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NEW SUBFACTORS FROM BRAID GROUP

REPRESENTATIONS

JULIANA ERLIJMAN

Abstract. This paper is about the construction of new examples of pairs of
subfactors of the hyperfinite II1 factor, and the computation of their indices
and relative commutants. The construction is done in general by considering
unitary braid representations with certain properties that are satisfied in nat-
ural examples. We compute the indices explicitly for the particular cases in
which the braid representations are obtained in connection with representation
theory of Lie algebras of types A,B,C,D.

1. Introduction

Jones defined in [J] the index [M : N ] for a pair of II1 factors N ⊆ M as the
coupling constant of N in its representation on L2(M, tr). This is an invariant of
subfactors up to conjugacy by automorphisms. He showed that the values for the
index are either greater than 4 or lie in the set {4 cos2(π/l) for l ≥ 3, l ∈ N}.
Another invariant is the relative commutant or centralizer N ′ ∩M . The subfactors
with index less than 4 have always trivial relative commutant (called irreducible
subfactors).

In this paper we construct a new family of examples of subfactors of the hy-
perfinite II1 factor, and compute their indices and (first) relative commutants. By
‘reducing’ the pairs by minimal projections in the relative commutant we obtain
irreducible subfactors whose indices we also compute.

This construction is done in general by considering unitary representations ρ
of the infinite braid group whose restrictions to finite braid groups generate finite
dimensional C∗-algebras (such representations are called locally finite dimensional).
We require certain auxiliary conditions on the representations, such as the existence
of a positive Markov trace factoring through the representation, which are satisfied
in natural examples. One can extend such a representation ρ to the infinite two-
sided braid group with generators σi, i ∈ Z. Then, for each non-negative integer
m we consider the pair of von Neumann algebras generated by {πtr(gi) : i ∈
Z\{0, . . .m}} and by {πtr(gi) : i ∈ Z} in the trace representation, where gi = ρ(σi).
Under our assumptions, this is a pair of factors, and the relative commutant is
generated by {g1, . . . , gm−1}.

This construction is a ‘two-sided’ version of a construction due to Wenzl, [W-1],
[W-2], [W-3]. For m = 0 (that is, when one braid generator, g0, is ommited) the
index d2 is the square of the euclidean norm of a (normalized) weight vector for the
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trace on ρ(CBn), for large n. For m ≥ 1, the index is given by d2Wm, where W is
the index for the ‘one-sided’ pair, {πtr(gi) : i ≥ 2}′′ ⊆ {πtr(gi) : i ≥ 1}′′.

We compute the indices explicitly for the particular cases in which the braid
representations factor through the Hecke algebra H∞(q) when q is a root of unity
(type A case, [W-1]) or through the Birman-Murakami-Wenzl algebra C∞(r, q) for
special values of r and q (types B,C and D cases, [W-2]). Our type A subfactors
include subfactors obtained by M. Choda (type A1, [Ch]), who originally had the
idea of doing a ‘two-sided’ version of the Jones subfactors. The braid representa-
tions can be obtained by using the representation theory of q-deformations of the
enveloping algebras of the classical Lie algebras, a fact that is essential for com-
puting the weight vectors for the trace ([W-1], [W-2], [W-3]). In these cases, the
weight vectors are given in terms of the q-dimensions, and the index for the pair, in
the case m = 0, is the sum of the square of the q-dimensions. The explicit formulas
are computed in section 4.

It turns out that for m = 0, the asymptotic pairs of subfactors (in the sense
of Ocneanu, see [O]) corresponding to the one-sided constructions of subfactors
associated to the Lie types A,B,C,D (i.e., the Wenzl subfactors and Jones’ in the
sl(2) case) coincide with our new examples, their two-sided versions. We prove this
fact for the B,C,D types at the end of section 4.3, and leave out the type A case
for later.

The paper is organized as follows:
In section 2 we give some basic definitions and mention some results to be used in

the later sections. The general construction of pairs of subfactors is done in section
3: first the assumptions needed on the braid representations, then the definition of
the pairs and finally a general formula for the index and the relative commutant.
In section 4 we apply the general construction to the natural examples of unitary
braid representations associated with Lie theory, mentioned above, and we work
out explicit formulas for the index of these pairs.
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2. Preliminaries

Let A and B be finite dimensional C∗-algebras. We can write them as finite
direct sums of matrix algebras, A =

⊕
i=1,...,nAi and B =

⊕
j=1,...,mBj , with

Ai
∼= Mni(C) and Bj

∼= Mmj (C). If A is included in B with the same identity, we
define the inclusion matrix as follows. A simple Bj module can be regarded as an
A module. Denote by gij the number of simple Ai modules in its decomposition
into simple A modules. The matrix G = (gij) is called the inclusion matrix for the
pair A ⊆ B. One can encode the inclusion matrix by the Bratteli diagram: place
two sets of points in parallel lines, one labeled by I = {1, ..., n} and the other by
J = {1, ...,m}. The points of each set correspond to minimal central idempotents.
We join the i-th point for A and the j-th point for B by gij edges.
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We shall need the concept of periodicity for an ascending sequence of inclusions
... ⊆ Cn ⊆ Cn+1 ⊆ ... of finite dimensional C∗-algebras . A sequence (Cn) as
above is called periodic with period k, where k is a positive integer, if there exists a
positive integer n0 such that for n ≥ n0 the inclusion matrix for the pair Cn ⊆ Cn+1

coincides with that for Cn+k ⊆ Cn+1+k (after a possible relabeling of the minimal
central projections). We shall include in this definition the additional requirement
that the inclusion matrix Hn for the pair Cn ⊆ Cn+k should also be primitive (i.e.,
there exists some l ∈ N such that H l

n has only strictly positive entries). If (Cn) is
periodic it follows by Perron-Frobenius theory that there exists a unique positive
trace on

⋃
Cn, which is moreover faithful; positivity and faithfulness mean that the

trace of each projection is strictly positive.
Now, let (Cn) and (Dn) be two periodic sequences, both with period k, such

that Cn ⊆ Dn for all n ∈ N. The pair of sequences (Cn) ⊆ (Dn) is said to be
periodic with period k if in addition the inclusion matrices for Cn ⊆ Dn and for
Cn+k ⊆ Dn+k coincide for large n.

Let (Cn) ⊆ (Dn) be a pair of ascending sequences, and consider a faithful positive
trace tr on the inductive limit

⋃
Dn with faithful restriction to

⋃
Cn. The pair

(Cn) ⊆ (Dn) is said to satisfy the commuting square condition if for all large n the
following diagrams commute:

Dn↪→Dn+1

ECn

y yECn+1

Cn ↪→Cn+1

(2.1)

i.e., if ECn+1(Dn) ⊆ Cn, where ECn and ECn+1 are the unique trace preserving con-
ditional expectations onto Cn and Cn+1 respectively. (The conditional expectation
onto Dn is determined by the condition tr(EDn (x)y) = tr(xy) for all y ∈ Dn; see
[Po1], or [GHJ, Ch.IV].)

Here we state some no doubt well known combinatorial results that will be needed
in the last section:

Lemma 2.1. (i) If A ∈ Mk(C) is given by coefficients aij = 1
i+j

(
2(i+j−1)
i+j−1

)
, then

detA = 1.
(ii) If A ∈Mk(C) is given by coefficients aij =

(
2(i+j−1)
i+j−1

)
, then detA = 2k.

(iii) If A ∈Mk(C) is given by coefficients aij =
(
2(i+j−2)
i+j−2

)
, then detA = 2k−1.

Proof. (i) It is enough to show that A = LLt, where L ∈Mk(C) is a lower triangular
matrix with ones in the diagonal. Let L ∈Mk(C) be given by

Lij :=

{{
2i−1
i−j
}

for i ≥ j,

0 otherwise,

where {
n

s

}
:=

{(
n
s

)− ( n
s−1

)
if s ≥ 1,

1 for s = 0.

Recall that c(n) := 1
n+1

(
2n
n

)
is equal to the number of monotonically increasing

(MI) paths in N0 × N0 from (0, 0) to (n, n) that stay on or above the diagonal; in
particular, aij = c(i + j − 1). One can also show that for s ≤ i, Lis is the number
of MI paths from (0, 0) to (i − s, i+ s− 1) that stay on or above the diagonal.
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For showing that in fact A = LLt, i.e., c(i+j−1) =
∑k

s=1 LisLjs, one notes that
any MI path from (0, 0) to (i+ j − 1, i+ j − 1) that stays on or above the diagonal
passes through a node (i− s, i+ s− 1) for some s ∈ {1, . . . , i}, and that for i ≤ j,
1 ≤ s ≤ i, Ljs also coincides with the number of MI paths from (i− s, i+ s− 1) to
(i+ j − 1, i+ j − 1) that stay on or above the diagonal.

The proofs for (ii) and (iii) use the same arguments as the one for (i).

3. A construction of subfactors

3.1 Assumptions. To define the pairs of hyperfinite II1 factors we start with cer-
tain unitary representations of the braid group as in Wenzl’s work [W-1], [W-2],
[W-3]. Recall that the braid group Bn on n strands is defined by generators
σ1, ..., σn−1 and the braid relations

(B1) σi+1σiσi+1 = σiσi+1σi, for i = 1, ..., n− 2,
(B2) σiσj = σjσi, for |i− j| ≥ 2.
A geometric picture of the standard generator σi is given by the following dia-

gram:

. . . . .i

BB
BB

BB
BB

.i+1

||
|

||
||

. . . .

. . . . .i .i+1 . . . .

and multiplication is given by concatenation of such diagrams (see [Bi] for more
details). Bn is embedded into Bn+1 by adding one vertical strand at the end of
each generator of Bn. Denote

⋃
Bn by B∞.

We shall work with representations ρ of CB∞ that satisfy the following proper-
ties:

(i) ρ is locally finite dimensional: By this we mean that for every n ∈ N, ρ(CBn)
is a finite dimensional C∗-algebra, so that we can write ρ(CBn) ∼=⊕λ∈Λn

Maλ(C),

for some index set Λn. Set An = ρ(CBn).
(ii) ρ is unitary: gi := ρ(σi) is unitary for all i.
(iii) The ascending sequence of finite dimensional C∗-algebras (An) = (ρ(CBn))

is periodic, in the sense defined in the preliminaries.
(iv) Any element x ∈ An+1 can be written as a sum of elements ag±1

n b+ c with
a, b, c ∈ An.

(v) The unique positive faithful trace tr on
⋃
An has the Markov property:

tr(g±1
n x) = ηtr(x) for all x ∈ An, for all n,

where η is a fixed complex number. Given condition (iv), the Markov condition
implies the multiplicativity property for the trace:

tr(xy) = tr(x)tr(y),

if x and y are in subalgebras generated by disjoint subsets of generators g±1
i .

