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ON DIFFERENTIAL EQUATIONS FOR SOBOLEV-TYPE
LAGUERRE POLYNOMIALS

J. KOEKOEK, R. KOEKOEK, AND H. BAVINCK

ABSTRACT. The Sobolev-type Laguerre polynomials {L%’M’N

thogonal with respect to the inner product
o0
(F.9) = oy [ " f@gla)de + MF0)g(0) + NF(0)g'0),
(a+1) Jo
where a > —1, M > 0 and N > 0.
In 1990 the first and second author showed that in the case M > 0 and
N = 0 the polynomials are eigenfunctions of a unique differential operator of
the form

()}, are or-

o0
MZai(m)Di +zD?+ (a+1—2)D,
i=1

where {a;(x)};2, are independent of n. This differential operator is of order
2a + 4 if « is a nonnegative integer, and of infinite order otherwise.
In this paper we construct all differential equations of the form

MY ai(aly @)+ N Y bi@)y® (@)
=0 =0

oo
+ MN'Y @)y (@) + ay(2) + (a+1— 2)y/ (2) + ny(z) =0,
i=0
where the coefficients {a;(x)};2,, {bi(x)};2, and {c;(x)};2, are independent
of n and the coefficients ag(z), bo(z) and co(x) are independent of z, satisfied
by the Sobolev-type Laguerre polynomials {L%’M’N(x) 20
Further, we show that in the case M = 0 and N > 0 the polynomials are
eigenfunctions of a linear differential operator, which is of order 2a: 4 8 if v is
a nonnegative integer and of infinite order otherwise.
Finally, we show that in the case M > 0 and N > 0 the polynomials are
eigenfunctions of a linear differential operator, which is of order 4a + 10 if «
is a nonnegative integer and of infinite order otherwise.

1. INTRODUCTION

Let P denote the space of all real polynomials. We consider the polynomi-
als {LgMN(2)}>  which are orthogonal with respect to the Sobolev-type inner
product

oo

/ e f(2)g(x)dz + MF(0)g(0) + NF'(0)g/(0), f.g € P,
0

(f,9) CES))
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where a > —1, M > 0 and N > 0. These Sobolev-type Laguerre polynomi-
als (see [9] and [12]) are generalizations of the generalized Laguerre polynomials
{L%M(x)}:) , found by T.H. Koornwinder in [13]. They can be written as

(1)
LOMN () = AgL{ (z) + Ay DL (2) + Ay D*L{ (2), n=10,1,2,...,

where D = % denotes the differentiation operator and the coefficients Ag, A1 and
Ao are given by

(2)
B n+ nla+2)—(a+1) n+ «
A0_1+M<n—1>+ (a+1)(a+3) N(n—Z)

n MN n+ao n+a+1
(a+1)(a+2) \n-1 n—-2 J’
" n+ +n—1N n+ n 2MN [(n+a« n+a+1 ’
n a+1 n—1 (a+1)2 n n—2
N n+o MN n+ o n+a+1l
Ay = + s .
a+l\n-1 (a+1) n n—1
For details concerning these Sobolev-type Laguerre polynomials and their definition

the reader is referred to [9] and [12].
We consider differential equations of the form

Ay

(3) Z di(2)y D (z) = Ay(2),

satisfied by these Sobolev-type Laguerre polynomials, where the coefficients
{d;(x)};2, are independent of n. For convenience we write these differential equa-
tions in the form

> ey (@) + zy(x) + (@ + 1= 2)y' () + ny(a) = 0,
i=0
where the coefficients {e;(x)};-, are independent of n and the coefficient eg(z) :=
eo(n, «) is independent of z.
The following lemma is well-known and easy to check. See for instance [17].

Lemma 1. Let {p,(z)},_, be an arbitrary set of polynomials with degree|p,(x)] =
n for each n = 0,1,2,..., and let {)\n}zozo be an arbitrary sequence of constants
with A\g = 0 and {\,},—, not all equal to zero. Then there exists a unique sequence
{di(z)};2, of polynomials with degree[d;(x)] < i ' for all i =1,2,3,..., such that
(3) has {pn(z)},, as a polynomial set of solutions. Moreover, if d;(z) = kiz'+
lower order terms fori=1,2,3,..., then

nki+nn—Dke+...+ 0k, =Ap, n=1,2,3,....

In [8] J. Koekoek and R. Koekoek found a differential equation of the form (3)
for the generalized Laguerre polynomials {L%M (;v)}zozo. These polynomials form
a special case of the above mentioned Sobolev-type Laguerre polynomials, since

1The degree of the zero polynomial is supposed to be —1.
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LaMO(g) = LoM(x). For the symmetric form of that differential equation the
reader is referred to [5].

In [1] H. Bavinck found a new method to obtain the main result of [8]. In this
paper we will use this method to construct all differential equations of the form

MZ ai(z)y D (z) + NZb Yy (z

+MNZ )+ 2y’ (z) + (a + 1 — )y (z) + ny(z) = 0,

(4)

where the coefficients {a;(z)},=,, {bi(%)};=, and {c;(z)};~, are independent of n
and the coefficients ag(z), bo(z) and co(x) are independent of z, satisfied by the
polynomials {L%7M7N($L')}:):0 given by (1) and (2).

In view of Lemma 1 the coefficient Ma;(x) + Nb;(x) + M N¢;(x) must be a
polynomial, independent of n, of degree at most ¢ for each¢ =1,2,3,.... Since M >
0 and N > 0 are arbitrary we conclude that {a;(z)}.2,, {bi(z)};2, and {c;(z)}:2,
must be polynomials, independent of n, with degree[a;(x)] < i, degree[b;(x)] < i
and degree[c;(x)] < i for every i = 1,2,3,....

The main results of this paper given in the next section (see Theorem 3) give
rise to the following corollary.

Corollary 2. If o is a nonnegative integer, the polynomials {L%?Mw(a:)}zozo sat-
isfy a differential equation of formal order 4o+ 10 which is of the form

2c+4 20048
M Z x)+ N Z Bi(x y(Z
4a+10 )
+MN " i)y (@) + 2y (x) + (a + 1 - 2)y'(z) + ny(z) =0,
1=0

where the coefficients {ai(x)}fz#, {Bi(z )}2:+8 and {v;(x )}?:;rlo are polynomials
independent of n which satisfy

2a+4 2a+8 4a+10

> aix) =) Bie) = > wilz)=0.
=1 i=1

i=1

This corollary was stated as a conjecture in [11]. By formal order we mean that
for special cases (M = 0 or N = 0) the true order might be lower. In fact, for
M >0 and N = 0 we find the order 2« + 4 as in [8] and for M =0 and N > 0 we
find a differential equation of order 2« + 8 when « is a nonnegative integer.

We emphasize that except for the examples given in [11] (e = 0) and in [10]
(e =0, =1 and o = 2) this is the first paper on differential equations of the
form (3) satisfied by Sobolev-type orthogonal polynomials.

For more results on Sobolev orthogonality and spectral differential equations
the reader is referred to [6]. Some results concerning the symmetrizability of the
differential equations obtained in this paper can be found in [7].

Finally, we refer to [4] and [2], where difference operators are found for general-
ized Charlier polynomials, and to [3], where generalizations of Meixner polynomials
are treated. In these discrete cases the difference operators turn out to be of infinite
order for all values of the parameters.
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The results obtained in [8] and in this paper generalize the fourth order dif-
ferential equation for the so-called Laguerre type polynomials (a« = 0) found by
H.L. Krall in [15] (see also [16]). These Laguerre type polynomials are described in
more detail in [14].

2. THE MAIN RESULTS

We look for all differential equations of the form (4) satisfied by the Sobolev-
type Laguerre polynomials { L&V (;v)}zozo defined by (1) and (2). We emphasize
that we demand that the coefficients {a;(z)};—,, {bi(x)};=, and {c;(z)};=, are
independent of n and that ag(x), bg(x) and co(x) do not depend on z. Sometimes
we will use the notation

ap(z) = ap(n, @), bo(z) = bo(n,a) and co(z) = co(n,a), n=0,1,2,...,

in order to denote the dependence of n.
We will prove that the coefficients {a;(x)};-, are given by

(5) a0(z) = ao(n, ) = (”*O‘“

=0,1,2,...
TL—]. >an 5 Ly Sy ’

(6) M@y:l}ép&&““<a+l)(a+2)m+ﬁpﬁxti:L23P”.

= J=1J\i—J

This was already found in [8] and also in [1].
From (6) it is not very difficult to see that, for « #0,1,2,...,

degreefa;(z)] =4, i =1,2,3, ...,
and for nonnegative integer values of «

degree[a;(x)] = 1, 1=1,2,3,...,a+2,
degree[a; ()] =a+2, i=a+3,a+4,a+5,...,2a+4,

a;(x) =0, 1> 2a+ 4.

Note that we have

atl $a+2

(a+2)!

a2a+4(x) = (-1) for «€{0,1,2,...}.

This implies that, for M > 0 the differential equation given by
MY ai(@)y ™ (@) + 2y (2) + (o + 1 = 2)y/ () + ny(w) = 0,
i=0

satisfied by the polynomials {L3M ()} " | where the coefficients {a;(z)}52, are
given by (5) and (6), has order 2« +4 if « is a nonnegative integer and has infinite

order otherwise.
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The coefficients {b;(z)};~, and {c;(x)};°, are not unique. In fact we will show
that

bo(0,) =0,
(7) bo(n,a) =bo(l,a) + Bo(n, ), n=1,2,3,...,

bi(x) = bo(1, a)bf (x) + Bi(x), 1 =1,2,3,...,
and
C()(0,0é) = O,

(8) co(n,a) = bo(l, ) + vo(n,a), n=1,2,3,...,

ci(x) = bo(1, )cf(z) + vi(x), 1=1,2,3,...,
where by (1, a) is arbitrary. Here we have (cf. [10] and [11])

(9) Z,Z <)a+1)1 i, i=1,2,3,.

and

(10) ¢ (x) =

Further, we will show that the coefficients {8;(z)};°, are given by

_ _onfa+2)—a (n+a+1 W
(1) o) = o) = O () 12

('

ot i =1,2,3,....
1.

(12)
Bi() =0 and Bi(z) = 87 (2) + 87 (@) + 87 (@) + 8 (2), i = 2,3,4,...
where for i = 2,3,4,.

