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DIVISOR SPACES ON PUNCTURED RIEMANN SURFACES

SADOK KALLEL

Abstract. In this paper, we study the topology of spaces of n-tuples of posi-
tive divisors on (punctured) Riemann surfaces which have no points in common
(the divisor spaces). These spaces arise in connection with spaces of based holo-
morphic maps from Riemann surfaces to complex projective spaces. We find
that there are Eilenberg-Moore type spectral sequences converging to their ho-
mology. These spectral sequences collapse at the E2 term, and we essentially
obtain complete homology calculations. We recover for instance results of F.
Cohen, R. Cohen, B. Mann and J. Milgram, The topology of rational functions
and divisors of surfaces, Acta Math. 166 (1991), 163–221. We also study the
homotopy type of certain mapping spaces obtained as a suitable direct limit of
the divisor spaces. These mapping spaces, first considered by G. Segal, were
studied in a special case by F. Cohen, R. Cohen, B. Mann and J. Milgram,
who conjectured that they split. In this paper, we show that the splitting does
occur provided we invert the prime two.

0. Introduction

Let X = Mg be a genus g compact oriented Riemann surface with g ≥ 0,
M0 = P1 being the Riemann sphere. For the rest of this paper, we will make use
of a preferred basepoint x0 (or ∗) in Mg. Let SP r(X) denote the r-fold symmetric
product of X (i.e. the space of degree r positive divisors on X). We define the
subspace

Divk1,... ,kn(X) ⊂ SP k1(X)× · · · × SP kn(X)(0.1)

to be the set of tuples of positive divisors (Dk1 , . . . , Dkn) such that Dk1∩· · ·∩Dkn =
∅. In other words, Divk1,... ,kn(X) is the space of divisors Dki on X , i = 1, . . . , n,
of degree ki, and having no points in common. The relevance of these spaces of
divisors to spaces of holomorphic maps is now explained.

First assume g = 0. Then by associating to every meromorphic function on P1 its
(disjoint) sets of zeros and poles, we can identify the divisor space Divk,k(S

2 − ∗)
with the space of degree k based self-holomorphic maps of the Riemann sphere;
that is,

Divk,k(S
2 − x0) = Hol∗k(P1,P1).(0.2)
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More precisely, the space Hol∗k(P1,P1) here consists of rational maps f(z) =
p(z)/q(z), z ∈ C, where p and q are monic polynomials of degree k (hence some
people use the notation Ratk for Hol∗k(P1,P1)). We may also write Ratk(Pn) for
Hol∗k(P1,Pn) and here too we have the identification ([S])

Divk, k, . . . , k︸ ︷︷ ︸
n+1

(S2 − x0) = Ratk(Pn).(0.3)

When g ≥ 1, the connection between the divisor spaces Div and spaces of
holomorphic maps is less direct and is given essentially by a classical theorem of
Abel. Recall that every Riemann surface Mg embeds, via the Abel-Jacobi map µ
([ACGH]), into its associated Jacobi variety J(Mg), which is a complex g dimen-
sional torus. The map µ extends additively to SP k(Mg), ∀k. A classical theorem of
Abel ([ACGH], chap. I) translates to the statement that the space of degree k based
holomorphic maps Hol∗k(Mg,Pn) is the subspace of Divk,... ,k(Mg − x0) consisting
of (n + 1)-tuples of divisors with the property that

µ(D1) = µ(D2) = · · · = µ(Dn+1).

Using the spaces Div(Mg − x0) as intermediate constructs, Segal was able to
prove an interesting stability result for spaces of holomorphic maps on Riemann
surfaces. More explicitly, he showed that the natural inclusion I : Hol∗k(Mg,Pn) ↪→
Map∗k(Mg,Pn), obtained by simply forgetting the holomorphic structure, induces a
homotopy equivalence through a range increasing with k. These results are greatly
extended in [KM].

A systematic study of the divisor spaces was initiated in [C2M2], where the au-
thors constructed a homotopy model whose cohomology is related to the homology
of the Div spaces via Alexander-Poincaré duality. Starting with that model, we
are able to construct a homology spectral sequence of the Eilenberg-Moore type,
converging to the homology of the Div spaces, and then show that this spectral
sequence collapses at the E2 term for all g ≥ 0 and for all n. This then yields our
first main theorem:

Theorem 0.4. For field coefficients F, we have the following isomorphism:

H∗(Divk, . . . , k︸ ︷︷ ︸
n

(Mg − ∗); F) ∼= Tor
H∗(SP∞(Mg))
2nk−∗,k (F, H∗(SP∞(Mg); F)⊗n).

To clarify the statement of the theorem above, we need to indicate that there is
a bigraded algebra structure on the homology groups of SP∞(X) yielding in the
appropriate manner the bigrading of the Tor term above. The theorem and the
details leading to it are discussed in §4. When n > 2, the module structure of
H∗(SP∞(Mg))

⊗n over H∗(SP∞(Mg)) is trivial and so the calculations are direct.
We write Divk, . . . , k︸ ︷︷ ︸

n

= Divnk . One has for instance (§6)

Corollary 0.5. For n > 2 and g ≥ 1, the rational homology of Divnk (Mg − ∗) is
the subset of the (n + 1)-graded algebra

Λ(e1;1, . . . , e2g;1, . . . , e1;n, . . . , e2g;n, E)⊗Q(h1, . . . , h2g),

where the grading is assigned as follows: ei;r 7→ (1; 0, . . . , 1, . . . , 0), with 1 in the
r+1 position, 1 ≤ r ≤ n, 1 ≤ i ≤ 2g, E 7→ (2n−3; 1, . . . , 1), hj 7→ (2n−2; 1, . . . , 1).
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The multigrading is additive. In this setting, H∗(Divnk (Mg−∗); Q) is given by those
elements of multidegree (∗; i1, . . . , in) with ij ≤ k.

Similar results are obtained mod-p. When g = 0, 0.4 takes a quite simple and
explicit expression for all n, and one recovers the original results of [C2M2] on the
homology structure of the Rat spaces (§5). In the case when n = 2, the module
structure in the Tor term of 0.4 is non-trivial and the calculations are much more
tedious.

Remark 0.6. The spectral sequence that is considered in this paper and the result-
ing collapse are used in [KM] to study the spaces Hol∗k(Mg,Pn−1) themselves. It’s
not coincidental that there too the homology structure does depend on whether
n = 2 or n > 2.

We can stabilize the divisor spaces with respect to “collar” inclusions

Divk1,... ,kn(Mg − ∗)→ Divk1,... ,kj−1,kj+1,kj+1,... ,kn(Mg − ∗)
obtained by first continuously deforming Divk1,... ,kn(Mg−∗) to Divk1,... ,kn(Mg−U)
where U is a small neighborhood of ∗, and then adding a chosen point x 6= ∗ ∈ U
to the jth divisor. It is now a theorem of Segal that the direct limit over these
inclusions is homotopy equivalent to a component of a known (based) mapping
space; i.e.

lim
k→∞

Divnk (Mg − ∗) ' Map∗0(Mg,Wn(P)) (Segal)(0.7)

where Wn(P) is the nth fat wedge of the infinite complex projective space P (or P∞)
and where Map0 denotes the component of null-homotopic maps. The fat wedge
Wn(X) ⊂ Xn is the subset consisting of tuples where at least one entry is basepoint
(e.g. W1 = ∗ ∈ X and W2 = X ∨X). In §7 we establish the existence of a fibration
with a section

S2n−1 →Wn(P∞) ↪→ (P∞)n

which when coupled with the mapping space fibration obtained by mapping the
cofibration sequence

∨
S1 →Mg → S2 into WnP, yields the fibration

Ω2S2n−1 → Map∗0(Mg,WnP)→ (S1)2ng × (ΩS2n−1)2g.(0.8)

It is now not hard to see (§9) that as a result of 0.4 and 0.7 we have

Proposition 0.9. The (cohomology) Eilenberg-Moore spectral sequence associated
to

Ω2S2n−1 → Map∗0(Mg,WnP)→ (ΩWnP)2g

and converging to H∗(Map∗0(Mg,WnP); F) collapses at the E2 term.

This leads to the determination of H∗(Map∗0(Mg,WnP); F), and the results turn
out to be consistent with the conjecture of [C2M2] which states that the term
(ΩS2n−1)2g in the base of 0.8 ought to split off from the mapping space. More
explicitly, and in the relevant case when n = 2, [C2M2] states that there should be
a decomposition

Map∗(Mg,P ∨ P) ' (Z)2 × Ω(S3)2g × Yg,

where Yg is the total space of a fibration Ω2(S3)→ Yg → (S1)4g. The existence of
such a splitting is also very much suggested by results of [BCM], who prove similar
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decomposition results for Map∗(Mg, S
2n), n ≥ 1 (see §7). It turns out, however,

that there is an obstruction to such a decomposition.
In §8 we study the homotopy type of the mapping space Map∗(Mg,Wn(P)). The

problem there becomes to factor the classifying map associated to 0.8 as

f ! : (ΩS2n+1 × (S1)n+1)2g → (S1)2g(n+1) → ΩS2n+1 ↪→ ΩS2n+1 × (S1)(n+1).

A first look at f ! shows that there are essential Z2 obstructions to such a factor-
ization when n > 2. When n = 2, a close examination of the Postnikov system of
P∞ ∨ P∞ shows that there is a non-zero obstruction to the above decomposition
taking the form of a triple Whitehead product

[a1, [a1, a2]] ∈ π4(P ∨ P) ∼= Z2.

So in all cases we’re up against essential Z2 obstructions, and we have

Proposition 0.10. There is a splitting after inverting 2:

Map∗0(Mg,WnP) ' (ΩS2n−1)2g × Yg,n,

where Yg,n is the total space of a fibration Ω2(S2n−1)→ Yg,n → (S1)2ng.

1. The Structure of Symmetric Products

Given a space X , we let SPn(X) = Xn/Sn denote the n-th symmetric product
of X (here Sn is the group on n letters acting by permuting factors). Equivalently,
SPn(X) is the set of all unordered n-tuples 〈x1, . . . , xn〉 of points in X .

Let ∗ be a chosen base point in X ; then there are natural inclusions SPn(X) ↪→
SPn+1(X) which identify 〈x1, . . . , xn〉 with 〈x1, . . . , xn, ∗〉, and we get the expand-
ing sequence of spaces

∗ ≡ SP 0(X) ⊂ SP 1(X) ⊂ · · · ⊂ SPn−1(X) ⊂ SPn(X) ⊂ · · · .
The direct limit over these inclusions is the infinite symmetric product SP∞(X, ∗)
(topologized by the weak topology relative to the union of the SP i(X).) The pairing

SPn(X)× SPm(X)
µ→ SPn+m(X),

〈x1, . . . , xn〉 × 〈y1, . . . , ym〉 7→ 〈x1, . . . , xn, y1, . . . , ym〉,
turns SP∞(X, ∗) into an abelian and associative monoid with pairing

µ : SP∞(X, ∗)× SP∞(X, ∗)→ SP∞(X, ∗).
We often write · (or +) for addition in SP∞(X, ∗); that is, µ((x, y)) = x · y =
x+ y = xy are all equivalent notations. We use the same notation for the induced
Pontryagin product on H∗(SP∞(X); A).