(vi) Existence of a projection p with the contraction property: p ∈ Ak has the
contraction property if for all n ∈ N,

pAn+kp ∼= pAk+1,n+k
∼= Ak+1,n+k,

whereAs,t is the algebra generated by {gs, ..., gt−1}. Note that since we already have
the multiplicative property of the trace by (iv) and (v), the second isomorphism
above is always true.
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Given a locally finite representation ρ of the braid group, one has an associative,
commutative, graded product on

⊕
nK0(An) defined as follows. See [GW] for

details. For projections x ∈ An and y ∈ Am define x ⊗ y = x shiftn(y) ∈ An+m,
where shiftn : CBm → CBn+m is determined by σi 7→ σi+n. Then [x]⊗ [y] = [x⊗y]
defines the multiplication in

⊕
nK0(An). Denote the structure constants of this

multiplication by cνλµ. That is, if pλ and pµ are minimal projections in the classes
labelled by λ ∈ Λn and µ ∈ Λm, then

[pλ]⊗ [pµ] =
∑

ν∈Λn+m

cνλµ[pν ].

We have the following conditions equivalent to the existence of a projection with
the contraction property; two of them are found in [W-3]:

Lemma 3.1.1. With the same notation as throughout this section, the following
are equivalent:

(a) There exists a projection p ∈ Ak with the contraction property, i.e., for all
n ∈ N, pAn+kp ∼= pAk+1,n+k

∼= Ak+1,n+k, where As,t is the algebra generated by
{gs, ..., gt−1}.

(b) There exists a projection p ∈ Ak such that for every minimal projection
pλ ∈ An, and for all n ∈ N, the projection p ⊗ pλ remains minimal in An+k.
Moreover, if λ 6= λ′ then p⊗ pλ and p⊗ pλ′ are not equivalent.

(c) For all n ∈ N0 there exists an injective map j : Λn → Λn+k that preserves
the structure coefficients for the multiplication in

⊕
nK0(An), that is, such that

cνλµ = c
j(ν)
j(λ)µ = c

j(ν)
λj(µ) for all λ ∈ Λn, µ ∈ Λm, ν ∈ Λn+m, and also such that

cελj(µ) = 0 if ε /∈ j(Λn+m). (Here, Λ0 := {[∅]}, ‘the empty diagram’ , and p[∅] := id,

so that cµ[∅]λ = δλ,µ, for λ, µ ∈ Λn.)

Proof. (a) ⇒ (b): By (a), the following maps are isomorphisms: the inclusion ι :
pAk+1,n+k → pAn+kp, since it is injective, and the map φ : Ak+1,n+k → pAk+1,n+k

given by a 7→ pa, since it is surjective. Also, the shift shiftk : An → Ak+1,n+k is an
isomorphism. Therefore, the composition map ψ = ι ◦ φ ◦ shiftk : An → pAn+kp is
an isomorphism. Hence, for any minimal idempotent pλ ∈ An, we shall have that
ψ(pλ) = p ⊗ pλ is minimal in pAn+kp. But then q := p ⊗ pλ remains minimal in
An+k, since if q = a + b, where a, b ∈ An+k are projections with ab = 0, then it
follows that a, b ∈ pAn+kp, and so a = 0 or b = 0.

If λ 6= λ′ then pλ and pλ′ are not equivalent, and so p⊗ pλ and p⊗ pλ′ are not
equivalent in pAn+kp. But then they remain non-equivalent in An+k: if v were a
partial isometry that implements the equivalence in An+k, pvp would implement
an equivalence in pAn+kp.

(b) ⇒ (c): For n ∈ N define the map j : Λn → Λn+k in the following way. For
λ ∈ Λn, there exists a unique µ := j(λ) ∈ Λn+k such that [p]⊗[pλ] = [pµ], according
to (b). Since [p ⊗ pλ] 6= [p ⊗ pλ′ ] for λ 6= λ′, then j is injective. Also, (b) implies
that p ∈ Ak is minimal, and so p = pλ0 for some λ0 ∈ Λk. Define j : Λ0 → Λk

by j([∅]) = λ0. Now use the associativity of the multiplication in
⊕
K0(An) as

follows:

[pλ0 ]⊗ ([pλ]⊗ [pµ]) = [p]⊗
∑

ν∈Λn+m

cνλµ [pν ] =
∑

ν∈Λn+m

cνλµ [pj(ν)],
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and

([pλ0 ]⊗ [pλ])⊗ [pµ] = [pj(λ)]⊗ [pµ] =
∑

ε∈Λn+m+k

cεj(λ)µ[pε].

Comparing these two expressions gives

cνλµ = c
j(ν)
j(λ)µ and cεj(λ)µ = 0 if ε /∈ j(Λn+m).

(c) ⇒ (a): Let p ∈ Ak be a projection in the class labelled by j([∅]) = λ0. It
follows from (c) that [p]⊗ [pλ] = [pj(λ)] for n ∈ N and λ ∈ Λn. Thus, the class of p
in An+k is

[p⊗ 1n] =
∑
λ∈Λn

dim(λ)[p]⊗ [pλ] =
∑
λ∈Λn

dim(λ)[pj(λ)],

where the minimal ideal in An labelled by λ ∈ Λn is isomorphic to Mdim(λ)(C).
It follows immediately that pAn+kp ∼= An. Since shiftk : An → Ak+1,n+k is an
isomorphism, we also have that pAn+kp ∼= pAk+1,n+k.

Remarks. Assume that (An) has periodicity k and that there exists a projection
p ∈ Ak′ with the contraction property.

(1) The periodicity condition on the ascending sequence (An) forces the injective
map j : Λn → Λn+k′ (from the contraction property) to be a bijection for large
n ∈ N.

(2) The sequence (An) is also k′-periodic, so one can assume without loss of
generality that k = k′.

(3) Let I be given by the set {k ∈ N such that (An) is k-periodic }. Let k0 be
given by min I. Then I = {nk0 such that n ∈ N}.

(4) p⊗s ∈ Ask′ has the contraction property for all s ∈ N.

Proof of the remarks. (1) The k-periodicity of (An) implies that |Λn| = |Λn+k| for
large n. By the contraction property there exist k′ ∈ N and an injective map
j : Λn → Λn+k′ for n ∈ N0. Then we shall have that the injective map j(k) :=
j ◦ j ◦ · · · ◦ j : Λn → Λn+kk′ is a bijection for large n, since |Λn| = |Λn+kk′ |.
Hence, the map j : Λn → Λn+k′ will also be surjective for large n since we have the
inequalities · · · ≤ |Λn| ≤ |Λn+k′ | ≤ · · · ≤ |Λn+kk′ | ≤ . . . .

(2) By the previous remark, the map j : Λn → Λn+k′ is bijective for large n.
But this will also imply k′-periodicity: By (c) of Lemma 3.1.1, the inclusion matrix
for the pair An ⊆ An+1, (gλµ)λ∈Λn,µ∈Λn+1 = (cµλ[1])λ∈Λn,µ∈Λn+1 , is preserved by

j, i.e., gλµ = gj(λ)j(µ) for all λ ∈ Λn, µ ∈ Λn+1, where the unique element of
Λ1 is denoted by [1] (the “Young” diagram consisting of one box: we shall see
later that in our examples the label sets will consist of Young diagrams). Since
j(Λn) = Λn+k′ for large n, then the inclusion matrix for An+k′ ⊆ An+k′+1 is given
by (gεν)ε∈Λn+k′ ,ν∈Λn+k′+1

= (gj(λ)j(µ))λ∈Λn,µ∈Λn+1 , and so (An) is k′-periodic.

(3) It is enough to show that if s, t ∈ I and s > t then s− t ∈ I; and this follows
easily from the definition of periodicity.

(4) Follows easily by induction on s ∈ N.

3.2 The construction. We proceed with the construction of our pairs of factors.
We can extend the representations ρ of CB∞ satisfying the conditions (i)-(vi) in
section 3.1 to the two-sided infinite braid group. By that, we mean the inductive
limit of the two-sided n-braid groups given by generators σ−n+1, σ−n+2, ..., σn−1
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and the usual braid relations. Then, fix a non-negative integer m and define, for
n ≥ m+ 2,

Dn := ρ(〈σ−n+1, σ−n+2, ..., σn−2, σn−1〉) = 〈g−n+1, g−n+2, ..., gn−2, gn−1〉,
Cn := ρ(〈σ−n+1, ..., σ−1, σm+1, ..., σn−1〉) = 〈g−n+1, ..., g−1, gm+1, ..., gn−1〉.

By the map gi 7→ gn+i (relabelling of the indices of the generators) and by the
trace preserving automorphism g−igj 7→ gn−i ⊗ gj we have

Dn
∼= A2n = ρ(CB2n),(3.2.1)

Cn ∼= An ⊗An−m.(3.2.2)

Lemma 3.2.1. The pair of ascending sequences (Cn) ⊆ (Dn) is periodic.

Proof. First we shall show that the periodicity for each of the two sequences (Cn)
and (Dn) is an easy consequence of our periodicity hypothesis for (An). The inclu-
sion matrix for Cn ⊆ Cn+1 is the same as that for An ⊗An−m ⊆ An+1 ⊗An−m+1,
by (3.2.2). Thus, (Cn) is k-periodic, where k is the period of (An). The inclu-
sion matrix for Cn ⊆ Cn+k is primitive because so is the one for An ⊆ An+k (the
coefficients of (G⊗G)s are positive when those of Gs are positive).

By (3.2.1) the inclusion matrix for the pair Dn ⊆ Dn+1 is conjugate to

〈g2, . . . , g2n〉 ⊆ 〈g1, . . . , g2n+1〉.
Inserting above an intermediate algebra, 〈g2, . . . , g2n+1〉, we have the inclusions

〈g2, . . . , g2n〉 ⊆ 〈g2, . . . , g2n+1〉 ⊆ 〈g1, . . . , g2n+1〉.(3.2.3)

The inclusion at the first stage in (3.2.3) is conjugate to A2n ⊆ A2n+1 and that at
the second stage is conjugate, by an inner automorphism of A2n+2 (the ‘half-twist’
which sends gi to g2n+2−i), to A2n+1 ⊆ A2n+2. Hence, we obtain that Dn ⊆ Dn+1 is
conjugate to A2n ⊆ A2n+2, so that (Dn) is k-periodic, and the primitivity condition
for the inclusion matrices follows from the same condition for the sequence (An).

It remains to show that for large n the inclusion for Cn ⊆ Dn coincides with
that for Cn+k ⊆ Dn+k. For this we shall use the projection with the contraction
property. By remark (2) in section 3.1 we assume that k is the same for the
periodicity and the contraction properties. The inclusion for Cn ⊆ Dn is conjugate
to

An ⊗An−m ⊆ A2n.

We split this inclusion into two steps:

An ⊗An−m ⊆ An ⊗An ⊆ A2n.(3.2.4)

The inclusion at the first stage in (3.2.4) coincides with that for An+k⊗An+k−m ⊆
An+k⊗An+k by periodicity of (An). The inclusion data for the pair An⊗An ⊆ A2n

are precisely the structure constants for the multiplication K0(An) × K0(An) →
K0(A2n), that is, g(λµ)ν = cνλµ. But these coincide with the structure constants for

the multiplication K0(An+k)×K0(An+k) → K0(A2n+2k),

c
j2(ν)
j(λ)j(µ) = cνλµ,

by two applications of the equation c
j(ν)
λj(µ) = cνλµ, from Lemma 3.1.1, (c), and

remark (1) in section 3.1. Thus, the inclusion matrix at the second stage in (3.2.4),
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An ⊗ An ⊆ A2n, also coincides with that for An+k ⊗ An+k ⊆ A2n+2k. It follows
that the inclusion Cn ⊆ Dn is the same as that for Cn+k ⊆ Dn+k for large n, and
finally that (Cn) ⊆ (Dn) is a k-periodic pair.

