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WANDERING VECTORS FOR

IRRATIONAL ROTATION UNITARY SYSTEMS

DEGUANG HAN

Abstract. An abstract characterization for those irrational rotation unitary
systems with complete wandering subspaces is given. We prove that an irra-
tional rotation unitary system has a complete wandering vector if and only if
the von Neumann algebra generated by the unitary system is finite and shares
a cyclic vector with its commutant. We solve a factorization problem of Dai
and Larson negatively for wandering vector multipliers, and strengthen this by
showing that for an irrational rotation unitary system U , every unitary oper-
ator in w∗(U) is a wandering vector multiplier. Moreover, we show that there
is a class of wandering vector multipliers, induced in a natural way by pairs
of characters of the integer group Z, which fail to factor even as the product
of a unitary in U ′ and a unitary in w∗(U). Incomplete maximal wandering
subspaces are also considered, and some questions are raised.

An important class of operator algebras is the class of irrational rotation C*-
algebras, which has been systematically studied over the past 15 years. These
algebras have several equivalent definitions (see [10]). One is that they are exactly
the C*-algebras Aθ generated by a pair of unitary elements u and v which satisfy
the relation uv = λvu, where λ = exp(2πiθ) and θ ∈ (0, 1) is an irrational number.
We will call the set U = {unvm : (n,m) ∈ Z × Z} an (abstract) irrational rotation
unitary system, where Z is the set of all integers. It is a proper subset of the
group generated by u and v. If B is a C*-algebra and a, b are two elements in B
satisfying the relation ab = exp(2πiθ)ba, then it is known that there is a faithful
*-isomorphism π from Aθ into B satisfying π(u) = a and π(v) = b (see [4] or [9]).

Following Dai and Larson [2], a unitary system U is a subset of the unitary oper-
ators acting on a separable Hilbert space H which contains the identity operator. A
norm one element ψ ∈ H is called a wandering vector for U if Uψ = {Uψ : U ∈ U}
is an orthonormal set; that is, 〈Uψ, V ψ〉 = 0 if U, V ∈ U and U 6= V . If Uψ is an
orthonormal basis for H , then ψ is called a complete wandering vector for U . The
set of all complete wandering vectors for U is denoted by W(U). More generally,
a closed subspace M of H is called a wandering subspace of U if UM and VM are
orthogonal for any different U and V in U . A wandering subspace M is called com-
plete if span{UM} = H . The set of all the complete wandering subspaces for U is
denoted by WS(U). More generally, a unital unitary subset U of a C*-algebra A is
called an abstract unitary system. In this case, one is interested in representations
π of A for which π(U) has wandering subspaces.
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If U, V are unitary operators in B(H), we write UU,V = {UnV m : (n,m) ∈
Z × Z}. Unitary systems of this form (but with different relations between the
generators than we consider in this paper) have importance in wavelet theory. If
U, V satisfy the relation UV = λV U with λ = exp(2πiθ) and θ ∈ (0, 1) an irrational
number, then we call UU,V a (concrete) irrational rotation unitary system.

In this paper we are concerned with irrational rotation unitary systems and
their wandering vectors, and more generally their wandering subspaces. We prove
that, up to unitary equivalence, there is only one *-representation of an irrational
rotation C*-algebra such that the image unitary system of the representation has
a complete wandering vector. We will give an abstract characterization for those
irrational rotation unitary systems which have complete wandering subspaces. We
also show that Problem C in [2] has a negative answer for an irrational rotation
unitary system with a complete wandering vector. (We note that an independent
counterexample was given by Li, McCarthy and Timotin in [8]. They did not
consider the irrational rotation C∗-algebras, but instead considered a generalization
of a structure property of unitary systems given in [2]).

Let S be a subset of B(H). We use w∗(S) to denote the von Neumann algebra
generated by S, and as in [2] use U(S) to denote the set of all unitary operators
in S. The commutant of S is S′ = {T ∈ B(H) : TS − ST = 0, ∀S ∈ S}. For a
subset M of H , we use [M] to denote the closure of the linear span of M. We use
the term coisometry for the operator T when T ∗ is an isometry. Recall that two
unitary systems Ui (i = 1, 2) are unitarily equivalent if there is a unitary W such
that WU1W

∗ = U2. Two *-representations π1 and π2 of a C*-algebra A are called
unitarily equivalent if there exists a corresponding unitary operator W such that
Wπ1(a)W

∗ = π2(a) for every a ∈ A. If U is a unitary system and ψ ∈ W(U), the
local commutant Cψ(U) at ψ is defined by {T ∈ B(H) : (TU − UT )ψ = 0, U ∈ U}.
A useful result is the one-to-one correspondence between the complete wandering
vectors and the unitary operators in Cψ(U). In particular, if ψ ∈ W(U), then
W(U) = U(Cψ(U))ψ = {Tψ : T ∈ U(Cψ(U)} (see [2], Proposition 1.3).

