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FACTORISATION IN NEST ALGEBRAS. II

M. ANOUSSIS AND E. G. KATSOULIS

Abstract. The main result of this paper is Theorem 5, which provides a
necessary and sufficient condition on a positive operator A for the existence of
an operator B in the nest algebra AlgN of a nest N satisfying A = BB∗ (resp.
A = B∗B). In Section 3 we give a new proof of a result of Power concerning
outer factorisation of operators. We also show that a positive operator A
has the property that there exists for every nest N an operator BN in AlgN
satisfying A = BNB

∗
N (resp. A = B∗NBN ) if and only if A is a Fredholm

operator. In Section 4 we show that for a given operator A in B(H) there
exists an operator B in AlgN satisfying AA∗ = BB∗ if and only if the range
r(A) of A is equal to the range of some operator in AlgN . We also determine
the algebraic structure of the set of ranges of operators in AlgN . Let Fr(N)
be the set of positive operators A for which there exists an operator B in AlgN
satisfying A = BB∗. In Section 5 we obtain information about this set. In
particular we discuss the following question: Assume A and B are positive
operators such that A ≤ B and A belongs to Fr(N). Which further conditions
permit us to conclude that B belongs to Fr(N)?

1. Introduction and preliminaries

Let H be a separable Hilbert space. A nest N on H is a totally ordered set of
closed subspaces of H containing {0} and H which is closed under intersection and
closed span. The associated nest algebra AlgN is the set of bounded operators A on
H leaving each member of N invariant. The problem of factorisation of operators
with respect to a nest N consists in writing a positive operator A in the form BB∗

(or B∗B) with B in AlgN . The factorisation of a positive invertible finite matrix A
as B∗B with B and its inverse in upper triangular form is known as the Cholesky
decomposition. In [13] Gohberg and Krein obtain factorisations for operators which
are compact perturbations of the identity with respect to arbitrary nests. Larson
[15] studied factorisations of positive invertible operators A in the form B∗B with
B invertible in AlgN . He showed that such a factorisation exists for every positive
invertible operator if and only if the nest is countable. These results are concerned
with factorisations of invertible or essentially invertible operators. Arveson [4] has
introduced the concept of the outer operator in analogy with the outer functions
in Hardy spaces. He has given a necessary and sufficient condition on a positive
operator A for the existence of a factorisation A = B∗B with B outer in AlgN ,
with respect to nests of a certain order type. Shields [23] obtained a factorisation
for any positive trace class operator in the case of a nest of order type N. In
[20] Power, making a constructive approach, proved that every positive operator
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A has a factorisation A = B∗B with B outer in AlgN if and only if the nest N
is well-ordered. Factorisation problems for other types of operator algebras which
are related to nest algebras are also studied in [3],[17],[19]. Factorisation theory of
operators is closely related to the theory of factorisation of positive operator-valued
functions on the unit circle. We refer the reader to [18] for a survey of results and
bibliography.

In this work we give a necessary and sufficient condition on a positive operator A
for the existence of an operator B in the nest algebra AlgN of a nest N satisfying
A = BB∗ (resp. A = B∗B). This result, which we prove in Section 2, holds for an
arbitrary positive operator A and for any nest N . If the nest N is of order type Z
the condition we give for the factorisation A = B∗B is the same as the one given
by Arveson in Theorem 3.3. of [4]. However in the general case the condition has a
more elaborate form. The main idea in order to obtain the factorisation A = BB∗

is to consider the biggest projection Q in N which satisfies Q = Q− and study the
behaviour of the operator A “near” Q. In Section 3 we use the technique developed
in Section 2 to obtain a new proof of the above mentioned result of Power. We also
show that a positive operator A has the property that there exists for every nest
N an operator BN in AlgN satisfying A = BNB

∗
N (resp. A = B∗NBN ) if and only

if A is a Fredholm operator. In Section 4 we show that for a given operator A in
B(H) there exists an operator B in AlgN satisfying AA∗ = BB∗ if and only if the
range r(A) of A is equal to the range of some operator in AlgN (Theorem 13). A
consequence of this is that if A and C are positive operators in B(H) with the same
range, then there exists an operator B in AlgN satisfying A = BB∗ if and only if
there exists an operator D in AlgN satisfying C = DD∗. Theorem 13 motivates
the study of the set of ranges of operators in AlgN , which we denote by OR(N).
In the rest of Section 4 we caracterise the nests N for which the set OR(N) is a
meet semi-lattice (resp. a join semi-lattice). In Section 5 we consider a nest N
satisfying I = I− and study the set of positive operators A for which there exists
an operator B in AlgN satisfying A = BB∗. This set is denoted by Fr(N). We
show that if A is in Fr(N) then Aλ is in Fr(N) for every positive number λ with
0 < λ ≤ 1, and show by an example that this is not true if λ > 1. We also show
that if A and C are in Fr(N) then A + C is in Fr(N). A simple criterion is given
which permits one to decide if an operator A with closed range belongs to Fr(N).
We close Section 5 with Theorem 29, which provides a decomposition of a positive
operator A into a “factorable” and a “completely non-factorable” part with respect
to a nest N satisfying I = I−. An analogous decomposition has been obtained in
[21] and [1] for special cases.

As a general rule (with an exception in Theorem 10) we prove our results for
the factorisation BB∗ and present the results concerning the factorisation B∗B
as corollaries. A reason for this choice is that it makes Theorem 13 appear more
elegant.

Some of the results of this work (Theorem 5, Theorem 11 and Proposition 28)
generalise previous results that we have obtained in [2] in the particular case of a
continuous nest.

Throughout this work H is a separable Hilbert space. The inner product on H
will be denoted by 〈 , 〉. By a subspace of H we mean a subset of H which is closed
under addition of vectors and scalar multiplication. If W is a subspace of H , W⊥

is the subspace of H consisting of the vectors orthogonal to each vector in W . If V
is a subset of H , [V ] is the linear span of V . If ξ is a vector in H , [ξ] is the linear
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span of ξ. If {Vn}∞n=1 is a sequence of closed mutually orthogonal subspaces of H ,

we denote by
∞∑
n=1

⊕Vn the closure of their linear span. We will denote by B(H) the

space of all bounded operators from H into itself. Let x, y be in H . The rank-one
operator x ⊗ y is the operator on H defined by: z → 〈z, x〉y. If A is in B(H)
we denote by r(A) the range of A and by cokerA the orthogonal complement of
the kernel of A. If P is an orthogonal projection in B(H), P⊥ is the (orthogonal)
projection I − P .

Let N be a nest on H . The nest N⊥ is defined to be {P⊥ : P ∈ N}. If P is in N
we will denote by the same symbol the orthogonal projection on the subspace P .
When the subspace H (resp. {0}) is considered as an element of the nest N it will
be denoted by I (resp. 0). If E is a projection commuting with the elements of N ,
EN is the nest in the Hilbert space EH defined by EN = {EP : P ∈ N}. We will
say that a vector x in H is N -proper if there exists a projection P in N, P 6= I,
such that Px = x. The set of N -proper vectors will be denoted by PrN . Given
an element P of N , we define P− to be [

⋃
L∈N,L<P

L] and P+ to be
⋂

L∈N,L>P
L. We

define 0− to be 0 and I+ to be I. The nest N is continuous if P = P− for every P in
N . The associated nest algebra AlgN is the set of operators A in B(H) satisfying
PAP = AP for every P in N . For a general discussion of nest algebras the reader
is refered to [6].

