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WANDERING VECTORS FOR
IRRATIONAL ROTATION UNITARY SYSTEMS

DEGUANG HAN

ABSTRACT. An abstract characterization for those irrational rotation unitary
systems with complete wandering subspaces is given. We prove that an irra-
tional rotation unitary system has a complete wandering vector if and only if
the von Neumann algebra generated by the unitary system is finite and shares
a cyclic vector with its commutant. We solve a factorization problem of Dai
and Larson negatively for wandering vector multipliers, and strengthen this by
showing that for an irrational rotation unitary system U, every unitary oper-
ator in w*(U) is a wandering vector multiplier. Moreover, we show that there
is a class of wandering vector multipliers, induced in a natural way by pairs
of characters of the integer group Z, which fail to factor even as the product
of a unitary in U’ and a unitary in w*(U). Incomplete maximal wandering
subspaces are also considered, and some questions are raised.

An important class of operator algebras is the class of irrational rotation C*-
algebras, which has been systematically studied over the past 15 years. These
algebras have several equivalent definitions (see [10]). One is that they are exactly
the C*-algebras Ay generated by a pair of unitary elements v and v which satisfy
the relation uv = Avu, where A = exp(27if) and 0 € (0, 1) is an irrational number.
We will call the set U = {u™v™ : (n,m) € Z x Z} an (abstract) irrational rotation
unitary system, where 7Z is the set of all integers. It is a proper subset of the
group generated by v and v. If B is a C*-algebra and a,b are two elements in B
satisfying the relation ab = exp(27if)ba, then it is known that there is a faithful
*_isomorphism 7 from Ay into B satisfying 7(u) = a and 7(v) = b (see [4] or [9]).

Following Dai and Larson [2], a unitary system U is a subset of the unitary oper-
ators acting on a separable Hilbert space H which contains the identity operator. A
norm one element ¢ € H is called a wandering vector for U if Uy = {Uvy : U € U}
is an orthonormal set; that is, (U, V¢) =0if U,V e Y and U # V. If Ut is an
orthonormal basis for H, then 1 is called a complete wandering vector for U. The
set of all complete wandering vectors for U is denoted by W(U). More generally,
a closed subspace M of H is called a wandering subspace of U if UM and VM are
orthogonal for any different U and V' in Y. A wandering subspace M is called com-
plete if span{UM} = H. The set of all the complete wandering subspaces for U is
denoted by WS(U). More generally, a unital unitary subset U of a C*-algebra A is
called an abstract unitary system. In this case, one is interested in representations
7 of A for which 7(U/) has wandering subspaces.
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If U,V are unitary operators in B(H), we write Uy,y = {U"V™ : (n,m) €
Z x Z}. Unitary systems of this form (but with different relations between the
generators than we consider in this paper) have importance in wavelet theory. If
U,V satisty the relation UV = A\VU with A = exp(27if) and § € (0,1) an irrational
number, then we call Uy v a (concrete) irrational rotation unitary system.

In this paper we are concerned with irrational rotation unitary systems and
their wandering vectors, and more generally their wandering subspaces. We prove
that, up to unitary equivalence, there is only one *-representation of an irrational
rotation C*-algebra such that the image unitary system of the representation has
a complete wandering vector. We will give an abstract characterization for those
irrational rotation unitary systems which have complete wandering subspaces. We
also show that Problem C in [2] has a negative answer for an irrational rotation
unitary system with a complete wandering vector. (We note that an independent
counterexample was given by Li, McCarthy and Timotin in [8]. They did not
consider the irrational rotation C*-algebras, but instead considered a generalization
of a structure property of unitary systems given in [2]).