Theorem 1. Let Aθ be an irrational rotation C*-algebra with unitary generators
u, v for which uv = e2πiθvu for some irrational number θ ∈ (0, 1). Then, up to
unitary equivalence, there exists a unique faithful *-representation π of Aθ on a
Hilbert space H such that the irrational rotation unitary system U = {UnV m :
n,m ∈ Z}, where U = π(u) and V = π(v), has a complete wandering vector.
Moreover, W(U) is a closed and connected subset of H and span(W(U)) = H.

Proof. Let π1 and π2 be faithful *-representations on Hilbert spaces H1 and H2,
respectively, such that UUi,Vi has a compete wandering vector ψi, where Ui =
πi(u), Vi = πi(v), i = 1, 2. Since u, v are generators for Aθ, we only need to prove
that there is a unitary operator W satisfying WU1W

∗ = U2 and WV1W
∗ = V2. For

this purpose, write ψ
(i)
n,m = Uni V

m
i ψi for i = 1, 2 and n,m ∈ Z. Then {ψ(i)

n,m : n,m ∈
Z} is an orthonormal basis for Hi. Define W : H1 −→ H2 by Wψ

(1)
n,m = ψ

(2)
n,m for

all n and m. Then W is a unitary operator, and we have

WU1ψ
(1)
n,m = WU1U

n
1 V

m
1 ψ1 = U2U

n
2 V

m
2 ψ2 = U2Wψ(1)

n,m

and

WV1ψ
(1)
n,m = WV1U

n
1 V

m
1 ψ1 = e−2πinθWUn1 V

m+1
1 ψ1

= e−2πinθUn2 V
m+1
2 ψ2 = V2U

n
2 V

m
2 ψ2 = V2Wψ(1)

n,m.
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Thus WU1W
∗ = U2 and WV1W

∗ = V2, since these relations hold on an or-
thonormal basis for H1. Hence π1 and π2 are unitarily equivalent.

For the existence of such a *-representation π, let us consider the following
concrete unitary system. Let H be the Hilbert space l2(Z × Z), and let en,m be
the element of H which is 1 at (n,m) and 0 elsewhere. Define unitary operators
U , V on H by Uem,n = em+1,n and V em,n = λ−mem,n+1, where λ = e2πiθ. Then
UV = λV U follows from

UV em,n = U(λ−mem,n+1) = λ−mem+1,n+1

= λλ−(m+1)em+1,n+1 = λV Uem,n.

Thus UU,V is an irrational rotation unitary system. Let π be the faithful *-
isomorphism from Aθ into B(H) such that π(u) = U and π(v) = V . We will
show that W(U) is a closed and connected subset of H and span(W(U)) = H ,
where U = {UnV m : n,m ∈ Z}.

We have that Ue0,0 = {ek,l : k, l ∈ Z}. So e0,0 is a complete wandering vector
for U . Moreover, for any m,n ∈ Z, we have Uem,n = {λ−mlem+k,n+l : k, l ∈ Z},
which is an orthonormal basis for H . Thus in fact em,n ∈ W(U) for all n,m ∈ Z.
So spanW(U) = H , since {en,m : n,m ∈ Z} is an orthonormal basis for H ..

Let A ∈ Cψ(U) for some ψ ∈ W(U). The relation UV = λV U implies that
span(U) is an algebra. So for each S, T ∈ U , we have ST ∈ span(U). So AS(Tψ) =
(ST )Aψ = S(AT )ψ = SA(Tψ). Since T ∈ U is arbitary and span(Uψ) = H ,
it follows that AS = SA. Thus Cψ(U) ⊆ U ′. The inclusion “⊇” is trivial. Thus
Cψ(U) = U ′. So Cψ(U) is a von Neumann algebra. Since the unitary group of a von
Neumann algebra is norm connected, W(U) = U(U ′)ψ is norm-pathwise connected.

We claim that the von Neumann algebra w∗(U) generated by U and V is finite
and so is its commutant U ′. Let ψ ∈ W(U) be arbitary. First we show that
〈ABψ,ψ〉 = 〈BAψ,ψ〉 for all A,B ∈ w∗(U). It is enough to verify that this holds
for A = UnV m, B = UkV l with n,m, k, l ∈ Z, since the linear span of U is an
algebra. In fact, this follows from

〈UnV mUkV lψ, ψ〉 = e−2mkπiθ〈Un+kV m+lψ, ψ〉

=

{
0, (n+ k,m+ l) 6= (0, 0),

e−2mkπiθ, (n+ k,m+ l) = (0, 0),

and

〈UkV lUnV mψ, ψ〉 =

{
0, (n+ k,m+ l) 6= (0, 0),

e−2lnπiθ, (n+ k,m+ l) = (0, 0).