We will say that a positive operator A in B(H) admits a right factorisation (resp.
a left factorisation) with respect to N if there exists an operator B in AlgN such
that A = BB∗ (resp. A = B∗B). We will denote by Fr(N) (resp. Fl(N)) the
set of positive operators in B(H) which admit a right factorisation (resp. a left
factorisation) with respect to N .

2. The factorisation theorem

Throughout this section the letter N will denote a nest on H , and Q will be the
element of N defined by Q =

⋃
P∈N,P=P−

P . Then it is easy to see that Q = Q− and

that for every P in N, P > Q, we have P 6= P−.

Lemma 1. Let R be in N . Let {Pn}∞n=0 be a sequence of elements of N such that
P0 = 0, Pn+1 > Pn, Pn 6= R for each n, and Pn converges strongly to R. Then
there exists a sequence {Mn}∞n=1 of closed mutually orthogonal infinite dimensional
subspaces of H, such that Mn ⊂ R	 Pn for every n.

Proof. Take for each n a vector en in Pn+1	Pn of norm 1. Take a sequence {An}∞n=1

of mutually disjoint infinite subsets of N. Put Mn = [em : m ∈ An,m ≥ n].

Lemma 2. Let A be an operator in B(H). Let R be in N . Let {Pn}∞n=0 be a
sequence of elements of N such that P0 = 0, Pn+1 > Pn, Pn 6= R for each n, and
Pn converges strongly to R. Then

∞∑
n=1

⊕(A−1(Pn)	A−1(Pn−1)) =
⋃
P<R

A−1(P ) ∩ cokerA.

Proof. For each n the subspace A−1(Pn) 	 A−1(Pn−1) is contained in A−1(Pn) ∩
cokerA, which is in

⋃
P<R

A−1(P ) ∩ cokerA .
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Let P be in N , P < R. There exists m such that P < Pm. We have A−1(P ) ∩
cokerA ⊂ A−1(Pm) ∩ cokerA. But

A−1(Pm) ∩ cokerA =

m∑
n=1

⊕(A−1(Pn)	A−1(Pn−1)).

We conclude that A−1(P ) ∩ cokerA is contained in
∞∑
n=1

⊕(A−1(Pn)	A−1(Pn−1)).

Lemma 3. Let A be an operator in B(H). Then we have:

a) (
∑
P>Q

⊕(A−1(P )	A−1(P−)))⊕A−1(Q) = H .

b) (
∑
P>Q

⊕(A−1(P )	A−1(P−))) ⊕ (A−1(Q) ∩ cokerA) = cokerA.

Proof. a) It is clear that the sum is orthogonal. Let y be in H . Assume that y is
orthogonal to

∑
P>Q

⊕(A−1(P )	A−1(P−))⊕A−1(Q). Let R = inf{P ∈ N : PAy =

Ay}. We have RAy = Ay. If R > Q, y is orthogonal to A−1(R)	A−1(R−); hence
y is in A−1(R−). We conclude that Ay is in R−, which is contrary to the definition
of R. Therefore R ≤ Q. But then y is in A−1(Q) and is orthogonal to A−1(Q);
hence y = 0.

b) follows from a) and the fact that (
∑
P>Q

⊕(A−1(P ) 	 A−1(P−))) is contained

in cokerA.

Lemma 4. Let L be in N and {Ln}∞n=0 be a sequence of elements of N such that
Ln+1 < Ln, Ln 6= L for each n and Ln converges strongly to L. Let M be a
closed subspace of H contained in L⊥. Assume that there exists m in N such that
dim(((Ln)−)⊥ 	 (((Ln)−)⊥ ∩M)) ≤ m for each n. Then dim

(
L⊥ 	M

) ≤ m.

Proof. Assume dim
(
L⊥ 	M

)
> m. Then there exist m + 1 linearly independent

vectors x1, x2, ..., xm+1 in L⊥	M . For each n the vectors ((Ln)−)⊥x1, ((Ln)−)⊥x2,
...,((Ln)−)⊥xm+1 are orthogonal to ((Ln)−)⊥∩M) and so their Grammian is 0. The
Grammians of the vectors ((Ln)−)⊥ x1, ((Ln)−)⊥x2, ...,((Ln)−)⊥xm+1 converge to
the Grammian of the vectors x1, x2, ..., xm+1. Hence the vectors x1, x2, ..., xm+1

are linearly dependent.

Let A be an operator in B(H). We set

n(A) = dim(A−1(Q)	
⋃
P<Q

A−1(P ))

if Q 6= {0}; n(A) = 0 if Q = 0.
Let P be in N , P > Q. We set nP (A) = +∞ if dim(P 	 P−) = +∞, and

nP (A) = dim(P 	 P−)− dim(A−1(P )	A−1(P−))

if dim(P 	 P−) < +∞. Note that nP (A) ≥ 0.

Theorem 5. Let A be an operator in B(H). The following are equivalent:
a) There exists an operator B in AlgN such that AA∗ = BB∗.
b)
∑
P>Q

nP (A) ≥ n(A).
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Proof. Assume b) holds. Consider for P > Q a partial isometry VP with domain
contained in P 	 P− and range A−1(P ) 	 A−1(P−). If dim(P 	 P−) = +∞, we
choose VP in such a way that dim((P 	 P−) 	 domVP ) = +∞. Put V1 =

∑
P>Q

Vp.

Then V1 is a partial isometry with range
∑
P>Q

⊕(A−1(P ) 	 A−1(P−)). We set

EP = (P 	 P−)	 domVP .
Let {Pn}∞n=0 be a sequence of elements of N such that P0 = 0, Pn+1 > Pn, Pn 6=

Q for each n, and Pn converges strongly to Q. It follows from Lemma 1 that
there exists a sequence {Mn}∞n=1 of closed mutually orthogonal infinite dimensional
subspaces of H , such that Mn ⊂ Q 	 Pn for every n. Consider for n ≥ 1 a partial
isometry Wn with domain contained in Mn and range A−1(Pn)	A−1(Pn−1). Put

V2 =
∞∑
n=1

Wn. Then V2 is a partial isometry, and it follows from Lemma 2 that its

range is
⋃

P<Q

A−1(P ) ∩ cokerA.

Put E =
∑
P>Q

⊕EP . Let V3 be apartial isometry with domain contained in E

and range A−1(Q)	 ⋃
P<Q

A−1(P ). Such an isometry exists, because

dimE =
∑
P>Q

nP (A) ≥ dim(A−1(Q)	
⋃
P<Q

A−1(P ))

by hypothesis.
We set V = V1 + V2 + V3. Then V is a partial isometry with range

(
∑
P>Q

⊕(A−1(P )	A−1(P−)))⊕ (
⋃
P<Q

A−1(P ) ∩ cokerA)⊕ (A−1(Q)	
⋃
P<Q

A−1(P )).