Since SP∞(X, ∗) is abelian, it must be a product of Eilenberg-Mac Lane spaces,
and one actually has

Theorem 1.1 (Dold-Thom). π∗(SP∞(X, ∗)) ∼= H∗(X ; Z), and hence

SP∞(X, ∗) =
∏

K
(
H̃i(X ; Z), i

)
.

For example, SP∞(Sn, ∗) ' K(Z, n), n ≥ 1.

Properties. • The finite and infinite symmetric products are covariant functors
on the category of pointed topological spaces. If f : (X, ∗) → (Y, ∗) is a map of
pairs, then the induced maps on the symmetric products are denoted by SPnf :
SPn(X)→ SPn(Y ) and SP∞f : SP∞(X, ∗)→ SP∞(Y, ∗).
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• SPn(−) is a homotopy functor. In particular, if cX denotes the cone on X , then
SPn(cX) is contractible for all n.

Facts. Here are now some known properties of symmetric products that we will
be using:
• SP∞(X ∨ Y, ∗) ' SP∞(X, ∗)× SP∞(Y, ∗).
• π1(SP

n(X)) is abelian when n ≥ 2. 1.2
• SPn(S1) ' S1, n ≥ 1. 1.3
• SPn(S2) ∼= Pn, n ≥ 1. 1.4
• There is a diffeomorphism SPn(C) ∼= Cn.

To see this last statement, choose a tuple of n points in C, say (v1, v2, . . . , vn),
and associate to it the coefficients of the monic polynomial (z−v1)(z−v2) · · · (z−vn).
This sets up the correspondence between SPn(C) and Cn, and it’s easy to see that
it is a diffeomorphism. A straightforward corollary of this is:

Corollary 1.5. Let M be a smooth closed curve. Then SPn(M) is a complex n
dimensional manifold.

1.1. The Homology of Symmetric Products. The symmetric products exhibit
interesting homological properties. For instance, it was proved by Dold [D] that for
X a CW-complex, H∗(Xn/G) only depends on H∗(X) for any subgroup G ⊂ Sn.
The homology groups H∗(SPn(X)), for instance, are entirely determined by the
homology groups of X . Moreover, we have the following classical splitting result
due to Steenrod:

Theorem 1.6 (Steenrod). For X connected and for untwisted coefficients A, we
have

H∗(SPn(X); A) =

n∑
k=1

H∗(SP k(X), SP k−1(X); A)

= H∗(SPn(X), SPn−1(X); A)⊕H∗(SPn−1(X); A).

Remark 1.7. The splitting above induces a bigrading on H∗(SP∞(X, ∗),A); for an
element x ∈ H∗(SP∞(X, ∗),A) has bidegree (i, k) iff

x ∈ Hi(SP
k(X), SP k−1(X),A).

This evidently implies that H∗(SP∞(X, ∗),A) has the structure of a bigraded alge-
bra. We will write deg(x) for the homological degree of x and fil(x) for its filtration
degree k. Notice that

deg(x · y) = deg(x) + deg(y), fil(x · y) = fil(x) + fil(y).

Remark 1.8. For finitely generated CW-complexes, there is a standard procedure
due to Milgram [M3] to determine the homology of the symmetric products. This
procedure amounts to first determining the bigraded algebra structure of

H∗(SP∞A(G,n); A) = H∗(K(G,n),A)

for Moore spaces, and this can be deduced from Cartan’s determination of the
homology of Eilenberg-Mac Lane spaces [Car].

Knowledge of the homology of symmetric products of Moore spaces can then be
used to determine H∗(SP∞(X, ∗)) for any finitely generated CW-complex X . More
precisely, given such X (arcwise connected), one can recover the homology type of
X via a wedge of Moore spaces Yi, and hence the problem reduces to calculating
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H∗(SP∞(
∨
Yi, ∗)) as a bigraded algebra. But it’s not hard to see that for CW-

complexes X and Y (and untwisted coefficients A) there is a bigraded algebra
isomorphism

H∗(SP∞(X ∨ Y, ∗),A) ∼= H∗(SP∞(X, ∗),A)⊗H∗(SP∞(Y, ∗),A).

1.2. Symmetric Products of Curves. A genus g compact Riemann surface Mg

is obtained by attaching a 2-cell, D2, to a wedge of 2g-circles via the commutator
map. If we denote by a1, b1, · · · , ag, bg the generators of π1(Mg), each representing

a copy of S1 in the one skeleton S1 ∨ · · · ∨ S1︸ ︷︷ ︸
2g

⊂ Mg, then we can write Mg '

(
∨2g

S1) ∪[a1,b1]···[ag ,bg] D
2.

We choose the letters {ei, i = 1, . . . , 2g} to label the homology generators in
H1(Mg; Z). The boundary of the top 2-dimensional class D2 vanishes (being a
commutator), and hence D2 generates a homology class which corresponds to the
orientation class [Mg] (or M for short). In homology we have that H∗(Mg) ∼=
H∗(

∨2g
(S1) ∨ S2) and it follows from 1.1 and 1.8 that

Lemma 1.9. We have the following bigraded algebra isomorphism:

H∗(SP∞(Mg, ∗); Z) ∼= Λ(e1)⊗ · · · ⊗ Λ(e2g)⊗ Γ[M ]

where Γ[M ] is the divided power algebra over Z generated by elements γi = Mi

i! .

Here it is clear that deg(ei) = 1 = fil(ei) and so the ei’s have bidegree (1, 1),
while M has bidegree (2, 1). As a consequence of 1.6 one can check that

Lemma 1.10. H∗(SPn(Mg); Z) ⊂ H∗(SP∞(Mg, ∗); Z) consists of all elements of
bidegree (∗, i), i ≤ n. For instance H∗(SPn(M), SPn−1(M); Z) has generators of
the following type:

ei1 · · · eirγs, r + s = n.

Lemma 1.10 describes entirely the homology of SPn(Mg) for finite n. Notice at
this point that 1.1 and then 1.3 imply that

SP∞(Mg, ∗) ' K(Z2g, 1)×K(Z, 2) ' (S1)2g × P ' SP∞(S1)2g × SP∞(S2).

(1.11)

We can give an explicit construction of the homotopy equivalence above as fol-

lows. First we have the obvious map SP∞(
∨2g

S1, ∗) = SP∞(S1, ∗)2g SP∞(i)→
SP∞(Mg, ∗) induced from the inclusion of the one skeleton i :

∨2g S1 ↪→ Mg and
sending the wedgepoint to basepoint ∗ ∈Mg. Next, we can consider the composite

τ : S1 = ∂D2 →
2g∨
S1 → SP 2(

2g∨
S1)→ SP 2(Mg).

At the level of fundamental groups, τ∗ factors through a commutator f∗ and since
π1(SP

2(X)) is abelian (1.2), it follows that τ∗([S1]) = 0. The map τ extends to a
map from a new disk D′2,

τ : D′2 → SP 2(

2g∨
S1)→ SP 2Mg.
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We can draw the following diagram:

D′2 τ−→ SP 2(
∨2g S1)

↑ ‖
S1 f→ ∨2g S1 ↪→ SP 2(

∨2g S1)
↓ ↓
D2 → Mg ↪→ SP 2(Mg)

which is then seen to give rise to a map

h : S2 = D2 ∪S1 D′2 → SP 2(Mg)(1.12)

and hence to a map SP∞(h) : SP∞(S2, ∗) = P∞ → SP∞(Mg, ∗).
Lemma 1.13. The composite

µ(SP∞(i)× SP∞(h)) : (SP∞(S1, ∗))2g × SP∞(S2, ∗)→ SP∞(Mg, ∗)
is a homotopy equivalence (here again µ is the monoid addition in SP∞(Mg, ∗)).
About divided power algebras. Let A be a commutative graded algebra, and
a ∈ A an even degree element. A divided power algebra on a; denoted by Γ(a), is
the algebra generated by elements γi = γi(a) with relations

γ0 = 1, γ1 = a, γkγh =

(
k + h

h

)
γk+h,

and boundary dγk = (da)γk−1, k ≥ 1. Here the degree of γk is determined by the
fact that deg(γk) = k deg(a). Over Z, the generators of Γ(a) are uniquely defined

by the formula γk = ak

k! . Over Q, everything becomes a unit and hence Γ(a) = Q[a].
With mod-p coefficients, Γ(a) splits into products of truncated polynomial algebras
(see §6).

2. A Model for the Divisor Spaces

For any space X , and given integers ki ≥ 1, we defined (§0) the divisor space

Divk1,... ,kn(X) = {(Dk1 , . . . , Dkn) | Dki ∈ SP ki(X), Dk1 ∩Dk2 ∩ · · · ∩Dkn = ∅}.
The element Dk ∈ SP k(X) can be represented either by an unordered k-tuple of
points 〈x1, . . . , xk〉 (the xj not necessarily distinct), or by a formal sum

∑
nixi

such that
∑

ni = k and xi 6= xj (when X is a curve, these are called positive
divisors in the language of algebraic geometry.)

Notation. We write Divk1,... ,kn = Divk1,... ,kn(Mg − ∗) and Divnk (Mg − ∗) =
Divk, . . . , k︸ ︷︷ ︸

n

.

Let ∆ denote the diagonal multiplication ∞∐
j=1

SP j(X)

× SP k1(X)× · · · × SP kn(X)

→
∐
j

SP k1+j(X)× · · · × SP kn+j(X)

(2.1)

given on points by ∆(D,D1, . . . , Dn) = (D1 +D, . . . , Dn +D). It is clear that the
divisor spaces Divk1,... ,kn(X) are included in the product SP k1(X)×· · ·×SP kn(X)
as the complement of Im(∆); that is
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Lemma 2.2. Divk1,... ,kn = SP k1(Mg − ∗)× · · · × SP kn(Mg − ∗)− Im(∆).

Remark 2.3. The inclusion Divk1,... ,kn(X) ⊂ SP k1(X)× · · · ×SP kn(X) is an open
embedding, and since for curves X the left hand side is a k1 + . . . + kn complex
manifold (Corollary 1.5), it follows that Divk1,... ,kn(X) is also a complex manifold
of dimension k1 + . . .+ kn.

We can define at this point the quotient space

TYk1,... ,kn = SP k1(Mg)× · · · × SP kn(Mg)

/

{⋃
i

SP k1(Mg)× · · · × SP ki−1(Mg)× · · · × SP kn(Mg) ∪ Im(∆)

}
which can be thought of as SP k1(Mg)× · · · × SP kn(Mg)/V , where V is such that
Divk1,... ,kn = SP k1(Mg)×· · ·×SP kn(Mg)−V . One can therefore invoke Poincaré-
Alexander duality to write

H i(Divk1,... ,kn ; F) = H2(k1+···+kn)−i(TYk1,... ,kn ; F).(2.4)

The homology of the quotient space TYk1,... ,kn is not easy to extract when the
space is presented in this form. However, we can use a homotopy equivalent con-
struction due to [C2M2] which makes the homological structure much more appar-
ent.