Thus ψ is a trace vector of w∗(U). Note that ψ is also a cyclic vector for w∗(U),
since Uψ is an orthonormal basis for H . Thus, by Lemma 7.2.14 in [6], ψ is a joint
cyclic trace vector for w∗(U) and U ′. By Theorem 7.2.15 in [6], this implies that
both w∗(U) and U ′ are finite von Neumann algebras.

For the closedness ofW(U), suppose that {ψn} is a sequence in W(U) converging
in norm to a vector η. Fix ψ ∈ W(U). Then by Proposition 1.3 in [2], since
Cψ(U) = U ′, there are unitary operators Vn ∈ U ′ with ψn = Vnψ. In order to show
that η ∈ W(U), again by Propositon 1.3 in [2], it is enough to show that η = Wψ
for some unitary operator W in U ′.

Let {Uλ} be a subnet of {Vn} such that Uλ −→ U0 in the weak operator topology
for some operator U0 ∈ U ′. Then Uλψ → η in norm and Uλψ → U0ψ in the weak
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topology on H . So η = U0ψ. Now for any x ∈ H , we have | 〈U∗λ(Uλψ − U0ψ), x〉 |
≤ ‖Uλψ−U0ψ‖‖x‖ −→ 0 and 〈U0ψ,Uλx〉 −→ 〈U0ψ,U0x〉 = 〈U∗0U0ψ, x〉. Thus

〈ψ, x〉 = 〈U∗λUλψ, x〉
= 〈U∗λ(Uλψ − U0ψ), x〉+ 〈U0ψ, Uλx〉
−→ 〈U∗0U0ψ, x〉,

which implies that U∗0U0ψ = ψ.
Since ψ is cyclic for span(U), it follows that ψ separates U ′. So since U∗0U0 ∈ U ′

and (U∗0U0 − I)ψ = 0, we get U∗0U0 = I. But U ′ is finite, so U0 is a unitary in U ′
as required.

In fact we have more:

Corollary 2. Let n be a natural number or ∞. Then, up to unitary equivalence,
there is only one faithful *-representation πn of Aθ such that πn(U) has a complete
wandering subspace of dimension n.

Proof. For the existence, let φ = π ⊗ In, acting on H ⊗ Cn if n < ∞ and on
H ⊗ l2(Z) if n = ∞, where π is as in Theorem 1. If x is any complete wandering
vector for π, then (Cx) ⊗ Cn (or (Cx) ⊗ l2(Z) if n = ∞) is an n-dimensional
complete wandering subspace for φ. For the uniqueness, let πn be a faithful *-
representation ofAθ on a Hilbert spaceK such that πn(U) has a complete wandering
subspace M of dimension n. Let {ξi : i = 1, 2, ..., n} be an orthonormal basis for
M . Then {πn(UkV l)ξi : k, l ∈ Z, 1 ≤ i ≤ n} is an orthonormal basis for K.
Fix an orthonormal basis {fi : 1 ≤ i ≤ n} for Cn. Define a unitary operator W
by Wπn(U

kV l)ξi = π(UkV l)e0,0 ⊗ fi. Then, as in the first part of the proof in
Theorem 1, we have Wπn(·)W ∗ = φ(·).

From the proof of Theorem 1, the following general result can be in fact ab-
stracted:

Proposition 3. Let U be a unitary system such that Cψ(U) = U ′ for some ψ ∈
W(U). Then W(U) is connected. If, in addition, w∗(U) is a finite von Neumann
algebra and span(W(U)) is dense in H, then W(U) is closed.

Proof. The connectedness follows from the fact that W(U) = U(U ′)ψ and the fact
that U(U ′) is connected in norm. For the closedness, looking at the same part as in
the proof of Theorem 1, it suffices to check that U ′ is a finite von Neumann algebra.
Since W(U) = U(U ′)ψ and span(W(U)) is dense in H , we have ψ is also cyclic for
U ′. Thus U ′ is finite by Lemma 9.1.1 in [6], as required.

For a general unitary system U , it is possible that W(U) is not closed. For
example, let U = UD,T , where D and T are defined by (Tf)(t) = f(t − 1) and

(Df)(t) =
√

2f(2t) for all f ∈ L2(R). Then W(U) is not closed. It is true that
span(W(U)) is dense in L2(R), but the connectedness problem is still open for this
unitary system (cf. [2]).

For a unitary system U such that WS(U) is not empty, we define the index set
of U by inds(U) = {dimM : M ∈ WS(U)}. In many cases inds(U) is a singleton
set. In some other cases it is all of Z+ ∪ {∞} (cf. [5]). (Question: Are other cases
possible?). We will prove that for an irrational rotation unitary system the index
set is always singleton, and give two ways to construct irrational rotation unitary
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systems which have no complete wandering vectors. One comes from the following
result.