(13) 57@) = 2_2.2 ”f“< +f)(.+f)<a+2>l I

2a+2) e (@ L) (a2 )
(a+1)@i—1)! 2—1' ’ j—2)\i—j CREL

() () — 1 i i (@t 3 fa+3
B () (a+1)2(a+2)(a+3)2(i—2)!jzo( Y ( J ><i_j>

(15)

(14) B (x) =

X (4 1)iej [(a+1)(a+3) +j(i —j)] 2

and

50 = (a+1)%(a +i3)_(j+4 2(; - 2) 'Z S (0‘;4> <?j14>
(16)

X (a+1)i—j[(a+1)(a+4)+j(i —j)«’
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From (12), (13), (14), (15) and (16) we obtain that for a #0,1,2,...
degree[;(x)] =i, i = 2,3,4,...,
and for nonnegative integer values of «

degree[f3;(x)] = i, 1=2,3,4,...,a+4,
degree[B;(x)] =a+4, i=a+5a+6,a+7,...,2a+ 8,

Bi(x) =0, 1> 20+ 8.
We remark that

Baats(x) = Bimys(x) = (—1)

ap1@+2 ot
a+1(a+4)!

This implies that for N > 0 the differential equation

for « €{0,1,2,...}.

NS Bila)y@ (@) + 2y (2) + (@ + 1 — )y () + ny(z) = 0,
1=0

satisfied by the polynomials {L%O’N(x)}zozo, where the coefficients {;(z)} ;- are
given by 5y(0,) = 0 and (11), (12), (13), (14), (15) and (16), has order 2« + 8 if
« is a nonnegative integer and has infinite order otherwise.

Finally we will show that the coefficients {v;(z)}.-, are given by
1 n+a+1 —n+2,—a—2,a+3
17 = = F ’ ’ 1
(17) (@) =0(n, a) a+1< n—9 )3 2< 2. a+4 ‘ );
n=1,2,3,...,

and

(18)
i) = 3 (@) + 42 (@) + 4P (@) + 4P @) + 7D (@), i =1,2,3,...
where for 1 =1,2,3,...

(19)

0@ = VTS ) i}g(—l)j(“”) (g [CRRINr

(a+D)— 11 & ™ 2 i—k) i
(20) _ _
W) = ; 51(2) j_ik(—l)ﬂ‘ (ST (57 )@t s,
(@) = (o + 1)2(a +3) ;g(_l)j (_j)n(aj?r(;&}jjm!(a + 8
1) N
o3 L et

k=0
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(4) n(a+3)icjin(a+4),
7 (@) = (a—|—1 Yo+ 4) Z{ano gl = j)n!
(22)
(it rn+ a3+ a+d
X
< T(n+ k)C(n + k + 2)k!
and
(5)(:10) _ 1)ttt G a—2) (o +3)g
i _(a+1 a+3 k:o k(o +4) k!
(23)
1 ‘ k+a+3 k+a+3 :
1)\ . pd

From (18), (19), (20), (21), (22) and (23) we obtain that v, (z) = 0.
Moreover we will show that, for nonnegative integer values of «,

vi(z) =0 for i > 4a + 10,

and that
x2o¢+5

(a+1)(2a+5)(a+2)(a+3)!

Note that for i > 3 the coefficient of ¥ (x) in the differential equation (4) is
equal to Ma;(x) + Nb;(x) + MNc;(x). Hence for M? + N? > 0 finite order can
only occur when Ma;(x), Nb;(x) and M Nc¢;(z) all vanish for ¢ > K for some
K e{3,4,5...}.

Now we have reached our main theorem:

Yaa+t10(x) = %Ez)ﬂo(x) = for a€{0,1,2,...}.

Theorem 3. For o > —1 and M? + N? > 0 the only differential equatzons of
the form (4) satisfied by the Sobolev-type Laguerre polynomials {LO‘ MN (g )} o
defined by (1) and (2), are those where the coefficients {a;(z)};—y, {bi(x)}ie, and
{ei(z)}i2, are given by (5) up to and including (23) with by(1,«) arbitrary.

Only if Nbp(l,a) = 0 and o € {0,1,2,...} is the order of this differential
equation finite, and equal to

20+4 if M >0 and N =0,
2a4+8 if M =0 and N >0,
4a+10 if M >0 and N > 0.

Otherwise the differential equation is of infinite order.

Finally we will show that the coefficients {a;(z)}.=,, {8i(z)};=; and {v;(z)}:2,

satisfy
> sin Ta T 1
ilT) = — F -z,
;a(x) T (a+2)(a+3)" 1<0z+4‘ x)

= sin T o+ 2 l,a+3
;ﬁi(x): T (@t (at3)(atd) {1_362F2<a+2,a+5‘_$>}’
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a>—1, and
Z%(x) =0 for «€{0,1,2,...}.
i=1

This implies that for nonnegative integer values of o we have
2a+4 20+8 4a+10

> aix) =) Bie)= > wilz)=0.
=1

i=1 i=1

3. SOME CLASSICAL FORMULAS
We start with the following lemma on partial sums of Gauss’ hypergeometric
series which will be used in this paper:

Lemma 4. Letn € {0,1,2,...}. Then the nth partial sum of the Gauss’ hyperge-
ometric series at the point 1,

— () (D)x
k;o (C)kk' ’
equals
“ (a)i(b) (a+1), —n,a,c—b
B R 3F2< a+1c ’1>

k=0
for all values of the parameters a, b and ¢ for which (a + 1),(c), # 0.

Proof. The proof is based on the well-known Vandermonde summation formula
—n,b (c—b)y

24 F 1) = W A0, n=0,1,2,....

(24) i () = 0, 00

Suppose that n € {0,1,2,...}. Then for (a + 1),(c), # 0, by changing the order

of summation and applying (24) twice, we find that

B () - 5 s ()

m=0

_ 30§ e (O 5§ (@i

(a+ 1)m(c)pm!k!

=0 k=0 ) P et
2SS
- ()
B g;) EZT%Z?'E&’? (-1)* (a +(zlc)i_1k)n_k " (@ fmn ;n:_o (2;,52]6

This proves Lemma 4.

The special case b = ¢ of Lemma 4 leads to the nth partial sum of a 1 Fy hyper-
geometric series at the point 1:

(25)
(Hk) :Zn:(aZ!l)k -t (n+a+1>, n=012,....

|
k = n! n

>

k=0
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We list some definitions and properties of the classical Laguerre polynomials
{1 (2)}>2, which we need in this paper.

For « real and a > —1 the classical Laguerre polynomials are orthogonal on the
interval [0, 0o) with respect to the weight function x®e~*. They are usually defined
by

(20 re = (" ) (]

a:),nz(),l,2,....

Note that Lgf‘)(x) is also a polynomial in the parameter .. This implies that the
classical Laguerre polynomials can be defined for all o by

1 & ok
(27) L (z) == kZ:O(_n)k(a +k+ U"—kﬁ
_ n . (_n_a)n—k xk
(28) =(-1) ,;)Wﬁ
_ - (a+k+1)n—kxk B

Now we take a arbitrary. We have

1),
(30) L;@(O):(”:O‘)z%,nzo,l,z...,
and
(31) DFL () = (~1)* L F (@), k<n, k,n=0,1,2,....

The classical Laguerre polynomials satisfy the second order linear differential
equation

(32) zy”(z) + (@ + 1= 2)y'(z) + ny(x) = 0.

From the generating function given by

- t
Z L (@)t = (1 —t)"* Lexp (tai 1) )
n=0

it easily follows that for arbitrary p we have

(33) L) (z) = Zn:(—l)k (Z) L' (x), n=0,1,2,....

k=0

Further we have for i =0,1,2,...

(34) DL (z) = DL (z) — DL (2), n=0,1,2,...
or equivalently

(35) DL (2) = DL (@) — DL (x), n=0,1,2,... .

We also obtain from the generating function that

ST (et 3T LD @) = (1 - )L
k=0 m=0
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This implies that
—a—i—1 a+j . .
(36) ZLE_k )(—x)L,(c_jJ)(x)zéij, j<i,4,7=0,1,2,....

This inversion formula is an important tool to obtain the results of this paper. We
will use it in the following way:

Lemma 5. Suppose that for k € {0,1,2,...} we have the system of equations
ZA )DFRL O () = Fo(a), n=k+1,k+2,k+3,...,

where {A;(x)};2, are independent of n. Then this system has a unique solution
given by

Ai _ H—kZL( a—i—k—1) )Fj-i-k(x)v 1=1,2,3,....

Finally we define the following polynomials involving the classical Laguerre poly-
nomials:

(37) (a,b;c;x) Z e )(—x)L,(Cb)(x), 1=0,1,2,...,

(38)  Gila,biea)=Y Q&Lg-z—“”(—m;@ (z), i=0,1,2,...,

= Llc+ k)
and
(39)
H;i(a,b,c;d,e;x) := (a)x (D) e Z)(—;10)L](:)(96), 1=0,1,2,....

£ T(d+ k(e + k) =

Note that F; and G; are polynomials in a, b and x and that H; is a polynomial in
a, b, cand x for each i =0,1,2,....
Now we will prove the following lemma:

Lemma 6.

(10)

(a,b;c;x) F(c1+ 5 :O(_l)J <a;c> (b;ij 1>(a)z im0 12
. Gi(a+2,a;¢;) |

"ot Dia- o (e +1) j:O(‘l)j (a _]c-+ 2) (a :j 2) (a+1)i;
(41)

x [(a+1)(a—c+2)+5G—5)]a?, i=0,1,2,....
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Proof. First we define (see for instance [19])

a,b = (a)k(b
2®1 ( c Z) - Z F((c)i(k))];c'Zk’

k=0

for all complex a, b, ¢ and z for which the series in the right-hand side converges.

If ¢ #0,—-1,—-2,... we may write
1 a,b
= — I} ’ .
) (o) ( c )

Now we have (cf. (24))

—n,b (c—b)n
42 P 1) =——"— =0,1,2,...
( ) 2 1( c ‘ > I‘(c—i—n)’n 07 ) 4y ’

for all complex values of b and ¢. This is the well-known Vandermonde summation
formula. ‘

If we apply definition (28) to L{"¢""(—z) and definition (29) to L{” () in (37),
change the order of the summations and apply (42) twice, we obtain for each ¢ =
0,1,2,...