Consider the twisted product space

DY n(X) = (SP∞(X, ∗)× · · · × SP∞(X, ∗)︸ ︷︷ ︸
n

)×t SP∞(cX),(2.5)

where t identifies the points

(D1, · · · , Dn, 〈(t1, z1) · · · (tk, zk)〉)
∼ (D1 + zi, . . . , Dn + zi, 〈(t1, z1) · · · (ti−1, zi−1)(ti+1, zi+1) · · · (tk, zk)〉)

(2.6)

whenever ti = 0 (here Di ∈ SP ki(X) for some ki ≥ 1 and (tj , zj) ∈ cX, tj ∈ [0, 1].)
The space DY n(X) is naturally filtered as follows

DYk1,... ,kn(X) =
⋃

i1+l≤k1
...

in+l≤kn

(
SP i1(X)× · · · × SP in(X)

)×t SP l(cX).

We observe that there is a projection

p : DYk1,... ,kn → SP k1(X)× · · · × SP kn(X)/Im(∆)

given by

(Di1 , Di2 , . . . , Din , 〈(t1, z1) · · · (tl, zl)〉) 7→ (Di1 , Di2 , . . . , Din).

It is easy to see that p is acyclic, inverse images of points being contractible sets.
It follows that p induces an isomorphism in homology and combining this with 2.4
yields

Lemma 2.7. There is an isomorphism

H i(Divk1,... ,kn(Mg − ∗); F) = H2(k1+···+kn)−i(DYk1,... ,kn/
⋃
i

DYk1,... ,ki−1,... ,kn ; F).



DIVISOR SPACES ON PUNCTURED RIEMANN SURFACES 143

It is the quotient spaces DYk1,... ,kn/
⋃
iDYk1,... ,ki−1,... ,kn that we analyze in this

paper.

2.1. Homotopy invariance. Here we show that the topology of the space DY
doesn’t depend on the choice of the diagonal approximation ∆. Choose a map
∆′ : SP∞(X) → SP∞(X)n homotopic to ∆ and define the corresponding space
DY ′(X) obtained from (SP∞(X, ∗))n × SP∞(cX) via the identification

(D1, · · · , Dn, 〈(t1, z1) · · · (tk,mk)〉)
∼ (ν(∆′(zi), (D1, · · · , Dn)), 〈(t1, z1) · · · (ti−1, zi−1)(ti+1, zi+1) · · · (tk,mk)〉)

whenever ti = 0. Here ν is the componentwise symmetric product multiplication.

Lemma 2.8. DY ′(Mg) ' DY (Mg).

Proof. Denote by AG(X) the free abelian group on points of X or equivalently the
group completion of SP∞(X). Points of AG(X) have the form ∗ or

{x1 · · ·xr, y−1
1 · · · y−1

s | ∗ 6= xi, yj , xi 6= yj}.
It is known ([DT]) that for connected CW complexes, the inclusion SP∞(X) ↪→
AG(X) is a homotopy equivalence.

For simplicity of notation, write G = AG(Mg). The diagonal ∆ (resp. ∆′)
extends in the obvious way to a map G → Gn and it induces an action δ : G ×
Gn → Gn (resp. δ′) as described previously. We can then consider the associated
“completed” model

D̂Y (Mg) = Gn ×G AG(cMg)

where G acts on Gn via δ. Similary we can construct D̂Y ′(Mg) associated to δ′.
It is easy to see that the new model D̂Y (Mg) is homotopy equivalent to DY (Mg).
This follows by considering the map of quasifiberings

SP∞(Mg)
n → Gn

↓ ↓
DY → D̂Y
↓ ↓

SP∞(ΣMg) → AG(ΣMg)

where the top and bottom maps are homotopy equivalences (similarly D̂Y ′(Mg) '
DY ′(Mg)).

Since ∆ is a diagonal approximation, we have a homotopy G × Gn × I
φ→ Gn,

where if we write φ(g, x, t) = gt(x), the map g0 corresponds to componentwise
multiplication G×Gn → Gn and g1 = δ. The inclusion i : (Gn×{0})×AG(cMg) ↪→
(Gn×I)×AG(cMg) is a G-map (here the action of G on the right hand side is given
by g((x, t), w) = ((gt(x), t), gw)), and it is clearly a homotopy equivalence. Since
G acts freely on AG(cMg), i is a map of free G-spaces, and it is then a theorem
of equivariant homotopy [Br] that i is actually a homotopy equivalence through
G-maps. This then descends to an equivalence of quotients, and we have

D̂Y (Mg) = (Gn × {1})×G AG(cMg) ' (Gn × {0})×G AG(cMg).

The same argument shows that D̂Y ′(Mg) is homotopy equivalent to the right-hand,
side and the lemma is proved.
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3. Stabilization

As indicated in the introduction, there are homotopy inclusions

Divnk = Divk,... ,k(Mg − ∗) ↪→ Divnk+1

defined as follows (and more generally, there are inclusions

Divk1,... ,ki,... ,kn ↪→ Divk1,... ,ki+1,... ,kn

that raise any degree): Choose a sequence of concentric neighborhoods {Uk}, k ≥ 1,
Uk+1 ⊂ Uk, around the basepoint x0 ∈ Mg. For each neighborhood Uk pick an n-
tuple of distinct points (xk1 , . . . , x

k
n) ∈ Uk − Uk+1. The map

Divnk (Mg − Uk)→ Divnk+1(Mg − Uk+1)(3.1)

given by sending a configuration (D1, . . . , Dn) to (D1 +xk1 , . . . , Dn+xkn) is a closed
embedding, and it extends to an open embedding

e : Divnk (Mg − Uk)× (Uk − Ūk+1)→ Divnk+1(Mg − Uk+1).

It is not hard to see that Divnk (Mg − Uk) ∼= Divnk , and so we regard Divnk as a
codimension 2n (real) submanifold of Divnk+1.

Notation. The direct limit of Divnk over the embeddings e is denoted by
Divn(Mg − ∗). Consider now the following diagram:

H∗(Divnk )
e∗→ H∗(Divnk+1)

↓ ∼= ↓ ∼=
H2kn−∗(Divnk , ∂ Divnk )

f→ H2(k+1)n−∗(Divnk+1, ∂ Divnk+1)
↓ ∼= ↓ ∼=

H2kn−∗(TY n
k )

f→ H2(k+1)n−∗(TY n
k+1).

Lemma 3.2. The map f corresponds to cupping with a1 ∪ a2 ∪ · · · ∪ an.
Proof. Let V be a tubular neighborhood of Divnk in Divnk+1. We have that Divnk is
a (complex) codimension n submanifold of Divnk+1 and we can identify V with the
normal disc bundle to Divnk ⊂ Divnk+1. Denote by η the entire normal bundle and
let M(η) = V/∂V be the corresponding Thom space.

Note that we can compactify Divnj by adding a boundary term ∂ Divnj (corre-

sponding to its complement in SP j(Mg)
n). Poincaré duality and the Thom iso-

morphism interlock in the following diagram of isomorphisms:

H∗(Divnk , ∂Divnk )
∪U−→ H∗+2n(M(η),M(η|∂))

↓ ∼= ↓ ∼=
H2kn−∗(Divnk )

=→ H2kn−∗(Divnk )

(3.3)

where U is the Thom class and M(η|∂) is the Thom space of the normal bundle η
restricted to ∂ Divnk . Note also that there is an (excision) isomorphism

H∗(M(η)) = H∗(V, ∂V )
∼=→ H∗(Divnk+1,Divnk+1−Divnk )

which then yields a map

H∗(M(η),M(η|∂))→ H∗(Divnk+1, ∂ Divnk+1).(3.4)

This is now enough to give a description of the map f , for we have that the Thom
isomorphism (given by the top map in 3.3) combines with 3.4 to yield

f : H∗(Divnk , ∂Divnk )
∼=→ H∗+2n(M(η),M(η|∂))→ H∗+2n(Divnk+1, ∂Divnk+1).
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Write the tubular neighborhood V of Divnk as

V = Divnk ×Vxk1 × · · · × Vxkn ,

where Vxki is a small disc around xki . The Thom class is by definition the orientation

class U ∈ H2n(Vxk1 ×· · ·×Vxkn , ∂(Vxk1 ×· · ·×Vxkn)). Since H2(Vxki , ∂Vxki ) is generated
by ai, it is now clear that

U = a1 . . . an ∈ H2(Vxk1 , ∂Vxk1 )⊗ · · · ⊗H2(Vxkn , ∂Vxkn)

↪→ H2n
(
Vxk1 × · · · × Vxkn , ∂(Vxkn × · · · × Vxkn)

)
and the proof is complete.

Corollary 3.5 (Segal). The “collar” inclusions H∗(Divnk )
e∗→ H∗(Divnk+1) are in-

jections.

4. The Homology of Divisor Spaces

In this section, we prove our main result (0.4 in the introduction and 4.14 below).
So we start with the model (§2)

DY n(Mg) = (SP∞(Mg, ∗))n ×t SP∞(cMg, ∗),
where t is the diagonal twisting described in 2.5. For simplicity, we will write M
for Mg and SP∞(M) for SP∞(Mg, ∗).

We fix a diagonal approximation

∆∗ : C∗(SP∞(M))→ C∗(SP∞(M))⊗
n

.

This induces an action of C∗(SP∞(M)) on C∗(SP∞(M))⊗
n

. On the other hand,
the inclusion

M ↪→ cM, x 7→ (0, x)

induces an action of C∗(SP∞(M)) on C∗(SP∞(cM)). Using these actions, a chain
complex for DY is given by

C∗(SP∞(M))⊗n ⊗C∗(SP∞(M)) C∗(SP∞(cM))(4.1)

and by Lemma 2.8, any other choice of ∆∗ yields chain homotopic complexes.
At this point we need to describe the module structure of C∗(SP∞(cM)) over

C∗(SP∞(M)), and for that purpose we need to review some constructions.

4.1. Milgram’s Bar Construction. Infinite symmetric products provide models
for topological bar constructions and classifying spaces, as was observed by Milgram
[M1]–[M2].

Let X be an associative topological monoid µ : X × X → X with µ cellular.
We assume that µ has a unit *. Let σn be the n-simplex which we parametrize as
follows:

σn = {(t1, t2, · · · , tn)| 0 ≤ t1 ≤ · · · ≤ tn ≤ 1}.
The (acyclic) Milgram’s bar construction on X is the space

ET (X) =

∞∐
i=1

X × σi ×X i/ ∼
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with identifications ∼ given as follows:

(i) (x0, t1, · · · , tn, x1, · · · , xn)
∼ (x0, t1, · · · , t̂j , · · · , tn, x1, · · · , x̂j , xjxj+1, · · · , xn) if tj = tj+1,

(ii) (x0, t1, · · · , tn, x1, · · · , xn) ∼ (x0x1, t2, · · · , tn, x2, · · · , xn) if t1 = 0,
(iii) (x0, t1, · · · , tn, x1, · · · , xn) ∼ (x0, t1, · · · , tn−1, x1, · · · , xn−1) if tn = 1,
(iv) (x0, t1, · · · , tn, x1, · · · , xn)

∼ (x0, t1, · · · , t̂j , · · · , tn, x1, · · · , x̂j , · · · , xn) if xj = ∗.
Clearly, X acts freely on ET (X) by multiplying on the left and it turns out
that ET (X) is contractible [M1]. This implies that the quotient space BT (X) =
ET (X)/X is a classifying space for X . The space BT (X) is also referred to as the
topological bar construction on X (and we will sometimes write BX for BT (X).)