Lemma 4. If U is an irrational rotation unitary system such that W(U) is not
empty, then for any non-trivial invariant subspace M of U , (U |M ) has no wandering
vectors.

Proof. Suppose that there is some element x ∈M such that {Ux} is an orthonormal
set. Take ψ ∈ W(U) and define an operator WH −→ H by WUψ = Ux,U ∈ U .
Then W ∗W = I and W ∈ Cψ(U) = U ′. Since U ′ is a finite von Neumann algebra,
we have WW ∗ = I, which contradicts the fact that M 6= H . Thus we obtain that
U|M has no wandering vectors.

The other comes from the following proposition.

Proposition 5. Let U be an irrational rotation unitary system such that WS(U)
is not empty. Then inds(U) is a singleton set.

Proof. Take M ∈ WS(U) such that dimM = k ∈ inds(U) (k may be ∞) and
fix an orthonormal basis {ξi} for M . By defining a unitary operator W : H →
`2(Z × Z)⊗M such that

W (UnV mξi) = en,m ⊗ ξi ∀i = 1, 2, ..., k, ∀n,m ∈ Z,
we can assume that U has a *-representation of UU,V ⊗ Ik, where Ik is the identity

operator on C(k) and U and V are defined as in the proof of Theorem 1.
Now suppose that there is m ∈ inds(U) such that k 6= m. Without loss of

generality, we assume that m < k. This implies that U also has a *-representation
of the form UU,V ⊗ Im. Thus, By Corollary 2, there is a unitary operator

T =

(
A
B

)
: `2(Z× Z)⊗ C(m) → `2(Z× Z)⊗ C(k),

such that T (U ⊗ Im)T ∗ = U ⊗ Ik and T (V ⊗ Im)T ∗ = V ⊗ Ik, where

A : `2(Z× Z)⊗ C(m) → `2(Z× Z)⊗ C(m),

B : `2(Z× Z)⊗ C(m) → `2(Z× Z)⊗ C(k−m).

By TT ∗ = I, we have that AA∗ = I`2(Z×Z)⊗C(m) and BB∗ = I`2(Z×Z)⊗C(k−m) .

Since T (U ⊗ Im)T ∗ = U ⊗ Ik and T (V ⊗ Im)T ∗ = V ⊗ Ik, we get that A ∈
{U ⊗ Im}′ = U ′ ⊗ B(C(m)). We know that U ′ is a finite von Neumann algebra.
Thus A∗A = I`2(Z×Z)⊗C(m) . So it follows from T ∗T = A∗A+ B∗B = I`2(Z×Z)⊗C(m)

that B = 0, which contradicts the relation BB∗ = I`2(Z×Z)⊗C(k−m) . Thus inds(U)
is a singleton set.

Corollary 6. Let U be an irrational rotation unitary system such that W(U) is not
empty. Then W(U ⊗ Ik) is empty if k > 1.

By Corollary 2 and the above proposition, we also have

Corollary 7. Let Ui (i = 1, 2) be irrational rotation unitary systems with respect
to θi (i = 1, 2). If WS(U1) is not empty, then U1 and U2 are unitarily equivalent if
and only if θ1 = θ2 and inds(U1) = inds(U2).
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Let U be a unitary system such that W(U) is not empty. A unitary V is called a
wandering vector multiplier if VW(U) ⊆ W(U). Let MU be the set of all wandering
vector multipliers. If U = UU0, with U0 a group, then it is clear from the definition
that every operator either in U0 or in U(U ′) is a wandering vector multiplier. It was
first proved in [2] that every unitary operator in w∗(U0) is also a wandering vector
multiplier for U if U0 is abelian, and later this was extended to the non-abelian case
(see [5], [8]). Problem C in [2] is: Does every V in MU factor as V = V1V0 for some
unitaries V1 ∈ U ′ and V0 ∈ w∗(U0)? The following provides a negative answer (see
also [8]).

Proposition 8. Let U be an irrational rotation unitary system with generators
U and V as in Theorem 1 such that W(U) is not empty. Then U ∈ MU , but
U /∈ U ′w∗(V ).

Proof. Let ψ ∈ W(U). By the relation UV = e2iπθV U , we have

{UnV mUψ : n,m ∈ Z} = {e−2miπθUUnV mψ : n,m ∈ Z}.
This is an orthonormal basis since {UnV mψ : n,m ∈ Z} is. Thus Uψ ∈ W(U).
Since ψ is arbitary, we get that U ∈MU .

Assume that U = AB for some A ∈ U ′ and B ∈ w∗(V ). Then U ∈ w∗(V )′, since
w∗(V ) is abelian. This is a contradiction, because UV 6= V U .