2N b itn \Q —1 m(@+k)i—p—m(n+0+1 —n _m+n
Fi(a,b;c;w)=kz_: (= (@l )k;(cgr k)i!;@!&—(n)!n! ot

_ Z (_1)i+n (_i)m-l-n-l-k (a‘)i—m'(n +b+ 1)k xm-{-n
L(c+ n+ k)ilminlk!

m=0n=0 k=0
_ (_1)i+n (—Z)w_z'+n|((l')i—m2q)1 < —it+m+nn+b+1 ‘ 1) e
—= iim!n! c+n
_ - Zj:(_l)i-l-n (_i)j(a’)i—j-i-n(c —b— 1)i—j ZZ?j
== G —n)nll'(c+i—j+n)
_ (—_|1)’ (=1)j(@)ij (i “b= Vi g, ( —hati—j ' 1) 2
1! iz 7! c+t—
(-1 & x?
= (=1)j(c—a)j(a)i—j(c—b—1)i—;—
il (c+1) = J J J 750
1 ‘ a—c\(b—c+ 1)
= -7 . a)i—jx’,
Do+ ) 25 (0 e

which proves (40).
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In a similar way we obtain for each ¢ = 0,1,2, ...

i i—k k

Gi(a+2,ac;) = ZZZ 1+n —)k+m(a+2)k (n+a+1)i_m_nxm+n

k=0m=0n=0 L(c+ k)ilm!(k — n)n!

I'(c+n+ k)ilmlnlk!

m=0n=0 k=0

i i—m

=000 ilm!n!
X 2‘1)1 (—i+m+n,n+a+2’l> $m+n
n—+c

_ ! Cvitn (C)jil@+2)n(n+a+ 1)isjlc—a—2)i-;
N Z( D G —n)nT(c+i—j+n) v

(1) & w(@+2)n(n+a+1);
—a—2);
j:o( Hie—e il Z n'F (c+i—j+mn)
Now we use (42) to find that, for j =1,2,3,...,
XJ: (—i)nla+2)u(n+a+1)iy _ XJ: (—=fnla+1+n)(a+1)i_jin
n!T(c+i—j+n) — (a+1)nll(c+i—j+n)

n—=

j . o J
(=jnla+i—754+1), nl@a+i—7+2)n1
(a+1) Jng() nl(c+i—j+mn) ot JZ n—l'Fc+z—]+n)

—j,a—i—i—j—i—l'l)

n=1

= 1)i—;2® .
(a+1) 72 1< c+1—)

. it lati—j+2
_](a+2)i—j2q)1( i it ‘1)
= (a(ij;)tii:jii_;)lr_(ff llatDla=ct2=j+jati+i-j).

Note that this result is also true for j = 0. Hence, for ¢ = 0,1,2,... we obtain
Gi(a+2,a;c )

_ (1) N |
‘<a+1><a_c+z>z-!r<c+i)j:(J(—z)j(c a=2)j(c—a—2)ij(a+1)i,

><[(a+1)(a—c+2—j)+j(a+1+i—j)]%

7

T (a+1)(a— c1+ DT (c + 1) ;(—w <a _;+ 2) <a ;_C;r 2) (a4 1)

X[(a+1)(a—c+2)+j(—j5)]a’

which proves (41).
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If we also define (cf. [19])

a,b,c
4 @ b
(43) 32<d,e

= (a)r(0)k(e)
Z) = k; T(d+ Z)r(ke +kk)k!zk’

for all complex a, b, ¢, d, e and z for which the series in the right-hand side converges,
then we also have

Lemma 7.

Hi(a,b,c;d,e;x) = i i(_l)iﬂ (=)n(@)izjsn(b)n
7 ) ) ) ) ) - ]!(i_])!n!
—i+tjn+bn+tct+l
P
e ( n+dn+e

j=0n=0

(44) ‘1)&,1:0,1,2,....

Proof. As before we apply definition (28) to LE:Z_i)(—:z:) and definition (29) to
L,(CC) () in (39) and change the order of the summations to obtain, for each i =
0,1,2,...,

Hi(a,b,c;d,e;x)

aPIDID I CeN 7 s ey o A

' itn D) mantk(@)i—m D) nsx(+c+ Vi pan
=22 > (" (F()diT:ri(k))l“(e:—)nj(k)i!m!n!k!)kw '

(_1)i+n (_Z)m-klv'wn(;z;'—m(b)n

><3<I>2(_Z+m+n7n+b’n+c+1'1>xm+"
n+dn+e

S Sy C B, (e

=i il(j —n)n! n+dn+e
-5 i(_l)iﬂ»(—j)n(a)z-_j+n(b)n o, (TiTIn bkt
== g1 — §)n! n+dn+e ’

which proves (44).

4. THE COMPUTATION OF THE COEFFICIENTS

We take o real and o > —1.
If we substitute y(z) = L&M-N(z) in the differential equation (4) and use (1)
and (32), we find that
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M Ay Zal )D'L{ () + MA; Y ai(z) D L (x)
i=0

+MAQZa () D2 L ()
=0

+NAOZb ()DL (2 )+NAlzb ()DL ()
1=0 1=0

—i—NAsz )D2 L) ()

1=0
+MNA Y ci(x)D'L () + MNAL Y ci(x) DL ()
=0 1=0
+ MNA2 Z Ci(ZE)Di+2L$Za) (ZZ?)
=0

+ A [2DPL) (@) + (a + 1= 2) DL () + nDLY ()]
+ 42 [sD' L) + (0 + 1 - )DL (@) + nDP LD (@)] = .
n=20,1,2,....

If we interpret the left-hand side as a polynomial in M and N and we use

eD*L{) (z) + (a 4+ 1 — 2)D?LI¥) (z) + nDLI® (z) = DL (z) — D*L{ (z)
= -D*L;% (@)

and

eD*L(z) + (a + 1 — 2) DL (x) + nD?L{Y (2) = 2D LY () — 2D3 LY ()

= —2D*L{7), (a),

which follow from the differential equation (32) for the classical Laguerre polyno-
mials and (35), and the definition (2) of the coefficients Ay, A; and Aj, we find
eight systems of equations for the coefficients {a;(x)};—,, {bi()}io, and {ci(z)}io,.
These can be written as follows:

M : 51:0 N . S5:O

M? S =0 N? : Se=0

MN : S3=0 MN? : S;=0

M2N : 54:0 M2N2 : 5820
forn=0,1,2,..., where

_ i a; ()DL () — (" ‘; O‘) DL, (x),

i=0
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n+a) — ir(a n+ o\ o it+17 (a
s= (0] S a@pw + ("1 7) Rewmp @,

a+1l\n-1 pard

1 n+a) w— i o n+ o\ o ir(a

a+1(n— 1) > ai(x) DL (z) + (n_ 1) > bi(@) D LY (x)
i=0 i=0

) ﬁ(n}ta) [(”Zi‘; 1)1;25;21< v+ (M)
o= (a+ 1)1(a +2) 7;: ?) (n ;: f; 1) gal(x)DzL(o‘)(z)
k()L S
() S

S2= S n@DL ) - (08 [0 - 0020 + 20 ).

_n(a+2)—(a+1) n+a %) o i (a)x
Sg 1= (a+1)(a+3) <n_2);b1( VDL ()

n—1/[(n+a\ —
bz D’L-‘rlL(a)
+oz+1( >lz (@)

n—1

(n—i—a)libl () D2 L) (2),

n—1

a+
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s=armarmnes) (00 ) Srwr e

2

2 n+a\ n+a+1) « i+17 ()
+(a+1)2( n )( n—2 )Zbl )DLy (@)

1 n+a\ (n+a+1) o i+27 ()
+(a+1)2( n )( n—1 )Zbl )DL (@)

nla+2)—(a+1) (n+« o
(a+1)(a+3) < )Z 2)D'Li (@)

o0

ol (” * a) 3 ci@) DL ()

a+1l\n—1 pard

o0

. (" * a) ;ci(x)Dng;v) ()

and

=0
st (R () S e
far ()0 i< )DL (@)

The systems of equations S; =0 and Sy =0 for n =0,1,2,... lead to the solution
for the coefficients {a;(x)};-, which was already found in [8]. The systems of
equations S5 = 0 and Sg = 0 for n = 0,1,2,... will lead to the solution for the
coefficients {b;(x)};-, while the other four will eventually lead to the solution for
the coefficients {c;(2)};2,.

4.1. The computation of the coefficients {a;(z)};2,. Since @ > —1 we have
("t #0 for all n =0,1,2,.... Then the systems of equatlons S;=0and S» =0
forn=20,1,2,... are equivalent to
n+ o

45 i(2) DL DL =0,1,2,...
( ) Za ) ( n > n-l,-l(a:)? n [t Rt 9
and

i+17 (a0 _ n+ 27 () _
(46) Za YD )()_—<n_1>D Ly (z), n=0,1,2,....

By considering equation (45) for n = 0 and equation (46) for n =0 and n = 1 we
conclude that ap(0,«) = 0 and ag(1,a) = 1. Since a;(x) must be a polynomial in
x of degree at most i for each 1 = 1,2,3,..., we may write

a;i(x) = kiz' + lower order terms, i = 1,2,3,... .
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By comparing the coefficients of highest degree in (45) and (46) we find that

aO(n7Q)+Z(n_z) _O n_172,3
=1

and

ap(n, @) st ki _ [(nta 1 B

i=1

Hence, since k; is independent of n, we obtain

ap(n,a) —ap(n — 1,a) = (n—!—clvz)’ n=1,23,...,
n—

and therefore, by using (25)

aO(nua):a(J(nva)_aO(Oua):Z (it?) = <n+a+1>7 n=1,23,...,

n—1
k=1

which proves (5). Note that this proof of (5) is different from the one given in [1].
In order to prove (6) we write, instead of (45) and (46),
(47)

Zal YD'L® (z) = (n + a) Dnglo_‘F)l(x) —ao(n, @)L (z), n=0,1,2,...