It follows from periodicity that the trace on D∞ =
⋃
nDn and also on C∞ =⋃

n Cn is faithful and unique. We define D and C to be the weak closure of D∞
and C∞ in the GNS representation with respect to the trace. Thus, we obtain a
pair of hyperfinite II1 factors C ⊆ D.

Lemma 3.2.2. The pair of ascending sequences (Cn) ⊆ (Dn) has the commuting
square property.

Proof. This will be a consequence of having conditions (iv) and (v). It can be

shown easily by inserting intermediate algebras C̃n := 〈Cn, gn〉 and D̃n := 〈Dn, gn〉.

3.3 A formula for the index.

Proposition 3.3.1. The index for the pair of subfactors C ⊆ D defined in section
3.2 is given by the expression

[D : C] = ‖~d (n)‖2 Wm,

for large n, where Wm is the index for the ‘one-sided’ pair, that is, for the pair

〈gm+1, ..., gn, ...〉′′ ⊆ 〈g1, ..., gn, ...〉′′, and ~d (n) is a multiple of the weight vector ~t (n)

for the trace on An = ρ(CBn), normalized as follows: ~d
(ks)
js([∅]) = 1 for large s and

~d (n) = W−1/2Gn
~d (n+1), where Gn denotes the inclusion matrix for An ⊆ An+1.

Proof. By [W-1, Theorem 1.5, (iii)], the index for the pair C ⊆ D is

[D : C] =
‖~s (n)‖2

‖~v (n)‖2
,

for large n, where ~s (n) and ~v (n) are the weight vectors for the trace restricted
to Cn and Dn respectively. Because of the trace preserving identifications (3.2.1)

and (3.2.2), and because of the multiplicativity of the trace, we have that s
(n)
i,j =

t
(n)
i t

(n−m)
j , and ~v (n) = ~t (2n), where ~t (n) is the weight vector for the trace on An.

Hence, we have

[D : C] =
‖~s (n)‖2

‖~v (n)‖2
=
‖~t (n)‖2‖~t (n−m)‖2

‖~t (2n)‖2

= ‖~t (n)‖2
n+m−1∏
i=0

‖~t (n−m+i)‖2

‖~t (n−m+i+1)‖2
.

But the index for the one-sided pair N := 〈g2, ..., gn, ...〉′′ ⊆M := 〈g1, ..., gn, ...〉′′ is
given by

W :=
‖~t (r)‖2

‖~t (r+1)‖2
,(3.3.1)

for large r, by Wenzl’s formula. Then, for large n,

[D : C] = ‖~t (n)‖2 Wn+m = (Wn ‖~t (n)‖2) Wm.(3.3.2)
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Observe that by (3.3.1), Wm is the index for 〈gm+1, ..., gn, ...〉′′ ⊆ 〈g1, ..., gn, ...〉′′.
If we define the vectors

~d (n) := (W 1/2)n ~t (n),(3.3.3)

we can write

[D : C] = ‖~d (n)‖2 Wm,(3.3.4)

independent of n, for large n. For large n the vectors ~d (n) are in fact the Perron-
Frobenius eigenvectors for the matrices Hn := GnGn+1 . . .Gn+k−1, with eigenvalue
equal to W k/2, by Perron-Frobenius theory and Wenzl’s index formula. See [GHJ]
and [W-1]. It follows from (3.3.3) and from the fact that ~t (n) = Gn~t

(n+1) that
~d (n) = W−1/2Gn

~d (n+1) for large n.

By (3.3.4), it remains to check that ~d
(n)
js([∅]) = 1 if n is a large multiple of k,

i.e., n = ks for large s. If p ∈ Ak has the contraction property, by remark (4) the
projection p⊗s has the contraction property as well. Furthermore, one can show
that tr(p) = W−k/2, as follows:

We have a bijection j : Λn → Λn+k of labels for minimal central idempotents
such that the map [pλ] 7→ [p]⊗[pλ] = [pj(λ)] is a bijection between classes of minimal
idempotents of An and An+k. Moreover,

tr(pj(λ)) = tr(p ⊗ pλ) = tr(p)tr(pλ),

and therefore,

W k =
‖~t (n)‖2

‖~t (n+k)‖2
=

1

tr(p)2
,(3.3.5)

so it follows that

~d
(ks)
js([∅]) = (W 1/2)ks ~t

(ks)
js([∅]) = (W 1/2)ks tr(pjs([∅]))

= (W 1/2)ks tr(p⊗s) = (W 1/2)kstr(p)s = 1.

The last part of the proof of the last proposition, (3.3.5), gives us an ex-
pression for the index W for the one sided pair of factors 〈g2, . . . , gn, . . . 〉′′ ⊆
〈g1, . . . , gn, . . . 〉′′ in terms of the trace of the projection p ∈ Ak with the contraction
property:

Corollary 3.3.2. Under the conditions (i)-(vi), the index W for the one sided
pair of factors 〈g2, . . . , gn, . . . 〉′′ ⊆ 〈g1, . . . , gn, . . . 〉′′ is given by

W = tr(p)−
2
k ,

where p ∈ Ak is a projection with the contraction property.

3.4 The relative commutant. Because of the defining relations of the braid
group we already have the inclusion Am = 〈g1, ..., gm−1〉 ⊆ C′ ∩D. We shall show
that in fact these algebras coincide.

The factors C and D can be also approximated by a different pair of ascending
sequences (C̃n) ⊆ (D̃n) with the same essential properties (periodicity and the
commuting square condition), namely,

C̃n := 〈g−n+1, ..., g−1, gm+1, ..., gn+m−1〉 ∼= An ⊗An,

D̃n := 〈g−n+1, ..., gn+m−1〉 ∼= A2n+m.
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Let p ∈ Ak be a projection with the contraction property; then p⊗s ∈ Aks has the
contraction property as well, for all s ∈ N (see remark (4) in section 3.1). Choose
s ∈ N such that n = sk is large enough, and set p̃ := p⊗s ⊗ p⊗s ∈ An ⊗ An. Since
p̃ has the contraction property in A2n, one has

C ∼= p̃ (An ⊗ An) p̃ ⊆ p̃ A2n+m p̃ ∼= Am.

Hence, also

p̃ ((An ⊗An)′ ∩ A2n+m) ∼= Am.

Since the pair C̃n ⊆ D̃n is conjugate to An ⊗ An ⊆ A2n+m, there is a projection

p̄ ∈ C̃n such that p̄(C̃ ′n ∩ D̃n) ∼= Am. Applying Wenzl’s estimate in [W-1, Theorem
1.6],

dimC′ ∩D ≤ dim p̄(C̃ ′n ∩ D̃n) = dimAm.

Finally, C ′ ∩ D ⊆ Am and we obtain the desired equality. For m = 0 or m = 1,
dimAm = 1. Hence, C′ ∩D ∼= C 1. We have proved the following

Proposition 3.4.1. The relative commutant C′ ∩D of the pair of II1 factors C ⊆
D is isomorphic to Am = 〈g1, ..., gm−1〉, if m > 1. For m = 0, 1, we have that
C ′ ∩D ∼= C 1.

Note that in all cases the relative commutant C′∩D is canonically identified with
the relative commutant for the one sided pair 〈gm+1, gm+2, . . . , 〉′′ ⊆ 〈g1, g2, . . . 〉′′.

One can use Wenzl’s [W-1, Theorem 1.5, (iii)] to define irreducible pairs of the
hyperfinite II1 factor from the pair C ⊆ D. Namely, if C′ ∩ D is not trivial, one
can ‘cut down’ the pair by a non-zero projection p ∈ C′ ∩D, and

[Dp : Cp] = tr(p)2[D : C],

where Dp := {pdp : d ∈ D}′′ and Cp := {pcp : c ∈ C}′′. As in Proposition 3.3.1,
there is also a nice formulation for the index of the ‘reduced’ pairs:

Corollary 3.4.2. The index for the reduced pair Cp ⊆ Dp is given by the expression

[Dp : Cp] = ‖~d (n)‖2S,

for large n, where S = tr(p)2 Wm is the index for the ‘one-sided’ reduced pair

〈gm+1, . . . , gn, . . . 〉p ′′ ⊆ 〈g1, . . . , gn, . . . 〉p ′′, and ~d (n) is as in Proposition 3.3.1.

4. Examples

4.1 Introduction to the examples. In the next sections we shall compute ex-
plicitly the index values for the natural examples mentioned in the introduction,
where the unitary braid representations considered factor through the algebras
H∞(q) (type A, [W-1]) and C∞(r, q) (types B, C, D, [W-2]). As it is shown in
those papers, unitary braid representations can be obtained via the Drinfeld-Jimbo
quantum group approach and have the desired properties for special values of the
parameters r and q, so that we shall be able to apply our construction. What
follows in this section consists of facts which are described in [W-2, §5].

The representations of the braid group are obtained from the representation
theory of the q deformations Uqg of the enveloping algebras of the classical Lie
algebras sl(k), so(2k), sp(2k) or so(2k + 1). It is shown in [D] that for each
finite dimensional Uqg-module V one can obtain a solution of the QYBE, R ∈
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End(V ⊗ V ). Consider the QYBE solution R for V ⊗ V , where V is the stan-

dard Uqg-module (see [Ji]), and define R̃ acting on V ⊗ V by R̃ = P ◦ R, where

P (x⊗ y) = y ⊗ x is the ‘flip’. Define the matrices R̃i in ⊗∞Mk(C), for i ∈ N, by

Ri = 1⊗ · · · ⊗ 1⊗ R̃⊗ 1⊗ . . . ,

acting like R̃ in the ith and (i+1)st copies of V and like the identity in the remaining

copies of V . Then, the algebra Af (q) generated by {R̃1, . . . , R̃f−1} is a quotient of
the braid group algebra CBf factoring through the Hecke algebra Hf (q) or through

the algebra Cf (q
r(k), q) if we consider the B, C, D cases instead, where r(k) depends

on the Lie type (for q 6= 0, 1).
For q not a root of unity, the algebras Af (q) (for fixed f) are semisimple and

mutually isomorphic. Furthermore, Af (q) is the centralizer of the corresponding
quantum universal enveloping algebra Uqg acting on V ⊗f , whose image is also
semisimple, so that the minimal ideals in Af (q) are labelled by the irreducible
representations of Uqg appearing on V ⊗f . The algebraAf (q) has a certain canonical
trace, the structure trace, and exploiting the duality with Uqg one finds that the
weights of the trace are given by

χ(λ)(D)

Tr(D)f
.(4.1.1)

Here, χ(λ) is the character of an irreducible representation λ of the corresponding
Lie group G, and D is the diagonal matrix D(q) = qρ, where ρ is the half sum of
the positive roots of g.