Since

A−1(Q)	
⋃
P<Q

A−1(P ) = ((A−1(Q) ∩ cokerA)	 (
⋃
P<Q

A−1(P ) ∩ cokerA),

the range of V is (
∑

P>Q

⊕(A−1(P ) 	 A−1(P−))) ⊕ ((A−1(Q) ∩ cokerA), which by

Lemma 3 is equal to cokerA. We have A = AV V ∗. We show that AV is in AlgN .
Let R be in N and x be in R. We show that AV x is in R. i) Assume R < Q. If
R ≤ P1, AV x = 0. If R > P1, there exists m ≥ 1 such that Pm < R ≤ Pm+1. Then

AV x = AV2x = A(
m∑
n=1

Wn)x, which is contained in

A(

m∑
n=1

⊕(A−1(Pn)	A−1(Pn−1))).

But A(
m∑
n=1

⊕(A−1(Pn) 	 A−1(Pn−1))) is contained in Pm. Hence AV x is in R.

ii) Assume R = Q. We have AV x = A(V2 + V3)x. But r(V2 +V3) is contained
in A−1(Q). We conclude that AV x is in Q. iii) Assume R > Q. Since r(V2

+V3) is contained in A−1(Q) we see that A(V2 +V3)x is in Q. We have AV1x =
A(

∑
Q<P≤R

Vp)x, which is contained in A(
∑

Q<P≤R
⊕(A−1(P ) 	 A−1(P−))). But

A(
∑

Q<P≤R
⊕(A−1(P )	A−1(P−))) is contained in R. Hence AV x is in R.
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Put B = AV . Then BB∗ = AV V ∗A∗ = AA∗ and B is in AlgN .
Assume a) holds. It follows from polar decomposition that there exists a partial

isometry U with domain cokerA and range cokerB such that A = BU . Put D =

(
⋃

P<Q

A−1(P ) ∩ cokerA) and M = ((A−1(Q)∩ cokerA)	 (
⋃

P<Q

A−1(P ) ∩ cokerA).

We show that UM is contained in Q⊥. Take m in M and P in N , P < Q. Since
r(A) = r(B) we have BPUm = AxP for some xP in cokerA. Since BPUm is in
P , xP is in A−1(P ) ∩ cokerA. We have BPUm = BUxP , and so PUm − UxP is
in KerB. We have PUm = PUm − UxP + UxP , which belongs to KerB ⊕ UD.
We conclude that QUm = lim

P∈N,P 6=Q,P→Q
PUm is in KerB ⊕ UD. Since UM is

orthogonal to KerB⊕UD, we see that QUm is orthogonal to Um. Therefore Um
is in Q⊥.

We set KP = A−1(P ) 	 A−1(P−) for P in N , P > Q. We show that UKP is
contained in (P−)⊥. Let x be in KP . Since r(A) = r(B) we have B(P−)Ux = Ay
for some y in A−1(P−)∩cokerA. But then B(P−)Ux = BUy, and so (P−)Ux−Uy
is in KerB. We have

(P−)Ux = (P−)Ux− Uy + Uy,

which is in KerB ⊕ U(A−1(P−) ∩ cokerA). Since Ux is orthogonal to KerB ⊕
U(A−1(P−)∩cokerA) we see that Ux is orthogonal to (P−)Ux. Hence (P−)Ux = 0.

Put K =
∑
P>Q

⊕KP . Since UM is contained in Q⊥ and is orthogonal to UK,

in order to prove b) it is enough to prove that dim(Q⊥ 	 UK) ≤ ∑
P>Q

nP (A). Put

Ω = {P ∈ N , P ≥ Q}, Π = {P ∈ Ω : dim((P−)⊥ 	 (
∑
R≥P

⊕UKR)) ≤ ∑
R≥P

nR(A)},
Σ = {P ∈ Ω, P /∈ Π}. It suffices to show that Σ is empty.

Assume that Σ 6= ∅. Note that if P is in Ω and is different from Q then P 6= P−.
It follows that every non-empty subset of Ω has a maximum. Let S be the maximum
of Σ.

i) Suppose first that S = L− for some L in Π. Let π be the canonical projection
from (S−)⊥ onto (S−)⊥/ (

∑
P≥L

⊕UKP ). Since kerπ is contained in (
∑
P≥S

⊕UKP ),

we see that

dim((S−)⊥ 	 (
∑
P≥S

⊕UKP )) = dimπ((S−)⊥)− dimπ(
∑
P≥S

⊕UKP ).

We have

dimπ((S−)⊥) = dimπ(S 	 S−) + dimπ((L−)⊥)

and

dimπ(
∑
P≥S

⊕UKP ) = dimUKS.

So

dim((S−)⊥ 	 (
∑
P≥S

⊕UKP )) = dimπ(S 	 S−) + dimπ((L−)⊥)− dimUKS

= dim(S 	 S−) + dimπ((L−)⊥)− dimUKS.

But

dimπ((L−)⊥) = dim((L−)⊥ 	 (
∑
P≥L

⊕UKP ))
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and

dimπ((L−)⊥) ≤
∑
P≥L

nP (A)

since L is in Π. We conclude that

dim((S−)⊥	 (
∑
P≥S

⊕UKP )) ≤
∑
P≥L

nP (A)+dim(S	S−)−dimUKS =
∑
P≥S

nR(A).

Hence S is in Π, which is contrary to our assumption.
ii) Suppose that S 6= L− for every L in Π. Then there exists a sequence {Ln}∞n=0

of elements of Π such that Ln+1 < Ln, Ln 6= S for each n and Ln converges strongly
to S. There exist finitely many P > Q such that nP (A) 6= 0. Put m =

∑
P>S

nP (A).

Then for each n we have

dim(((Ln)−)⊥ 	 (((Ln)−)⊥ ∩ (
∑
P>S

⊕UKP )))

≤ dim(((Ln)−)⊥ 	 (
∑
P≥Pn

⊕UKP )) ≤ m.

It follows then from Lemma 4 that dim(S⊥ 	 (
∑
P>S

⊕UKP )) ≤ m. Let π be the

canonical projection from (S−)⊥ onto (S−)⊥/ (
∑
P>S

⊕UKP ). Proceeding as in (i),

we see that

dim((S−)⊥ 	 (
∑
P≥S

⊕UKP )) ≤
∑
P≥S

nP (A).

Hence S is in Π, which is contrary to our assumption.
We conclude that Σ is empty.

If the nest N has the property I = I− , condition b) of Theorem 5 says that
A−1(PrN) is dense in H . In this particular case this condition is essentially the
same as the density condition given in Theorem 3.1 in [1] in a different but related
context.

Corollary 6. Let A be a positive operator in B(H). Then A admits a right fac-

torisation with respect to N if and only if
∑
P>Q

nP (A
1
2 ) ≥ n(A

1
2 ).