> ai@)D L (@)
=1
(1)
= (1) DL - DL @), =012

First we will prove that every solution of (48) is also a solution of (47). Note that

n+a+1
n

(49) ao(n+1,a)=a0(n,a)+< >,n:0,1,2,...,
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which was already obtained before. Now suppose that {a;(x)};-, is a solution of
(48). Then we use (34), (35) and (49) to find for the left-hand side of (47)

Y ai(x)D'Li (x)
i=1

Z o) DL (@ ial )DL, ()
i=1

<_ a+ 1) DQLS;Q (7;4— a) n021(33)
+ao(n +1,0) DL, (z) — ag(n, a) DL ()
("

n+a+l a a n+a a
) [pPrhw - pr@] - (1) pr

+ [ao(n, ) + (" * : + 1)} DL, (x) — ag(n, a) DL ()

_ K"* Z‘+ 1) _ (fom DL (x) + ao(n,0) [DLLE), (@) — DL (x)]

= (n—;a)DQLg)l(x) —ao(n, @)L (), n=10,1,2,...,

which equals the right-hand side of (47).
Now we will solve (48). We have by using (5), (26) and (31)

— <Zt (ié) DQL;O_‘Bl () — ag(n, ) DL (x)

_ (n +a+ 1) LD () — <n + a) L) ()

n—1 n—1
 (n-1)z n+a\/n+a+l i n+2kx
(a+2)(a+3)\n—1 n—-1 )&~ (a+4), k!

-7 <”+O‘)Lno‘_+23>(x), n=23.4,....

a+2\n—1

Note that the right-hand side of (48) equals zero for n = 0 and n = 1, which is
necessary for solvability. Hence, the system of equations (48) is equivalent to

i+17 () z n+a a+3) —
Za VDL () = a+2<n_1 Lt (), n=2,3,4,....

Now we apply the inversion formula of Lemma 5 to obtain

(-1)'z Jta+1\ (—a-i-2) (a+3) .
(o) = TDE (e —2)L¢ i=1,2,3,...,
a;(x) 5 EZl j i—j (—2)L; 17 (2), i

and with (37) and (40) we obtain
ai(z) = (=1)'2F_1(a+3,a+ 3;2;2)

1< i fa+1\ fa+2 ,
TZ “*1(. )( )(a+3)z gl i=1,2,3,.

J=1)\i—j
which equals (6).
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4.2. The computation of the coefficients {b;(z)};°,. We use the systems of
equations S5 = 0 and Sg = 0 for n = 0,1,2,... to find the coefficients {b;(x)};,.

Since a > —1 we have (T_‘?‘) #0forn=1,2,3,.... We use this to conclude that
these systems are equivalent to
(50)

o 1 n+« a a
Zb @D ) = 7 (207 [0 - 0P + 200 o)

forn:012 and

n—le )DL (2 +Zb )DL (2)

(51)
nla+2)—(a+1) (n+a« { 27 (@) 37 (@)
—1)D*L 2D°L
(Oé+1)(0[+3) n_2 (TL ) 'n,+1(:r’)+ n-‘,—l( )

for n =1,2,3,.... For n = 0 equation (50) leads to bo(0,a) = 0, and for n = 1
equation (51) is trivial. Also, we conclude that bo(1,«) is arbitrary. Since b;(x)
must be a polynomial in x of degree at most i for each i = 1,2,3, ..., we may write
(52) bi(z) = kiz® + lower order terms, i = 1,2,3,... .

Then we find, by comparing the coefficients of highest degree in (50) and (51), that

M+Z(—_0 n=123,.

n! — n—i)
and
bo(n, @) = Kl
(2—1)'+;(n—i—1)'
_n(a+2)—(a+1) (n+a 1 B
(53) RS (n—Q)(n—l)!’"_2’3’4""'

Hence, since k; is independent of n, we obtain

_n(a+2)—(a+1) (n+a B
bo(n,a) —bo(n — 1, ) = @t1)@<3) <n—2>’ n=223.4,...

and therefore, by using (25),

n

kEla+2)—(a+1) (k+«

a+2 k+a 1 " (k+a
o+l Z(k 3)+a+1z(k—2>
1 +
n

- Ii(n:f;1)+a+1(n
Cn(a+2) —a (nta+l
_m( )

This proves that bg(n,a) — by(1,@) = Bo(n,a), n = 1,2,3,..., where [o(n,a) is
given by (11).

=1,2,3,....
n_2 =y
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Now we will show that every solution of (50) also satisfies (51). In order to do
this we write (50) in the form

(54) Zb ()DL () = Fo(z), n=0,1,2,...,

__1 (nta 27 (@) 37 (@) (@)
Fule) = — (n_ 1) (0 = )DL, () + 2D L2, ()] = bo(m, ) L) (2).
Suppose that {b;(z)};~, is a solution of (54). If we now write

Zb )DL () = G (), n=10,1,2,...,
then we find by using (34) that

Gn(z) — Gpsa(z Zb DL (z) = Fy(x), n=10,1,2,....

Hence, we have Go(x) = 0 and

n—1
Gn(:r’):_ZFk(x)a n_13273a
k=0
In a similar way we find that
n—1 n—1m-—1
Z bi(@) DL (1) = = Y Cn(w) = Fi(a)
m=0 m=1 k=0
n—2 n—1 n—2
= Fp(x) =) (n—1—k)Fi(x)
k=0 m=k+1 k=0
n—1 n—1
=(n-1) Fy(z) — kFi(x), n=2,3,4,
k=0 k=0

Hence

(n—1)Y_ bi(x)D"' LM (x +Zb VD2 L) ()
=1

n—1
=— kEFe(z), n=1,2,3,....
k=0

In view of (51) we have to prove that

Zm AT () [ - 0P ) + 200 o)

(55) +bo(n, @) [(n—l)DL;aN ) + DXL (z )} L n=1,23....
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This is done by induction. For n = 1 this formula is trivial. Suppose that (55)
holds for certain n € {1,2,3,...}. Then we have to show that

" nla+2)+1 n+a+1 o o
D kFy(x) = m( n_1 > {"DQLSH)z(x) + 2D3L§z+)2($)]
k=0
Fbo(n +1,0) [nDLfﬁgl(x) n D?Liﬁgl(x)} .

We find that

n n—1
> kFi(z) =nF,(z) + Y _ kFi(x)
k=0 k=0

o+ Mot D= o) (1

(@t )(art3)
+ bo(n, @) [(n “ )DL (z) + D?L;M(x)}

. 2) [(n — )DL, (z) + 2D3Lfﬁgl(x)]

_n n-+ o
Ca+1

nla+2)—(a+1) (n+« o (@) @
Tt ars) <n - 2) [(n — DD L (@) + 2D3Ln+1($)}

+bo(n, @) [(n —1)DL) (z) + D2L5ﬁ>(x)} .

n — 1) |:(7’L — 1)D2L51021(x) + 2D3L§lo_21($):| — nbo(n, O‘)Lgla) (CE)

Earlier we have found that
(56)
2 1 1
bo(n +1,a) = by(n,a) + nla+2)+ <n+a—|—

m ),n:1,2,3,....

n—1
We also have

i)t (o) e 101)

Hence we find by using (35) that

= _on(a+2)+1 (n+a+1
;ka(z)_ (a+1)(a+3)( )

n—1

x |(n = DDLEY, (@) + 2D L) (2) = nDL{E, (@) = DL ()]

+bo(n+1,0) [nDLE, (@) + D*LLY, ()]

_ nfa+2)+1 <n+a+1

(a+1)(a+3)

o ) (DL () + 2D L, ()]

+bo(n+1,a) [nDLEf_‘zl(x) + DQL;ﬁzl(:z:)} .

This completes the proof.

Now we will solve (54). Note that Fy(x) = 0, which is necessary for solvability.
Substitution of by(n,a) = bo(1l,a) + Bo(n,a), n =1,2,3,..., into the right-hand
side of (54) now leads to

Fo(z) = —bo(1,0) L) (z) + Hy(x), n=1,2,3,...,
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10 = 7 (0 79) [0 - D02 EE @) + 20°L )] - o) 2 ),

n=123,....

As before, we have

_n(a+2)—a (n+a+1
60(n’a)_(a+1)(oz+4)< n—2 >

1 n+a+1 a+2/m+a+1
= + ,m=1,2,3,....
a—+1 n—2 a—+1 n—3

Hence, since By(1,a) = 0, we find that H;(z) = 0. Further, by (31)

Hﬁ@):cr+2<n+a>Lft%@ﬂ_ 2 <n+a)Lf§ﬂ@)

a+1\n—2 a+1\n—1
1 n+a+1 a+2/Mm+a+1
— L) () — L) =2,3,4,....
a—l—l( n—2 ) n (@) a—l—l( n—3 > n (@) n =234,

Applying the inversion formula of Lemma 5, we obtain
bi(x) = bo(1, )b} (z) + Bi(x), i =1,2,3,...,
where, by using (36) and (28),

bi () = Z“Zﬂ T L @) = ()L ()

i a—|—1 z j — .
:Z Z—] Z'Z <)a+1)l Jxal:17273,...,
7=0

which equals (9). Further we obtain that f1(x) = 0 and

Bi(x) == BN (@) + B (z) + BV (@) + BN (w), i =2,3,4,... ,

where

1 ja+2 ! Jj+a —a—i-1 a+2 .
50 = () 2 S (T ) L L), =25
j:

@ 2= : Jta\, (—a—i-1) (at3) .
G, (x)—TH; ) L,_. (—2)L; 257 (x), i=2,3,4,...,

atl S\ j-2 )7
and
(4) i1+ 2 Jta+1\ (—a-i-1) (@) .
. 1 L —x)L; =2,3,4,....
9@) = (-1) a+1§( P e, =2,

Note that by using (37) and (38) we have

1i
ﬁ(l)( ) %Fi_l(a+2,a+2;0;x),i:2,3,47...7
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12 2
ﬁl@)(m) = (—1)1+1ME_2(04+3,0¢+3;2;CL‘), 1=2,3,4,...,
a+1
3) (_1)i+1 o )
i = i 2,a;—-1;2), :273747"'7
5@ = G Dat ey e T2 hia) g
and
-1 i+1
654)(;10) = (=1) Gila+2,0;-2;z), 1=2,3,4,....

(a+1)(a+3)(a+4)

Applying (40) and (41), we now easily obtain (13), (14), (15) and (16). We remark
that
2(a+2)

B () = =5

ai_l(x), 1= 2,3,4,... .