When q is a root of unity, Af (q) is non-semisimple (for large f). Nevertheless,
the quotient by the radical of the structure trace, πtr(Af (q)), is semisimple, with
minimal ideals labelled by certain ‘good’ representations of g. The weights for the
trace on πtr(Af (q)) are still given by the formula (4.1.1). Furthermore πtr(Af (q))

has a C∗-structure making gi = πtr(R̃i) unitary, and the weights of the trace are
positive.

4.2 Index for subfactors of type A: The Hecke algebra H∞(q). Let us recall
that the finite dimensional Hecke algebra Hn(q) is the free complex algebra with
generators 1, T1, ..., Tn−1, and relations, depending on a parameter q ∈ C,

(B1) Ti+1TiTi+1 = TiTi+1Ti, for i = 1, ..., n− 2,
(B2) TiTj = TjTi, for |i− j| ≥ 2,
(H) T 2

i = (q − 1)Ti + q, for i = 1, ..., n− 1.
It can be shown by induction that these complex algebras have dimension n!,

independent of q. Set H∞(q) =
⋃
Hn(q). As mentioned in section 4.1, the inter-

esting cases occur when q is a root of unity. We take q = e±2πi/l, with l ≥ 3. We
shall summarize the parametrizations of the quotients πtr(Hn(q)) with q as above,
associated with G = sl(k) for 1 < k < l; see [W-1] for details.

For k ∈ N, and k < l, a (k, l) Young diagram λ of size n is a k-tuple λ =

(λ1, . . . , λk) with λ1 ≥ λ2 ≥ ... ≥ λk ≥ 0, λ1 − λk ≤ l − k, and
∑k

i=1 λi = n. We

denote the set of (k, l) diagrams of size n by Λ
(k,l)
n . We can also regard a (k, l)

diagram λ = (λ1, ..., λk) of size n as k ordered rows of boxes with λi boxes in the
ith row.

For each diagram λ ∈ Λ
(k,l)
n Wenzl defined in [W-1] an irreducible representation

π
(k,l)
λ of Hn(q) acting on finite dimensional vector space Vλ (whose basis is labelled
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by the so-called (k, l) tableaux t of shape λ; see [W-1]). Different diagrams in

Λ
(k,l)
n give inequivalent representations. Regarding Hn−1(q) as the subalgebra of

Hn(q) generated by 1, T1, ..., Tn−2, we obtain the restriction rule π
(k,l)
λ |Hn−1

∼=⊕
λ′<λ π

(k,l)
λ′ , where λ′ < λ means that λ can be obtained by adding one box to

λ′ ∈ Λ
(k,l)
n−1 . One can then define a representation π

(k,l)
n of Hn(q) by π

(k,l)
n (x) =⊕

λ∈Λ
(k,l)
n

π
(k,l)
λ (x), for x ∈ Hn(q). Its restriction to Hn−1(q) is equivalent to π

(k,l)
n−1 .

Finally, there is a well defined representation π(k,l) of H∞(q) given by

π(k,l)(x) = π(k,l)
n (x), if x ∈ Hn(q).

This representation agrees with πtr described in section 4.1. It is locally finite
dimensional, unitarizable, and tr is a positive finite Markov trace. The ascending
sequence (π(k,l)(CBn)) is periodic with period k. From [W-1] and [GW] it can be
checked that all the conditions (i)-(v) are satisfied by the representations π(k,l),
and so we can apply our construction. The weight vector for the trace, see [W-1],

is given by ~t (n) = (wλ)
λ∈Λ

(k,l)
n

, with

wλ =
χλ
(
D(q)

)
χ[1]
(
D(q)

)n
=

(
sin(π/l)

sin(kπ/l)

)n ∏
1≤r<s≤k

sin{(λr − λs + s− r)π/l}
sin{(s− r)π/l} ,

(4.2.1)

where χλ(D(q)) is the character corresponding to the representation of SU(k) given

by λ, evaluated at the diagonal matrix D(q) = diag {q k+1
2 −i, i = 1, ..., k}. The wλ’s

are also specializations of the Schur functions sλ.
For each q = e±2πi/l, for 1 < k < l, l ≥ 3, and for each m ∈ N0 we have a pair

of II1 factors C ⊆ D. By (3.3.2), the index for the pair C ⊆ D is

[D : C] = (Wn ‖~t (n)‖2) Wm,

for n > n0, where ~t (n) is the weight vector for the trace on An, and W is the index
for the one-sided pair 〈g2, ..., gn, ...〉′′ ⊆ 〈g1, ..., gn, ...〉′′. This value was computed
in [W-1]. For r > n0,

W =
‖~t (r)‖2

‖~t (r+1)‖2
=

sin2(kπ/l)

sin2(π/l)
.

Then, for large n

[D : C] = ‖~t (n)‖2

(
sin2(kπ/l)

sin2(π/l)

)n+m

.

So, it remains to compute ‖~t (n)‖2 for large n. Using the expression for the weight
vector for the trace in (4.2.1), we get

‖~t (n)‖2 =

(
sin2(π/l)

sin2(kπ/l)

)n ∑
λ∈Λ

(k,l)
n

∏
1≤r<s≤k

sin2{(λr − λs + s− r)π/l}
sin2{(s− r)π/l} .

Since the expression for [D : C] above holds for every n > n0 by Wenzl’s formula,
in particular it will hold for n+ i, with i = 0, ..., k − 1, if n > n0. Combined with
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the expression for ‖~t (n)‖2 above, this gives us

[D : C] =

(
sin(kπ/l)

sin(π/l)

)2m
1

k

k−1∑
i=0

∑
λ∈Λ

(k,l)
n+i

∏
1≤r<s≤k

sin2{(λr − λs + s− r)π/l}
sin2{(s− r)π/l} .

(4.2.2)

To continue we shall need some lemmas:

Lemma 4.2.1. For n ≥ (l− k)(k− 1) there is a bijection between
⋃k−1
j=0 Λ

(k,l)
n+j and

the set {(r1, r2, ..., rk−1, 0) such that l > r1 > r2 > ... > rk−1 > 0}.
Proof. Define ψ on

⋃k−1
j=0 Λ

(k,l)
n+j by λ 7→ r, with ri = λi − λk + k − i, where λ =

(λ1, λ2, ..., λk), r = (r1, r2, ..., rk−1, 0). If ψ(λ) = ψ(λ̃), then λi − λk = λ̃i − λ̃k, for

all i = 1, ..., k, and so
∑k

i=1 λi − kλk =
∑k

i=1 λ̃i − kλ̃k. If λ ∈ Λ
(k,l)
n+s and λ̃ ∈ Λ

(k,l)
n+t ,

then we have that n + s − kλk = n + t − kλ̃k, and so, k(λk − λ̃k) = s − t. Since

0 ≤ s, t ≤ k−1, and k divides (s−t), then s−t = 0 = λk−λ̃k. Therefore, λ = λ̃, and
ψ is injective. Given r = (r1, r2, ..., rk−1, 0) such that l > r1 > r2 > .... > rk−1 > 0,
there exist a unique s ∈ N, 0 ≤ s ≤ k − 1, and a unique p ∈ N0 such that

n+ k(k−1)
2 −∑k−1

i=1 ri = pk− s. If λ ∈ ⋃k−1
j=0 Λ

(k,l)
n+j is given by λi = ri + p− k+ i for

i = 1, ..., k, then ψ(λ) = r and surjectivity holds.

By applying Lemma 4.2.1 we obtain that

I : =

k−1∑
i=0

∑
λ∈Λ

(k,l)
n+i

∏
1≤r<s≤k

sin2{(λr − λs + s− r)π/l}

=
∑

l>l1>....>lk−1>0

∏
1≤i<j≤k

sin2{(li − lj)π/l}.
(4.2.3)

Since we have that sin2{(li − li)π/l} = 0, sin2{(l− lk)π/l} = 0 (recall that lk = 0),
and sin2{(li − lj)π/l} = sin2{(lj − li)π/l} for all i and j, then

I =
∑

l≥l1≥....≥lk−1>0

∏
1≤i<j≤k

sin2{(li − lj)π/l}

=
1

(k − 1)!

l∑
l1,...,lk−1=1

∏
1≤i<j≤k

sin2{(li − lj)π/l}

=
1

(k − 1)!2k(k−1)

l∑
l1,....lk−1=1

( ∏
1≤i<j≤k

(qli − qlj )

)( ∏
1≤i<j≤k

(q−li − q−lj )
)
,

by setting q = e±2πi/l, and writing sin2{(li − lj)π/l} in terms of q. Note that the
factors in the summation above have the form of determinants of Vandermonde
matrices. Recall that a k × k Vandermonde matrix is a matrix X of the form

X =


1 1 . . . 1
x1 x2 . . . xk
x2

1 x2
2 . . . x2

k
...

...
. . .

...

xk−1
1 xk−1

2 . . . xk−1
k

 ,



198 JULIANA ERLIJMAN

where the xi’s are variables. The determinant of the Vandermonde matrix X is
given by detX =

∏
1≤i<j≤k(xi − xj). Let xi and yi be given by xi = qli and

yi = q−li for i = 1, ..., k − 1, and let X and Y be the respective Vandermonde
matrices. Rewriting I, we have

I =
1

(k − 1)!2k(k−1)

l∑
l1,...,lk−1=1

det(X) det(Y ).(4.2.4)

Lemma 4.2.2.
l∑

l1,...,lk−1=1

det(X) det(Y ) = lk−1k!.

Proof. We have that
∑l

li=1 y
j
i x

s
i = δj,sl, for i = 1, ..., k (recall that q = e±2πi/l).

Thus, if we sum over one variable at a time we have
∑l

l1,...,lk−1=1 det(X) det(Y ) =

lk−1c, where c is the constant term of the Laurent polynomial det(X) det(Y ). By

definition, det(X) det(Y ) =
∑

σ,ν∈Sk sg(ν)sg(σ)x1
σ(2)...x

k−1
σ(k)y

1
ν(2)...y

k−1
ν(k), and one

can see that the constant term appears only when ν = σ. So, c =
∑

σ∈Sk 1 = k!.

Theorem 4.2.3. (i) If C ⊆ D is the pair of the II1 factors defined as before, then
the index [D : C] is given by

l(k−1)

2k(k−1)

sin2m(kπ/l)

sin2m(π/l)

1∏
1≤r<s≤k sin2{(r − s)π/l} .

(ii) For each (k, l) diagram λ of size m, there exists a subfactor of the hyperfinite
II1 factor with trivial relative commutant and index [Dλ : Cλ] given by

lk−1

2k(k−1)

∏
1≤r<s≤k

sin2{(λr − λs + s− r)π/l}
sin4{(s− r)π/l} .

Proof. (i) By (4.2.4) and Lemma 4.2.1 we have that I = lk−1k
2k(k−1) . Then, by (4.2.2)

and (4.2.3), we obtain the desired formula.