Let E(A) and B(A) denote respectively the acyclic and the reduced algebraic bar
constructions on A. In our case, A will be a differential graded, or DG, algebra.
Suppose now that X is an abelian H-space; then C∗(X), the chain complex for X ,
is a DG algebra. There is a correspondence λ : C∗(BT (X)) → BC∗(X) given on
generators by

λ(σn × e1 × · · · × en) = |e1| · · · |en|.
Both C∗(BT (X)) and BC∗(X) are bigraded and it can be checked that λ is a
differential bigraded algebra homomorphism. Actually, more is true:

Theorem 4.2 (Milgram). There is an isomorphism of differential bigraded alge-
bras (dba);

C∗(BT (X)) ∼= B(C∗(X)), C∗(ET (X)) ∼= E(C∗(X)).

Remark 4.3. We mentioned earlier that there is an interesting connection between
infinite symmetric products and the classifying space construction above. Indeed,
one can order points

〈(t1, z1), . . . , (tn, zn)〉 ∈ SPn(ΣX)

according to the ascending order of the ti’s. However there is an ambiguity whenever
ti = tj , in which case we identify 〈(ti, zi), (ti, zj)〉 with 〈ti, 〈zizj〉〉, where 〈zizj〉 is
the product in SP∞(X). Of course when ti = 0 or ti = 1 we get the basepoint
identification (in the suspension). It then follows that when elements of SP∞(ΣX)
are represented in the normal form (t1 ≤ t2 ≤ · · · ≤ tn, x1, . . . , xn), the following
homeomorphism becomes apparent:

SP∞(ΣX) = BT (SP∞(X)).

Corollary 4.4 (Milgram). C∗(SP∞(ΣX, ∗)) ∼=dba B (C∗(SP∞(X, ∗))) .
A similar statement holds for cX ; that is, SP∞(cX) ∼= ET (SP∞(X)) and there

is a dba (i.e. differential bigraded algebra) isomorphism

C∗(SP∞(cX, ∗)) ∼=dba E (C∗(SP∞(X, ∗))) .
It then follows that

C∗(SP∞(cM)) ∼= EC∗(SP∞(M))

as modules over C∗(SP∞(M)). Combining this with 4.1 gives

Lemma 4.5. H∗(DY n(M); A) ∼= TorC∗(SP
∞(M,∗))(A, C∗(SP∞(M, ∗))⊗n).
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4.2. The Collapse. The total space for TorC∗(SP
∞(M))(A, C∗(SP∞(M))⊗n) is

given by

C∗(SP∞(M))⊗n ⊗C∗(SP∞(M)) E(C∗(SP∞(M))).(4.6)

We will write ⊗∆∗ instead of ⊗C∗(SP∞(M)) for shorthand. Of course, filtering 4.6 by
the number of bar degrees yields the classical homology Eilenberg-Moore spectral
sequence.

Proposition 4.7. There is an embedding

e : H∗(SP∞(Mg); A) ↪→ C∗(SP∞(Mg),A)

inducing an isomorphism

TorH∗(SP
∞(Mg))(A, H∗(SP∞(Mg))

⊗n) ∼= TorC∗(SP
∞(Mg))(A, C∗(SP∞(Mg))

⊗n).

From the Cartan-Moore comparison theorem ([McCl], corollary 7.6.), 4.7 would
follow if e is compatible with the module structures; that is if e commutes with the
diagonal action

H∗(SP∞(M))
e−−−−→ C∗(SP∞(M))y∆∗

y∆∗

H∗(SP∞(M))⊗n ⊗ne−−−−→ C∗(SP∞(M))⊗n.

So first we record the existence of e as a separate lemma.

Lemma 4.8. A chain complex for SP∞(Mg) can be chosen so that there is an
embedding e : H∗(SP∞(Mg); Z) ↪→ C∗(SP∞(Mg),Z).

Proof. We go back to the standard representation of Mg as Mg ' (
∨2g S1)∪[−]D

2,

where D2 is the top 2-cell attached via the commutator map [−] to a bouquet of 2g

one dimensional S1’s. The i-th copy of S1 in
∨2g

S1 represents a one dimensional
cell ei attached trivially to basepoint. If ∗ denotes the product in SP∞(M), then
we see dirctly that ei1 ∗ ei2 ∗ . . . ∗ ein , ij 6= ik, and ei ∗ D2 give genuine cells in
SP∞(M) (which can be thought of as the cross product cells). We also know that
SPn(D2), n ≥ 1, are cells of dimension 2n (Lemma 1.5). We can consider then the
complex C generated by the different products ei1 ∗ ei2 ∗ . . . ∗ ein ∗ SP l(D2) with
ij 6= ik. Since ∂ei = 0, ∂D2 = 0, we notice that ∂

(
ei ∗ SPn(D2)

)
= 0 and hence

elements of C represent homology classes. As such, it is clear that n!(SPn(D2)) =
[M ], for this is simply equivalent to the statement that the projection map Mn →
SPn(M) has degree n!. It then follows that the SP l(D2)’s generate a divided power
algebra in C. From Lemma 1.8 we see that C ∼= H∗(SP∞(M)), and the embedding
of the homology into the chain complex is constructed.

Proof of 4.7. The diagonal approximation ∆ : M → Mn can be extended multi-
plicatively (on each component) to a map ∆∞ : SP∞(M) → (SP∞(M))n, and
clearly ∆∞ is homotopic to the diagonal on SP∞(M). We have the following
commuting diagram:

SP∞(M)× SP∞(M)
∗−→ SP∞(M)

∆∞−→ SP∞(M)ny∆∞×∆∞
y∗×∗

SP∞(M)n × SP∞(M)n
shuffle−−−−→ SP∞(M)n × SP∞(M)n
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where as before shuff ((x1, . . . , xn), (y1, . . . yn)) = ((x1, y1), . . . , (xn, yn)) .Note that
shuff∗ is cellular. Now ∆∞ is already cellular on M by construction, and the dia-
gram above shows that ∆∞

∗ must be cellular on C. By standard considerations, ∆∞

extends to a cellular map on all of SP∞(M). The embedding e : C ↪→ C∗(SP∞(M))
does commute with the diagonal action, and since C = H∗(SP∞(Mg) the proposi-
tion follows by Cartan-Moore.

4.3. The Main Result. Write A = H∗(SP∞(M)). We now put a multigrading
on TorA(A,A⊗n) and derive Theorem 0.4. First, by Steenrod’s splitting 1.6, the
total space for TorA(A,An) takes the form

Tot =
⊕

H∗(Tk1,... ,kn ; A)⊗A E(A),(4.9)

where Tk1,k2,... ,kn = SP k1(M)× · · · × SP kn(M)/V with

V =
⋃

1≤i≤n
SP k1(M)× · · ·SP ki−1 × · · · × SP kn(M).

Since the algebraA is bigraded, so is E(A). More precisely, let ai ∈ A have bidegree
(deg(ai), fil(ai)) as in 1.7; then

bidegree (a0|a1|a2| . . . |an|) =

(
n+

n∑
i=0

deg(ai),
∑

fil(ai)

)
,

which means that the homological degree of a0|a1|a2| . . . |an| ∈ E(A) is given by∑
deg(ai) + n, while the filtration degree is simply

∑
fil(ai) (this is not the bar

degree). Define Em,k(A) to consist of all elements of bidegree (m, k) ∈ E(A).
The boundary ∂ in Tot is described as follows:

∂(|a1|a2| . . . |an|) = ∆∗(a1)⊗ |a2| . . . |an|+ ∂B(|a1| . . . |an|),(4.10)

where ∂B is the reduced bar differential which in this case is given by

∂B(|a1| . . . |an|) = (−1)i
n−1∑

1

|a1| . . . |ai−1|aiai+1|ai+2| . . . |an|.

By definition we have that H∗(Tot, ∂) = TorA(A,An) for untwisted coefficients A.
Note that ∆∗ : H∗(SP r(M)) → H∗(SP r(M))⊗n preserves the filtration degree r
and hence the total space Tot splits as a sum of subchain complexes:⊕

li≤ki
Totl1,... ,ln =

⊕
li=ri+j≤ki

H∗(Tr1,... ,rn ; A)⊗A E∗,j(A).

The homology H∗
(⊕

li≤ki Totk1,... ,kn

)
coincides with H∗(DYk1,... ,kn ,A), and this

is a direct summand of H∗(DY,A). On the other hand, and by construction,
H∗(TYk1,... ,kn) is a quotient of H∗(DYk1,... ,kn), which only sees elements of the
exact filtration (k1, . . . , kn). When passing to this quotient, the diagonal term ∆∗
gets reduced according to

∆red
∗ : H∗(SP r(M))

∆∗−→ (H∗(SP r(M)))⊗n
q−→ H∗(SP r(M), SP r−1(M))⊗n.

(4.11)

We write
2TorH∗(SP

∞(M))(A, H∗(SP∞(M))⊗n)
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for the new tor term, where the action is understood to be reduced. This new
action induces a new boundary 2∂ as in 4.10, and in this case

2Totk1,... ,kn =
⊕

ri+j=ki

H∗(Tr1,... ,rn ; A)⊗∆∗ E∗,j(A)(4.12)

is a subcomplex of (Tot, 2∂). One then has

H∗(TYk1,... ,kn ; A) ∼= 2Tor
H∗(SP∞(M))
∗,k1,... ,kn

(A, H∗(SP∞(M))⊗n) = H∗
(

2Totk1,... ,kn

)
,

(4.13)

and these represent the homology classes of the exact filtration (k1, . . . , kn). When
ki = k, we shorten the notation (∗; k, . . . , k) to a bidegree notation (∗; k) for sim-
plicity. From now on, we drop the superscript 2Tor and write Tor with the under-
standing that the module action of H∗(SP∞(M)) on the tensor product is reduced
(cf. 4.11). The preceding discussion then yields

Theorem 4.14. For field coefficients F, we have the following isomorphism:

H∗(Divk,... ,k(Mg − ∗); F) ∼= Tor
H∗(SP∞(Mg))
2nk−∗;k (F, H∗(SP∞(M))⊗n)

with the module structure induced from ∆red
∗ : H∗(SP∞(M))→ H∗(SP∞(M)n) in

4.11.

Proof. Apply the duality H∗(TYk,... ,k; F) ∼= H2nk−∗(Divnk (M − ∗); F).

Remark 4.15. Note that H∗(Divk,... ,k(Mg − ∗); F) must vanish beyond the middle
dimension ∗ > nk, this being a pecularity of Stein spaces.