Let S be a subset of B(H). We use w*(S) to denote the von Neumann algebra

generated by S, and as in [2] use U(S) to denote the set of all unitary operators
in §. The commutant of S is &’ = {T € B(H) : TS — ST = 0,VS € S}. For a
subset M of H, we use [M] to denote the closure of the linear span of M. We use
the term coisometry for the operator T when T is an isometry. Recall that two
unitary systems U; (i = 1,2) are unitarily equivalent if there is a unitary W such
that WUy W* = Us. Two *-representations m; and mp of a C*-algebra A are called
unitarily equivalent if there exists a corresponding unitary operator W such that
Wri(a)W* = ma(a) for every a € A. If U is a unitary system and ¢ € W(U), the
local commutant Cy(U) at ¢ is defined by {T' € B(H) : (TU —UT)y =0,U € U}.
A useful result is the one-to-one correspondence between the complete wandering
vectors and the unitary operators in Cy(U). In particular, if ¢ € W(U), then
WU) =TU(Cy(U))p ={T¢ : T € U(Cy(U)} (see [2], Proposition 1.3).
Theorem 1. Let Ay be an irrational rotation C*-algebra with unitary generators
u,v for which uwv = e*™%vu for some irrational number 6 € (0,1). Then, up to
unitary equivalence, there exists a unique faithful *-representation © of Ag on a
Hilbert space H such that the irrational rotation unitary system U = {U"V™ :
n,m € Z}, where U = w(u) and V = w(v), has a complete wandering vector.
Moreover, W(U) is a closed and connected subset of H and span(W(U)) = H.

Proof. Let m and mo be faithful *-representations on Hilbert spaces Hy and Ho,
respectively, such that Uy, v, has a compete wandering vector 1;, where U; =
mi(u),V; = m(v),4 = 1,2. Since u, v are generators for Ay, we only need to prove
that there is a unitary operator W satisfying WU W* = Uy and WV, W* = V5. For
this purpose, write 1/)7(11)771 =U'V/™p; fori =1,2and n,m € Z. Then {1/17(11)7,1 tn,m €
Z} is an orthonormal basis for H;. Define W : H; — Hj by Ww,(llzn = ,(12,)71 for
all n and m. Then W is a unitary operator, and we have

WU, = WUUT V™ by = UpUS V3" = U2 W),
and

W‘/lw'sll)zn — W‘/l U{’Lvlmd}l — e—QﬂinQWU{l‘/lm-l-lwl

= ULV gy = VaUR VS by = VoW (L),
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Thus WU W* = Uy and WViW* = V,, since these relations hold on an or-
thonormal basis for H;. Hence m; and o are unitarily equivalent.

For the existence of such a *-representation 7, let us consider the following
concrete unitary system. Let H be the Hilbert space [?(Z x Z), and let e, ,, be
the element of H which is 1 at (n,m) and 0 elsewhere. Define unitary operators
U,V on HbyUenn=emtin and Ve n = A""em nt1, where A = €™ Then
UV = AV U follows from

Uvem,n - U()\_mem,n-i-l) - )\_mem-l-l,n-i—l
=M e = AV U e,

Thus Uy, is an irrational rotation unitary system. Let m be the faithful *-
isomorphism from Ay into B(H) such that n(u) = U and w(v) = V. We will
show that W(U) is a closed and connected subset of H and span(W(U)) = H,
where U = {U™V™ :n,m € Z}.

We have that Uep g = {ex, : k,l € Z}. So egp is a complete wandering vector
for U. Moreover, for any m,n € Z, we have Ue,, , = {)\_mlem+k,n+l Dkl e Z},
which is an orthonormal basis for H. Thus in fact e,,, € W(U) for all n,m € Z.
So spanW(U) = H, since {ey m, : n,m € Z} is an orthonormal basis for H..

Let A € Cy(U) for some ¢p € W(U). The relation UV = AVU implies that
span(U) is an algebra. So for each S,T € U, we have ST € span(U). So AS(T%) =
(ST)Ay = S(AT)yp = SA(Tv). Since T € U is arbitary and span(Uy) = H,
it follows that AS = SA. Thus Cy(U) C U'. The inclusion “D” is trivial. Thus
Cy(U) =U'". So Cy(U) is a von Neumann algebra. Since the unitary group of a von
Neumann algebra is norm connected, W(U) = U(U')1 is norm-pathwise connected.