(ii) Let m be a non-negative integer, and let λ be in Λ
(k,l)
m . By section 3.4, the

relative commutant for the pair C ⊆ D (obtained after fixing m) is

C ′ ∩D = 〈g1, ..., gm−1〉 = Am
∼=

⊕
λ∈Λ

(k,l)
m

Maλ(C).

If p is a minimal idempotent of C ′ ∩D, the reduced pair of factors Cp ⊆ Dp is an
irreducible pair. Let us consider p = pλ ∈ C′p ∩ Dp a minimal idempotent labeled

by λ in Λ
(k,l)
m . Using (4.2.1) and [W-1, Theorem 1.5, (iii)], we have the desired

expression.

4.3 Subfactors of types B,C,D: The algebra C∞(r, q). The algebras Cf (r, q)
in two complex parameters r and q (the so-called Birman-Murakami-Wenzl alge-
bras) were first derived from the Kauffman link invariant (see [W-2], [BW], [M]).
Roughly, since one can obtain a link by ‘closing’ a braid, link invariants may induce
trace functionals on the braid group with the Markov property. The GNS construc-
tion with respect to the trace derived from the Kauffman link invariant gives the
definition of the algebra C∞(r, q). See [W-2] for details on this construction.
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Algebraically, the complex algebra Cf (r, q) is given by generators 1, T1, ..., Tf−1,
which are assumed to be invertible, and relations

(B1) Ti+1TiTi+1 = TiTi+1Ti, for i = 1, ..., n− 2,
(B2) TiTj = TjTi, for |i− j| ≥ 2,
(R1) eiTi = r−1ei, for 1 ≤ i ≤ f − 1,
(R2) eiT

±1
i ei = r±1ei, for 1 ≤ i ≤ f − 1,

where for q 6= 0,±1, ei is defined by the equation

(q − q−1)(1 − ei) = Ti − T−1
i ,

and it is also a multiple of the characteristic idempotent pi belonging to the char-
acteristic value r−1 of Ti. The other characteristic values of Ti are q and −q−1.

(R1) can be replaced by (R1)
′:

(Ti − r−1)(Ti + q−1)(Ti − q) = 0.

A different set of relations can also be given so that the algebra is also well
defined at (r, q) = (1, 1) (see [W-2, page 401]).

These algebras are related to the Brauer algebras in the following sense. The
algebra C∞(r, q) =

⋃
Cf (r, q) can be described by adding to the two dimensional

description of the braid group Bf additional generators εi (“horizontal” strands) as
shown e.g. in [W-2, §3]. Since multiplication is by concatenation of the diagrams,
one should get rid of the resulting circles by multiplying the graph without the
circles by an expression depending on r, q, and the number of circles.

One can define inductively a functional tr on the Cf (r, q)’s which turns out to be
a trace, and it is actually the one derived from the the Kauffman invariant; it also
agrees with the trace obtained via the quantum group approach outlined in section
4.1, see [W-2, Lemma 3.4]. We consider the GNS construction πtr with respect to
the trace (the quotient modulo the anhihilator ideal).

In [W-2, Lemma 4.1] it is proven inductively that the quotient πtr(Cf (r, q)) is
semisimple if certain quotients of the Hecke algebra, Ks := ρs(Hs(q

2)), are also
semisimple for s = 1, . . . , f . Furthermore, it says that in this case the structure of
the πtr(Cf (r, q))’s is completely determined if one knows the representations ρf of
Hf (q

2) for all f ∈ N. Also, in this case the structure can be encoded in the graph
Γ(r, q) whose vertices at the f th level are labelled by the simple components of Kf ,
and whose edges are determined by the decomposition of an irreducible Kf module
into irreducible Kf−1 modules. The representations ρf of Hf (q

2) are direct sums

of the representations π
(k,l)
λ when q2 is of the form e±2πi/l (as mentioned in the last

section), or of the representations πλ, when q2 is not a root of unity (see [W-1]).
In particular, the vertices of Γ(r, q) are labelled by Young diagrams and Γ(r, q) is
a subgraph of the Young lattice.

In the semisimple case, Wenzl’s lemma also tells us that Γ(r, q) determines the
Bratteli diagram for . . . ⊆ πtr(Cf−1(r, q)) ⊆ πtr(Cf (r, q)) ⊆ . . . as follows: The
diagram at the (f−1)st to f th level is given by the ‘reflection’ of the diagram at the
(f−2)nd to (f−1)st level plus a ‘new part’ obtained by joining the Young diagrams
of size (f−1) in Γ(r, q) with the ones of size f . Thus, the labels for the simple ideals
of πtr(Cf (r, q)) are given by Γf (r, q) := {λ ∈ Γ(r, q) : |λ| = f, f − 2, . . . , 1 or 0},
and furthermore, a vertex labelled by λ at the level (f −1) on the Bratteli diagram
is connected to a vertex labelled by µ at level f if and only if µ is obtained from λ
by adding or removing one box.
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If Γ(r, q) is finite then the sequence
(
πtr(Cf (r, q))

)
f

has periodicity 2. The

difficulty is to determine which diagrams appear in Γ(r, q). This was done by
Wenzl in [W-2, Theorem 6.4], where he finds the values for r and q for which
these quotients are semisimple and the representations πtr unitary, together with
a description of the corresponding graphs Γ(r, q). We shall write explicitly these
graphs Γ(r, q) for each Lie type while computing the subfactors’ indices in the next
sections. The values for r and q are of the form q = eπi/l and r = qn, with l ∈ N
and |n| < l, n 6= −1. Moreover, for these values the representations πtr satisfy the
conditions (i)-(v) of section 3.1.

Set

x =
r − r−1

q − q−1
+ 1.(4.3.1)

By [W-2, Theorem 4.6], the weight vector for the Markov trace tr for πtr(Cf (r, q))
is given by (

Qλ(r, q)/x
f

)
Γf (r,q)

,(4.3.2)

where Qλ is a non-zero rational function independent of f . There is the possible
exception of the diagram λ given by the hook λ = [l − k + 1, 1k−1], in which case

one should take Q̃λ(r, q) = (Qλ +Q[l−k+2,1k−2])(r, q). We have, by [W-2, Theorem
5.5],

Qλ(r, q) =
∏

(j,j)∈λ

[y + λj − λ′j ]q + [h(j, j)]q

[h(j, j)]q

∏
(i,j)∈λ, i6=j

[y + d(i, j)]q
[h(i, j)]q

,(4.3.3)

where [s]q := qs − q−s, [y + s]q := rqs − r−1q−s, λ′i is the length of the ith column
of λ, h(i, j) := λi− i+λ′j− j+1 (the hook length), and d(i, j) := λi +λj − i− j+1
if i ≤ j, and d(i, j) := −λ′i − λ′j + i+ j − 1 if i > j.

As mentioned in section 4.1, the weight vector in (4.3.2) coincides with(
χ(λ̃)

(
D(q)

)
Tr(D(q))f

)
λ∈Γf (r,q)

.(4.3.4)

Here, χ(λ̃) is the character corresponding to an irreducible representation %λ̃ of the
Lie group which appears in the f -fold tensor power of the standard representation.
The diagram λ̃ is obtained from λ by a rule depending on the Lie type: For the
even or odd orthogonal types O(n), λ̃ = λ if λ′1 ≤ [n2 ], and otherwise it is given by

λ̃′1 := n − λ′1 and λ̃′i := λ′i for i ≥ 2. For the symplectic case Sp(2k), λ̃ := λ′, the
‘transpose’ of λ. The diagonal matrix D(q) is given by diag{qi : i ∈ I}, where
I is the set correspoding to the eigenvalues of a matrix given by the sum of the
positive roots of G with respect to a suitably normalized invariant bilinear form.
Note that for the B,C,D types we do not consider the half sum of positive roots as
in the type A case, but the whole sum: This is to be consistent with Wenzl’s choice
of q in [W-2, Theorem 6.4] (if we considered the half sum we woud need to work
with q2 instead).

Taking the values for the parameters r and q as above, we can define the pairs
of hyperfinite II1 factors C ⊆ D and proceed with their indices. By (3.3.2) and for
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large f ,

[D : C] = ‖~t (f)‖2 W (f+m),

where ~t (f) is the weight vector for the trace on Af = πtr(Cf (r, q)) = 〈g1, ..., gf−1〉,
and W the index for the one-sided pair 〈g2, . . . , gs, . . . 〉′′ ⊆ 〈g1, . . . , gs, . . . 〉′′, which
was computed in [W-2, Theorem 7.1] and for large n is equal to

W =
‖~t (n)‖2

‖~t (n+1)‖2
= x2,

where, as in (4.3.1), x = r−r−1

q−q−1 + 1 =
∑

i∈I q
i. Then, for large f

[D : C] = x2(f+m)‖~t (f)‖2 = x2m
∑

λ∈Γf (r,q)

Q2
λ(r, q)

=
1

2
x2m

∑
λ∈Γ(r,q)

Q2
λ(r, q),

(4.3.5)

by (4.3.2) and because Γf (r, q) = {λ ∈ Γ(r, q) : |λ| = f, f − 2, ..., 1 or 0}.
As mentioned in the introduction, for m = 0, our two-sided subfactors corre-

sponding to the unitary braid representations associated to the Lie types B,C,D
coincide with the asymptotic inclusions for their one-sided versions or Wenzl sub-
factors. So, before continuing with the computation of our indices we shall prove
this fact.

The asymptotic inclusion for a pair of II1 subfactors N ⊆M (see [O]) is defined
by the pair given by

N ∨ (N ′ ∩M (∞)) ⊆M (∞),

where M (∞) := (
⋃
iM

(i))−w.o. and M (i) is the Jones’ ith basic construction.
Consider now the one-sided pair N := 〈g1, g2, . . . 〉′′ ⊆M := 〈g0, g1, g2, . . . 〉′′ and

the two-sided pair C := 〈. . . g−1, g1, . . . 〉′′ ⊆ D := 〈. . . g−1, g0, g1, . . . 〉′′. Note that
in both cases the subfactors are obtained by leaving out one braid generator, g0.
Wenzl proved in [W-2, §7] that for his one-sided type B,C,D subfactors N ⊆ M ,
and for every natural number i, there is an isomorphism

Ψ(i) : M (i) = 〈ēi, ēi−1, . . . , ē1, g0, g1, . . . 〉′′ → 〈g0, g1, . . . 〉′′,
mapping N = 〈g1, . . . 〉′′ onto 〈gi, gi+1, . . . 〉′′, and where ēj is the Jones’ jth ba-
sic projection for N ⊆ M . This map takes the projections ēj to the projections
ρ(ej−1), where ej is a multiple of the spectral projection pj corresponding to the
characteristic eigenvalue r−1 of Tj (see defining relations for the algebra C∞(r, q) at
the beginning of this section). As a corollary, from this he obtains that the higher
relative commutantN ′∩M (i) for N ⊆M is isomorphic to the algebra 〈g0, . . . , gi−2〉.