Let R =
⋂

P∈N,P=P+

P . Then it is easy to see that R = R+ and that for every P

in N, P < R, we have P 6= P+. Let A be an operator in B(H). We set

m(A) = dim(
⋂
P>R

r(AP ) 	 r(AR))

if R 6= H ; m(A) = 0 if R = I.
Let P be in N , P < R. We set: mP (A) = +∞, if dim(P+ 	 P ) = +∞, and

mP (A) = dim(P+ 	 P )− dim(r(AP+)	 r(AP ))

otherwise. Note that mP (A) ≥ 0.

Corollary 7. Let A be an operator in B(H). The following are equivalent:
a) There exists an operator B in AlgN such that A∗A = B∗B.
b)
∑
P<R

mP (A) ≥ m(A).
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One should note that if the nest N is of order type Z condition b) of Corollary 7

says that
⋂
P>0

r(AP ) = {0}. In this particular case this condition is the same as

the one given by Arveson in Theorem 3.3. of [4]. A condition of the same type has
been given by Lowdenslager in Theorem 1 of [16] in the context of factorisation of
operator functions.

Corollary 8. Let A be a positive operator in B(H). Then A admits a left factori-

sation with respect to N if and only if
∑
P<R

mP (A
1
2 ) ≥ m(A

1
2 ).

3. Outer factorisation and universally factorable operators

Let N be a nest on H . An operator A in AlgN is called outer if its range
projection commutes with N and r(BP ) is dense in r(B) ∩ P for every P in N .
Outer operators were introduced by Arveson in [4] in analogy with outer functions
in Hardy spaces. Theorem 3.3 in [4] gives a necessary and sufficient condition on
a positive operator X for the existence of an outer operator A in AlgN satisfying
X = A∗A under the assumption that the nest N is of a certain order type. In
[20] Power proves that for every positive operator X in B(H) there exists an outer
operator A in AlgN satisfying X = A∗A if and only if the nest N is well ordered. In
what follows we give a proof of the result of Power based on the ideas of Section 2.
Note that a nest N is well ordered if and only if P 6= P+ for every P in N , P 6= I.

Lemma 9. Let N be a well-ordered nest on H and A be an operator in B(H). Let
P0 be in N . Then ∑

P∈N,P<P0

⊕(r(AP+)	 r(AP )) = r(AP0).

Proof. It is clear that
∑

P∈N,P<P0

⊕(r(AP+)	 r(AP )) is contained in r(AP0). Let x

be in r(AP0), x 6= 0, and assume that x is orthogonal to∑
P∈N,P<P0

⊕(r(AP+)	 r(AP )).

Put S = sup{L ∈ N : x is orthogonal to r(AL)}. Then since x 6= 0 we get S <

P0. Since x is orthogonal to (r(AS+)	 r(AS)) we conclude that x is orthogonal to

r(AS+), which is contrary to the definition of S. Therefore∑
P∈N,P<P0

⊕(r(AP+)	 r(AP )) = r(AP0).

Theorem 10. a) Let N be a well-ordered nest on H. Let X be a positive operator
in B(H). Then there exists an outer operator B in AlgN such that X = B∗B.
Moreover, B belongs to the von Neumann algebra generated by X and the nest N .

b) Let N be a nest on H. Assume that for every positive operator X in B(H)
there exists an outer operator B in AlgN such that X = B∗B. Then N is well-
ordered.

Proof. a) PutA = X
1
2 . Let P be inN . We denote byMP the orthogonal projection

on r(AP+) 	 r(AP ). We set AP = MPA(P+ − P ). We show that r(AP ) contains
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r(AP+) ∩ r(AP )⊥. Let y be in r(AP+) ∩ r(AP )⊥. Then there exists x in P+ such
that y = Ax. We have y = A(P+ − P )x+APx, and therefore

MP y = MPA(P+ − P )x+MPAPx.

Now since APx is contained in r(AP ) we have MPAPx = 0. Hence y = MP y =
MPA(P+−P )x and y is in r(AP ). Let VP |AP | be the polar decomposition of AP .

Then VP is a partial isometry with domain contained in P+ 	 P and range r(AP )

which is equal to r(AP+)	 r(AP ). Put V =
∑
P∈N

VP . We have

V V ∗ =
∑
P∈N

⊕(r(AP+)	 r(AP )),

which is equal to r(A) by Lemma 9. Therefore A = V V ∗A. We set B = V ∗A.
Then X = B∗B. Since MP lies in the von Neumann algebra generated by X and
the nest N , the same holds for the operators VP and hence also for V . We conclude
that B belongs to the von Neumann algebra generated by X and the nest N . To
finish the proof we have to show that B is outer and lies in AlgN . The range of
(VP )∗A is contained in P+	P , and hence the range projection of (VP )∗A commutes
with N for every P . It follows that the range projection of B commutes with N .
Let P0 be in N . We will show now that r(BP0) is dense in r(B) ∩ P0. Let y be in
r(B) ∩ P0. Then y = Bx for some x in H . We have y = V ∗Ax. Then V y = Ax
and Ax is in V P0, which is equal to∑

P∈N,P<P0

⊕(r(AP+)	 r(AP )).

By Lemma 9,
∑

P∈N,P<P0

⊕(r(AP+) 	 r(AP )) is equal to r(AP0). It follows that

V ∗Ax is in V ∗r(AP0). But V ∗r(AP0) is contained in r(V ∗AP0) = r(BP0). There-

fore y is in r(BP0) and r(B) ∩ P0 is contained in r(BP0). We conclude that B is
an outer operator in AlgN .

b) Assume that N is not well-ordered. Then there exists P0 in N such that
P0 = (P0)+. Let ξ be a unit vector in H such that (P0)ξ = 0 and Pξ 6= 0 for every
P in N , P > P0. Put X = ξ⊗ ξ. Assume there exists an outer operator B in AlgN
such that at X = B∗B. The operator B must be a rank one operator. So there
exist vectors x,y in H such that B = x⊗ y. We have ξ⊗ ξ = 〈y,y〉x⊗ x, and hence
x is a multiple of ξ. It follows from the characterisation of the rank-one operators
in AlgN given in [22] that y belongs to P0. But now we have r(BP0) = {0} and
r(B) ∩ P0 = [y]. We conclude that B cannot be outer.

Now we are going to characterise the positive operators A in B(H) which admit
a right factorisation (resp. a left factorisation) with respect to any nest N . We use
some results from Fredholm theory which may be found in [5]. As in Section 2, if

N is a nest we denote by Q the element of N defined by Q =
⋃

P∈N,P=P−
P .

Theorem 11. Let A be an operator in B(H).
a) There exists for every nest N an operator BN in AlgN satisfying AA∗ = BN

B∗N if and only if A is a right Fredholm operator.
b) There exists for every nest N an operator BN in AlgN satisfying A∗A =

B∗NBN if and only if A is a left Fredholm operator.
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Proof. a) Assume that A is a right Fredholm operator. Then r(A) is closed and of
co-finite dimension in H . Then r(A) ∩Q is of co-finite dimension in Q. It follows
from [2, Prop. 4] that

⋃
P<Q

P ∩ r(A) is dense in r(A) ∩ Q. Since the restriction

of A onto cokerA is an isomorphism from cokerA onto r(A), we see that the set
A−1(

⋃
P<Q

P ∩ r(A)) ∩ cokerA is dense in A−1(Q ∩ r(A)) ∩ cokerA. We have

A−1(
⋃
P<Q

P ∩ r(A)) ∩ cokerA = A−1(
⋃
P<Q

P ) ∩ cokerA

and
A−1(Q ∩ r(A)) ∩ cokerA = A−1(Q) ∩ cokerA.