We claim that the von Neumann algebra w* (i) generated by U and V is finite
and so is its commutant U’. Let ¢ € W(U) be arbitary. First we show that
(ABt,v) = (BAy, ) for all A,B € w*(U). Tt is enough to verify that this holds
for A = U"V™, B = U*V! with n,m,k,l € Z, since the linear span of U is an
algebra. In fact, this follows from

<UanUlew, w> _ G_kaﬂi9<Un+ka+lw, w>

B 0, (n—}—k,m-l—l)?é(oao)v
=\ e 2mknio, (n+k,m+1)=(0,0),

and

nyym 07 ( +ka +Z)7é(0’0)’
<UleU Vmap,ah) = {e—2ln7ri97 (Z+ k,2+l) = (0,0).

Thus 1) is a trace vector of w*(U). Note that ¢ is also a cyclic vector for w*(U),
since Y1) is an orthonormal basis for H. Thus, by Lemma 7.2.14 in [6], ¢ is a joint
cyclic trace vector for w*(U) and U’. By Theorem 7.2.15 in [6], this implies that
both w*(U) and U’ are finite von Neumann algebras.

For the closedness of W(U), suppose that {,,} is a sequence in W(U/) converging
in norm to a vector n. Fix ¢y € W(U). Then by Proposition 1.3 in [2], since
Cy(U) =U', there are unitary operators V,, € U’ with ¢,, = V4. In order to show
that n € W(U), again by Propositon 1.3 in [2], it is enough to show that n = W
for some unitary operator W in U’.

Let {U,} be a subnet of {V,,} such that Uy — Up in the weak operator topology
for some operator Uy € U’. Then Uxtp — 1 in norm and Uxyp — Upy) in the weak
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topology on H. So n = Uptp. Now for any x € H, we have | (U5 (Ux¢ — Up)), z) |
< U = Uodl[|z]] — 0 and (Uoey, Uxz) — (Uoth,Uoz) = (UsUo¥, ). Thus
(h,z) = (UXUx¢, )
(UX(Ux¢ = Uoy), z) + (Uop, Uxz)
— <U5U0¢7 CE>,

which implies that UjUpy = 1.

Since 1) is cyclic for span(U), it follows that v separates U’. So since UjUy € U’
and (UgUy — Ity = 0, we get UsUy = I. But U’ is finite, so Uy is a unitary in U’
as required. O

In fact we have more:

Corollary 2. Let n be a natural number or oo. Then, up to unitary equivalence,
there is only one faithful *-representation m, of Ag such that 7, (U) has a complete
wandering subspace of dimension n.

Proof. For the existence, let ¢ = 7 ® I, acting on H ® C™ if n < oo and on
H ®1?(Z) if n = oo, where 7 is as in Theorem 1. If z is any complete wandering
vector for 7, then (Cz) ® C" (or (Czx) ® I12(Z) if n = o00) is an n-dimensional
complete wandering subspace for ¢. For the uniqueness, let m, be a faithful *-
representation of Ay on a Hilbert space K such that 7, (i) has a complete wandering
subspace M of dimension n. Let {& : ¢ = 1,2,...,n} be an orthonormal basis for
M. Then {m,(U*VY¢ : k1 € Z,1 < i < n} is an orthonormal basis for K.
Fix an orthonormal basis {f; : 1 < ¢ < n} for C". Define a unitary operator W
by W, (U*V)E = m(U*Veoo ® fi. Then, as in the first part of the proof in
Theorem 1, we have W, (- )IW* = ¢(-). O

From the proof of Theorem 1, the following general result can be in fact ab-
stracted:

Proposition 3. Let U be a unitary system such that Cy(U) = U’ for some ¢ €
W(U). Then W(U) is connected. If, in addition, w*(U) is a finite von Neumann
algebra and span(W(U)) is dense in H, then W(U) is closed.

Proof. The connectedness follows from the fact that W(U) = U(U’)y and the fact
that U(U’) is connected in norm. For the closedness, looking at the same part as in
the proof of Theorem 1, it suffices to check that U’ is a finite von Neumann algebra.
Since W(U) = UU')¢ and span(W(U)) is dense in H, we have 1 is also cyclic for
U'. Thus U’ is finite by Lemma 9.1.1 in [6], as required. O

For a general unitary system U, it is possible that W(U) is not closed. For
example, let Y = Up r, where D and T are defined by (Tf)(¢t) = f(t — 1) and
(Df)(t) = V2f(2t) for all f € L*(R). Then W(U) is not closed. It is true that
span(W(U)) is dense in L2(R), but the connectedness problem is still open for this
unitary system (cf. [2]).