4.4. An Alternate Description. One could have filtered the space

TY n =
⋃

DYk1,... ,kn/ ∪j DYk1,... ,kj−1,... ,kn

not by the number of bars but as follows. Write

TY n =
⋃

TYk1,... ,kn =
⋃

ri+l=ki

Tr1,... ,rn ×t (SP l(cMg)/SP
l−1(cMg))

with filtration pieces

F j =
⋃
l≤j

ri+l=ki

(Tr1,... ,rn)⊗t (SP l(cMg)/SP
l−1(cMg)).

The same arguments as in §4.3 can now be expressed in the following form

Proposition 4.16. There exists a spectral sequence converging to H∗(TYk1,... ,kn)
with E1 term

E1 =
∐

ri+j=ki

H∗(Tr1,... ,rn ; F)⊗H∗(SP j(ΣMg), SP
j−1(ΣMg),F).

The spectral sequence collapses at E1 for n > 2.

Proof. It can easily be checked in light of §4.3 that

d1(c∗ ⊗ |a1| . . . |al|) = c∗∆red
∗ (a1)⊗ |a2| . . . |al|

where ai ∈ H∗(SP∞M) and |a1| . . . |al| ∈ H∗(SP∞(ΣM)) = H∗(BT (SP∞(M)))
= B(H∗(SP∞M)). This yields the first part of the proposition (cf. 4.12). That the
spectral sequence collapses when n > 2 is a corollary of the fact that ∆red

∗ vanishes
in this case (see Lemma 6.2).
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Remark 4.17. When n = 2 we have d1(|M |) 6= 0, and there are higher differentials
dpi described in Remark 6.16.

5. The Rat Spaces

When g = 0, we have the homeomorphism described in the introduction:

Divn+1
k (S2 − ∗) = Hol∗k(S

2,Pn) = Ratk(Pn).

Applying Theorem 4.14, we see that the module structure of H∗(SP∞(S2)) = Γ(a)
on H∗(SP∞(S2))n is trivial, for in this case ∆∗(a = [S2]) = a⊗1+1⊗a and hence
by 4.11, ∆red

∗ (a) = 0. It follows that

TorH∗(SP
∞(S2))(F, H∗(SP∞(S2))n+1) = Γ(a1, . . . , an+1)⊗ TorΓ(a)(F,F).

We observe that we have an identification

TorΓ(a)(F,F) = H∗(SP∞(S3),F) =
∐
i

H∗(SP i(S3), SP i−1(S3),F)

and can then write

H∗(TY n+1
k (S2); F) ∼=

∐
j

γj(a1 . . . an+1)H∗−2(n+1)j(SP
k−j(S3), SP k−j−1(S3); F).

(5.1)

We can consider the inclusion Rat(P1) ↪→ Ω2S2. The space Ω2
0S

2 ' Ω2S3 stably
splits (Snaith) as an infinite bouquet

Ω2Σ2S1 's
∞∨
0

Dk,

where Dk = F (C, k)∧Sk S(k) are the building blocks of the May-Milgram model for
S1 (here S(k) denotes the k-fold smash of S1 with itself). It is known [BCM] that
there is a duality isomorphism

H∗(Dk,F) ∼= H4k−∗(SP k(S3), SP k−1(S3),F).

The identity 5.1 and the duality H2k(n+1)−∗(TY n+1
k ,F) ∼= H̃∗(Ratk(Pn),F) combine

to yield

H∗(Ratk(Pn),F) = H2k(n+1)−∗(TY n+1
k ,F)

=
⊕
j

H2(n+1)(k−j)−∗(SP k−j(S3), SP k−j−1(S3); F)

=
⊕

H4(k−j)−2(n+1)(k−j)+∗(Dk−j ; F)

=
⊕
j

H∗−(2n−2)(k−j)(Dk−j ; F).

Proposition 5.2 ([C2M2]). H∗(Ratk(Pn),F) ∼= H∗(
k∨

j=1

Σ(2n−2)jDj ,F).

Corollary 5.3 (Segal). Let Rat∞(Pn) be the direct limit induced from the system
of collar inclusions Ratk(Pn)→ Ratk+1(Pn). Then

H∗(Rat∞(Pn),Z) ∼= H∗(Ω2
0S

2n+1,Z).
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Remark 5.4. Cohen and Shimamoto show that the isomorphism in 5.2 is induced
from an actual homotopy equivalence Ratk(Pn) ' Ck(C, S2n−1) whenever n > 1.
We refer to [CS] for a definition of the labelled configuration space Ck(C, S2n−1)
and its relation with Ω2S2n−1.

6. The Positive Genus Case

In this section we determine the full structure of TorA(F,A⊗n) for g ≥ 1, and
for both rational and Zp coefficients. We start by making explicit the action of A
on A⊗n. The algebra A = H∗(SP∞(Mg)) acts on A⊗n via the prescription

x · (c1 ⊗ · · · ⊗ cn) = ν∗
(
∆red
∗ (x) ⊗ (c1 ⊗ · · · ⊗ cn)

)
,

where ν is the componentwise symmetric product multiplication and where ∆red
∗ is

as in 4.11. Now recall thatA has generators the 1-dimensional classes ei, 1 ≤ i ≤ 2g,
which are primitive, as well as the top orientation class [M ].

Notation. We denote by ei;r the element 1⊗· · ·⊗ei⊗· · ·⊗1, where ei is in the rth

position, 1 ≤ r ≤ n. By ei;rej;s for r < s we then mean 1⊗· · ·⊗ei⊗· · ·⊗ej⊗· · ·⊗1.

Lemma 6.1. ∆∗([Mg]) =
∑
r

[Mg]r +

g∑
j=1

∑
r<s

(e2j;re2j−1;s − e2j−1;re2j;s).

Proof. There is a natural collapse map from Mg to a wedge of g tori T1 ∨ · · · ∨ Tg
inducing an isomorphism in H1 and such that the image of [M ] is

∑
[Ti]. We have

that Ti = S1 × S1 and H∗(Ti) = Λ(e2i−1, e2i). It is easy to see that

∆∗[Ti] =
∑

[Ti]r +
∑
r<s

(e2i;re2i−1;s − e2i−1;re2i;s)

and hence by adding these up the lemma follows.

Lemma 6.2. ∆red
∗ (ei) = 0, ∀1 ≤ i ≤ 2g, n ≥ 2. On the other hand,

∆red
∗ ([M ]) =

{∑g
j=1 (e2j ⊗ e2j−1 − e2j−1 ⊗ e2j) , if n = 2,

0, if n > 2.

Proof. Note that e2j−1 ⊗ e2j − e2j ⊗ e2j−1 ∈ H1(M, ∗)⊗2 ⊂ H2(SP
∞(M)2) (here

n = 2) and this is non-trivial in the image of ∆red
∗ . The rest is a direct consequence

of 4.11.

Corollary 6.3. Suppose n > 2. Then

TorA(F,A⊗n) ∼= A⊗n ⊗ TorA(F,F)
∼= A⊗n ⊗H∗(SP∞(ΣMg, ∗); F)

∼= A⊗n ⊗i TorΛ(ei)(F,F)⊗ TorΓ([M ])(F,F).

Proof. Since both ∆red∗ (ei) and ∆red∗ ([M ]) vanish for n > 2, it follows that ∆red∗
vanishes on the generators of A and hence induces a trivial action on A⊗n whenever
n > 2. This gives the first isomorphism. The last two identities are a consequence
of the embedding H∗(SP∞(M)) ↪→ C∗(SP∞(X)) (4.7) and of Cartan-Moore; i.e.

H∗(SP∞(ΣX); F) = TorH∗(SP
∞(M))(F,F) = TorΛ(e1,··· ,e2g)⊗Γ([M ])(F,F)

=
⊗
i

TorΛ(ei)(F,F)⊗ TorΓ([M ])(F,F).

We now describe H∗(SPn(ΣM); F) for F = Q and F = Zp.
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6.1. The Homology of SP∞(ΣMg) = BSP∞(Mg). The acyclic bar construction
for Λ(e) over Z gives rise to a minimal resolution which is generated at each level
Bi(Λ(e)) by elements of the form |e| · · · |e| or e|e| · · · |e| (# of bars is i) and has
boundary ∂|e|e| · · · |e| = e|e| · · · |e|. The generators |e| · · · |e| generate a divided
power algebra (under the shuffle product), and it is readily seen that

Tor
Λ(e)
∗,∗ (Z,Z) = Γ(|e|).

The case of divided power algebras is harder. When F = Q, divided power algebras
turn into polynomial algebras, and so in this case TorΓ(a)(Q,Q) = Λ(|a|), implying
that

H∗(SP∞(ΣM); Q) = Q(|e1|, . . . , |e2g|)⊗ Λ([M ]).(6.4)

When F = Zp, we see that ap = p!γp = 0. Similarly, γppi is also zero. This shows

that each γpi generates a truncated polynomial algebra

PT (a, p) = Zp[a, a
2, · · · , ap−1]/ap = 0.

Lemma 6.5 (Cartan). {γpi , i ≥ 0} generate Γ(a) as an algebra over Zp and

Γ(a)⊗ Zp
∼= PT (a, p)⊗ PT (γp, p)⊗ · · · ⊗ PT (γpi , p)⊗ · · · .

We assume in what follows that a has even degree (for our purpose a = [M ]).
One can construct a minimal resolution for PT (a, p) (over Zp) which is generated
by elements

{|ap−1|a| · · · |ap−1|a|, |a||ap−1|a| · · · |ap−1|a|}
with boundary

∂ |ap−1|a| · · · |ap−1|a|︸ ︷︷ ︸
i

= ap−1 |ap−1|a| · · · |ap−1|a|︸ ︷︷ ︸
i−1

.

As an algebra under the shuffle product, it is checked that

Lemma 6.6.

TorPT (a,p)(Zp,Zp) ∼= Λ(|a|)⊗ Γ(|ap−1|a|), p > 2.

When p = 2, then PT (a, 2) = Λ(a) and TorPT (a,2)(Z2,Z2) ∼= Γ[|a|].
Remark 6.7. The element |a|ap−1| in the bar construction is known as the trans-

potence of a. It can be checked that β(|γpi+1 |) = |γp−1
pi |γpi |, where β is the mod-p

Bockstein.

Remark 6.8. The generators |ei|, |M |, all represent homology classes in H∗(ΣM) ⊂
H∗(SP∞(ΣM)) and this explains why they are referred to as suspension classes.
All generators in H∗(SP∞(ΣM)) are assigned a bidegree as in Remark 1.7 and we
find that

Generator Bigrading
|ei| (2; 1)
|M | (3; 1)
|γpi | (2pi + 1; pi).

Bidegrees are additive; for example the bidegree of |γpi |γpj | is (2(pi+pj)+2; pi+pj).
If we let h2pi+1,pi = |γpi |, we can then write

TorΓ(a)(Zp,Zp) ∼= Λ(|a|, . . . , h2pi+1,pi , . . . )⊗ Γ(βh2p+2,p, . . . , βh2pi+2,pi , . . . )

and this describes the algebra H∗(SP∞(S3); Zp) = H∗(K(Z, 3); Zp). Generally we
have the following.
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Lemma 6.9. The homology H∗(SPn(ΣMg); F) is given by those classes of bidegree
(∗; i) with i ≤ n, in

Γ(|e1|, . . . , , |e2g|)⊗ TorΓ(a)(F,F).