4.3. The computation of the coefficients {c;(z)};~,. We will use the systems
of equations S3 = 0, S4 =0, Sy =0 and Sg = 0 for n = 0,1,2,... to find the
coefficients {¢;(z)};~,. For n = 0 these equations lead to ¢o(0,a) = 0.

First of all we use (51) to write

Zb ()DL (z) = —(n — 1) Zb ()DL (1)

(57)

n((aoz—:—21))(_a(i ;1) (ng) (0= V)DL (2) + 2D LY, ()]

forn=0,1,2,.... Now we substitute (45), (46), (50) and (57) into the four systems
of equations. Then we will show that

(2 ]

(58)
n+a+1

+ (a+1)(a+3) K M )57—n58] =0,n=0,1,2,....

This can be done by straightforward but tedious computations as follows. First we
obtain

n+a+1
n—1

_(nta\/nt+ta+l = i+17 (o)
-() 0 B

1=

—<a+1>(Zf§)i @@ (") @ )

=0 i=

L))

x (= )DL, @) + 2D L (@)] n=0,1,2,...

)Sg — 7184
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and

n+a+1
n—1

>S7 - ’rLSg

1 n+a\/nm+a+1\/m+a+l) — :
— _ ' DZ+1L(a)
a+1< n )( n—2 )( n—1 );b(gj) n (@)
+a+1 i (a
o )Z (@)D L ()
i=0

o)
(Zf?) (2

X [(n

= O

a )(“a)(”if?)(”‘iﬁl)

)DL, (z) + 2D3L£f_‘31(a:)} n=0,1,2,...,

which eventually lead to (58).
Now we use (58) to conclude that for n = 1,2,3,... the systems of equations

ngO,S4=O,S7=Oand

Ss = 0 are equivalent to

n—1

1
Sy =0, (”+O‘+ )33—n34=0 and Ss = 0.

Finally this leads to the following systems of equations:

icl VDL ()
1=0

n

_ _na(;ial;l) <Zt§) <n+a>D2L§ﬁ£1( )

2 [(nt+a\nta\ 3,
- D°L
a+1<n—2)( n > n1(@)

1=

> i) D L)

1 n4 o\ —
+oz—i—l(n—2>Z

i=0

() S atmp e - () Sump

=0

2
n+« 2 () 2 n+ o n+ 37 (a)
D°L D°L
<n—2) "+1(x)+oc—|—1 n—2)\n—1 n1(®)

oL+ (1) Sber L

n—1) 4%
1=0
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and

> i@ DL @)
=0

n(a+2)—(a+1) (n+a\’ (@) 2 [n+a)’ (@)
== (Oé—|-1)(04+3) n—2 Dan—H(aj)_a_'_l n—2 DBLn—H(z)

(61)
() St (1) S

=0

forn =0,1,2,.... For n = 0 we only find that ¢¢(0,«) = 0, and for n = 1 we find
that c¢o(1,a) = bo(1,a) and ¢;1(x) = —bo(1, @)z. Since ¢;(x) must be a polynomial
in x of degree at most ¢ for each ¢ = 1,2,3,..., we may write

ci(x) = k2" + lower order terms, i = 1,2,3, ... .

Then, by comparing the coefficients of highest degree in (59) and (60) by using
(52), we find that

co(n, ) =~ K
+Y =0, =123,
< (n—i)!

i=

co(n, a) #
CES TR DY ey

R (A Rrel (i

Hence, since k! is independent of n, we obtain by (53)

1 n+a\/n+a+l
— —1 = =2,3,4,....
Co(n,OZ) C()(?’L ,Oé) (a+1)(a+2) (TL—1>< n—2 >7 n )9y Xy

n—1

bo(n, @) K,
(2—1)!+; (n—i—l)!]’ n=234....

1=

Since cg(1,a) = bp(1, ), this proves that co(n,a) = bo(l,a) + yo(n,a), n =
1,2,3,..., where

1 " (k4+a\ [(k+a+1
Yo(n, @) = mz< 1)< k-2 )7”—1’273’““

k=1

(62)

By using Lemma 4 we see that this equals (17).

Now we will show that every solution of (61) also satisfies (60) and that every
solution of (60) also satisfies (59). In order to do this we write (59), (60) and (61)
in the form

> ci(x) DL (2) = FF(2), n=0,1,2,..., k=0,1,2,
=0
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respectively, where

nla+ k) — (a n+a\/n+« o
e LT

2 [(nt+a\/nta) 3,
S D°L
+a+1<n—2)(n—k) nr1(2)
1 n+
z Dz+2L(a)
+oz—|—1<n— —1>Za (@)

n+a i1 7 (@) _
+ (n_k> ;bi(x)D L (), k=0,1,2.

Suppose that {c¢;(z)};=, is a solution of (61). Then we find from
(63)

S @) DL (@) = 2 (@) — coln, ) DAL (@), n = 0,1,2,..
i=1
and (34) that

S (@) DL (@) = Y ei(@) DL (2) - Y (@) DALY, (2)
i i =1
= PP @) — coln, @)D’ L) = B (@) + co(n +1,0) DL, ()

forn=0,1,2,.... Now we use (35) to obtain for n =0,1,2,...

S ei(@) DHLE () = FP (x) — FA3, (x) + [eo(n+ 1,0) = co(n, a)] DALY, ().
1=0

So it remains to show that the right-hand side equals ol (z). This can be achieved
by straightforward but tedious computations. First we use (49), (35) and (46) to
find that

oo

ao(n + 1a04)D2L§10-11 "’Zal DHQLn?l( )

— o) [D?L;a>(x>—DL;“><x>]+( ) e @)

oo

+ Z az |:Dz+2L(a)( ) Di+1L$la) (x)}

n+a+1)

o0 1 o
:Zal D1+2La) Zal Dz+1La)( )+<n+z+ >D2L§H}1( )
1=0

3 1 N
:Zaz D'L+2L 06)( ) [(Zt?)_’_(n_FZ_F ):|D2LE.L_31($), n:O,].,Q,....
=0
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In a similar way we use (56), (35) and (50) to find that

bo(n +1,a) DL, (x) +Zb ()DL, ()

DL(a)

n+1( )

= bo(n,a) {DLSIO‘)(x) — L@ (z)} I n(a+2)+1 (n +a+ 1)

(a+1)(a+3) n—1
+ i bi(w) DL (@)~ DL ()]

i=1
:iib(ﬂT“L“> }:b )DL (1)

nla+2)+1 n+a+1 ()
rEass | UM L2

= bi(2) DL (2) + DL (z

ma+2y+1<n+a+1> @ (@)

(a+1)(a+3)\ n—1

1 n—+a o N
OZ+1<7”L—1> {(n—l)DQle_’?l(l')+2D3L§H21( )] ,n=123,....

Now we use (35) to obtain

F®(z) - F?, ()

_ 1 n+a) e— _ 427 () n+a) e— _ i+1 7 ()
_a+1(n_2>zaz(:ﬂ)p 1@+ (TN S b@p L (@)

i=0 i=0
2 (n+a\[(n+a\ 35 () n+a 27 (a)
+a+1<n—2)(n—1>D Lna(@) + n—2 DL"'H()
1 n+a+1\/Mm+a+2\ 5 (v
_ o D2, n=1,2,3,....
(a+1)(a—|—2)( n )( n—1 ) n1(T); 1

Finally we use

co(n+1,a) — co(n, @)

(64) _ 1 ntatl\(mta+2) .
(a+1)(a+2) n n—1 )~ 77T

which was already obtained before, to conclude that
EP (@) = F21(2) + [eo(n + 1,0) = eo(n, )] D)L, ()
=FY(), n=1,2,3,....
For n = 0 we easily find that
FP (x) — FP (@) + [eo(1,a) — ¢o(0,0)] DL (z) = 0 = Fy" (x).
Now suppose that {¢;(z)};=; is a solution of (60). Then we have, using (34) for

n=20,1,2,...,

> i@ DL @) =3 eilw) DL (@) -

i=1 i=1 1

= F"(x) — co(n, ) DL () — FYy (2) + co(n + 1, a) DL, ().

ci(x) DT LY, (o)

'MS

K2
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We use (35) again to obtain for n =0,1,2
() DL (@) = FO (@) -

Fyg_)l (x) + [co(n + 1,a) — co(n, a)] DL
=0

n+1( )
Now we have to show that the right-hand side equals jols (). This can also be
achieved by straightforward but again tedious computations. As before, we obtain
by using (35)

FV(z) - FY, (2)

1 n+a) e— : n+a) e— .
— _ i Dz+2L(a) _ bz Dz-i—l L(a)
() > (@D L) - (") S b DL @)
2 [(nt+a\(n+ta\ 3,
— D°L
a+1<n—2)( n > nt1(@)

e () ()

1 n+a+1\/n+a+2 (a)
S — DL —1,2,3,....
araral ()P am 2

Finally we use (64) again to conclude that

FO(z) = Y () + [co(n + 1,0) — co(n, a)] DL, ()
=F9z), n=1,2,3,....

For n = 0 we easily find that

Fo(l)(x) _Ffl)(w) + [co(1, @) — ¢0(0, )] DL(O‘)( )

= —bp(1, @) DL () + bo(1, ) DL (x) = 0 = F (x).
Now we will solve (63). In order to reduce the number of terms involved we use
(51) again to find that for n =0, 1,2

<:’:‘;)Zb ()DL (2) =
nla+2) — (a +1)(n+a>

n+«a
DZ+2L(a
a+2(n—1>zb (@)

(a+1)(a+3) \n—-2

n—+ o 27 () 2 n—+« 37 ()
DL D°L .
(1) e (@

n—1 n+1
We use this to write (63) in the form

Z Dz+2L a)( )

i:1— co(n, ) D?L (z) — m (Z t g) (n . a> DBLfﬁQl(z)

1 [(n+a) «— , 1 [n+a) — ,

_ i D’L+2L(oc) bi D’L+2L(oc)
ri(n 15 Samp e+ > hED L
forn =0,1,2,.... Weremark that it is necessary for solvability that the right-hand
side equals zero for n =0, n = 1 and n = 2. For n = 0 and n = 1 this is trivial
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For n = 2 we use (31), (27), (7), (8), (11) and (17) to see that this right-hand side
equals

—co(2,0)D2LY () + bo(2, ) D2LEY (x) = —y0(2, @) + fo(2, @) = 0.