For a unitary system U such that WS(U) is not empty, we define the index set
of U by inds(U) = {dimM : M € WS(U)}. In many cases inds(U) is a singleton
set. In some other cases it is all of Z4 U {00} (cf. [5]). (Question: Are other cases
possible?). We will prove that for an irrational rotation unitary system the index
set is always singleton, and give two ways to construct irrational rotation unitary
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systems which have no complete wandering vectors. One comes from the following
result.

Lemma 4. If U is an irrational rotation unitary system such that W(U) is not
empty, then for any non-trivial invariant subspace M of U, (U |pr) has no wandering
vectors.

Proof. Suppose that there is some element € M such that {{/z} is an orthonormal
set. Take v € W(U) and define an operator WH — H by WUy = Uz, U € U.
Then W*W =1 and W € Cy(U) =U'. Since U’ is a finite von Neumann algebra,
we have WW™* = I, which contradicts the fact that M # H. Thus we obtain that
U|m has no wandering vectors. (]

The other comes from the following proposition.

Proposition 5. Let U be an irrational rotation unitary system such that WS(U)
is not empty. Then inds(U) is a singleton set.

Proof. Take M € WS(U) such that dimM = k € inds(U) (k may be co) and
fix an orthonormal basis {&;} for M. By defining a unitary operator W : H —
(*(Z x Z) ® M such that

WUW™E) = enm @& Vi=1,2,..kVnme Z,

we can assume that U has a *-representation of Uy v @ Ij, where I, is the identity
operator on C*) and U and V are defined as in the proof of Theorem 1.

Now suppose that there is m € inds(U) such that k& # m. Without loss of
generality, we assume that m < k. This implies that U also has a *-representation
of the form Uy v ® I,,. Thus, By Corollary 2, there is a unitary operator

T = (é) P(ZxZ)RCM™ - 2(Zx7) @ CH),

such that T(U @ I,)T* =U @ I, and T(V ® I,,)T* =V ® Ii, where
A:P(Zx7)®C"™ = 2(Z x 7) ® C™,
B:2(Zx7Z)®C™ — (*(Z x 7Z) @ C*™),

By TT* = I, we have that AA™ = Ip25,7)pcom and BB* = Ip g, z)act—m -
Since T(U @ I,)T* = U ® I, and T(V ® I,,)T* = V ® I, we get that A €
U I} =U @ B(C™). We know that U’ is a finite von Neumann algebra.
Thus A*A = Iﬁ(ZXZ)@C(m) . So it follows from T*T = A*A + B*B = Ié2(Z><Z)®(C(m)
that B = 0, which contradicts the relation BB* = Ij2(747)gct-m . Thus inds(U)
is a singleton set. O

Corollary 6. LetU be an irrational rotation unitary system such that W(U) is not
empty. Then WU @ I) is empty if k > 1.

By Corollary 2 and the above proposition, we also have

Corollary 7. Let U; (i = 1,2) be irrational rotation unitary systems with respect
to 0; (i =1,2). If WS(U) is not empty, then Uy and Us are unitarily equivalent if
and only if 01 = 02 and inds(Ur) = inds(Us).
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Let U be a unitary system such that W(U) is not empty. A unitary V is called a
wandering vector multiplier if VIW(U) C W(U). Let My be the set of all wandering
vector multipliers. If U = UU, with Uy a group, then it is clear from the definition
that every operator either in Uy or in U(U’) is a wandering vector multiplier. It was
first proved in [2] that every unitary operator in w*(Uy) is also a wandering vector
multiplier for U if Uy is abelian, and later this was extended to the non-abelian case
(see [5], [8]). Problem C in [2] is: Does every V in My, factor as V' = V1 Vj for some
unitaries V4 € U’ and Vy € w*(Up)? The following provides a negative answer (see
also [8]).

Proposition 8. Let U be an irrational rotation unitary system with generators
U and V as in Theorem 1 such that W(U) is not empty. Then U € My, but
Ué¢Uw (V).

