) and L;(Y), respectively. Then

(r®@o)f = (th) ® (og)

sup{ [Tu| : v € L1(X),|u] <h } sup{ |Sv|] : ve Li(Y),|v|<g}
sup{ [(Tu) ® (Sv)| : u®@v e Li(X'), |u| <h, |v]<g}

sup{ (T @ S)(u®@v)| : u®@ve Li(X'), [ul <h, |v]|<g}

sup{ [(T @ S)(u®v)| : u®ve (X)), ludvv|<h®g}

sup{ [(T®S)z| : 2€ Li(X'), |2]|<h®g} = vf.

IN A

Since such functions are dense in L (X’), it follows that (7 ® o)f < vf, for all
f € LT (X'), by the continuity of the operators 7 ® o and v. . O

Let T be a ME operator on Li(X). Then by the splitting theorem of Yosida
[Kr], we have L1(X) = Fr @ cl(Nr), where Fpr = {g € L1(X) : Tg = g} and
Npr={g9g—Tg:g¢€ Li(X)}. Note that Fr is a closed subspace.
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Theorem 5.2. Let 7 and o be positive quasi mean ergodic contractions in Lq(X)
and L1(Y'), respectively. Then v = T7®0 is quasi mean ergodic, and Cr xC, = C,,.
If T and o are mean ergodic, so is v.

Proof. We first show that we always have (even without the quasi mean ergodicity
assumptions) the inclusion C; x C, D C, . By [Kr, Theorem 3.1.3] there exists a
sequence D; C X, D; T D, such that

> 7™p, € Loo(X).
n=0
Since 01y < 1, we have

> v(ip, @ly) = 7"p, ® 0" 1y € Loo(X).
n=0 n=0

Hence D; x Y C D,; therefore D, x Y C D,. By symmetry, X x D, C D,.

Therefore,

Cy, C(X xDs)U (D xY)]¢=Cr x Cy.

Now, assume 7 and o are quasi-ME and let 0 < g € Li(X) with g = g,
{g>0}=Cr,and 0 < h € L1(Y), ch =h, {h > 0} = C, (which exist by quasi-
ME). Then

vig@h)=17g®ch=gQh

yields a v-invariant function in L; (X), supported on C; x Cy. Hence C xC, C C,,
and the equality holds.

Assume now that 7 and o are ME. Since 7*"1p_ | 0 a.e. and ¢*"1p_ | 0 a.e.
by Helmberg’s criterion, we have v*"1p, (z,y) < 7*"1p, (z) + c*"1p, (y) — 0 a.e.
on X'. Hence v is ME. |

Remark. Let X = Z? and Y = Z (Z denotes the set of integers). By taking 7 the
simple symmetric random walk on X and ¢ the simple symmetric random walk on
Y, we have C, x C, = X x Y. However, v is a (symmetric) random walk on Z3,
so is transient, and hence C, = 0.

Theorem 5.3. Let T and S be contractions in L1(X) and L1(Y), respectively. If
their moduli 7 and o are quasi-ME, so is v, the modulus of V =T ® S, and both
A (v)f and A, (V) f converge a.e. for all f € Li(X').

Proof. By Theorem 5.1, the linear modulus of V' is v = 7 ® o, so v is quasi-ME by
Theorem 5.2. The a.e convergence follows from Theorem A (see [CL]). O

A similar proof yields the following.

Corollary 5.4. Let T and S be as in Theorem 5.3. If T and o are mean ergodic,
so are v and V', and both A, (V)f and A, (v)f converge a.e. for all f € L1(X").

Remark. If S is induced by a measure preserving transformation on a probability
space Y, then S = ¢ and is a conservative mean ergodic contraction (actually a
positive Dunford-Schwartz contraction).

We now use the previous results to obtain good weight sequences.
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Theorem 5.5. Let (2,%,m) be a probability space and S be a Dunford-Schwartz
contraction on L1(Q). Let g € Loo(Q), h € L1(Q), and define ar = (S¥g,h). Then
for every contraction T with quasi-ME linear modulus 7 on L1(X) and f € L1(X),

the sequence —Zk OakT f(x) converges a.e. If 7 is ME, Ly-convergence also
holds.

Proof. Since m is finite, o = |S| is mean ergodic. By Theorem 5.2, 7 ® ¢ is quasi-
ME; so

L5760 8)(F  g)(avw) Z:rk (w)
k=0

3

converge g xm-a.e., say to n(z,w). As is quasi-ME, f*(z) = sup,, + >} 7] VTE | f)(2)
is finite a.e. on X by Theorem A. Hence,

I—ZT'“ (w)] < llgllocf™(x)

ux m-a.e. on X x €, so for a.e. x, the inequality holds for m-a.e. w. Fixing such
an x, one obtains from Lebesgue’s bounded convergence theorem that

An(T, Zam / Z:rk 2)5* g(w)h(w)m(dw)

- / n(a, w)hdm.

Now let h € Loo(Q2). If 7is ME, then 7®c and T®S are ME, and the convergence
to n(z,w) is also in Ly (p X m)-norm (and n € L1 (X x Q)). Hence for such an h we
have

[ 14T a)f@) = [ hwpn(a,wym(dw)uiz)

n—1
< / / 1L S Stg(w)h(w)T* f(x) — ne, w)h(w)m(dw)u(dz)
n k=0

< hllsoll An(T x S)(f @ 9) = 0ll Ly (uxm) — 0

If h € L1(9), the norm convergence of A, (T,a)f is proved by standard approxi-
mation arguments. O

Remark. The sequence a defined in the previous theorem is weakly almost periodic
(by Theorem 3.4 for h € Lo, and then by standard approximations), so the norm
convergence when 7 is ME can also be deduced from Theorem 2.3. The novelty
in the previous theorem (compared with Theorem 2.3) is that a.e. convergence is
obtained without requiring 7 to be ME.

If the sequence a is bounded and T is quasi-DS then, for every f € Li(X),
Theorem A yields

1 n—1 1 n—1
k k
sup| - kz_o ar T f| < [lafloc sup = kZ_OT | < oo.

In that case, by the Banach principle, a is a good weight for T" if we can show the
a.e. convergence of A, (T,a)f for f in a dense subspace of L1 (X).
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Theorem 5.6. Let (2,3, m) be a probability space, S a Dunford-Schwartz con-
traction on L1(Q), and g € Loo(R). If (X, F, u) is a probability space with L1 (X)
separable, and T is an L1 (X)-contraction with quasi-mean ergodic modulus T, then
for a.e. weQ, {S"g(w)} is good for T (and 7).

Proof. Consider the product space X' = X x Q, let V=T ® S, and let o be the
linear modulus of S. By Theorem 5.1, v = 7 ® ¢ is the modulus of V', and, by
Theorem 5.3, for all f € L1(X), both A, (V)h and A, (v)h converge u'-a.e., where
h = f®ge Li(X).

Let f; be a countable dense sequence in L1(X). Then the convergence obtained
above for A, (V)(f; ® g) yields that, for a.e. w € Q,

|
—

S*g(w)T* f;
0

S|
>~
Il

converges fi-a.e. for each f;. Hence for such w we have a.e. convergence for a dense
subset of L1(X), and (by the Banach principle) the sequence {S™g(w)} is good for
T. Similarly, it is good for 7. O

Remark. In our proof of the previous theorem, the null-set in Q depends on T.
Theorem 3.2 yields that for a.e. w the sequence {S™g(w)} is a universally good
weight sequence.
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