Since

A−1(Q)	A−1(
⋃
P<Q

P ) = (A−1(Q) ∩ cokerA) 	 (A−1(
⋃
P<Q

P ) ∩ cokerA),

we conclude that n(A) = 0. It then follows from Theorem 5 that for every nest N
there exists an operator BN in AlgN satisfying AA∗ = BNB

∗
N .

Assume that for every nest N there exists an operator BN in AlgN satisfying
AA∗ = BNB

∗
N . It follows from [2, Th. 15] that A is a right Fredholm operator.

b) Assume that A is a left Fredholm operator. Then A∗ is a right Fredholm
operator. Let N be a nest. It follows from a) that there exists an operator CN⊥
in AlgN⊥ satisfying A∗A = CN⊥C

∗
N⊥ . Put BN = C∗N⊥ . Then BN is in AlgN and

satisfies A∗A = B∗NBN .
Assume that for every nest N there exists an operator BN in AlgN satisfying

A∗A = B∗NBN . It follows then from [2, Th. 15] that A is a left Fredholm operator.

Corollary 12. Let A be a positive operator in B(H). Then A admits a right
factorisation (a left factorisation) with respect to every nest N if and only if A is
a Fredholm operator.

Proof. It follows from Theorem 11 that A admits a right factorisation with respect

to every nest N if and only if A
1
2 is a right Fredholm operator. Since A

1
2 is

selfadjoint, A
1
2 is a right Fredholm operator if and only if it is a Fredholm operator.

But A
1
2 is a Fredholm operator if and only if A is a Fredholm operator.

The other assertion is proved in the same way.

4. Factorisation and ranges of operators

Let N be a nest on H . We set OR(N) = {W : W = r(X) for some X in AlgN}.
Let A be an operator in B(H). Assume that there exists an operator B in AlgN
such that AA∗ = BB∗. Then r(A) = r(B) by [10], and so r(A) is in OR(N). In
Theorem 13 below we show that this condition is also sufficient for the existence of
an operator B in AlgN satisfying AA∗ = BB∗. As in Section 2, we denote by Q
the element of N defined by Q =

⋃
P∈N,P=P−

P .

Theorem 13. Let N be a nest on H. Let A be an operator in B(H). The following
are equivalent:

a) There exists an operator B in AlgN such that AA∗ = BB∗.
b) r(A) is in OR(N).
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Proof. It is clear that a) implies b).
b) implies a): Let C be an operator in AlgN such that r(A) = r(C). The

operator C clearly satisfies condition b) of Theorem 5. We prove that so does A.
For this it suffices to show that n(A) = n(C) and nP (A) = nP (C) for every P > Q
such that dim(P 	 P−) < +∞. It follows from [10] that there exists operators X
and Y in B(H) such that i) cokerX = cokerA, r(X) = cokerC and A = CX ,
ii) cokerY = cokerC , r(Y ) = cokerA and C = AY . Then it is easy to see that
XY x = x for every x in cokerC and Y Xx = x for every x in cokerA.

We prove first that nP (A) = nP (C) for every P > Q such that dim(P 	 P−) <
+∞. Let P be an element of N such that P > Q and dim(P 	 P−) < +∞, and
π be the canonical projection from C−1(P ) onto C−1(P )/C−1(P−). Let x be in
A−1(P ) 	 A−1(P−). Then it is easy to see that Xx is in C−1(P ). We are going
to show that the linear map from A−1(P )	A−1(P−) to C−1(P )/C−1(P−) defined
by x → π(Xx) is injective. In fact, if π(Xx) = 0, then Xx belongs to C−1(P−)
and Ax = CXx belongs to P−. This implies that x is in A−1(P−), and hence it is
0. It follows that dim(A−1(P )	A−1(P−)) ≤ dim(C−1(P )	 C−1(P−)) and hence
nP (C) ≤ nP (A). A similar argument proves that nP (A) ≤ nP (C).We conclude
that nP (C) = nP (A) for every P in N such that P > Q and dim(P 	 P−) < +∞.

We show now that n(A) = n(C). Let π be the canonical projection from C−1(Q)

onto C−1(Q)/C−1(PrQN). Let x be in A−1(Q) 	 A−1(PrQN). Then it is easy
to see that Xx is in C−1(Q). We are going to show that the linear map from

A−1(Q)	A−1(PrQN) to C−1(Q)/C−1(PrQN) defined by x→ π(Xx) is injective.

Assume π(Xx) = 0. Then Xx is in C−1(PrQN), and consequently there exists
a sequence wn in C−1(PrQN) converging to Xx. Therefore the sequence Y wn
converges to Y Xx, which is equal to x. Since wn is in C−1(PrQN), Cwn is in
Pr(QN). Since AY wn = Cwn, we conclude that Y wn is in A−1(PrQN). Therefore

x, being the limit of Y wn, is in A−1(PrQN). Hence x = 0. It follows that

dim(A−1(Q)	A−1(PrQN)) ≤ dim(C−1(Q)	 C−1(PrQN)).

A similar argument shows that

dim(C−1(Q)	 C−1(PrQN)) ≤ dim(A−1(Q)	A−1(PrQN)).

We conclude that n(A) = n(C).
It follows now from Theorem 5 that there exists an operator B in AlgN such

that AA∗ = BB∗.

Corollary 14. Let N be a nest on H. Let A and C be operators in B(H). We
assume that r(A) = r(C). Then there exists an operator B in AlgN such that
AA∗ = BB∗ if and only if there exists an operator D in AlgN such that CC∗ =
DD∗.

Proof. This follows from Theorem 13.

Corollary 15. Let N be a nest on H. Let A and C be positive operators in B(H).
We assume that r(A) = r(C). Then:

a) The operator A is in Fr(N) if and only if the operator C is in Fr(N).
b) The operator A is in Fl(N) if and only if the operator C is in Fl(N).

Proof. a) Theorem 1 in [10] implies that there exist positive numbers λ and µ such

that A2 ≤ λC2 ≤ µA2. It follows then from [14, Prop. 4.2.8.] thatA ≤ λ
1
2C ≤ µ

1
2A.
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Hence, using again Theorem 1 of [10], we obtain r(A
1
2 ) = r(C

1
2 ). Now the assertion

follows from Corollary 14.
b) follows from a) and the fact that Fl(N) = Fr(N

⊥).

In the rest of this section we study the set OR(N). The importance of this set
emerges from Theorem 13.

Let S be a set of subspaces of H containing {0} and H . We say that S is a
join semi-lattice if whenever V and W are in S, V +W is in S. We say that S is
a meet semi-lattice if whenever V and W are in S, V ∩W is in S. If S is a join
semi-lattice and a meet semi-lattice we say that it is a lattice. When N is the trivial
nest consisting of the subspaces {0} and H , the set OR(N) is the set of ranges of
operators in B(H). In this case it was shown by Dixmier that OR(N) is a lattice
[8]. A proof of this result may also be found in [11] or [12]. In what follows we
characterise the nests N for which OR(N) is a join or a meet semi-lattice.