Proof. Let v € W(U). By the relation UV = €2V U, we have
{UV™UY :n,m € Z} = {e 20U Um V™) : n,m € Z}.

This is an orthonormal basis since {U"V™ : n,m € Z} is. Thus Uy € W(U).
Since ) is arbitary, we get that U € M.

Assume that U = AB for some A € Y’ and B € w*(V). Then U € w*(V)’, since
w*(V') is abelian. This is a contradiction, because UV # VU. (]

The above proposition can be strengthened considerably. For a general unitary
system U, not every unitary in w*(U) belongs to My. For example, D ¢ My,
since {D"T™ D : n,m € Z} = {D"T1T?™1) : n,m € Z} is not an orthonormal ba-
sis (although it is an orthonormal set) for any ¢ € W(Up r). But for the irrational
rotation unitary system, we have

Proposition 9. FEvery unitary operator in w*(U) is a wandering vector multiplier.

Proof. Let ¢» € W(U). We proved in the proof of Theorem 1 that (ABwy,¢) =
(BAY, 1) for all A,B € w*(U). Suppose that T € w*(U) is a unitary operator.
Then for A = U™V™, B = UFV! with n,m, k,l € Z, we have

(ATv, BTY) = (I"B*ATv, ¢) = (IT"B* Ay, ¢)

0, (n,m)# (k1)
= (B*Ay, = (Ay, By) =
(B Av, ¥) = (A0, BY) {17 )
Thus {U™V™T% : n,m € Z} is an orthonormal set. Define an operator S by
SU™V™p =U"V™T for alln,m € Z. Then S € Cy(U) =U" and S*S = I. Thus
S is unitary, since U’ is a finite von Neumann algebra. Therefore Ty € W(U),
which implies that T' € My,. O

Since My, is a semigroup, we have that My, O UU)U(w*(U)) by the above
proposition. We claim that the containment is proper. To prove this, we need some
notations. Let Z be the dual group of Z and let 0,7 € Z. Let ¢ be a fixed complete
wandering vector for ¢ and define a unitary operator A, » € B(H) by

A UV ™) = a(n)T(m)U" V™)

for all n,m € W(U). The following result tells us that we have a negative answer
even for a weaker factorization problem.
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Theorem 10. For any o and 7, Ay is a wandering vector multiplier, and Ay ;
belongs to U'w*(U) if and only if both o(1) and 7(1) are in {e2"™ . n € Z}. In
particular, My is not equal to UU")U(w*(U)).

Proof. Let n € W(U) and suppose that

=Y AmU"V".

n,mez
Then
UV Agrn = Y Apmo(m)r(m)URV'U" V™

n,mez

_ Z )\n,ma(n)T(m)e—manUn+ka+l1/}
n,mez

= Z An—km—10(n — k)T(m — l)em("_k)meU"dej,
n,mez

and similarly we have

U'Ven = Z An—rm—so(n —r)7(m — s)e2sn=rImifnymy,

n,mez

Thus, by the orthonormality of {U™V "™} and the equality

on—k)r(m—=0o(n—r)r(m —s) = o(r —k)r(s 1),
we obtain that

(U Ay i, UV Ay o) = o(r — k)1(s — DUV, U™V *n)

It follows that {U™V™A, .n} is an orthonormal set. By the similar argument as
in the proof of Proposition 9, we get A, n € W(U). Hence Ay, € My.

Now we prove that if either (1) ¢ {e>"™ : n € Z} or 7(1) ¢ {e2"™ : n € Z},
then A, ¢ UU)U(w*(U)). Assume, for the contrary, then there exists a unitary
operator T € U’ such that A, .T belongs to w*(U). Fix any k,I € Z and let
n = UFVl). Then n € W(U) by Proposition 9. And hence there is a unitary
operator W in U’ such that Wiy = n Therefore we have A, ;[ TW¢ = WA, .T.
Let

Ty =3 AamU"V™.
n,mez
Then
Ao TWep = Ay, TUV ) = A, ,URVITY
= Aamo(n + k)r(m + e 2nmioynthymily,
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and
WA, Tt =W Apmo(n)r(m)U™Vimip
= Aumo(n)r(m)U V"W
— Z )\nma(n)T(m)e—kaﬂ'iG Un+kvm+lw'
It follows that
)\nm(o,(k)T(l)e—ﬂmriH _ e—kaﬂ'iH) -0

for all n,m,k,l € Z. Suppose that Ayym, # 0. Then we have that o(k)7(l) =
e~ 2(mok=Ino)mif for al] k1 € Z, which implies o(k) = e=2kmomi0 r(]) = ¢2nomif for
all k,1 € Z. This contradicts the assumption on ¢ and 7.