If we compose the isomorphism Ψ(i) with an isomorphism given by a relabelling
of the generators, shift−i+1, we then have an isomorphism

φi : M (i) = 〈ēi, ēi−1, . . . , ē1, g0, g1, . . . 〉′′ → 〈g−i+1, g−i+2, . . . , g0, g1, . . . 〉′′,
mapping N = 〈g1, . . . 〉′′ onto 〈g1, . . . 〉′′. Therefore, for all i ∈ N we have that

N ′ ∩M (i) ∼=φi 〈g−i+1, g−i+2, . . . , g−1〉.
Note that the φi’s are coherent, so that we can define an isomorphism Φ : M (∞) →
D, with Φ

(
N ∨ (N ′ ∩M (∞))

)
= C. We have proved
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Proposition 4.3.3. The pair of subfactors C ⊆ D associated to the Lie types
B,C,D, as above, is conjugate to the asymptotic pair corresponding to the one-sided
versions (the Wenzl subfactors) N = 〈g1, g2, . . . 〉′′ ⊆M = 〈g0, g1, g2, . . . 〉′′, that is,(

N ∨ (N ′ ∩M (∞)) ⊆M (∞)
) ' (C ⊆ D

)
.

4.4 Index for subfactors of type B: The odd orthogonal case O(2k + 1).
This is the case where the values for r and q are given by q = eπi/l and r = q2k,
with 2 < 2k < l − 2 and l > 6. We have, by [W-2, Theorem 6.4, (a)],

Γ(q2k, q) = {λ : λ1 + λ2 ≤ l − 2k + 1 and λ′1 + λ′2 ≤ 2k + 1}
∪ {[l − 2k + 1, 12k−1]}.

Lemma 4.4.1. If λ ∈ Γ(q2k, q), and λ′1 > k, then there exists ψ(λ) = λ̃ ∈ Γ(q2k, q)

such that λ̃′1 ≤ k and such that Qλ(q
2k, q) = Qλ̃(q

2k, q). Furthermore, the map ψ

is a bijection from Γ(q2k, q) ∩ {λ : λ′1 > k} onto Γ(q2k, q) ∩ {λ : λ′1 ≤ k}.

Proof. Define ψ(λ) = λ̃ by λ̃′i = λ′i for i = 2, ..., λ1 and λ̃′1 = 2k + 1− λ′1. We have

that λ′1 > k and λ′1 + λ′2 ≤ 2k + 1 give λ̃′2 ≤ λ̃′1 (so that λ̃ is a Young diagram),

λ̃′1 ≤ k and λ̃′1 + λ̃′2 ≤ 2k + 1. Also, λ̃1 + λ̃2 = λ1 + λ̃2 ≤ λ1 + λ2 ≤ l − 2k + 1.

Therefore, λ̃ ∈ Γ(q2k, q) and λ̃′1 ≤ k. Similarly, the inverse map is well defined: For

λ̃ ∈ Γ(q2k, q) with λ̃′1 ≤ k, take λ with λ′i = λ̃′i for i = 2, ..., λ̃1 and λ′1 = 2k+1− λ̃′1.
We have that λ′1 ≥ λ′2 and λ′1 > k. If λ̃ is not just one row (that is, if λ̃′1 > 1),

then λ1 + λ2 ≤ l − 2k + 1. If λ̃′1 = 1, then either λ is the hook [l − 2k + 1, 12k−1]

(when λ̃ = [l − 2k + 1]), or we have λ1 + λ2 ≤ l − 2k + 1 (when λ̃ = [λ̃1] with

λ̃1 < l − 2k + 1). The fact that Qλ(q
2k, q) = Qλ̃(q

2k, q) follows from (4.3.3).

For λ ∈ Γ(q2k, q) with λ′1 ≤ k, we have that Qλ(q
2k, q) = χ(λ)(D(q)), where

D(q) ∈ O(2k+1) is the diagonal matrix with eigenvalues {1, q±(2i−1), i = 1, ...., k},
by (4.3.4). The character formula for the representation of O(2k + 1) given by
λ = (λ1, ..., λk) is the following (see [Mi], [We], [FH, Ch.24], or [W-2]):

χ(λ)
(
D(q)

)
= χ̃(λ)

(
D(q)

)
=

det

(
(q(2i−1)αj − q−(2i−1)αj )i,j

)
det

(
(q(2i−1)α0

j − q−(2i−1)α0
j )i,j

) ,
where αj := λj + k− j + 1

2 and α0
j := k− j + 1

2 , and where χ̃(λ) is the character of

the restriction of λ to SO(2k + 1). We can rewrite the formula as

χ(λ)
(
D(q)

)
=

k∏
s=1

[ls − 1
2 ]q

[l0s − 1
2 ]q

∏
1≤s<t≤k

[ls + lt − 1]q[ls − lt]q
[l0s + l0t − 1]q[l0s − l0t ]q

,(4.4.1)

where lj := αj + 1
2 = λj + k − j + 1 and l0j := α0

j + 1
2 = k − j + 1. Define

xs = sin2(
(ls − 1

2 )π

l
).(4.4.2)
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By (4.3.5) we need to compute Q :=
∑

λ∈Γ(q2k,q)Q
2
λ(q

2k, q). By Lemma 4.4.1,

(4.4.1) and (4.4.2) we have

Q = 2
∑

{λ∈Γ(q2k,q):λ′1≤k}
Q2
λ(q

2k, q)

=
2
∑

{λ∈Γ(q2k,q):λ′1≤k}
∏k

s=1[ls − 1
2 ]2q
∏

1≤s<t≤k[ls + lt − 1]2q[ls − lt]
2
q∏k

s=1[l
0
s − 1

2 ]2q
∏

1≤s<t≤k[l0s + l0t − 1]2q[l
0
s − l0t ]

2
q

(4.4.3)

=
2
∑

{λ∈Γ(q2k,q):λ′1≤k}
∏k

s=1 xs
∏

1≤s<t≤k(xs − xt)
2∏k

s=1 sin2((s+ 1
2 )π/l)

∏
1≤s<t≤k sin2((t+ s+ 1)π/l) sin2((t− s)π/l)

,

where we use the identity [a− b]2q[a+ b]2q = 16(sin2(aπl )− sin2( bπl ))2.

Lemma 4.4.2. (i) Set T1 = {λ ∈ Γ(q2k, q) : λ′1 ≤ k}. The map φ : T1 → T2 :=
{h = (l1, ..., lk) : l1 + l2 ≤ l and l1 > l2 > ... > lk > 0} is a bijection, where
λ 7→ λ+ (k, k − 1, . . . , 1).

(ii) Set P =
∏k

s=1 xs
∏

1≤s<t≤k(xs − xt)
2. Then∑

λ∈T1

P =
∑
h∈T2

P =
∑
h∈T3

P,(4.4.4)

where T3 = {h = (l1, ..., lk) : l ≥ l1 ≥ ... ≥ lk ≥ 1, l1 + l2 ≤ l+ 1}.
(iii) ∑

h∈T3

P =
1

2k−1k!

l∑
l1,...,lk=1

P =
1

2k−1

∑
h∈T

P,(4.4.5)

where T = {h = (l1, ..., lk) : l ≥ l1 ≥ ... ≥ lk ≥ 1}.
Proof. (i) Evident.

(ii) For the second equality in (4.4.4), note that if h = (l1, ..., lk) has li = lj

for i 6= j then P = 0. Also, if l1 + l2 = l + 1 then x1 = sin2( (l1−1/2)π
l ) =

sin2( (−l1+l+1/2)π
l ) = sin2( (l2−1/2)π

l ) = x2, so that P = 0.
(iii) The first equality in (4.4.5) can be shown by considering the action of a

subgroup W̃ of the Weyl group W of so(2k + 1) on Qk := {h = (l1, . . . lk) : lj =

1, . . . , l}. The subgroup W̃ has order k!2k−1, and it is generated by the maps Rs,t

and Ps,t given as follows: For t < s ≤ k, the reflection in the root Ls + Lt acts
on Qk by the map Rs,t : h 7→ (l1, . . . , l + 1 − ls, . . . , l + 1 − lt, . . . , lk), and the
reflection on the root Lt − Ls by the map Ps,t : h 7→ (l1, . . . , ls, . . . lt, . . . , lk). We
omit the verification that these maps do satisfy the relations of the Weyl group
generators. The action of W̃ on Qk preserves the products P , and furthermore, T3

is a fundamental domain for Qk (see below). We provide the verification that T3

is a fundamental domain for the action of W̃ on Qk. The proof is essentially the
same as the proof that the Weyl chamber is a fundamental domain for the action
of the Weyl group on the weight space; see for example [Hu], page 52. For σ ∈ W̃ ,
write Tσ for σ(T3).

(a) Qk =
⋃
σ∈W̃ Tσ : If ~v ∈ Qk, we want to show that there exist h ∈ T3

and σ ∈ W̃ such that σ(h) = ~v. First, take a permutation ρ1 ∈ Sk such that
~v (1) = ρ1(~v) ∈ T , i.e., the coordinates of ~v (1) are in decreasing order. Proceed now

by induction on v
(1)
1 + v

(1)
2 + · · ·+ v

(1)
k : If v

(1)
1 + v

(1)
2 ≤ l+ 1, there is nothing to do.
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Otherwise, consider ~u (1) = P1,2(~v
(1)) = (l+1− v(1)

2 , l+1− v(1)
1 , v

(1)
3 , . . . , v

(1)
k ) and

take ρ2 ∈ Sk such that ~v (2) = ρ2(~u
(1)) ∈ T . Note that v

(1)
1 + v

(1)
2 + · · · + v

(1)
k >

v
(2)
1 + v

(2)
2 + · · ·+ v

(2)
k , so that the result follows by induction.

(b) We show that if ~v ∈ Tσ ∩ Tρ for distinct σ, ρ ∈ W̃ , then P~v = 0 : For this

it suffices to show that for γ ∈ W̃\{1}, Tσ ∩ Tρ ⊆ ∂T3 := {h ∈ T3 : l1 + l2 =
l+ 1 or li = li+1 for some i}. So suppose that α and β are elements in T3, that

γ is a non-trivial element of W̃ , and that γ(α) = β. The subgroup W̃ consists of
signed permutations with an even number of −1’s. Hence, the tranformation γ of
Qk acts by first changing an even number of coordinates αi to l+1−αi, and then by
permuting the coordinates. So, there is a permutation π ∈ Sk such that for each i,
βi = απ(i) or βi = l+1−απ(i). Suppose that γ is not an element of the permutation
subgroup of W (generated by the Ps,t’s). Then, there are two indices s < t such
that βi = l+ 1− απ(i) for i = s, t. Since απ(s) + απ(t) ≤ α1 + α2 ≤ l+ 1, it follows
that βs + βt ≥ l+ 1. But also βs + βt ≤ β1 + β2 ≤ l+ 1. Therefore, β1 + β2 = l+ 1
and β ∈ ∂T3. Otherwise, γ is a non-trivial element of the permutation subgroup
of W . But then, as β is obtained by permuting coordinates of α and both vectors
have decreasing coordinates, β must have some repeated coordinates, so again β
lies in the boundary of T3.

The second equality in (4.4.5) follows directly from the fact that permuting the
entries of h does not change the products P .