Now we substitute co(n, @) = bo(1, @) + yo(n, ), n = 3,4,5,..., to find by using
(7) that

(65 Y ci(@)DTPLE (@) = bo(1,0) Kn(z) + My (x), n=3,4,5,...,
=1

where

i =[5 (0 05) ] e s (01 R werne

and

M) = = e (o o) (n 1) P

_[ﬂ )+L<"+§>a0(n,a>- . ("+a)ﬂo<n,a>] DL (x)

+1 a+2\n—1

1 n+« n—+«
_ D’L+2L(a) D’L+2L(a)
a—l—l(n— )Za ()+a+2 n—1 Zﬂ ().

1

By using (9) we may write, for k € {0,1,2,...} and n =0,1,2,...,

Zb* )DIF L (z) = —DFL® +ZZ

( ) (a+ 1),/ DL (2),
=0 j=0

Changing the order of summation, we find that

.m > @ () (a4 1)y DL ()

=22 (('_1)';! <Z +'j) (a+ 1)ia? DHFIFFL ()

J
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Now we use (26) to obtain for i =0,1,2,...

i
=0 7
n—|—a) i (=1 i (—n)m pmimik
= X
! IR AT
( no)i= ik (a+ 1)y (m—i—j—k)!
_(nta\ g GV )i 2™
(R S
_ n+ao = ( m+i+k L m
_< n )n;(a+1m+z+km' (J)
- <n+o‘) “Pitk 019
n (@ + 1)tk

Z (_'})J <;) (a+ 1)i—ja? DL (x)

) (a+1); (—n)irk

— i (a+ 1)ipk
—-n+ka+1

)a+1) 2F1< a+k+1 ‘1)

) (=n)k F)n-r (=
(a+ D (a+k+1)pg

)
nI'(k)’

This implies that for n =1,2,3,...

Z b (x
Hence
Zb*

which implies that

o= (173

(=n)k

)Ditk [ (a
nI'(k)

(2) =

)DL (2) =n—1— DL (z), n=1,2,3,...

— D?*L(z), n=3,4,5,....

ke{0,1,2,...

—DFL(z), k=0,1,2,....
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By using (5), (11) and (62) we obtain
o)+ g (05 Yoot = 5 (0 )
-11075) ("fol)n— e Ty [ |

S ) (60
“arrarmen) (s )

n—1
1 k+ «a k+a+1
S =3,4,5,....
+(a+1)(a+2)z(k—1>< k—2 )” 34,9,

k=1

Hence, we find by using (31) and (62)

n—2
Mow) = = (ng) ka—l)’“ak(x)L(“J,;’i?) ()

n+a\ «— atk+2
(n_l)z @)L (@)

Y Kifé‘)mm (el

—y0(n —1,a)D*L{ (z), n =3,4,5,....
Now we apply the inversion formula of Lemma 5 to (65) to find that
ci(r) =bo(1, )ci () + vi(x), 1 =1,2,3,...,
where for ¢ =1,2,3... we have by using (31)

i e[ s

) : ] 2 a—i— —a—i— [0}
= (1) Z<J+Of+ )L§ eI ZL V()L ()

=0~ 7
Now we use (33) and (28) to find that for i =1,2,3,...

5 (e e - Sy (7))

j=0 J j=0

S

=L (-2) = 5

This implies, by using (36), that

ci(z) = (—1)“3—, i=1,2,3,.

which proves (10). Further we find that
%i(@) =" @) + 717 @) + 90 @) V@) 47V (@), =123,
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where for 1 =1,2,3,...

H—l i ] :
(1) Jta+2\ (—a-i-3) (a+k+2)
1 = G St 3 () e e,
p=

-1 it 7 . 9 i N
%”@%=i+g§:Gdﬁﬂum§:<j;ii')LLj (=) LT (a),
pm

- (a+1 a+2

(it a+2\[i+a+?2 (—a—i—3) (a+3)
- ( j—1 )( j+1 i—j ( 17) j (ZE),

<.

(a—i—l)(a—i—?)J Jj+1 j—1

2(—1)it+1 ‘ +a+2 +a+3 a—i- «
7(4) (:z:) _ ( ) <] ) (] )L( 3)( x)L§ +2) (3:)
1

and

7O (@) = (~1)*3 0 + 1,0) L0 (—a) L) (1),
j=1

Note that for i = 1,2, 3,... we have by using (37)

(66)

z‘(l)(x) = (;1_’)_141_1 ;(—1)k(a +4)—rap(z)Fi—p(a+k+ 3, a+k+2;k; )
and
(67)

A2 (@) = (=1 (1) + 3)iBr(z)Fin(a+ k+3,a+ k + 2k + 2; z).

By using (40) we easily obtain (19) and (20).
Further we have, by using (39),

. =— =  H(a+3,a+3,a+30,22), i=1,23,...
7 = Gy et et dat @) i
and
2(—1 i+1
() = (=D Hio+3,0+4,a+20,2x), i=1,2,3,....

(a+1)(a+4)

Now we apply (44) to obtain for i = 1,2,3,...

3N _ n(a+3)icjin(a+3)n
i ()_(a—i—l a+3) 2;7; g1 —j)In!

(68)
i 4 4
><3<I>2< i+jn+a+3,n+a+ ‘1)#
n,n+ 2
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%

Zj:(—w (Al + B)izjin(a £ 4

2
T (a4 D(a+4) - 31— j)in!

7=0n=0

X 3Dy <—i+j,n+a+4,n+a+3‘ 1) )
n,n—+ 2
which lead to (21) and (22) by using (43).
Finally we use (17) to find that for i =1,2,3,...

(5) _(—1)i+1 i Jta+2 P —j+1l,—a—2,a+3 )
Yi (x)_iow—l 51 ji—1 3L'2 2.0+4
)

i—j
B ( 1)i+1 Z§ j—|—1 (= — 2)i( + 3)
(a+1)(a+3) a+3 Flk:O (2)k (o + 4) k!
a+3); —a—i— [eY
et . (j))ﬂ L8 (—a) L ()
H—l 1—1 [
. Z Z -7+ 1 2) (a + 3)k
m+& a+3k0JbH a+4nw
« + 3 a 73— «
( r(g)) L0 () L (),
Now we write
(=7 + D R =Rk (=DF
— =(-1 - = k=0,1,2,.
g VTG Troew
to obtain by using (37) and (40)
(—1)+ 2 (—a — 2)g(a + 3)i

1 (x) = (—1)*

(a+1)(a+3) & (2)g (o + 4) k!

jOFO—M
~DiF a—2) (@ +3) ,, o
_(a+1(a+3 k= o p(o+ 4)kk! Fl(a+3,a+27—k,x)
:4( I)H_l < 1(_1)k(_a_2)k(a+3)k
(a+1)(a+3) pors (2)k(a + 4)ik!
1~ yfkta+3) (k+a+3 -
xp(i_k)j_0<—1>( PR T O )

which proves (23).
Now we will show that for nonnegative integer values of o we have

~i(x) =0 for i > 4a + 10.
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So we assume that a € {0,1,2,...}. First we consider 'yl-(l)(x) given by (66). We
use (40) to obtain
i—k

1 _
Fi_p(o4k+3, atk+2; k;z) = WZ <O‘j3>< O‘]‘:f )(a+k+3) gl
J=

The terms of this sum are equal to zero for j > a+ 3 and for i —k — 7 > a + 3.
Hence all terms vanish if i —k > 2a+6. Since ax(x) = 0 for k > 2a+4 we conclude
from (66) in the same way that

Y D(z) =0 for i>2a+4+2a+6=4a+10.

Now we consider %(2) (x) given by (67). In the same way we have, by using (40),
Fipla+k+3,a+k+2k+2;2)

:r(i1+2) g(‘l)j<a;~r1)( a,—:_l )(a+k+3) .

=0

The terms of this sum are equal to zero for j > a4+ 1 and fori — k —j > a + 1.
Hence all terms vanish if i — k > 2a + 2. Since fk(z) = 0 for k > 2a + 8, we
conclude from (67) that

v (z) =0 for i >2a+8+2a+2=4a+ 10.
We need the following lemma:

Lemma 8. For £ €{0,1,2,...} andb—a ¢ {1,2,3,...} we have

3¢2<—n,a,c+€‘1)
b,c

(70)

¢
(a)r(b—a—k),
E =0,1,2,....
n—l—b ) = a—b—l—l)kF(c—l—k)k' e

Proof. Let £ € {0,1,2,...} and b—a ¢ {1,2,3,...}. We have (see for instance [18],
§9.1, formula (34))

By (—n,a,c—l—é'l)
b, c

" (—0)k(a) —n+ka+k
= —@ 1 =0,1,2,....
Z:: T(c+kykl 2! b+ k RS

Hence, we obtain by using the Vandermonde summation formula (42)

—n,a,c + f n ( é)k;(a)]q(b _ a)n_k
3(1)2( b, c ‘1)_ n+b)zO T(c 1t k)k!
¢
—Ou@lb—a—k)a
n+b kZ:O a—b—i—l)k (c+ k)k! »n=01,2,...,

which proves (70).
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By using (68) and applying (70) twice we obtain for ¢ =1,2,3,...

(3)( ) _ 2 QZH (_O‘_Q)k(a"’?’)k

i N (a+1)(a+3) 4 (o + 4)1k!
XZ —it (@t 3)ij(h—a—3)i
i =)t
—Ji—jta+3k+a+3 ,
o 1) a7
8 2< i— k42 !

B oifof —a—2)g(a+3)k(—a—1)n(a+3)m
_(a+1 a+3 (a+4)k(a+ 4) L (k +m + 2)k!m!

J i— ]

(1) x io(—l)j (m ar 3) <k ot 3) (=i )k (= )m(m + @ + 3)iya.

Note that the terms of the inner sum are equal to zero for j > m + a + 3 and
for i — j > k+ a + 3. Hence all terms vanish if ¢ > k 4+ m + 2a + 6. This

implies that % J2) =0ifi>k+m+2a+6forall k € {0,1,2,... &+ 2} and
m€{0,1,2,... ,a+ 1}. Hence

yf Nz)=0 for i>a+2+a+1+2a+6=4a+09.
In a similar way we use (69) and apply (70) twice again to find for i = 1,2,3,...