Proposition 16. Let N be a nest and W a linear subspace of H. The following
are equivalent:

a) The subspace W is in OR(N).
b) There exists an operator A in B(H) with r(A) = W which satisfies condition

b) of Theorem 5.
c) Every operator A in B(H) with r(A) = W satisfies condition b) of Theorem 5.

Proof. It follows from Theorem 11 and Theorem 5 that a) implies c).
It is clear that c) implies b).
b) implies a) by Theorem 5 and Theorem 13.

Corollary 17. Let N be a nest. We assume that one of the following holds:
a) Q = 0.
b) There exist P in N , P > Q, such that dim(P 	 P−) = +∞.
Then OR(N) is the set of ranges of operators in B(H). In particular, OR(N)

is a lattice.

Proof. Let A be an operator in B(H). Then A satisfies condition b) of Theorem 5,
and it follows from Proposition 16 that r(A) is in OR(N).

Corollary 18. Let N be a nest. Assume that Q 6= 0 and that for every P in
N,P > Q, we have dim(P 	 P−) < +∞. Let ξ be a vector in Q which is not
QN -proper. There is no operator in AlgN with range Q⊥ + [ξ].

Proof. Put B = Q⊥+ξ⊗ξ. It is clear that r(B) = Q⊥+[ξ]. It follows from Propo-
sition 16 that B must satisfy condition b) of Theorem 5. But an easy calculation
shows that

∑
P>Q

nP (B) = 0 and n(B) = 1. The conclusion follows.

Proposition 19. Let N be a nest such that I = I−. Then there exist A, C in
AlgN such that r(A) ∩ r(C) is not the range of any operator in AlgN .

Proof. A necessary and sufficient condition for a rank one operator η ⊗ ξ to lie
in AlgN is that there exists P in N such that ξ is in P and η is in (P−)⊥ [22].
Therefore, if ξ is a vector in H which is not N -proper, there is no operator in AlgN
with range [ξ]. So it suffices to construct operators A and C in AlgN such that
r(A) ∩ r(C) = [ξ] and ξ is not N -proper.

Let {Pn}∞n=0 be a sequence of elements of N such that P0 = 0, Pn+1 > Pn, Pn 6=
I, dim(Pn+1 	 Pn) ≥ 2 for each n, and Pn converges strongly to I. We consider
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unit vectors en, fn in Pn+1 	 Pn with en orthogonal to fn. We define w0 = f0,

w1 = 2−1f1 − f0, wn = 2−nfn − (
n−1∑
i=0

2−ifi) for each n. We consider the operators

A =
∞∑
n=1

en ⊗ en−1 and B =
∞∑
n=1

2−
n
2 en ⊗ wn−1. It is clear that A and B are in

AlgN . We set C = A+B, and we will prove that A and C are as required. Let x be
in r(A) ∩ r(C). Then there exist y and z in H such that x = Ay = Cz = Az+Bz.
We have Bz = A(y − z), and since r(A) and r(B) are orthogonal we obtain that
Bz = 0 and z is in kerB. It follows that x = Ay = Az, and so x is in A(kerB).
Conversely, assume that w is in kerB. We have Aw = (A + B)w = Cw, and so
A(kerB) is contained in r(A) ∩ r(C). Thus r(A) ∩ r(C) = A(kerB). We are going
to show that the subspace A(kerB) is spanned by a vector which is not N -proper.

Let z be in kerB. Then z =
∞∑
n=1

znen + z0e0+ r, where zn are complex numbers

for n = 0, 1, 2, ... and r is in [{en : n = 0, 1, 2, ...}]⊥. Since Bz = 0 we obtain
∞∑
n=1

2−
n
2 znwn−1 = 0. Now if

∞∑
n=0

λnwn = 0, then taking scalar products with f0,

f1, ... successively, we find that λ0 =
∞∑
k=1

λk, λ1 =
∞∑
k=2

λk, ..., λn =
∞∑

k=n+1

λk for

each n, and hence λ0 − λ1 = λ1, λ1 − λ2 = λ2, ...λn − λn+1 = λn+1 for each n.
Therefore λn = 2−nλ0. It follows that zn+1 = 2−

n
2 z1 for n = 1, 2, .... We conclude

that

z =

∞∑
n=1

znen + z0e0 + r = z1(

∞∑
n=1

2−
n−1

2 en) + z0e0 + r.

Since z0e0+ r is in kerA, Az = z1(
∞∑
n=1

2−
n−1

2 en−1). So the subspace A(kerB) is

spanned by the vector
∞∑
n=1

2−
n−1

2 en−1, which is not N -proper. We conclude that

A(kerB) cannot be the range of any operator in AlgN .

Theorem 20. Let N be a nest. Then OR(N) is a meet semi-lattice if and only if
one of the following cases occurs:

a) Q = 0.
b) There exist P in N , P > Q, such that dim(P 	 P−) = +∞.

Proof. Suppose that Q 6= 0 and for every P in N , P > Q, we have dim(P 	P−)
< +∞. We will show that OR(N) is not a meet semi-lattice. It follows from
Proposition 19 that there exist operatorsA and C in AlgQN such that r(A)∩r(C) =
[ξ] and ξ is not QN -proper. We define A1 = Q⊥ +A, C1 = Q⊥ +C. Then A1 and
C1 are in AlgN and r(A1) ∩ r(C1) = Q⊥ + [ξ]. By Corollary 18, Q⊥ + [ξ] is not in
OR(N).

Assume now that a) or b) holds. It follows from Corollary 17 that OR(N) is the
set of ranges of operators in B(H), which is a lattice.

Lemma 21. Let N be a nest such that I = I−. Then there exist partial isometries
U1 and U2 in AlgN with orthogonal domains and such that r(U1) = r(U2) = H.

Proof. Let {Pn}∞n=0 be a sequence of elements of N such that: P0 = 0, Pn+1 >
Pn, Pn 6= I for each n, and Pn converges strongly to I. It follows from Lemma 1 that
there exists a sequence {Mn}∞n=1 of closed mutually orthogonal infinite dimensional



178 M. ANOUSSIS AND E. G. KATSOULIS

subspaces of H such that Mn ⊂ (Pn)⊥ for every n. Let V0 be a partial isometry
with domain contained in M1 and range P1. For each n ≥ 1, consider a partial
isometry Vn with domain contained in M2n+1 and range P2n+1 	P2n−1. Put U1 =
∞∑
n=0

Vn. For each n ≥ 2, consider a partial isometry Wn with domain contained in

M2n and range P2n 	 P2n−2. Put U2 =
∞∑
n=1

Wn.

Theorem 22. Let N be a nest. Then OR(N) is a join semi-lattice if and only if
one of the following three cases occurs:

a) Q = 0.
b) Q = I.
c) There exist P in N , P > Q, such that dim(P 	 P−) = +∞.