The above proposition can be strengthened considerably. For a general unitary
system U , not every unitary in w∗(U) belongs to MU . For example, D /∈ MUD,T
since {DnTmDψ : n,m ∈ Z} = {Dn+1T 2mψ : n,m ∈ Z} is not an orthonormal ba-
sis (although it is an orthonormal set) for any ψ ∈ W(UD,T ). But for the irrational
rotation unitary system, we have

Proposition 9. Every unitary operator in w∗(U) is a wandering vector multiplier.

Proof. Let ψ ∈ W(U). We proved in the proof of Theorem 1 that 〈ABψ,ψ〉 =
〈BAψ,ψ〉 for all A,B ∈ w∗(U). Suppose that T ∈ w∗(U) is a unitary operator.
Then for A = UnV m, B = UkV l with n,m, k, l ∈ Z, we have

〈ATψ, BTψ〉 = 〈T ∗B∗ATψ, ψ〉 = 〈TT ∗B∗Aψ, ψ〉

= 〈B∗Aψ, ψ〉 = 〈Aψ,Bψ〉 =

{
0, (n,m) 6= (k, l),

1, (n,m) = (k, l).

Thus {UnV mTψ : n,m ∈ Z} is an orthonormal set. Define an operator S by
SUnV mψ = UnV mTψ for all n,m ∈ Z. Then S ∈ Cψ(U) = U ′ and S∗S = I. Thus
S is unitary, since U ′ is a finite von Neumann algebra. Therefore Tψ ∈ W(U),
which implies that T ∈MU .

Since MU is a semigroup, we have that MU ⊇ U(U ′)U(w∗(U)) by the above
proposition. We claim that the containment is proper. To prove this, we need some

notations. Let Ẑ be the dual group of Z and let σ, τ ∈ Z. Let ψ be a fixed complete
wandering vector for U and define a unitary operator Aσ,τ ∈ B(H) by

Aσ,τU
nV mψ = σ(n)τ(m)UnV mψ

for all n,m ∈ W(U). The following result tells us that we have a negative answer
even for a weaker factorization problem.
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Theorem 10. For any σ and τ , Aσ,τ is a wandering vector multiplier, and Aσ,τ
belongs to U ′w∗(U) if and only if both σ(1) and τ(1) are in {e2nπiθ : n ∈ Z}. In
particular, MU is not equal to U(U ′)U(w∗(U)).

Proof. Let η ∈ W(U) and suppose that

η =
∑
n,m∈Z

λnmU
nV mψ.

Then

UkV lAσ,τη =
∑
n,m∈Z

λn,mσ(n)τ(m)UkV lUnV mψ

=
∑
n,m∈Z

λn,mσ(n)τ(m)e−2lnπiθUn+kV m+lψ

=
∑
n,m∈Z

λn−k,m−lσ(n− k)τ(m − l)e2l(n−k)πiθUnV mψ,

and similarly we have

U rV sη =
∑
n,m∈Z

λn−r,m−sσ(n− r)τ(m − s)e2s(n−r)πiθUnV mψ.

Thus, by the orthonormality of {UnV mψ} and the equality

σ(n− k)τ(m− l)σ(n− r)τ(m − s) = σ(r − k)τ(s − l),

we obtain that

〈UkV lAσ,τη, U rV sAσ,τη〉 = σ(r − k)τ(s − l)〈UkV lη, U rV sη〉

=

{
1, (k, l) = (r, s),

0, (k, l) 6= (r, s).

It follows that {UnV mAσ,τη} is an orthonormal set. By the similar argument as
in the proof of Proposition 9, we get Aσ,τη ∈ W(U). Hence Aσ,τ ∈MU .

Now we prove that if either σ(1) /∈ {e2nπiθ : n ∈ Z} or τ(1) /∈ {e2nπiθ : n ∈ Z},
then Aσ,τ /∈ U(U ′)U(w∗(U)). Assume, for the contrary, then there exists a unitary
operator T ∈ U ′ such that Aσ,τT belongs to w∗(U). Fix any k, l ∈ Z and let
η = UkV lψ. Then η ∈ W(U) by Proposition 9. And hence there is a unitary
operator W in U ′ such that Wψ = η Therefore we have Aσ,τTWψ = WAσ,τTψ.
Let

Tψ =
∑
n,m∈Z

λnmU
nV mψ.

Then

Aσ,τTWψ = Aσ,τTU
kV lψ = Aσ,τU

kV lTψ

=
∑

λnmσ(n+ k)τ(m+ l)e−2lnπiθUn+kV m+lψ



316 DEGUANG HAN

and

WAσ,τTψ = W
∑

λnmσ(n)τ(m)UnV mψ

=
∑

λnmσ(n)τ(m)UnV mWψ

=
∑

λnmσ(n)τ(m)e−2mkπiθUn+kV m+lψ.