Consider again X ∈ Mk(C) to be the Vandermonde matrix in the variables
(xi)1≤i≤k with xi as in (4.4.2) and Y ∈ Mk(C) to be the diagonal matrix with
the eigenvalues (xi)1≤i≤k. Then, the determinant of Y X2 is given by det(Y X2) =∏k

s=1 xs
∏

1≤s<t≤k(xs − xt)
2. Hence, rewriting (4.4.3), by Lemma 4.4.2 we have

Q =

∑l
l1,...,lk=1 det(Y X2)

2k−2k!
∏k

s=1 sin2((s+ 1
2 )π/l)

∏
1≤s<t≤k sin2((s+ t+ 1)π/l) sin2((t− s)π/l)

.

(4.4.6)

Lemma 4.4.3.
l∑

l1,...,lk=1

det(Y X2) =
lkk!

22k2−k .

Proof. By the binomial formula, xjs = 1
(2i)2j

∑2j
r=0

(
2j
r

)
(−1)reiαs2(r−j)

π
l , and so we

have
∑l

ls=1 x
j
s = 1

22j

(
2j
j

)
l. By definition and Lemma 2.1 (ii),

l∑
l1,...,lk=1

(detX2)(detY )

=

l∑
l1,...,lk=1

∑
σ,ρ∈Sk

sg(σ)sg(ρ)

k∏
t=1

x
(ρ−1(t)+σ−1(t)−1)
t

= lk
∑

σ,ρ∈Sk
sg(σ)sg(ρ)

k∏
t=1

1

22(ρ−1(t)+σ−1(t)−1)

(
2(ρ−1(t) + σ−1(t)− 1)

(ρ−1(t) + σ−1(t)− 1)

)

=
lk

22k2

∑
σ,ω∈Sk

sg(ω)

k∏
t=1

(
2(t+ ω(t)− 1)

(t+ ω(t)− 1)

)
=

lkk!

22k2−k .
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By (4.3.5), (4.4.6), Lemma 4.4.3 and [W-1, Theorem 1.5, (iii)] we have proved

Theorem 4.4.4. (i) If C ⊆ D is the pair of II1 factors defined at the beginning of
section 4.4, then its index [D : C] is given by

x2mlk

22k2−1

1∏k
s=1 sin2((s+ 1

2 )π/l)
∏

1≤s<t≤k sin2((s+ t+ 1)π/l) sin2((t− s)π/l)
,

where x is as in (4.3.1).
(ii) For each diagram λ ∈ Γm(q2k, q) there exists a subfactor of the hyperfinite

II1 factor with trivial relative commutant and index [Dλ : Cλ] given by

x2mlk

22k2−1

∏k
s=1 sin2((ls − 1

2 )π/l)
∏

1≤s<t≤k sin2((ls + lt − 1)π/l) sin2((ls − lt)π/l)∏k
s=1 sin4((s+ 1

2 )π/l)
∏

1≤s<t≤k sin4((t+ s+ 1)π/l) sin4((t− s)π/l)
,

where ls = λs + k − s+ 1
If λ is such that λ′1 > k, consider λ̃ as defined in Lemma 4.4.1.

4.5 Index for subfactors of type C: The symplectic case Sp(2k). This is
the case where the values for r and q are given by q = eπi/l and r = q−2k−1, with
2k + 1 < l, k positive and l even. We have, by [W-2, Theorem 6.4, (c)],

Γ(q−2k−1, q) = {λ : λ1 ≤ k and λ′1 ≤
l

2
− k − 1}.

For λ ∈ Γ(q−2k−1, q) define λ′, the transpose of λ, by (λ′)i = λ′i, so that (λ′1) ′ =

λ1 ≤ k. Furthermore, we have that Qλ(q
−2k−1, q) = χ(λ′)(D(q)), where D(q) ∈

Sp(2k) ∩ U(2k) is the diagonal matrix with eigenvalues {q±2i, i = 1, ...., k}, by
(4.3.4). The character formula for the representation of Sp(2k) given by λ =
(λ1, ..., λk) is the following (see [Mi], [FH, Ch. 24], or [We]):

χ(λ)(D(q)) = χ̃(λ)(D(q)) =

det

(
(q2slj − q−2slj )s,j

)
det

(
(q2sl

0
j − q−2sl0j )s,j

) ,(4.5.1)

where lj := λj +k− j+1 , l0j := k− j+1 and χ̃(λ) is the character of the restriction

of λ to U(2k). This formula can be written as

χ(λ)(D(q)) =

k∏
s=1

[2ls]q
[2l0s]q

∏
1≤s<t≤k

[ls + lt]q[ls − lt]q
[l0s + l0t ]q[l

0
s − l0t ]q

,(4.5.2)

By (4.3.5) we need to compute Q :=
∑

λ∈Γ(q−2k−1,q)Q
2
λ(q

−2k−1, q). By (4.5.2),

Q =
∑

{λ:λ′∈Γ(q−2k−1,q)}

(
χ(λ)(D(q))

)2

=

∑
{λ:λ′∈Γ(q−2k−1,q)}

∏k
s=1[2ls]

2
q

∏
1≤s<t≤k[ls + lt]

2
q[ls − lt]

2
q∏k

s=1[2l
0
s]

2
q

∏
1≤s<t≤k[l0s + l0t ]

2
q [l

0
s − l0t ]

2
q

=

∑
{λ:λ′∈Γ(q−2k−1,q)}

∏k
s=1 ys

∏
1≤s<t≤k(xs − xt)

2∏k
s=1 sin2(2sπ/l)

∏
1≤s<t≤k sin2((t+ s)π/l) sin2((t− s)π/l)

,

(4.5.3)
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where we use the same trigonometrical identity as in section 4.4, and where

xs = sin2(lsπ/l) and ys = sin2(2lsπ/l).(4.5.4)

Lemma 4.5.1. (i) Set T1 = {λ : λ′ ∈ Γ(q−2k−1, q)} = {λ : λ′1 ≤ k and λ1 ≤
l
2 − k − 1}. The map φ : T1 → T2 := {(l1, ..., lk) : l

2 > l1 > .... > lk > 0} is a
bijection, where λ 7→ λ+ (k, k − 1, . . . , 1).

(ii) Set P =
∏k

s=1 ys
∏

1≤s<t≤k(xs − xt)
2.Then

∑
λ∈T1

P =
∑
h∈T2

P =
∑
h∈T

P,(4.5.5)

where T = {h = (l1, ..., lk) : l
2 ≥ l1 ≥ ... ≥ lk ≥ 1}.

(iii)

∑
h∈T

P =
1

k!

l
2∑

l1,...,lk=1

P =
1

2kk!

l∑
l1,...,lk=1

P.(4.5.6)

Proof. (i) Evident. (ii) For the second equality in (4.5.5), if h = (l1, ..., lk) has
li = lj for i 6= j then P = 0. If l1 = l

2 the expression is also 0. (iii) For
the first equality in (4.5.6), permuting the entries of h ∈ T does not change the

products. For the second equality in (4.5.6), since xj = sin2(
ljπ
l ) = sin2(

(l−lj)π
l )

and yj = sin2(2ljπ/l) = sin2(2(l− lj)π/l), the products do not change if we replace
any lj by l − lj .

Remark. As in the orthogonal cases, (iii) can be shown by considering the action of
the Weyl group W for sp(2k) on Qk := {h = (l1, . . . , lk) : li = 1, . . . , l}. The Weyl
group W has order 2kk!; its action on Qk preserves the products P , and finally, T
is the fundamental domain for Qk, in the same sense as in sections 4.4 and 4.6.)

Consider again X ∈ Mk(C) to be the Vandermonde matrix in the variables
(xi)1≤i≤k with xi as in (4.5.4), and Y ∈ Mk(C) to be the diagonal matrix with
the eigenvalues (yi)1≤i≤k. Then, the determinant of Y X2 is given by det(Y X2) =∏k

s=1 ys
∏

1≤s<t≤k(xs−xt)2. Rewriting (4.5.3) and using Lemma 4.5.1, we see that

Q =
1

2kk!

∑l
l1,...,lk=1 det(Y X2)∏k

s=1 sin2(2sπ/l)
∏

1≤s<t≤k sin2((s+ t)π/l) sin2((t− s)π/l)
.(4.5.7)

Lemma 4.5.2.

l∑
l1,...,lk=1

det(Y X2) =
lkk!

22k2−k .

Proof. By the binomial formula, xjs = 1
(2i)2j

∑2j
r=0

(
2j
r

)
(−1)reils2(r−j)

π
l , and since

ys = 4(xs−x2
s), we have

∑l
ls=1 ysx

j
s = 1

22j+1

(
2(j+1)
j+1

)
l 1
j+2 . Then, by Lemma 2.1 (i),
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l∑
l1,...,lk=1

(detX2)(detY )

=
∑

σ,ρ∈Sk
sg(σ)sg(ρ)

{ k∏
t=1

l

22(ρ−1(t)+σ−1(t)−2)+1

1

(σ−1(t) + ρ−1(t))

×
(

2(ρ−1(t) + σ−1(t)− 1)

(ρ−1(t) + σ−1(t)− 1)

)}

=
lk

22k2−k
∑

σ,ω∈Sk
sg(ω)

k∏
t=1

1

(ω(t) + t)

(
2(t+ ω(t)− 1)

(t+ ω(t)− 1)

)
=

lkk!

22k2−k .

By (4.3.5), (4.5.7), Lemma 4.5.2 and [W-1, Theorem 1.5, (iii)] we have proved

Theorem 4.5.3. (i) If C ⊆ D is the pair of II1 factors defined at the beginning of
section 4.5, then its index [D : C] is given by

x2mlk

22k2+1

1∏k
s=1 sin2(2sπ/l)

∏
1≤s<t≤k sin2((s+ t)π/l) sin2((t− s)π/l)

,

where x is as in (4.3.1).
(ii) For each diagram λ ∈ Γm(q−2k−1, q) there exists a subfactor of the hyperfinite

II1 factor with trivial relative commutant and index

[Dλ : Cλ] =
x2mlk

22k2+1

∏k
s=1 sin2(2lsπ/l)

∏
1≤s<t≤k sin2((ls + lt)π/l) sin2((lt − ls)π/l)∏k

s=1 sin4(2sπ/l)
∏

1≤s<t≤k sin4((t+ s)π/l) sin4((t− s)π/l)
,

where ls = λs + k − s+ 1.

4.6 Index for subfactors of type D: The even orthogonal case O(2k). This
is the case where the values for r and q are given by q = eπi/l and r = q2k−1, with
2 < 2k − 1 < l, l > 3. We have by [W-2, Theorem 6.4, (a)]

Γ(q2k−1, q) = {λ : λ1 + λ2 ≤ l − 2k + 2 and λ′1 + λ′2 ≤ 2k} ∪ {[l− 2k + 2, 12k−2]}.
Lemma 4.6.1. If λ ∈ Γ(q2k−1, q), and λ′1 > k, then there exists ψ(λ) = λ̃ ∈
Γ(q2k−1, q) such that λ̃′1 ≤ k − 1 and such that Qλ(q

2k−1, q) = Qλ̃(q
2k−1, q).