6.2. Homology Calculations, n > 2. The preceding discussion as well as Corol-
lary 6.3 show that for n > 2

TorA(F,A⊗n) = Γ(a1, . . . , an)⊗ Γ(|e1|, . . . , |e2g|)⊗ Λ(e1, . . . , e2ng)

⊗ TorΓ([M ])(F,F),

(6.10)

the terms of (n+ 1)-grading (∗, k . . . , k) making up all of H2nk−∗(Divk(M − ∗; F).

Proposition 6.11. Assume n > 2 and g ≥ 1 and consider the algebra

Λ(f1;1, . . . , f2ng;1, . . . , f1;n, . . . , f2g;n)⊗ Λ(E)⊗Q(h1, . . . , h2g).

This algebra is (n + 1)-graded according to fi;r 7→ (1; 0, . . . , 1, . . . , 0) with 1 in the
r + 1 position, 1 ≤ r ≤ n, E 7→ (2n− 3; 1, . . . , 1) and hj 7→ (2n− 2; 1, . . . , 1). The
multigrading is additive. The homology groups H∗(Divk(Mg −∗); Q) are now given
by those elements of multidegree (∗; i1, . . . , in) with ij ≤ k.

Proof. With Q coefficients 6.10 takes the form

Q(a1, . . . , an)⊗Q(|e1|, . . . , |e2g|)⊗ Λ(e1, . . . , e2ng)⊗ Λ(|M |).
It is now a matter of counting the multidegree (2nk − ∗; k, . . . , k) elements. The

degree one generators are represented by ak1 . . . ei;ra
k−1
j . . . akn in H2nk−1(TYk), 1 ≤

i ≤ 2g and 1 ≤ r ≤ n, and to them correspond the fi;r ∈ H1(Divk(M − ∗); Q).
Similarly, |M | is Poincaré dual to an element E of the right filtration and of ho-
mology degree 2n− 3, whereas the hj ’s are dual to the |ej|’s. Here Q(a1, . . . , an)
serves as a “calibrating” factor, and the calculation follows.

When F = Zp, p odd, we can facilitate the counting by dualizing TorA(Zp,A⊗n).
Divided power algebras turn into polynomial algebras and we get the total space

Zp(a1, . . . , an)⊗ Λ(e1, . . . , e2ng)⊗ Zp (|e1|, . . . , |e2g|)
⊗ Λ(|M |, |γp|, . . . , |γpi | . . . )⊗ Zp

(
|Mp−1|M |, . . . , |γp−1

pi |γpi |, . . .
)
.

Here we ought to write e∗i , |ei|∗, [M ]∗ for the classes above, but for simplicity we
leave that out. Our calibration procedure leads generators ei;r as well as

hi Ei Hi

(n+ 1)-degree (2(n− 1); 1, . . . , 1)
(
2(n− 1)pi − 1; pi, . . . , pi

) (
2(n− 1)pi; pi, . . . , pi

)
.

Lemma 6.12. Assume n > 2 and p odd ; then H∗(Divnk (Mg − ∗); Zp) is given by
those classes in ⊗

1≤r≤n
Λ(e1;r, . . . , e2g;r)⊗ Zp(h1, . . . , h2g)

⊗ Λ(E1, . . . , Ej , . . . )⊗ Zp(H1, . . . , Hj , . . . )

of multidegree (∗; i1, . . . , in) with ij ≤ k.
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6.3. Homology Calculations, n = 2. As pointed out in 6.3, the action of A on
A⊗2 is not trivial. The Tor term TorA(F,A⊗A) takes the form

Γ(a1, a2)⊗ Γ(|e1|, . . . , |e2g|)⊗ TorΓ([M ])(F,Λ(e1, . . . , e4g)),(6.13)

and the calculation boils down to understanding the term on the far right. The
boundary here in the total space Λ(e1, . . . , e4g)⊗E(Γ[M ]) is generated by ∂(|M |) =∑g

i=1 e2i−1e2i − e2ie2i−1 (cf. Lemma 6.2). By reordering the ei’s and renaming,

we can rewrite it as ∂(|M |) =
∑2g

i=1 e2i−1e2i. Assume for now that F = Q. We can
rewrite 6.13 as follows:

H∗(Wg; Q)⊗Q(h1, · · · , h2g)⊗Q(a1, a2),

where Wg is the complex

Λ(e1, · · · , e4g)⊗ Λ|M | ∂→ Λ(e1, · · · , e4g), ∂(|M |) = e1e2 + e3e4 + · · ·+ e4g−1e4g.

By taking Poincaré duals we get

Lemma 6.14. Let W̄g denote the complex

Λ(e1, . . . , e4g, f)→ Λ(e1, . . . , e4g), δf = e1e2 + · · ·+ e4g−1e4g.

Then

H∗(Div2
k(Mg − ∗); Q) ⊂ H∗(W̄g,Q)⊗Q(h1, . . . , h2g)

consists of elements with tridegrees (∗; i, j), i, j ≤ k, where tridegrees are assigned
as follows: eodd 7→ (1; 1, 0), eeven 7→ (1; 0, 1), f 7→ (1; 1, 1), hi 7→ (2; 1).

The complex W̄g has been studied in both [BC] and [BCM], and its Betti numbers
have been completely determined. It is shown there for instance that the map⋃

(e1e2 + · · ·+ e4g−1e4g) : Λ(e1, · · · , e4g)→ Λ(e1, · · · , e4g)
is injective in degrees ≤ 2g and surjective in degrees ≥ 2g. Moreover, if ν(i, g)
denotes the rank of Hi(W̄g; Q), then we have

Lemma 6.15 ([BCM]). ν(i, g) = 0 for i > 4g + 1, and otherwise

ν(i, g) =

{(
4g
i

)− ( 4g
i−2

)
for i ≤ 2g,(

4g
i−1

)− ( 4g
i+1

)
for 2g < i ≤ 4g + 1.

Remark 6.16. When F = Zp, the boundary terms take the form

∂(|γpi |) =
1

pi

(
g∑
1

e2i−1e2i

)pi

,

∂(|γp−1
pi |γpi |) =

 1

pi

(
g∑
1

e2i−1e2i

)(p−1)pi
 |γpi |.

These last differentials correspond to the Kudo differential in the Serre spectral
sequence associated to the quasi-fibration SP∞(M)n → DY → SP∞(ΣM). They
also describe the dpi in §4.4.

Example 6.17. As an example, we carry out the calculation for T = M1, a genus
1 surface, n = 2 and p = 2. The complex at hand can be written as

Λ(e1, e2, e3, e4)⊗ Z2(|e1|, |e2|, |T |, |γ2|, . . . , |γ2i | . . . )
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on generators with tridegrees: e1, e3 7→ (1; 1, 0), e2, e4 7→ (1; 0, 1), |ei| 7→ (2; 1, 1),
|T | 7→ (1; 1, 1) and |γ2i | 7→ (2i+1 − 1; 2i, 2i). The coboundary is given by

δ(|T |) = e1e2 + e3e4, δ(|γ2i |) =
1

2i
(e1e2 + e3e4)

2i .

This implies that δ(|γ2|) = e1e2e3e4 and δ(|γ2i |) = 0 for i ≥ 2. We’re interested in
all elements of tridegree (∗, i, j), i, j ≤ k. For example, we have

Lemma 6.18. The Poincaré series for H∗(Div2
k(T −∗); F2), k = 1, 2, are given by

P (x) = 1 + 4x+ 5x2 (k = 1), P (x) = 1 + 4x+ 7x2 + 9x3 + 6x4 (k = 2).

7. Homotopy Constructions

We start with a fibration sequence due to Segal, which along with the scanning
map, also first constructed in [S], constitutes the main tool in setting up the corre-
spondence between divisor spaces and mapping spaces. We denote by Pn the nth
complex projective space, and we use P and P∞ interchangeably for the infinite
complex space.

7.1. Fat-Wedge Fibrations. Let WnP denote the nth fat wedge of P∞; that is,
WnP is the subset of (P∞)n consisting of all n-tuples with at least one entry equal
to the basepoint in P∞ (we sometimes write Wn for WnP). Of course W1 = {x0}
and W2 = P∞ ∨ P∞. One has the following

Lemma 7.1 (Segal). There is a fibration sequence

(S1)n → Pn →Wn+1P θ→ (P∞)n = B(S1)n.

The projection θ is described in [S],§2. When n = 1, this is the folding map (i.e.
the restriction of θ : P×P→ P, θ(a, b) = a ·b−1). In this particular case, the fiber of
θ is the total space of the fibration over P∨P induced from the path/loop fibration
S1 → S∞ → P and this is seen to be S∞ ∪S1 S∞ ' ΣS1 = S2.

Lemma 7.2. There is a fibration

S2n+1→Wn+1P ↪→ (P∞)n+1.

Proof. The proof proceeds by induction. In the case n = 1, we have the inclusion
W2 = P ∨ P ↪→ P× P. A general result of Ganea states that the homotopy fiber of
the inclusion X∨Y ↪→ X×Y is Ω(X)∗Ω(Y ) ' Σ(Ω(X)∧Ω(Y )) (here ∗ denotes the
join product.) In our case, the fiber then becomes Σ(ΩP∧ΩP)) ' Σ(S1∧S1) = S3.

For n > 1, the fiber of Wn+1 ↪→ (P∞)n+1 is given as the total space of the
pull-back of the path-loop fibration (S1)n+1 → P → (P∞)n+1. Write Wn+1 as the
double mapping cylinder

Wn × P← 2Wn × ∗ → (P∞)n × ∗.
The fiber of Wn × P → (P∞)n+1 is S2n−1 by the induction hypothesis, while the
fiber of (P∞)n → (P∞)n+1 is ΩP = S1. It follows that the fiber of Wn × ∗ '
Wn × S∞ → (P∞)n+1 = (Pn) × P is S2n−1 × S1, and hence the homotopy fiber
Wn+1P→ (P∞)n+1 can be written as the mapping cylinder S2n−1 × S1 × [0, 1]/ ∼
with S1 collapsed at one end and S2n−1 collapsed at the other. But this is no other
than S2n−1 ∗ S1 = S2n+1, and the proof is complete.



156 SADOK KALLEL

Corollary 7.3. We have the following commutative diagram of fibrations (here h
denotes the Hopf map and ∆n+1 is the diagonal inclusion):

S2n+1 =−−−−→ S2n+1 −−−−→ ∗yh yG y
Pn −−−−→ Wn+1

θ−−−−→ (P∞)ny y y=

P∞ ∆n+1−−−−→ (P∞)n+1 −−−−→ (P∞)n

Remark 7.4. Looping 7.2 yields a principal fibration Ω(i) : Ω(S2n−1)→ Ω(Wn)→
Ω(P∞)n which admits a cross section obtained as follows. Let si be the inclusion
of P∞ into Wn as the i-th factor. Then the composition

s : (ΩP∞)n
(Ωs1×···×Ωsn)−−−−−−−−−→ (ΩWn)n

∗−−−−→ ΩWn

provides the desired section of 7.2 (here ∗ is loop multiplication). Naturally this
implies that

ΩWn ' (ΩP∞)n × Ω(S2n−1) ' (S1)n × Ω(S2n−1).