Now assume that (1) = e=2™07 and 7(1) = 207 Let us define an unitary
operator T by TU™V ™) = e~ 2mnomibyntnoy m+moy,  Then we have TU"V™p =
UnV™Ty for all n,m € Z, which implies that T € Cy(U) =U'. Let W € U’ be a
unitary operator and let Wi = > \,,,, U"V™1). For any pair (k,1), we have

Ay ,TWURVIY = A, ,UVITW Y
= Ag UMV XUV T4
— WAU_TUle Z Anme—Qﬂ'imngOUn+no Vm+MO1/)
= s(n,m, k,Urtrotkymimotly,

and
WA, , TUV Y = WA, UV Ty
= WA, e 2rimoibyktnoysitmoy,
= o (k + no)7(l + mg)e 2rinoifyktnoytmoyy g,
= tn,m, k, YUt tky oty
where
s(n,m, k1) = Apmo(n + ng + k)7(m + mg + 1)e~ 27 (mnotinotin)io
and

t(n,m, ]€7l) — )\nmU(nO + k)T(mo + l)e—Zﬂ(lno-i-ln-l-mon)iG.

Note that o(n)7(m) = e?m(Mmo=mn0)il. e have s(n,m, k,1) = t(n,m, k,1). Thus
Ay ;TW =W A, ;T. Since W is arbitary in U’, we get A, T € w*(U). O

Remark. In a separate paper joint with D. Larson, we will study some properties
of wandering subspaces and wandering vector multipliers, which are closely related
to the classical wavelet theory, for the general unitary group case. In fact, we prove
that My is a group for irrational rotation unitary systems and most interesting
unitary group systems including abelian groups and free groups. For an irrational
rotation unitary system Uy with a fixed complete wandering vector 1, given a
function f : Z x Z — T, we can define a unitary operator B¢ by BU"V™) =
f(n,m)U™V™y) for all n,m € Z. We also prove that B is a wandering vector
multiplier if and only if there exist two characters ¢ and 7 of Z and a modulus
one number z satisfying f(n,m) = zo(n)7(m) for all (n,m) € Z ® Z. However,
the concrete structure of My, still seems complicated, even when U is an irrational
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rotation unitary system, or just simply a unitary group. For example, let H = L?(T)
and let U = {M7 : n € Z}, where T is the unit circle and M, is the unitary operator
of multiplication by z. Then the constant function 1 is a complete wandering vector
for U, and in fact W(U) is the set of all unimodular functions on T. So characterizing
all the wandering vector multipliers is equivalent to characterizing all the unitary
operators on L?(T) which send unimodular functions to unimodular functions. All
the unitary operators of multiplication M by a unimodular function f belongs to
My. There are others. Let o be a measure preserving bijective mapping from T
to itself. Define a unitary operator A, on L2(T) by (A, f)(z) = f(o71(2)) for all
f € L3(T). Then A, € My. It is not hard to check that the group generated by
all the M, and all the A, has the standard form {A, M}, thus is contained in the
wandering vector multiplier set. In fact, equality can be proven.

We now turn our attention to giving an abstract characterization for those irra-
tional rotation unitary systems which have complete wandering subspaces.

Lemma 11. Let U be an irrational rotation unitary system. If U has a complete
wandering subspace, then w*(U) is a finite von Neumann algebra.