Proof. Assume first that a) or c) holds. It follows from Corollary 17 that OR(N)
is a lattice. Assume that b) holds. Let W1,W2 be in OR(N). Then W1 = r(A1),
W2 = r(A2) for some operators A1, A2 in AlgN. It follows from Lemma 21 that
there exist partial isometries U1 and U2 in AlgN with orthogonal domains and
such that r(U1) = r(U2) = H . We set B = A1U1 +A2U2. Then B is in AlgN and
r(B) = W1 +W2.

Assume now that Q 6= 0, Q 6= I, and for every P in N , P > Q, we have
dim(P 	 P−) < +∞. We will show that OR(N) is not a join semi-lattice. Put
A = Q⊥ and B = e⊗ ξ, where e is in Q⊥ and ξ is a vector in Q which is not QN -
proper. Then A and B are in AlgN and r(A) + r(B) = Q⊥ + [ξ]. By Corollary 18
there is no operator in AlgN with range Q⊥ + [ξ].

5. Nests with I = I−

Let N be a nest on H . In this section we obtain information about the set Fr(N)
Let A and C be positive operators in B(H). Consider the following condition:
(i) There exists a positive number λ such that A ≤ λC.

Put A1 = A
1
2 , C1 = C

1
2 . By [10, Th.1] condition (i) is equivalent to the following

condition:
(ii) There exists an operatorX in B(H) such that A1 = C1X , cokerX = cokerA1

and r(X) is contained in cokerC1.
We are interested in the following question:
Question: Assume (i) holds. Assume that A is in Fr(N). Is it true that C is in

Fr(N)?
The above question in the generality stated has a negative answer. However if we

assume moreover that the nest N satisfies I = I− and that the range of the operator
X is dense in cokerC1, the answer is positive. This is shown in Theorem 23, below.

A similar question has been considered by Lowdenslager in [16] and by Douglas
in [9] in the context of factorisation of operator functions. The results obtained
there are used to prove Devinatz’s Theorem [7].

The condition : “the range of the operator X is dense in cokerC1” is implicit in
the work of Douglas [9]. Theorem 23 and Corollaries 24 and 25 below are motivated
by that paper. We remark that Theorem 23 improves Corollary 14 in the case of a
nest with the property I = I−.
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Theorem 23. Let A and C be operators in B(H). We assume that there exists an
operator X in B(H) such that A = CX, cokerX = cokerA and r(X) is contained
in cokerC. Then the following are equivalent:

a) r(X) is dense in cokerC.

b) i) r(A) = r(C).
ii) Let N be a nest on H such that I = I− . Assume that there exists an operator

B in AlgN such that AA∗ = BB∗. Then there exists an operator D in AlgN such
that CC∗ = DD∗.

Proof. a) implies b).
i) We have A∗ = X∗C∗, and since r(X) is dense in cokerC we obtain that

KerA∗ = KerC∗. It follows that r(A) = r(C).
ii) The subspace A−1(PrN) is dense in H by Theorem 5. It follows that

X(A−1(PrN)) is dense in r(X) and hence in cokerC. But C−1(PrN) contains
X(A−1(PrN)) + kerC, which is dense in cokerC +kerC = H . Again by Theo-
rem 5 we conclude that there exists an operator D in AlgN such that CC∗ = DD∗.

b) implies a).
Assume first that cokerA is of finite dimension. Then dimr(A) = dimr(X) and

by condition i) dimr(A) = dimr(C) . So dimr(X) = dimr(C), and since r(X)
is contained in cokerC we have r(X) = cokerC. Assume now that cokerA is of
infinite dimension and that r(X) is not dense in cokerC. We are going to construct
a nest N on H with the property I = I− and such that AA∗ is in Fr(N) and CC∗

is not in Fr(N). Let {en}∞n=1 be an orthonormal basis of cokerA. We set Pn = [em :
m ≤ n] for n = 1, 2, ... . We set Qn = r(A)⊥ + APn. Let N be the nest {Qn :
n = 1, 2, ...} ∪ {H , {0}}. It is clear that N satisfies I = I−. Now A−1(Qn) =

KerA + Pn for n = 1, 2, ..., and so A−1(PrN) being equal to KerA+
∞⋃
n=1

Pn, is

dense in H . It follows from Theorem 5 that AA∗ is in Fr(N). Put Rn = X(Pn)
for n = 1, 2, ... . We have Qn = r(A)⊥ + CRn, which by condition i) is equal to
r(C)⊥ + CRn, and so C−1(Qn) = KerC + Rn for n = 1, 2, ... . It follows that

C−1(PrN) = KerC +
∞⋃
n=1

Rn. But then C−1(PrN) is contained in KerC + r(X).

Since r(X) is not dense in cokerC, we see that C−1(PrN) is not dense in H . Hence,
by Theorem 5, CC∗ is not in Fr(N).

Note that condition b)i) does not imply condition a). One can see that in the
example constructed by Douglas in [9, p.120]. Also it is easy to see that condition
b)ii) does not imply condition a). In fact, let A be an operator in B(H) such
that r(A) is not dense in H . Put X = A, and C = I. Then we have A = CX ,
cokerX = cokerA and r(X) is contained in cokerC. Clearly b)ii) is satisfied. But
since r(A) is not dense in H , condition a) is not satisfied.

Theorem 23 is not valid for general nests. This is shown in the following example.

Example 1. Let H1 be a Hilbert space and N1 be a nest in H1 such that I =
I−. Take a unit vector ξ in H which is not N -proper. Put A = ξ ⊗ ξ. Then
A−1(PrN1) = [ξ]⊥, and hence A−1(PrN1) has codimension one in H1.

Let H2 be a Hilbert space and {en}∞n=1 an orthonormal basis of H2. Set η =
∞∑
n=1

n−1en and define the operator B by B =
∞∑
n=1

n−1en ⊗ en. Then r(B) is dense

in H2. Take an orthonormal basis {fn}∞n=1 of [η]⊥. Put Pm = [f1, f2, ..., fm] for
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m = 1, 2, ..., and consider the nest

N2 = {[η] + (Pm)⊥ : m = 1, 2, ...} ∪ {[η], {0}, H}.
Note that B−1([η]) = {0}.

Put H = H1 ⊕H2 and define a nest N on H by N = N1 ∪ {H1 ⊕ P : P ∈ N2}.
Note that

⋃
P∈N,P=P−

P = H1.

Define operators X and Y in B(H) by Xx = Ax if x is in H1, Xx = Bx if x is
in H2, Y x = Ax if x is in H1, Y x = x if x is in H2. Then X = Y X , and r(X) is
dense in cokerY . Now put R = H1 + [η]. Then nR(X) = 1 and n(X) = 1. It now
follows from Theorem 5 that XX∗ is in Fr(N). On the other hand, for every S in
N, S > H1, we have nS(Y ) = 0 and n(Y ) = 1. It follows from Theorem 5 that
Y Y ∗ is not in Fr(N). Hence Theorem 23 does not hold for general nests.

Theorem 23 has some useful corollaries.

Corollary 24. Let N be a nest on H such that I = I− . Let A and C be positive

operators in B(H). Put A1 = A
1
2 , C1 = C

1
2 . Assume that:

i) There exists a positive number λ such that A ≤ λC.
ii) KerA = KerC.
iii) There exists a positive number µ such that A ≥ µC1AC1.
Then if A is in Fr(N), C is in Fr(N).