This splitting is not an H-space splitting (in the case n = 2 for instance, the right
hand side is abelian while Ω(P ∨ P) is not). The inclusion ΩS2n−1 ↪→ ΩWn is,
however, loop-sum preserving.

Lemma 7.5. Consider 7.2; S2n−1 G→ Wn ↪→ (P∞)n, and let ai denote the homo-
topy class of the ith inclusion S2 = P1 ↪→ 1i−1 × P1 × 1n−i ↪→ (P∞)n. Then G is
an iterated Whitehead product

G = [· · · [[a1, a2], a3] , . . . ], an] .

Remark 7.6. One can apply the functor Map∗(Mg,−) to 7.3 and obtain a new
diagram of fibrations. It is not hard to see that Map∗c(Mg,P∞) ' (S1)2g, where
Map∗c is any component of Map∗. Indeed, since the attaching map of the two disc

in Mg maps into
∨2g

S1 as a commutator, it follows that its suspension is null.
This implies that

Map∗(Mg,P∞) ' Map∗(ΣMg, K(Z, 3)) ' Map∗(S3 ∨
2g∨
S2, K(Z, 3))

' Z×
2g∐

Ω2(K(Z, 3)) ' Z× (S1)2g.

One therefore gets the diagram

Map∗(Mg, S
2n+1)

=−−−−→ Map∗(Mg, S
2n+1) −−−−→ ∗yh yG y

Map∗(Mg,Pn) −−−−→ Map∗(Mg,Wn+1) −−−−→ (S1)2ngy y y=

(S1)2g −−−−→ (S1)2(n+1)g −−−−→ (S1)2ng
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When n = 1, we know that

Map∗(Mg, S
3) ' (Ω2S3)× (ΩS3)2g

and that Map∗(Mg, S
2) splits as (ΩS3)2g×Xg for some total space Ω2(S3)→ Xg →

(S1)2g (see [BCM],§11; or [C2M2],§7). This however still is not enough to conclude
any splitting for Map∗(Mg,P∞ ∨ P∞) (see §8.2).

The Samelson Product. This is standard [C] but we review it briefly. Given a
loop space Ω(X), we denote by S : Ω(X) × Ω(X) → Ω(X) the commutator map
S(f, g) = f∗g∗f−1∗g−1. The map S is null homotopic when either f or g is constant
at the basepoint, and hence it descends to a map S : Ω(X) ∧ Ω(X) → Ω(X). The
Samelson product

〈, 〉 : πp(Ω(X))⊗ πq(Ω(X))→ πp+q(Ω(X))

is defined to be the composite Sp ∧ Sq α∧β−→ Ω(X) ∧Ω(X)
S−→ Ω(X).

Theorem 7.7 (Samelson). Consider the suspension E : X → ΩΣX and the in-
duced map ad : X ∧X → ΩΣX given by S ◦ (E∧E). Then if x and y are primitive,
we have

ad∗(x⊗ y) = x⊗ y − (−)|x||y|y ⊗ x ∈ H∗(ΩΣX) ∼= T (H∗(X)).

7.2. Segal’s Scanning Map. We can now describe the map

S : Divnk (Mg − ∗)→ Map∗~0(Mg,WnP)(7.8)

where Map∗~0(Mg,WnP) refers to the subspace of based, null-homotopic maps (or

equivalently-based maps of multidegree ~0 = (0, . . . , 0)) in Map~0(Mg,Wn) ⊂
Map~0(Mg, (P∞)n).

Fix r > 0 (r small) and let Dr(x) ⊂ Mg be the disc of radius r around the
point x ∈Mg. Since Mg − ∗ is parallelizable, one can canonically identify the pair
(D̄(x), ∂D̄(x)) with (S2,∞), where the north pole ∞ is chosen to be the basepoint
in S2. To a given positive divisor D ∈ SP r(Mg) and to any x ∈ Mg, we can
associate the divisor Dx ∈ SP∞(S2,∞) = P made out of points of D ∩Dr(x) and
extended out by basepoints; i.e.

Dx = 〈D ∪Dr(x),∞, . . . 〉.
Let (D1, . . . , Dn) ∈ Divnk (Mg − ∗); then one defines

S : Mg → Divn(S2,∞), x 7→ (Dx
1 , . . . , D

x
n)(7.9)

where here Divn(S2,∞) ⊂ (P∞)n consists of all n-tuples of divisors whose supports
do not have a point in common (here the support of D =

∑
nizi ∈ SP∞(S2,∞)

is the set of zi 6= ∞). One should probably point out the important difference in
topology between Divn(S2,∞) and Divn(S2 −∞).

As was observed in [S], we can let Qε be the open subset of Divn(S2,∞) consist-
ing of n-tuples of divisors such that (at least) one such divisor, say Di, is disjoint
from the closed disk of radius ε about the origin (south pole). Then radial expan-
sion defines a deformation retraction of Qε into Wn (more precisely in this case,
the ith component of (P∞)n gets retracted to ∞). This shows that Qε 'Wn, and
since Divn(S2,∞) =

⋃
ε>0 Qε we get

Lemma 7.10. Divn(S2,∞) 'WnP.
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It is clear that 7.9 has multidegree (k, . . . , k), and hence when combined with 7.10
it yields a map S : Divnk (Mg − ∗) → Map∗(k,... ,k)(Mg,WnP). Since all components
of the mapping space are homotopy equivalent, we obtain the map 7.8. Note that
the stabilization process of §3 yields a (homotopy) commutative diagram

Divnk (Mg − ∗) → Map∗~k(Mg,WnP)

↓ ↓
Divnk+1(Mg − ∗) → Map∗~k+1

(Mg,WnP),

and in the direct limit we obtain

Theorem 7.11 (Segal). S : Divn(Mg − ∗) → Map∗0(Mg,WnP) is a homotopy
equivalence.

8. The Splitting

Recall that associated to Mg, we have the cofibration sequence

S1 f−→
2g∨
1

S1 −→Mg −→ S2 −→
2g∨
1

S2,(8.1)

with f given as a product of commutators

[x1, x2] · · · [x2g−1, x2g] ∈ π1(∨2g
1 S1).

Applying the functor Map∗(−, X) to 8.1 yields the fibration sequence

Ω2X → Map∗(Mg, X)→ (ΩX)2g
f !

−→ ΩX.

The map f ! classifies Ω2X→Map∗(Mg, X)→(ΩX)2g, and since f ! = [x1, x2]
! · · ·

[x2g−1, x2g]
! is described in terms of commutators, it is natural to suspect that

obstructions to the nullity of f ! lie in various Whitehead products. This is indeed
the case.

Write X = Wn. To analyze f !, it is enough to consider one commutator at a
time, say [x1, x2]

!. This we write as composition

(ΩWn)2
∆−−−−→ (

(ΩWn)2
)2 id2×χ2

−−−−→ (
(ΩWn)2

)2 −−−−→ (ΩWn)4
∗4−−−−→ ΩWn

,

where χ is the inverse map with respect to the loop sum, χ(f)(t) = f(1−t) = f−1(t).

In §7 we saw that we had a map ΩWn
π→ (S1)n (and a splitting ΩWn ' ΩS2n−1×

(S1)n). The composite

(ΩWn)2
[x1,x2]

!

−−−−→ ΩWn
π−−−−→ (S1)n

is a commutator in an abelian group and hence it is trivial. It follows that πf ! is
also homotopy trivial. and hence f ! factors (up to homotopy):

f ! : (ΩS2n−1 × (S1)n)2g → ΩS2n−1 ↪→ ΩWn.

Question. Does f ! factor further through (S1)2ng as

f ! : (ΩS2n−1 × (S1)n)2g → (S1)2ng → ΩS2n−1 ↪→ ΩWn.(8.2)

In studying Div2
k(Mg −∗), [C2M2] only needed to consider the case n = 2, and the

question above was conjectured to be true.
We can analyze the obstruction to factoring f ! as in 8.2 as follows. Start with(

ΩS2n−1 × (S1)
)2 (ΩG∗e)2−−−−−→ Ω(Wn)2

[x1,x2]
!

−−−−→ Ω(Wn),
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where e : S1 →Wn is any one of the Ωsi described in 7.5. Letting e1 and e2 (resp.
ΩG1 and ΩG2) be the maps of S1 (resp. ΩS2n−1) into the first and second copies
of ΩWn, one can write (up to sign)

[x1, x2]
1 ((e1 ∗ ΩG1)× (e2 ∗ ΩG2))

7→ e1 ∗ ΩG1 ∗ e2 ∗ ΩG2 ∗ χ(ΩG1) ∗ χ(e1) ∗ χ(ΩG2) ∗ χ(e2).

Suppose the image of ΩG and the image of e commute. Then we can rewrite the
above as follows:

(e1, e2,ΩG1,ΩG2) 7→ (e1 ∗ e2 ∗ [ΩG1 ∗ ΩG2 ∗ χ(ΩG1) ∗ χ(ΩG2)] ∗ χ(e1) ∗ χ(e2))

= e1 ∗ e2 ∗ {ΩG1,ΩG2} ∗ e−1
1 ∗ e−1

2 .

If we suppose further that ΩG1 and ΩG2 commute in ΩWn, then f ! would factor as
desired through (S1)2gn. This then shows that the desired factorization 8.2 happens
under the following conditions:
• ΩG and e commute in ΩWn,
• ΩS2n−1 is homotopy abelian.

The second condition is true after inverting 2. Indeed, an odd sphere is an H-
space after inverting 2, at which point the loop space becomes abelian. To address
the validity of the first condition, we restrict our attention to the commutator

ΩS2n−1 × S1 {ΩG,e}−−−−→ Ω(WnP).

Observe that ΩS2n−1 = ΩΣ(S2n−2) ' J(S2n−2) where J(S2n−2) is the James con-
struction on S2n−2 corresponding to the free monoid generated by points of S2n−2.

The commutator map can therefore be reduced to S2n−2 × S1 {ΩG,e}−→ Ω(WnP) and
from there one can use the correspondence between the Samelson and Whitehead
products [C] to write

ad{ΩG, e} = [G, a] ∈ π2n(WnP) = π2nS
2n−2 = Z2,(8.3)

where a = ade : ΣS1 = S2 ↪→ P ↪→Wn.
In either case, then, it follows that the obstructions to factoring f ! : (WnP)2g →

ΩS2n−1× (S1)n through (S1)n are Z2 obstructions. We have proved the following.

Proposition 8.4. The following splits after inverting 2:

Map∗(Mg,WnP) ' (Z)n × Ω(S2n−1)2g × Yg,n,

where Yg,n is the total space of a (principal) fibering Ω2(S2n−1)→ Yg,n → (S1)2gn.