Proof. Suppose that M € WS(U) with dim(M) = n (n may be oo) and U; is
an irrational rotation unitary system with the same irrational as U such that ¢ €
W(U,). Let {x;} be an orthonormal basis for M and {e;} is an orthonormal basis
for C™). By defining WU*V'x; = UFV}p @ ¢; for all k,1 € Z and all 4, we can
obtain that U is unitarily equivalent to U; ® I,,, where I,, is the identity operator
on C™. Hence w* () is finite since w*(U1) @ I, is. |

Let A be a C*-algebra. Recall that two representations w1 and 7y of A are called
quasi-equivalent if there exists a *-isomorphism « from w*(m;(A)) onto w*(ma(.A))
such that a(m1(a)) = ma(a) for all a € A. It was proved in [6] that if a C*-algebra
A admits at most one trace, then all finite representaions of A are quasi-equivalent.
Let R is a von Neumann algebra acting on a Hilbert space H and let E be a
projection in R. A vector z is said to be a generating vector for E if [R'z] = EH.
If R and R’ are finite, denote by 7 and 7’ the center-valued traces on R and R/,
respectively. It is known (see 9.6.7 in [7]) that there is a unique invertible element
C in the algebra of operators affiliated to R N'R’ with the following property: if F’
and F’ are projections in R and R’, then 7(F) = C7(F”’) if and only if F' and F’
have a common generating vector. Cj is called the coupling operator of R.

Theorem 12. Let U be an irrational rotation unitary system. Then it has a com-
plete wandering vector if and only if w*(U) is finite and has a common cyclic vector
with U'.
Proof. =>. By the above lemma, w* (i) is finite. Now let ¢» € W(U). Then it is
clear that v is a cyclic vector for w* (/). By proposition 1.3 in [2], W(U) = {T :
T € U’ is unitary}. Hence 1 is cyclic for &’ by Theorem 1.
<. Let U; be an irrational rotation unitary system with the same irrational
number as U and W(U;) non-empty. It is known (see [4]) that there is a *-
isomorphism 7 from C*(U) onto C*(U;) such that 7(U) = U; and 7(V) = V4.
Since w*(U) and w* (U ) are finite, and the C*-algebras C*(U) and C*(U;) admit
unique traces ([1],10.11.6), there exists a *-isomorphism o from w*(U) onto w* ({7)
such that

ala) = 7(a) for all a € C*(U).
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By Proposition 12.1.2 in [7], we also have that w*(U;) and w*(U) are finite
factors. Hence U] and U’ are finite by Proposition 9.1.2 in [7]. Let C and C; be
the coupling operators of w*(U) and w*(U;), respectively. We claim that both C
and C; are identity operators. In fact, let 7 and 7" be the center-valued traces on
w*(U) and U’, respectively. Since w*(U) and U’ have a common cyclic vector, we
have 7(I) = C7'(I). Thus C = I; similarly, C; = I. Therefore a(C) = C; Thus it
follows from 9.6.30(iv) in [7] that « is unitarily implemented. Therefore U; and U
are unitarily equivalent, which implies that W (U) is not empty. O

Remark. By Lemma 4 and the fact that if R is a finite von Neumann algebra and
M is a invariant subspace of R, then R |/ is also finite (see [3]), we know that even
if an irrational rotation unitary system generates a finite von Neumann algebra and
has a cyclic vector, its wandering subspace set may be empty.

Corollary 13. LetU be an irrational rotation unitary system. Then U has a com-
plete wandering subspace of dimension n if and only if w*(U) is finite and there
exists an orthonormal set {x;}} such that H = @, [Ux;] and each x; is cyclic for
u'.

Proof. For <=, note that if we let M; = [Uz;], then x; is also cyclic for (U |u,)’.
Hence the conclusion follows easily from Theorem 12.

For =, by Lemma 11, w*() is finite. By Corollary 2, we may assume that
the unitary system is U ® I,, such that W(U) is not empty. Take ¢y € W(U). Then
{¢®e;} satisfies the requirements, where {e;} is an orthonormal basis for C™. O

Since inds(U) is a unitarily equivalent invariant for all irrational rotation unitary
systems, there are many inequivalent irrational rotation unitary system classes for
the same irrational number. A weaker equivalence condition than unitary equiva-
lence is approximate unitary equivalence. Two irrational rotation unitary systems
Uy, vy and Uy, v, are called approzimately unitarily equivalent if there exist uni-
taries {W,,} such that |W,,U,W; — Us|| — 0 and |W,,ViW)i — V|| — 0. It is
interesting to note that for this kind of equivalence, Theorem 4.9 in [4] implies

Proposition 14. Let Uy, v, and Uy, v, be two irrational rotation unitary systems
on Hilbert spaces Hy and Hy with irrationals 61 and 0, respectively. Then Uy, v,
and Uy, v, are approximately unitarily equivalent if and only if 01 = 05.