Proof. It follows from [10, Th.1] that there exists an operator X in B(H) such
that A1 = C1X , cokerX = cokerA1 and r(X) contained in cokerC1. It follows
from Theorem 23 that in order to prove the assertion it suffices to show that r(X)
is dense in cokerC1. Assume the contrary. Since kerX∗ = r(X)⊥, there exists

a non-zero vector y in kerX∗ ∩ cokerC1. Since cokerC1 = r(C1) , there exists a
sequence {yn: n = 1, 2, ...} such that C1yn converges to y. Then the sequence
{A1yn: n = 1, 2, ...} converges to 0, since A1yn = X∗C1yn and y is in kerX∗. We
have 〈Ayn, yn〉 ≥ 〈µC1AC1yn, yn〉, and hence

〈A1yn, A1yn〉 ≥ µ〈A1C1yn, A1C1yn〉
for n = 1, 2, ... . Taking limits we find that 0 ≥ µ〈A1y,A1y〉, which implies that
A1y = 0. This is a contradiction, since y belongs to cokerC1 = cokerA1. Hence
r(X) is dense in cokerC1.

Corollary 25. Let N be a nest on H such that I = I−. Let A and C be positive
operators in B(H). Assume that:

a) There exists a positive number λ such that A ≤ λC.
b) KerA = KerC.
c) A and C commute.
Then if A is in Fr(N), C is in Fr(N).

Proof. Put µ = ‖C‖−1. The conclusion follows from Corollary 24.

The following corollary answers a question posed by Shields in [23].

Corollary 26. Let N be a nest on H such that I = I−. Let A be a positive operator
in B(H) and 0 < λ ≤ 1. Then if A is in Fr(N), Aλ is in Fr(N).

Proof. Without loss of generality we may assume that A is a contraction. The
conclusion then follows from Corollary 25.
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Corollary 26 does not hold if we assume λ ≥ 1. This is shown in the following
example.

Example 2. We are going to show that there exist a nest N such that I = I− and
a positive operator B in B(H) with the following properties:

a) B is in Fr(N).
b) B2 is not in Fr(N).
Let H be a Hilbert space and {en}∞n=0 an orthonormal basis of H . We set

Pn = [em : m ≤ n] for n = 0, 1, 2, .... Let N be the nest {Pn : n = 0, 1, 2, ...} ∪
{H , {0}}. Set ξ =

∞∑
n=1

n−1en and A =
∞∑
n=1

n−1en ⊗ en +ξ ⊗ e0. Put B = AA∗.

Then B =
∞∑
n=1

n−2en⊗ en +ψ⊗ e0 + e0⊗ψ+ ce0⊗ e0, where ψ =
∞∑
n=1

n−2en and c

is a positive number. The set A−1(PrN ) is dense in H , because it contains en for

n = 0, 1, 2, ... . It follows from Theorem 5 that B is in Fr(N). Let x =
∞∑
n=0

xnen be

in B−1(PrN ). Then Bx is N -proper. The coefficient of en in Bx is n−2(xn + x0).
Since Bx is N -proper, there exists n0 such that xn+x0 = 0 for n ≥ n0. This implies
that x0 = 0, and so B−1(PrN) is orthogonal to e0. It follows from Theorem 5 that
B2 is not in Fr(N).

Proposition 27. Let N be a nest on H such that I = I−. Let A and C be operators
in Fr(N). Then A+ C is in Fr(N).

Proof. Put A1 = A
1
2 , C1 = C

1
2 . It follows from Theorem 2.2. of [11] that r(A1) +

r(C1) = r((A + C)
1
2 ). By Theorem 13 r(A1) and r(C1) are in OR(N), and so

r(A1) + r(C1) is in OR(N) by Theorem 22. Using Theorem 13 again, we see that
A+ C is in Fr(N).

The following proposition characterises the positive operators with closed range
which belong to Fr(N). We say that a subspace V of H is N -proper if V ∩PrN is
dense in V .

Proposition 28. Let N be a nest such that I = I−. Let A be a positive operator
in B(H) with closed range. Then A is in Fr(N) if and only if r(A) is N -proper.

Proof. Put A1 = A
1
2 . It is easy to see that since r(A) is closed, r(A) = r(A1) and

hence r(A1) is closed. By [2, Prop. 6], (A1)
−1(PrN) is dense in H if and only if

r(A1) is N -proper. The proposition now follows from Theorem 5.

The following theorem provides a decomposition of a positive operator A into
a “factorable” and a “completely non-factorable” part with respect to a nest N
satisfying I = I−. An analogous decomposition has been obtained in [21] and [1]
for special cases.

Theorem 29. Let N be a nest such that I = I−. Let A be a positive operator in
B(H). There exist operators B and C in B(H) with the following properties:

a) B ≥ 0, C ≥ 0, A = B + C.
b) B is in Fr(N).
c) If E is in AlgN and satisfies EE∗ ≤ C , then E = 0.
d) If F is in AlgN and satisfies FF ∗ ≤ A , then FF ∗ ≤ B.
Moreover, the operators B and C are unique with these properties.
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Proof. Put A1 = A
1
2 . Put H1 = (A1)−1(PrN) and let R be the orthogonal projec-

tion onto H1. Define B1 = A1R, C1 = A1R
⊥. Then A1 = B1+C1 and B1(C1)

∗ = 0.
We show that r(C1) ∩ PrN = {0}. Let x be a vector in H such that C1x is in
PrN . Then A1R

⊥x is in PrN , and so R⊥x is in H1 and hence it is 0. Since C1x
= C1R

⊥x, we conclude that C1x = 0.
Put B = B1(B1)

∗, C = C1(C1)
∗. We have B ≥ 0, C ≥ 0 and A = A1(A1)

∗ =
B1(B1)

∗ + C1(C1)
∗ = B + C. So a) is satisfied. We show that b) is satisfied.

The space (A1)
−1(PrN) + R⊥H is dense in H and is contained in (B1)

−1(PrN).
Therefore (B1)

−1(PrN) is dense in H , and it follows from Theorem 5 that B is in
Fr(N).

Assume E is in AlgN and satisfies EE∗ ≤ C. Then r(E) ⊆ r(C1) by [10]. But
r(C1) ∩ PrN = {0}. Since E−1(PrN) is dense in H, E = 0.

Now we prove that d) is satisfied. By [10] there exists a contraction X in B(H)
such that F = A1X . The operator X sends F−1(PrN ) into (A1)

−1(PrN), and
since F−1(PrN ) is dense in H we conclude that the range of X is contained in
H1. Therefore F = A1X = (A1R+ A1R

⊥)X = A1RX . So FF ∗ ≤ B.
Assume now that the operators B0 and C0 have the properties a) through d).

Since B = DD∗ for some D in AlgN , it follows from d) that B ≤ B0. Similarly
B0 ≤ B, and so B = B0 and C = C0.

Using the results of this section, one may obtain analogous results for the set
Fl(N) for a nest N with the property 0 = 0−.
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