It follows that

λnm(σ(k)τ(l)e−2lnπiθ − e−2mkπiθ) = 0

for all n,m, k, l ∈ Z. Suppose that λn0m0 6= 0. Then we have that σ(k)τ(l) =
e−2(m0k−ln0)πiθ for all k, l ∈ Z, which implies σ(k) = e−2km0πiθ, τ(l) = e2ln0πiθ for
all k, l ∈ Z. This contradicts the assumption on σ and τ .

Now assume that σ(1) = e−2m0πiθ and τ(1) = e2n0πiθ. Let us define an unitary
operator T by TUnVmψ = e−2mn0πiθUn+n0V m+m0ψ. Then we have TUnV mψ =
UnVmTψ for all n,m ∈ Z, which implies that T ∈ Cψ(U) = U ′. Let W ∈ U ′ be a
unitary operator and let Wψ =

∑
λnmU

nVmψ. For any pair (k, l), we have

Aσ,τTWUkV lψ = Aσ,τU
kV lTWψ

= Aσ,τU
kV l
∑

λnmU
nV mTψ

= WAσ,τU
kV l
∑

λnme
−2πimn0θUn+n0V m+M0ψ

=
∑

s(n,m, k, l)Un+n0+kV m+m0+lψ

and

WAσ,τTU
kV lψ = WAσ,τU

kV lTψ

= WAσ,τe
−2πln0iθUk+n0V l+m0ψ

= σ(k + n0)τ(l +m0)e
−2πln0iθUk+n0V l+m0Wψ

=
∑

t(n,m, k, l)Un+n0+kV m+m0+lψ,

where

s(n,m, k, l) = λnmσ(n+ n0 + k)τ(m+m0 + l)e−2π(mn0+ln0+ln)iθ

and

t(n,m, k, l) = λnmσ(n0 + k)τ(m0 + l)e−2π(ln0+ln+m0n)iθ.

Note that σ(n)τ(m) = e2π(nm0−mn0)iθ; we have s(n,m, k, l) = t(n,m, k, l). Thus
Aσ,τTW = WAσ,τT . Since W is arbitary in U ′, we get Aσ,τT ∈ w∗(U).

Remark. In a separate paper joint with D. Larson, we will study some properties
of wandering subspaces and wandering vector multipliers, which are closely related
to the classical wavelet theory, for the general unitary group case. In fact, we prove
that MU is a group for irrational rotation unitary systems and most interesting
unitary group systems including abelian groups and free groups. For an irrational
rotation unitary system UU,V with a fixed complete wandering vector ψ, given a
function f : Z × Z → T, we can define a unitary operator Bf by BfU

nVmψ =
f(n,m)UnV mψ for all n,m ∈ Z. We also prove that Bf is a wandering vector
multiplier if and only if there exist two characters σ and τ of Z and a modulus
one number z satisfying f(n,m) = zσ(n)τ(m) for all (n,m) ∈ Z ⊗ Z. However,
the concrete structure of MU still seems complicated, even when U is an irrational
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rotation unitary system, or just simply a unitary group. For example, letH = L2(T)
and let U = {Mn

z : n ∈ Z}, where T is the unit circle and Mz is the unitary operator
of multiplication by z. Then the constant function 1 is a complete wandering vector
for U , and in factW(U) is the set of all unimodular functions on T. So characterizing
all the wandering vector multipliers is equivalent to characterizing all the unitary
operators on L2(T) which send unimodular functions to unimodular functions. All
the unitary operators of multiplication Mf by a unimodular function f belongs to
MU . There are others. Let σ be a measure preserving bijective mapping from T
to itself. Define a unitary operator Aσ on L2(T) by (Aσf)(z) = f(σ−1(z)) for all
f ∈ L2(T). Then Aσ ∈ MU . It is not hard to check that the group generated by
all the Mf and all the Aσ has the standard form {AσMf}, thus is contained in the
wandering vector multiplier set. In fact, equality can be proven.

We now turn our attention to giving an abstract characterization for those irra-
tional rotation unitary systems which have complete wandering subspaces.

Lemma 11. Let U be an irrational rotation unitary system. If U has a complete
wandering subspace, then w∗(U) is a finite von Neumann algebra.

Proof. Suppose that M ∈ WS(U) with dim(M) = n (n may be ∞) and U1 is
an irrational rotation unitary system with the same irrational as U such that ψ ∈
W(U1). Let {xi} be an orthonormal basis for M and {ei} is an orthonormal basis
for C(n). By defining WUkV lxi = Uk1 V

l
1ψ ⊗ ei for all k, l ∈ Z and all i, we can

obtain that U is unitarily equivalent to U1 ⊗ In, where In is the identity operator
on C(n). Hence w∗(U) is finite since w∗(U1)⊗ In is.