8.1. The obstruction when n = 2. When n > 2, n 6= 4, 8, it is clear that 8.4 is
best possible. However when n = 2, one can hope to relax the localization condition
there, for in this case ΩS3 is homotopy abelian (S3 being a group) and the first
obstruction discussed earlier is not essential. We show, however, that the second
obstruction 8.3 is.

Let G be as in Lemma 7.5. We know that the homotopy class of G is represented
by [a1, a2] and hence [G, a1] corresponds to [[a1, a2], a1]. We show that this triple
Whitehead product generates π4(P ∨ P) ∼= Z2.

We start by considering the first few stages of the Postnikov decomposition for
X = P ∨ P. Notice that

π1(X) = 0, π2(X) ∼= Z× Z, π3(X) ∼= Z and π4(X) ∼= Z2.
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and hence
K(Z2, 4) → X4

↓
K(Z, 3)

i→ X3
k5→ K(Z2, 5)

↓
P ∨ P f2→ P× P k4

→ K(Z, 4),

where f2 is the inclusion P ∨ P ↪→ P× P. The fiber of f2 is S3, and so

τ(ι3) = k4, ι3 ∈ Z ∼= H3(S3, π3(X)),

where τ is the transgression. Since H∗(P × P) ∼= Z[a1, a2], with a1 and a2 being
the dual cohomology classes to the 2-dimensional generators corresponding to the
inclusions S2 ↪→ P ↪→ P× P, and since

H∗(P ∨ P) ∼= Z[a1, a2]/(a1a2),

it follows that the class a1a2 must be hit by the transgression and hence k4 = a1a2.

Lemma 8.5. Let γ be the class in H5(X3,Z2) that restricts to Sq2(ι3), ι3 ∈
H3(K(Z, 3),Z2). Then γ is non-zero, and k5 = γ.

Proof. Since d4 corresponds to the transgression in this case, we have d4(ι3) =
τ(ι3) = a1a2. Recall that

H∗(K(Z, 3),Z2) = F2[ι3, Sq
2(ι3), (ι3)

2, Sq4Sq2(ι3), . . . , Sq
2i · · ·Sq4Sq2(ι3), . . . ].

A quick inspection of the E4 quadrant shows that the d4 differential vanishes on all
homology generators in the fiber but ι3. Since d4(ι3) = a1a2, and since the classes
a1 and a2 survive (and their powers), it follows that

E5 = H∗(P× P)⊗ F2[Sq
2(ι3), ι

2
3, Sq

4Sq2(ι3), . . . ].

Since ι3 transgresses, so does Sq2(ι3). We then have

d6(Sq
2(ι3)) = Sq2(d4(ι3)) = Sq2(a1a2).

But Sq2(a1a2) is already hit by d4, as the following application of the Cartan
formula (with Sq1(ai) = 0 in P) shows:

Sq2(a1a2) = Sq2(a1)a2 + a1Sq
2(a2) = (a1 + a2)a1a2 = d4(a1 + a2)ι3.

It follows that d6(Sq
2(ι3)) = 0 and that Sq2(ι3) survives to E∞. Since it is the only

class in H5(X3,Z2), it must be the image of the transgression τ(H4(K(Z2, 4),Z2))
in the next stage of the Postnikov tower. This proves the lemma.

Now consider the pulback diagram

K(Z, 3)
=−−−−→ K(Z, 3)yi yi

E
j−−−−→ X3y y

P∞ i1−−−−→ P∞ × P∞y0

ya1a2

K(Z, 4)
=−−−−→ K(Z, 4)
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where i1 is the inclusion of P into the first factor. The pullback of the k-invariant
a1a2 under i1 is trivial (since i∗1(a2) = 0). The induced total space is then E =
K(Z, 3)×K(Z, 2)

Lemma 8.6. j∗(γ) = Sq2(ι3) + ι3 ∪ a1.

Proof. In the fibration

K(Z, 3)
i→ X3

p→ P× P,
τ(Sq2(ι3)) = a1a2(a1 + a2) means that there is a class β ∈ C5(X3) (where (C, δ)
is a cochain complex) such that i∗([β]) = Sq2(ι3) (this is the only time that we
differentiate between a cochain x and its cohomology class [x]) and that

δ(β) = p∗(a1a2(a1 + a2)) = p∗(a1a2) ∪ p∗(a1 + a2).

The cochain β is chosen modulo p∗(P ∨ P). Now, the pullback i∗(j∗(β)) must
correspond to Sq2(ι3) and hence j∗(β) − Sq2(ι3) ∈ ker(i∗) = {0, i3 ∪ a1}. By the
choice of β modulo p∗(P ∨ P), we must then have that j∗(β) = Sq2(ι3).

On the other hand, since ι3 transgresses to a1a2 it follows also that p∗(a1a2) =
δ(ι3). (Here we think of ι3 as some cochain in X3 mapping onto ι3 ∈ H3(K(Z, 3))
under the epimorphism i∗ : C3(X3)→ C3(K(Z, 3)).) It then follows that

δ(β) = δ(ι3) ∪ (a1 + a2) = δ(ι3(a1 + a2))

and hence that δ(β+ ι3(a1 +a2)) = 0. Moreover i∗(β+ ι3(a1 +a2)) = Sq2(ι3). This
shows that we can choose γ ∈ H5(X3) to be equal to β + ι3(a1 + a2). Therefore

j∗(γ) = j∗(β) + j∗(ι3(a1 + a2)) = Sq2(ι3) + ι3 ∪ a1,

and the lemma follows.

Lemma 8.7. [[a1, a2], a1] generates π4(P ∨ P) ∼= Z2.

Proof. Consider the composite map

S3 × S2 f=ι3×ι2−−−−−→ E = K(Z, 3)×K(Z, 2)
j−−−−→ X3.

The pullback of γ via f ◦ j is

f∗(j∗(γ)) = f∗(Sq2(ι3)) + f∗(ι3 ∪ a1) = f∗(ι3) ∪ f∗(a1) = κ3 ∪ κ2,

where κi is the generator of Hi(Si). It follows that the composite S3×S2 → X3 →
K(Z2, 5) is not zero and hence S3 × S2 does not lift to the next stage, X4, of the
Postnikov resolution, since the latter K(Z2, 4) → 1.5X4 → 1.5X3 has k-invariant
γ.

The fact that S3× S2 doesn’t lift to X4 implies that the class of the Whitehead
product [κ3, κ2] ∈ π3(S

3 ∨ S2) has image the non-zero generator in π4(E2) =
π4(P ∨ P) (here κi also denotes the generating class in πi(S

i)). The image of κ2

is a1 by construction, while the image of κ1 ∈ π3(S
3) is the Whitehead product

[a1, a2] ∈ π3(P ∨ P) according to the diagram

S3 → K(Z, 3)→ X3

↓ ↓
P ∨ P −−−−→ P× P.

This concludes the proof. Note that the non-zero generator [[a1, a2], a1] must cor-
respond to [a1, a2] ◦ η, where η is the Hopf map S4 → S3.
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9. Relation with Mapping Spaces

In this section, we prove the following easy consequence of our previous study of
the divisor spaces.

Proposition 9.1. The Eilenberg-Moore spectral sequence associated to the fibration

Ω2S2n−1 → Map∗0(Mg,WnP)→ (S1)2ng × (ΩS2n−1)2g

collapses at E2 = TorH∗(ΩS2n−1)(F, H∗((S1)2ng × (ΩS2n−1)2g)).

Proof. Consider first the case n = 2. In this case, the classifying map being null
homotopic on ΩS3, it follows that the action of H∗(ΩS3) on H∗(ΩS3)2g is trivial
and that

E2 = H∗(ΩS3)2g ⊗ TorH∗(ΩS3)(F, H∗(S1)4g).(*)

We write H∗(S1)4g = Λ(e1, . . . , e4g) and H∗(ΩS3) = Γ(a). We should point out
that in the Eilenberg-Moore spectral sequence the bar degrees are subtracted from
the total degree of resolution elements rather than added (compare with §1). For
instance, in this case deg |a| = 2 − 1 = 1. To understand the module structure
of Γ(a) on Λ(e1, . . . , e4g), we need to know first about the ring structure of
H∗(Ω(P ∨ P)).

Lemma 9.2 ([C2M2]). Let e1, e2 ∈ H1(Ω(P ∨ P)) be the generators corresponding
to the inclusions of P into the first and second factors of P∨P (respectively), and let a
represent the class in the Hurewicz image of the generating sphere in H2(Ω(P∨P); Z)
coming from π2(ΩS

3). Then if T ( ) denotes the tensor algebra, we have

H∗(Ω(P ∨ P); Z) ∼= T (e1, e2, a)/(e
2
1 = e22 = 0, e1e2 + e2e1 = a).

Proof. Since e1, e2, 〈e1, e2〉 and [e1, e2] are maps of spheres, we will use the same
notation for the maps and the corresponding spherical classes they generate. That
e21 = e22 = 0 follows trivially from the homology of S1. Since the inclusion G : S3 →
P ∨ P is given by G = [Σe1,Σe2] (Lemma 8.5), it then follows that a = adG =
〈adΣe1, adΣe2〉 = 〈e1, e2〉 : S2 → ΩS3 → Ω(P ∨ P). By Samelson’s theorem 7.6, we
must have that 〈e1, e2〉 = e1e2 + e2e1 = a, as desired.

Going back to the proof of 9.1, we can look at the effect of the commutator
[x1, x2]

! at the level of homology on H∗(S1 × S1). We have

[x1, x2]
!(eij ⊗ ekl) = (∗)× (id2 × χ2)∆∗(eij ⊗ ekl)

= (∗)(eijekl ⊗ 1 + eij ⊗ ekl − ekl ⊗ eij + 1⊗ eijekl)

and using the relations in 9.2 above, we see that [x1, x2]
!(eij ⊗ ekl) = 0 when i = k

or j = l, and that

[x1, x2]
!(e11 ⊗ e22) = [x1, x2]

!(e12 ⊗ e21)

= e1 ⊗ e2 + e2 ⊗ e1 = a ∈ Z[a] = H∗(ΩS3)

This then defines the map f ! completely. In cohomology, it follows that f∗(a) =∑2g
1 e2i+1e2i, which implies that the action of a on Λ(e1, e2, . . . , e4g) is given by

multiplication with
∑2g

1 e2i+1e2i. In this case (∗) takes the form

Γ(h1, . . . , h2g)⊗ TorΓ[a](F,Λ(e1, . . . , e4g)).(9.3)
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This already makes up for the homology H∗(Div2(Mg − ∗); F) (cf. §6.2) and hence
in light of Segal’s homotopy equivalence 7.10, this must give the entire homology
of Map∗0(Mg,P ∨ P) and E2 = E∞.

The case n > 2 is simpler, for f∗ : H∗(Ω(WnP))→ H∗((ΩWnP)2g
)

is trivial and
hence the E2 term (*) takes the form

E2 = H∗((ΩS2n−1)2g; F)⊗H∗((S1)2ng; F)⊗H∗(Ω2S2n−1; F).(9.4)

Here too results of §6 show that 9.4 accounts for all classes in H∗(Map∗0(Mg,Wn); F),
and the Eileberg-Moore spectral sequence must then collapse at E2. This completes
the proof.
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