Furthermore, the map ψ is a bijection from Γ(q2k−1, q) ∩ {λ : λ′1 > k} onto
Γ(q2k−1, q) ∩ {λ : λ′1 ≤ k − 1}.
Proof. For λ ∈ Γ(q2k−1, q) with λ′1 > k define ψ(λ) = λ̃ by λ̃′i = λ′i for i = 2, ..., λ1

and λ̃′1 = 2k−λ′1. We have that λ′1 > k and λ′1 +λ′2 ≤ 2k give λ̃′2 ≤ λ̃′1 (so that λ̃ is

a Young diagram), λ̃′1 < k and λ̃′1 + λ̃′2 ≤ 2k. Also, λ̃1 + λ̃2 = λ1 + λ̃2 ≤ λ1 + λ2 ≤
l− 2k+ 2. Therefore, λ̃ ∈ Γ(q2k−1, q) and λ̃′1 ≤ k− 1. Similarly, the inverse map is

well defined: For λ̃ ∈ Γ(q2k−1, q) with λ̃′1 < k, take λ with λ′i = λ̃′i for i = 2, ..., λ̃1

and λ′1 = 2k − λ̃′1. We have that λ′1 ≥ λ′2 and λ′1 > k. If λ̃ is not just one row

(that is, if λ̃′1 > 1), then λ1 + λ2 ≤ l − 2k + 2. If λ̃′1 = 1, then either λ is the hook

[l − 2k + 2, 12k−2] (when λ̃ = [l − 2k + 2]), or we have λ1 + λ2 ≤ l − 2k + 2 (when

λ̃ = [λ̃1] with λ̃1 < l − 2k + 2). The fact that Qλ(q2k−1, q) = Qλ̃(q2k−1, q) follows
from (4.3.3).
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For λ ∈ Γ(q2k−1, q) with λ′1 ≤ k, Qλ(q
2k−1, q) = χ(λ)(D(q)), and D(q) ∈ O(2k)

is the diagonal matrix with eigenvalues {q±2(i−1), i = 1, ...., k}, where 1 appears
twice, by (4.3.4). The character formula for the representation of O(2k) given by
λ = (λ1, ..., λk) is the following (see for example [Mi, page 362] or [FH, page 410]):

If λk = 0,

χ(λ)(D(q)) = χ̃(λ)(D(q)) =

det

(
(q2(i−1)αj + q−2(i−1)αj )i,j

)
det

(
(q2(i−1)α0

j + q−2(i−1)α0
j )i,j

) .(4.6.1a)

If λk 6= 0,

χ(λ)(D(q)) = χ̃(λ)(D(q)) + χ̃(λ−)(D(q))

= 2

det

(
(q2(i−1)αj + q−2(i−1)αj )i,j

)
det

(
(q2(i−1)α0

j + q−2(i−1)α0
j )i,j

) ,(4.6.1b)

where αj = λj+k−j, α0
j = k−j, λ− = (λ1, ..., λk−1,−λk), and χ̃(λ) is the character

of the restriction of λ to SO(2k).
By the Weyl identity for the denominator of the character formula χ(λ)(D(q)),

we can write

det

(
(q2(i−1)αj + q−2(i−1)αj )i,j

)
det

(
(q2(i−1)α0

j + q−2(i−1)α0
j )i,j

) =
∏

1≤s<t≤k

[αs + αt]q[αs − αt]q
[α0

s + α0
t ]q[α

0
s − α0

t ]q
.(4.6.2)

Define

xs = sin2(
αsπ

l
).(4.6.3)

By (4.3.5) we need to compute Q :=
∑

λ∈Γ(q2k−1,q)Q
2
λ(q

2k−1, q). By Lemma

4.6.1, (4.6.1), (4.6.2), (4.6.3) and the usual basic trigonometric identities we have

Q =
∑

{λ∈Γ(q2k−1,q):λ′1≤k}
Q2
λ(q2k−1, q) +

∑
{λ∈Γ(q2k−1,q):λ′1>k}

Q2
λ(q2k−1, q)

= 2
∑

{λ∈Γ(q2k−1,q):λ′1<k}
Q2
λ(q

2k−1, q) +
∑

{λ∈Γ(q2k−1,q):λ′1=k}
Q2
λ(q

2k−1, q)

=
2
∑

{λ∈Γ(q2k−1,q):λ′1<k}
∏

1≤s<t≤k(xs − xt)
2∏

1≤s<t≤k sin2((s+ t)π/l) sin2((t− s)π/l)

+
4
∑

{λ∈Γ(q2k−1,q):λ′1=k}
∏

1≤s<t≤k(xs − xt)
2∏

1≤s<t≤k sin2((s+ t)π/l) sin2((t− s)π/l)
.

(4.6.4)

Lemma 4.6.2. (i) Set T1 = {λ ∈ Γ(q2k−1, q) : λ′1 = k}. The map φ : T1 → T2 :=
{α = (α1, ..., αk) : α1 + α2 ≤ l − 1 and l − 1 > α1 > α2 > ... > αk > 0} is a
bijection, where λ 7→ α = λ+ (k − 1, k − 2, . . . , 1, 0). Similarly, there is a bijection
between the sets S1 = {λ ∈ Γ(q2k−1, q) : λ′1 < k} and S2 = {α = (α1, ..., αk) :
α1 + α2 ≤ l − 1 and l − 1 > α1 > α2 > ... > αk−1 > αk = 0}.
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(ii) Set P =
∏

1≤s<t≤k(xs − xt)
2. Then∑

λ∈T1

P =
∑
α∈T2

P =
∑
α∈T3

P,(4.6.5)

∑
λ∈S1

P =
∑
α∈S2

P =
∑
α∈S3

P,(4.6.6)

where T3 = {α = (α1, ..., αk) : l − 1 ≥ α1 ≥ ... ≥ αk ≥ 1, α1 + α2 ≤ l} and where
S3 = {α = (α1, ..., αk) : l − 1 ≥ α1 ≥ ... ≥ αk = 0, α1 + α2 ≤ l} (note that if
k = 2 then S3 = {α = (α1, α2) : l − 1 ≥ α1 ≥ α2 = 0}).

(iii)

∑
α∈T3

P =
1

2k−1k!

l−1∑
α1,...,αk=1

P =
1

2k−1

∑
α∈T

P,(4.6.7)

∑
α∈S3

P =
1

2k−2(k − 1)!

l−1∑
α1,...,αk−1=0 αk=0

P =
1

2k−2

∑
α∈S

P,(4.6.8)

where T = {α = (α1, ..., αk) : l − 1 ≥ α1 ≥ ... ≥ αk ≥ 1} and where for k > 2,
S = {α = (α1, ..., αk) : l − 1 ≥ α1 ≥ ... ≥ αk = 0}.

(iv)

4
∑
α∈T1

P + 2
∑
α∈S1

P =
1

2k−3

∑
α∈T

P +
1

2k−3

∑
α∈S

P

=
1

2k−3

∑
{l−1≥α1≥···≥αk−1≥αk≥0}

P =
1

k!2k−3

l−1∑
α1,...,αk=0

P.

Proof. (i) Evident.
(ii) For the second equality in (4.6.5) and (4.6.6), note that if α = (α1, ..., αk)

has αi = αj for i 6= j then P = 0. Also, if α1 + α2 = l then x1 = sin2(α1π
l ) =

sin2( (l−α2)π
l ) = sin2(α2π

l ) = x2, so that P = 0.
(iii) This proof is very similar to the one for Lemma 4.4.2, (iii), except that

in this case one considers the action of the whole Weyl group W of so(2k), which
has order k!2k−1, on Qk := {h = (l1, . . . lk) : lj = 1, . . . , l − 1}. To prove the
first equality in (4.6.7) one can show that the action of W on Qk preserves the
products P and also that T3 is a fundamental region for the action of W on Qk,
i.e., Qk =

⋃
σ∈W Tσ and if ~v ∈ Tσ ∩ Tρ for distinct σ, ρ ∈ W , then P~v = 0. For

proving the first equality in (4.6.8), one can use the same argument, considering the
subgroupW0 of W generated by the Rs,t’s and the Ps,t’s with t < s ≤ k−1 (defined
as in the so(2k + 1) case), which has order (k − 1)!2k−2 and is isomorphic to the
Weyl group of so(2k−2). The second equalities in (4.6.7) and (4.6.8) follow directly
from the fact that permuting the entries of α does not change the the products P.

(iv) Evident.

As in section 4.2 for the type A case,
∏

1≤s<t≤k(xs − xt)
2 is the formula for the

determinant of the square of a Vandermonde matrix X in the variables (xs)1≤s≤k
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with xs as in (4.6.3). Then, by Lemma 4.6.2 we can rewrite (4.6.4) as

Q =
1

k!2k−3

∑l−1
α1,...,αk=0(detX)2∏

1≤s<t≤k sin2((s+ t)π/l) sin2((t− s)π/l)
.(4.6.9)

Lemma 4.6.3.
l−1∑

α1,...αk=0

(detX)2 =
lkk!

22k2−3k+1
.

Proof. By the binomial formula we have xjs = 1
(2i)2j

∑2j
r=0

(
2j
r

)
(−1)reiαs2(r−j)

π
l , so

that
∑l−1

αs=0 x
j
s = 1

22j

(
2j
j

)
l. Then, by Lemma 2.1 (iii), and as in Lemma 4.4.3,

l−1∑
α1,...,αk=0

(detX)2

=

l−1∑
α1,...,αk=0

∑
σ,ρ∈Sk

sg(σ)sg(ρ)

k∏
t=1

x
(ρ−1(t)+σ−1(t)−2)
t

=
lk

22(k2−k)
∑

σ,ω∈Sk
sg(ω)

k∏
t=1

(
2(t+ ω(t)− 2)

(t+ ω(t)− 2)

)
=

lkk!

2k2−3k+1
.

By (4.3.5), (4.6.9), Lemma 4.6.3 and [W-1, Theorem 1.5, (iii)], we have proved

Theorem 4.6.4. (i) If C ⊆ D is the pair of II1 factors defined at the beginning of
section 4.6, then its index [D : C] is equal to

x2mlk

22k2−2k−1

1∏
1≤s<t≤k sin2((s+ t)π/l) sin2((t− s)π/l)

,

where x is as in (4.3.1) .
(ii) For each diagram λ ∈ Γm(q2k−1, q) there exists a subfactor of the hyperfinite

II1 factor with trivial relative commutant and index [Dλ : Cλ] given by:
If λk > 0,

x2mlk

22k2−2k−3

∏
1≤s<t≤k sin2((αs + αt)π/l) sin2((αs − αt)π/l)∏

1≤s<t≤k sin4((s+ t)π/l) sin4((t− s)π/l)
.

If λk = 0,

x2mlk

22k2−2k−1

∏
1≤s<t≤k sin2((αs + αt)π/l) sin2((αs − αt)π/l)∏

1≤s<t≤k sin4((s+ t)π/l) sin4((t− s)π/l)
,

where αj = λj + k − j. If λ is such that λ′1 > k, consider λ̃ as defined in Lemma
4.6.1.
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