Let A be a C*-algebra. Recall that two representations π1 and π2 of A are called
quasi-equivalent if there exists a *-isomorphism α from w∗(π1(A)) onto w∗(π2(A))
such that α(π1(a)) = π2(a) for all a ∈ A. It was proved in [6] that if a C*-algebra
A admits at most one trace, then all finite representaions of A are quasi-equivalent.
Let R is a von Neumann algebra acting on a Hilbert space H and let E be a
projection in R. A vector x is said to be a generating vector for E if [R′x] = EH .
If R and R′ are finite, denote by τ and τ ′ the center-valued traces on R and R′,
respectively. It is known (see 9.6.7 in [7]) that there is a unique invertible element
C in the algebra of operators affiliated to R∩R′ with the following property: if F
and F ′ are projections in R and R′, then τ(F ) = Cτ(F ′) if and only if F and F ′

have a common generating vector. C0 is called the coupling operator of R.

Theorem 12. Let U be an irrational rotation unitary system. Then it has a com-
plete wandering vector if and only if w∗(U) is finite and has a common cyclic vector
with U ′.
Proof. =⇒. By the above lemma, w∗(U) is finite. Now let ψ ∈ W(U). Then it is
clear that ψ is a cyclic vector for w∗(U). By proposition 1.3 in [2], W(U) = {Tψ :
T ∈ U ′ is unitary}. Hence ψ is cyclic for U ′ by Theorem 1.
⇐=. Let U1 be an irrational rotation unitary system with the same irrational

number as U and W(U1) non-empty. It is known (see [4]) that there is a *-
isomorphism π from C∗(U) onto C∗(U1) such that π(U) = U1 and π(V ) = V1.

Since w∗(U) and w∗(U1) are finite, and the C*-algebras C∗(U) and C∗(U1) admit
unique traces ([1],10.11.6), there exists a *-isomorphism α from w∗(U) onto w∗(U1)
such that

α(a) = π(a) for all a ∈ C∗(U).



318 DEGUANG HAN

By Proposition 12.1.2 in [7], we also have that w∗(U1) and w∗(U) are finite
factors. Hence U ′1 and U ′ are finite by Proposition 9.1.2 in [7]. Let C and C1 be
the coupling operators of w∗(U) and w∗(U1), respectively. We claim that both C
and C1 are identity operators. In fact, let τ and τ ′ be the center-valued traces on
w∗(U) and U ′, respectively. Since w∗(U) and U ′ have a common cyclic vector, we
have τ(I) = Cτ ′(I). Thus C = I; similarly, C1 = I. Therefore α(C) = C1 Thus it
follows from 9.6.30(iv) in [7] that α is unitarily implemented. Therefore U1 and U
are unitarily equivalent, which implies that W(U1) is not empty.

Remark. By Lemma 4 and the fact that if R is a finite von Neumann algebra and
M is a invariant subspace of R, then R |M is also finite (see [3]), we know that even
if an irrational rotation unitary system generates a finite von Neumann algebra and
has a cyclic vector, its wandering subspace set may be empty.

Corollary 13. Let U be an irrational rotation unitary system. Then U has a com-
plete wandering subspace of dimension n if and only if w∗(U) is finite and there
exists an orthonormal set {xi}n1 such that H =

⊕n
i=1[Uxi] and each xi is cyclic for

U ′.
Proof. For ⇐=, note that if we let Mi = [Uxi], then xi is also cyclic for (U |Mi)

′.
Hence the conclusion follows easily from Theorem 12.

For =⇒, by Lemma 11, w∗(U) is finite. By Corollary 2, we may assume that
the unitary system is U ⊗ In such that W(U) is not empty. Take ψ ∈ W(U). Then
{ψ⊗ei} satisfies the requirements, where {ei} is an orthonormal basis for C(n).

Since inds(U) is a unitarily equivalent invariant for all irrational rotation unitary
systems, there are many inequivalent irrational rotation unitary system classes for
the same irrational number. A weaker equivalence condition than unitary equiva-
lence is approximate unitary equivalence. Two irrational rotation unitary systems
UU1,V1 and UU2,V2 are called approximately unitarily equivalent if there exist uni-
taries {Wn} such that ‖WnU1W

∗
n − U2‖ −→ 0 and ‖WnV1W

∗
n − V2‖ −→ 0. It is

interesting to note that for this kind of equivalence, Theorem 4.9 in [4] implies

Proposition 14. Let UU1,V1 and UU2,V2 be two irrational rotation unitary systems
on Hilbert spaces H1 and H2 with irrationals θ1 and θ2, respectively. Then UU1,V1

and UU2,V2 are approximately unitarily equivalent if and only if θ1 = θ2.