2 S (—a = Do+ 4)
_(a+1)(a+4) Z (a + 5)5k!

1) =

—i 4+ (a+3)i_j(—k—a—4)i_j
XZ s G9!
—Ji—j+a+3k+a+4 j
><3‘I>2< k4o ’1>x
_ o 2=nH “*“f<—a—1>k<a+4>k<—a—2>m(a+3>m
~ (a+ 1) (a+4T() (a+5)k(a+ 4),L(k +m + 2)k!m!

(12)  x Z (m+ o 3) <k ot 4) (=i )k (—f)m(m + @ + 3)iya.

t=1J

k=0 m=0

The terms of the inner sum are equal to zero for j > m+a+3 and fori—j > k+a+4.
Hence all terms vanish if ¢ > k +m + 2a + 7. This implies that

1 (x) =0 for i >a+1+a+2+2a+7=4a+ 10.
Further we note that for ¢ = 1,2,3,... (23) can now be written as
7(5)(;3) = _(_1)i+1 a+2(_ )k (_a - 2)k(04 + 3)k
! (a+1)(a+3) = (2)p (a0 + 4) k!

(73) |
e () (T e

J
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Now we see that the terms of the inner sum are equal to zero for j > k+ «a+ 3 and
for i — j > k+ a + 3. Hence all terms vanish if i > 2k + 2a + 6. So we conclude
that

”yi(S)(a:) =0 for i >2a+4+2a+6=4a+ 10.
Finally, it is not difficult to see that yﬁ) +10(x) = 0 and that 7§g>+10(x) reduces
to one single term for p € {1,2,4,5}. Moreover, we find that

1 2 —2x2ath 4
’Yia)+1o($) + ’yzia)-i-lO(x) - (a+1)(a+ 2)!(a + 4)! - _7‘5‘0‘)“0(:10)

and therefore
:1:2 a+5

(a+1)2a+5)(a+2)(a+3)!

5
Yaar10() = 15, 10(2) =

5. THE SUMS OF THE COEFFICIENTS

Earlier we have discovered (see [10] and [11]) that

b sin o T 1
(74) ;ai(x)—— T (a+2)(a+3)lFl<a+4‘_$>’a>_1'

In this section we will give a proof of (74). We will also prove that, for « > —1,

(75)

= sin T a+2 l,a+3
;ﬂi(@: T (a+(at3)(atd) [““FQ (a+27a+5'_x)]'

First we define for complex x

(76)

Kot =53 2 () (2 )

Sz Tl—s)\ J i—Jj

where p, ¢, and s are integers with p,q,7 > 0 and a > —1. Then we will prove the
following lemma:

Lemma 9. For a € {0,1,2,...} we have

- a+p (j_a_r_s)a-i-q j
77 K(p,q,7r;8;,a,x) = ( . ) - z’
(") ( ) jgo J Fj+a+q—-s)

for all complex x and all integers p,q,r and s with p,q,r > 0.
Fora>—-1anda ¢ {0,1,2,...} the right-hand side of (76) converges absolutely
for all complex x if r + s < q. In that case we have

(78)

00 <a+p)r( Fj+q—r—s) o

K(p,q,r;s;a,x) = . . .
(g ) JZ:;) J jta+qg—s)I(j—a—r—s)
Proof. First we assume that o € {0,1,2,...}. Then the right-hand side of (76) is
a finite sum since a + p and a + ¢ are nonnegative integers. So we may change the
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order of summation to obtain for all complex = and all integers p, q,r and s with
p,g;r =0

K(p,q,7; 80, 7) :iZ%cjp) ((:j]q)( +7)imjad

i=0 j=0
-2y () (e
() pter

B ()

Now we apply Vandermonde’s summation formula (42) to find (77).
Now we assume that & > —1 and « ¢ {0,1,2,...}. Then (79) holds for all
complex z if r 4+ s < ¢, since

S5 ()

§=0 i=0

converges absolutely for all complex z if r + s < g.
In order to prove this, let x be complex and define

It —a—q)'( ,
wij = Oé"f.'p (i—a Q) (Z+.Oé+.7"> 27, 0,7=0,1,2,....
j JT(—a—@T(a+r)TGE+ 75— s)i!

Now we will show that

|uisl
§=0 i=0
converges if r + s < q.
Since
) _ _ . P . _ —a—p—1
J J! [(-a—p)j!  T(-a-p)

and a+p+1>p >0, we have

lim <°‘pr) —0.
j—oo \| J

Hence there exists a positive number M, ,, independent of j, such that

‘(O‘pr>'gMa7p,j=0,1,2,....
j

This implies that
Ni—a—qlli+a+r)
T(i+j—s)il

(80) luij| < Caprg.r |z, 4,5 =10,1,2,...,

where
My p

Coc r =
P D (—a = g)T(a + 1))
We distinguish two cases: s < 0 and s > 0.

> 0.
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Ifs<OwehaveI'(i +j—s)=(i+j—s—1)!>jl(i —s—1). So we obtain

J
B#,@j:@law”.
J]:

Fi—a—qTli+a+r)
T(i— s)T(i +1)

uij| < Coap,g,r

Since
Ni—a—qT@i+a+r)
I(i—s)(i+1)

~ "5 for i — o0,

we conclude that
o0 o0
S gl <0
§=0 i=0

for s <0if r+s<gq.
If s > 0 we find by using (80) that |u;;| =0 if i + j < s. So we may write

oo oo S oo oo oo
DD il =30 >0 ful+ Do luil.
§=0 =0 =0 i=s+1—j j=s+1 i=0

For 0 < j < s we have

‘I‘(i—a—q)l“(i—i—a—i—r)
T(i+j— )il

~ T for i — 0

andr+s—q—1—75<r+s—q—1. Hence

S o0
o> lugl<oe

§=0i=s+1—j
ifr+s<gq.
For j > s+ 1 wemay write I'(i +j—s) = (i+j—s—1)! >il(j —s—1)!. Hence
Fi—a—qli+a+r) ||d
|u'LJ| S Oa,p,q,r 314 (j — s — 1)'
fori=0,1,2,... and j=s+1,s+2,s+3,.... Since
't —a—q)I'(
’ o qi?ii(2+a+r) ~ "2 for i — oo

andr—q—2=r+s—q—1—s—1<r+s—q—1 we conclude that we also have
o0 o0
> D lul <o
j=s+1 i=0

ifr+s<gq.
This implies that

o0 o0
D2 luiyl <00
§=0 i=0

fors >0if r+s <gq.
This proves that if « > —1 and a ¢ {0,1,2,...}, then

ii |wij|

=0 i=0
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converges if r + s < ¢. So (79) holds for all complex z if r + s < g. Now we apply
Gauss’ summation formula

a,b
2P <
¢

to find (78). This proves Lemma 9.

_ T(e—a—-b) e
1) = Tle—aTlc—0b) 6>0,

Note that (78) also holds for o € {0,1,2,...} if r+s<gq. Soforp=r+s>0
and ¢ = r 4+ s+ 1 we use (78) and the well-known formula
1 __sinmz

(81) TOTA=2) =

to find that for all a > —1

oo

Zsmwg—a—r—s)]f‘(a—i—r—i—s—i—l)

2
T(j+a+r+1)

K(r+sr+s+1,rsax)
7=0
Now we use
sinm(j —a—1r—s)= (=1 sinra, j=0,1,2,...,
to obtain for all a > —1
(82)
rtres1SiNTA o Do+ 17+ s+ 1)
— T(j+at+r+1)

K(r+s,r+s+1,rsaz)=(-1) (—z)?

for all integers r and s with » > 0 and r + s > 0.
Now we find from (6) that for all @ > —1, by using (76) and (82),

= sin T INa+2) ;
i = - 1727 7_27 ) = - . —x)’
ZEzla(gc) xK(1,2,3 a, ) T— E F(j+a+4)( x)

_ sinma x
B r (a+2)(a+3)" B a+4

This proves (74).
In a similar way we obtain from (13) and (14) for all « > —1, by using (76) and
(82),

- 1) _ 1 K(2.3.9:0: smﬂ'ozoo P(a+3) j
;ﬂz ('T’) Oé+1 (a ) &y ,CY,,T/) ;F(]"'a'i_g x)

_sinwa 1 I3 1 .
oo oz—|—111 a+3

Z@@) (z) = —MK(LQ,& —2:a, 1)

and

a+1

2(o+2) — I(a+2) :
_ (a+2) smwaz a+ (=)

a+1 ™ JZOF(]+a+4

_ sin7ma 2 r 1
N  (a+D)a+3)" " \a+4 )
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If p=gq=r+s+1, we also obtain from (78) for all & > —1

(83)

° (—a—r—s—1); j
K 1, 1, -
(r+s+Lr+s+1,rsa7) JZFJ+04+T+1)F(j—a—T—3)( %)

for all integers r and s with r >0 and r+s+1> 0.
Now we obtain from (15) and (16), by using (76), (83) and (81), for all @ > —1

S 1 .
Zﬁﬁ (:U)——(oH_1)(a+2)(a+3)K(3,3,171,a,x)

+ mf{(2 2 2'—1;0{,1})

_ 1 > ( 04—3)j Ry
“latrD@+2)(atd) ;F]+a+2)l“(j—a—2)( 2

x > (—a—2); ;
+(a+1)(a+2)JZOF(j+a+3)F(j—a—1)(_x)

(a+D(a+2)(a+3) = T([i+a+2)I'(j-a-2)

m
O

1 ( 04—3)j

TerD@r2@r3) ;F]+a+2)F(]—a—2)( 2’

1 1 _smﬂ'a 1
T(a+D)(a+2)(a+3)T(@+2)T(—a—2) 7 (a+1)(a+3)

and
S 50 (2) = ! K(4,4,1;2;
o K(3,3,2,0;a,2)

(o + 1)(a +3)

- _(a+1)(a+3 at4) ;irﬂ+0<+2)ré)j_a_3)(—x)j
Tar l)x(oz +3) 2 I(j+ atogl);é)j_ 2 2) (—x)

T e+ ) i 3) (o +4) ;io TG +0<(ﬂ:02();(§)i — 3)(—95)1‘
"G Jl’ 3)(a+4) i T(j + at;é);é)j_ = (—z)’

1 ! sinta a+2

(a+Da+3)(a+D)T(a+2)T(—a—3) 7 (a+1)(a+4)
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Hence, since (1 (z) = 0, we have

o0

> 8i@) =3 [80@) + 82 @) + 57 (2) + 5 ()]
i=1

= =2
sinra 1 [ (01 2 (1 o + 4o+ 2
m a+1|" "\ a+3 a+3" "\ at4 (a+3)(a+4)
(—a)*

k=1

i 2 1
:SlnTra at |:1—:,C2F2( ats3 —LL‘):|7OZ>—1,
Ya+4)

sin T 1
™ (a+1)(a+3)

a+4 (a+4)g
T (a+1)(a+3 a+2,a+5
which proves (75).
Note that for nonnegative integer values of « this implies that

2a+4 2a+8

Z a;(zr) =0 and Z Bi(z) = 0.

i=1
Finally we will show that for nonnegative integer values of a we also have
4a+10

Z ~i(z) = 0.

i=1

Therefore we assume that « € {0,1,2,...}. Now we will use (77). Note that if
p=q=r+s >0 we obtain

K(r+s,r+s,ms0,1)= Z (—a—7—=58)jtatrts (=) = (—a—7 — 8)atrts

= I'(j+a+r)j! T(a+r)
o natresllatr+s+1) (et Dy
= =TT OV e

for all integers r and s with » > 1 and r + s > 0.
From (66) we easily obtain, by changing the order of summation,

3 W = 1 3 S i+1 . Lo
;% (17)—a+1;(a+4)k—1ak($);(—l) Fi(a+k+3,a+k+2kx).

Note that all summations are in fact finite. Now we use (40), (76) and (84) to
obtain

Z(—l)iFi(a—l—k+3,a+k+2;k;x)
i=0
X N (1) fa+3) [a+3 4
= s\ g Jlioy)latktdee
i=0 j=0 J J
—K(33k+3'—k'ax)—ﬂ k=1,2,3
- ) ) ) ) ) _(a+4)k_17 - ) ) AR

Hence

> 0w =SS e =0
i=1 k=1
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In the same way we find from (67), by changing the order of summation, that

Z%?) = (@ +3)B(@) Y (-1 Fia+k+3,a+k+ 2k + 2 ).
k=1 1=0

Again we use (40), (76) and (84) to find that

S (1)Fila+k+3,a+k+2k+2)

i=0
> )itd a+1\/a+1 -
= 7 ki3 J
I‘k—|—z—|—2)( j )(z—]>( +E+3)ie

(_1)a+1
(a0 +2)k41

NM

=K(1,1,k+3;,—k—2a,2) = L k=1,2,3,....

Hence
oc+ 1

27(2) a+2 Zﬁ

By using (71) we obtain

Zﬂm
B “i“il —a—2) k +3)k(—a — (@ +3)m
" (a+1D(a+3) +1)a+3 i (a+ d)(a+4)n Dk +m + 2)kim!
N (=) fmta+3)\ (k+a+3
3 S (M) () e et ke

i=0 j=
Changing the order of summation, we find that

ZZ o (m o 3> (k et 3) (=i + 3)k(=F)m(m + a + 3);—;a’

i=0 j=0 J t=J

_Z<m+a+3) , er —1)t <k+q+3>(_i)k(m+a+3)i'

7

Since (—i); = 0 for i < k, we have, by using the Vandermonde summation formula
(42),

o0

: o) e (-1)" (k+a+3 (o _
stk = 3= et (7 ) cimon k)
_ = (—k—a—3)i(=i)r(m+a+3);
= L@+ j)i
:(—1)k(—k—a—3)k(m+a+3)k2<1>1< 31‘};17]"+a+3‘ )
(85) :(a+4)k(m+a+3)k(j_m_a_?’)a”' k=0,1,2,...

Fk+j+a+3) "’
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for every arbitrary j and m and for each « € {0,1,2,...}. Hence

ZZ o (m o 3) <k et 3) (=i + 3)k(=)m(m + a + 3);—;a’

i=0 j=0 J t=J
— (m+a+3\ (=)mli —m—a—3)ars ;
(a+ )k(m+a+3)kj2_:0< ; ) (T

o0

=(a+4dp(m+a+3) )y (1)

S EDml=m = a = 3);ats
T(k+j+a+3);!

)m(_m)m(_m_a_3)m+a+3 m
I'k+m+a+3)m!
=(a+4)p(m+a+3)(-1)mTotlzm km=012,...,

=(a+4)(m+a+3)(—

since (—j)m(—m — a — 3)j4a+s = 0 for all j except j =m
This implies that

(3) 2( 1)a+1 a+2 a+1 Com
2 T
L (Ca=2i@+Iu(—a—Dm(a+3)n "
(a+4)m I‘(k+m+2)k|my (m+a+3)z
2(—1)eHt a+1 m(_ S ma+2 o= 2o+ 3
== 2D Z o= Dula s,

m=0

Finally, we use the Vandermonde summation formula (42) again to obtain

of(—a—Z)k(oz—l—?))k: ® —a—2,a+3 1 :(m—a—l)a+2
 T(k+m+2kl — * m+ 2 T(m+a+4)
Hence
a a+1
27.3)3: _ +1 a—1m+a+2( =0
— a+1 I‘m+a+4)m'

Furthermore, by using (72) we obtain

>
B Oilof —a—Dpla+4)p(—a—2)m(a+3)m
_(a+1 a+4) (a+5)k(a+ 4) Dk +m + 2)k!m!

g )ittt m+a+3)(k+a+4) 4
X ) .. 1+ m+a+3),_;2.
;j T A (i SRR eI )i
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Changing the order of summation, we find by using (85) that

>y C Z+J+l(m+q+3><k+-o‘.+4>( i+ Dr(=Dm(m + o+ 3)ija!

=0 j=0 J t=J

:_Z(m+a+3) : er —-1) <k+q+4>(_i)k(m+a+3)i

7

= _Z (m+q+3)(_]')m$j5(j, kE,m—La+1)
=0 J

m4a+3\(—=)m(j—m—a—3)at+a j
—(a+5)k(m+a+3)§( ; ) Ny mE

—(a+5)p(m+a+3) _ (=1) Fj)ﬁ}i;"};i;i));ozﬂ o

kom=0,1,2,....

Since (—j)m(—m — & — 3)j4at4 = 0 for all j, this immediately implies that

i%‘” (x) =
=1

Finally, we have, as before, by using (73),

1 a+2

— G T (ca—2)k(a+3)
2070 = 2V @

ZZ 1)i+i <k+q+3> (k+a+3>(a+3)i_jxj.

10]0 J L=

By using (76) and (84) using we find that

ZZF 1)i+i (k+g+3)(k+a+3)(a+3)i_ﬂj

i=0 j=0 J t=J

=K(k+3,k+3,3:kaoaz)=(—1)"*"(a+3)p, k=0,1,2,....

Hence, using (42) again,

5) ) —a—2,a+3 (D)% (—a— 1)a+t2
2@ 1) = —o.
Z% a+1 1< 2 atrl Ta+d

From (18) and the fact that v;(z) = 0 for ¢ > 4« + 10 we conclude that

4a+10

o la) = 32 ) =0

=1

for all « € {0,1,2,...}.
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6. REMARKS

In this section we list some facts we encountered during the research. First of
all we remark that

(g = B Sy (P p _
Ly (o) = — _kZ:O( 1) <n_k Li(z), n=0,1,2,....
This formula can also be used for inversion instead of Lemma 5 in the following way
(compare with Lemma 5): Suppose that for m € {0,1,2,...} we have the system
of equations

Ai() DL (1) = Fy(z), n=m+1,m+2,m+3,...,

—

where {4; :z:)}fol are independent of n. Then we simply find that

! k=m+1 B

Since the generating function

o0

ewt — E _|tn
n=0 w

—*t we now conclude that

j
Z <m+j;—a>Fm+k(x),i:1,2,3,....

However, for our purposes this method turned out to be very inconvenient.
Further, we have from (2)

)t 1)

rarerae ) (n )

The coefficients ag(n, ), Bo(n, @) and vo(n, @) are respectively

" k4« n+a+1
ao(n,a):Z(k_1>=< ne 1 )771:0,1,2,...,

has the trivial inverse e

z—]'

Aiw) = (~1)" Z

Ao =140

= k(a42)—(a+1) (k+a)  nla+2)—a (n+ta+1
ﬁ‘)("’o‘)_; (@t 1)(a+3) (k—2>_(a+1)(a+4)( n—2 )
n=1,2,3,...,
and

1 " (k4o (k+ta+1
SRS S— —1,2,3,....
To(n, @) (a+1)(a+2);<k—1)< k-2 )”

Note that the equations (45) and (46) can be written in the form

3 « n—"_a (o7
Za )DIHRL@) (7)) = (n_k)DQL;jl( ), k=0,1.
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However it is even more remarkable that the equations (59), (60) and (61) can be
written in the form

1 i o _nla+k)—(a+1) nt+a) n+a) o (
D* Z z)DTL )()_(a+1)(a+k+1)<n—2><n—k)D Lnr(@)

2 n+a\/n+a« (a)
D3L
a+1(n—2><n—k> n1(2)
1 n+a«
z Dz+2L(a)
+oz—|—1(n— )Za (@)

("J’a)Zb ()DL (z), k =0,1,2.

Also, we remark that the inversion formula of Lemma 5 can also be applied to
(47) instead of (48) to obtain, by using (37) and (38),

a;(x) = (—1)1' [(a + D)1 (a+2,a+2;2;2) — %—FQGZ'(OZ + 2,a;0;x)] ,

i=1,2,3,...,

which can be shown to be equal to (6) by straightforward but tedious computation.
Finally we remark that it can be shown that for « > —1 and £ € {0,1,2,...}

> a@)D L (@)
i=1
_ (n + a) i (=1)kte41 (0 + 3
n )&= (2)k(a+ 1)gros1k!
-n+k+l+1,—a—2,a+k+3
XBFZ( k42,04 k+0+2 ‘1>xk+l’
forn=20,1,2,....
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