Proof. For “=⇒”, letWn : H1 −→ H2 be unitaries such that ‖WnU1W
∗
n−U2‖ −→ 0

and ‖WnV1W
∗
n − V2‖ −→ 0. Fix a unitary S : H1 −→ H2, and define Ũ1 = SU1S

∗

and Ṽ1 = SV1S
∗. Then Ũ1 = {Ũ1

m
Ṽ1

k} is an irrational rotation unitary saystem

with θ1 acting on H2, and UU2,V2 and Ũ1 are approximately unitarily equivalent.
Thus, by Theorem 4.9 in [4], we have e2πiθ1 = e2πiθ2 , and so θ1 = θ2 since θ1, θ2 ∈
(0, 1).

“⇐=”. This follows from the proof of (i) of Proposition 4.2 in [4]

We conclude with some questions concerning incomplete maximal wandering
subspaces.

A wandering subspace for a unitary system U is said to be maximal if it is not
properly contained in any other wandering subspace for U . Using Zorn’s Lemma,
every wandering subspace can be extended to a maximal one. It may happen that
an irrational rotation unitary system has a incomplete maximal wandering subspace
even if the unitary system also has a complete wandering subspace. To explain this,
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let Aθ, u, v and π be as in Theorem 1. We use the notation π(∞) to denote the
infinite direct sum of copies of π, which is a *-representation of Aθ on the Hilbert
space

⊕∞
k=1Hk withHk = H for all k. Then π(∞) is unitarily equivalent to π⊕π(∞),

since the unitary operator W defined by W (h ⊕ (
⊕∞

k=1 hk)) :=
⊕∞

k=1 gk induces
the unitary equivalence, where g1 = h, gk = hk−1 for k > 1. Moreover, let M be a
reducing subspace for π(Aθ) and let π1 and π2 be the restriction *-representations

of π on M and M⊥, respectively. Then π(∞) is unitarily equivalent to π
(∞)
1 ⊕π(∞)

2 .

Proposition 15. An irrational rotation unitary system with an infinite dimen-
sional complete wandering subspace also has an incomplete maximal wandering
subspace.

Proof. Let Aθ, u, v and π be as in Theorem 1 and let U = {unvm;n,m ∈ Z}.
Then π(∞) is a faithful *-representation of Aθ such that π(∞)(U) has a complete
wandering subspace of infinite dimension. By Corollary 2, every irrational rotation
unitary system which has an infintite dimensinoal complete wandering subspace
must be unitarily equivalent to π(∞)(U). So it suffices to prove that π(∞)(U) has
an incomplete maximal wandering subspace.

Choose M to be a non-trivial invariant subspace for w∗(π(U)). Then π(U)|M has
no non-trivial wandering subspaces by Lemma 4. Write π1 = π|M and π2 = π|M⊥ .
Then π is unitarily equivalent to π1 ⊕ π2. Thus π(∞) is unitarily equivalent to

π
(∞)
1 ⊕ π(∞)

2 , which in turn is unitarily equivalent to π1 ⊕ π(∞)
1 ⊕ π(∞)

2 . Therefore,

π(∞) is unitarily equivalent to π1 ⊕ π(∞).
Since π1(U) has no wandering vectors and π(∞)(U) has a complete wnadering

subspace P of infinite dimension, we have that (π1 ⊕ π(∞))(U) has a maximal
wandering subspace 0⊕P which is not complete. Hence π(∞)(U) has a incomplete
maximal wandering subspace by the unitary equivalence.

We conjecture that the infinite dimensional condition is essential for the above
result.

Questions. (i) If an irrational rotation unitary system has a complete wander-
ing subspace of finite dimension greater than 1, must every maximal wandering
subspace be complete?

(ii) More generally, for an arbitrary irrational rotation unitary system, must all
the maximal wandering subspaces have the same dimension?

If (ii) has an affirmative answer, so does (i). Also, this would give a generaliza-
tion of Proposition 5. If an irrational rotation unitary system U has a complete
wandering vector, then, by Lemma 2, every wandering vector must be complete.
Thus all the maximal wandering subspaces have dimension 1. (ii) is also related
to the decompositions of *-representations of Aθ. Let U be an abstract irrational
rotation unitary system in a C*-algebra Aθ, and π a faithful *-representation of Aθ
on a Hilbert space H . Let M be a maximal wandering subspace for π(U) and let
K = [π(U)M ]. Then K reduces π(Aθ). Let πK and πK⊥ be the restrictions of π on
K and K⊥ respectively. Then π is decomposed into the direct sum of πK and πK⊥
such that πK has a complete wandering subspace M , but πK⊥ has no wandering
vectors. Suppose π = πL ⊕ πL⊥ is another such decomposition and suppose the
answer to (ii) is yes. Then the “non-trivial” parts πK and πL must be unitarily
equivalent.
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Problem. Give a complete characterization of wandering vector multipliers for
irrational rotation unitary systems.
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