Proof. For “=", let W,, : Hi — Hs be unitaries such that |[W,,UiW—Us| — 0

and ||[W,ViW} — V5|| — 0. Fix a unitary S : H; — Ha, and define 171 = SU,S*
— —~ —~m—~k
and V; = SV43.8*. Then Uy = {U; Vi } is an irrational rotation unitary saystem
with 6; acting on Hs, and Uy, v, and U, are approximately unitarily equivalent.
Thus, by Theorem 4.9 in [4], we have e2™%1 = €272 and so §; = 65 since 6,05 €
(0,1).
“«<=". This follows from the proof of (i) of Proposition 4.2 in [4] O

We conclude with some questions concerning incomplete maximal wandering
subspaces.

A wandering subspace for a unitary system U is said to be mazimal if it is not
properly contained in any other wandering subspace for 4. Using Zorn’s Lemma,
every wandering subspace can be extended to a maximal one. It may happen that
an irrational rotation unitary system has a incomplete maximal wandering subspace
even if the unitary system also has a complete wandering subspace. To explain this,
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let Ag,u,v and 7 be as in Theorem 1. We use the notation 7(°®) to denote the
infinite direct sum of copies of 7, which is a *-representation of A4y on the Hilbert
space @y, Hi with Hy, = H for all k. Then 7(°°) is unitarily equivalent to w@m (%),
since the unitary operator W defined by W(h & (Dr—; hi)) := Bpe; 9k induces
the unitary equivalence, where gy = h, gx = hi—1 for £ > 1. Moreover, let M be a
reducing subspace for m(Ay) and let m; and 7o be the restriction *-representations
of mon M and M~ respectively. Then 7(>) is unitarily equivalent to 71'500) S3) wém).
Proposition 15. An irrational rotation unitary system with an infinite dimen-
sional complete wandering subspace also has an incomplete mazimal wandering
subspace.

Proof. Let Ap,u,v and 7 be as in Theorem 1 and let U = {u™v"™;n,m € Z}.
Then 7(>®) is a faithful *-representation of Ay such that 7(°°)(1f) has a complete
wandering subspace of infinite dimension. By Corollary 2, every irrational rotation
unitary system which has an infintite dimensinoal complete wandering subspace
must be unitarily equivalent to 7(°)(1f). So it suffices to prove that 7(°>) (1) has
an incomplete maximal wandering subspace.

Choose M to be a non-trivial invariant subspace for w* (7 (U)). Then 7(U)|as has
no non-trivial wandering subspaces by Lemma 4. Write m; = 7|y and w2 = 7|0
Then 7 is unitarily equivalent to m @ mo. Thus 7(°) is unitarily equivalent to
wgoo) @ Wéoo), which in turn is unitarily equivalent to m © Wgoo) @ Wéoo). Therefore,
7(%) is unitarily equivalent to m; @ 7(°°).

Since 71 () has no wandering vectors and 7(>) (/) has a complete wnadering
subspace P of infinite dimension, we have that (m; @ 7(°))(U) has a maximal
wandering subspace 0 @ P which is not complete. Hence 7(°) (1f) has a incomplete
maximal wandering subspace by the unitary equivalence. O

We conjecture that the infinite dimensional condition is essential for the above
result.

Questions. (i) If an irrational rotation unitary system has a complete wander-
ing subspace of finite dimension greater than 1, must every maximal wandering
subspace be complete?

(ii) More generally, for an arbitrary irrational rotation unitary system, must all
the maximal wandering subspaces have the same dimension?

If (ii) has an affirmative answer, so does (i). Also, this would give a generaliza-
tion of Proposition 5. If an irrational rotation unitary system U has a complete
wandering vector, then, by Lemma 2, every wandering vector must be complete.
Thus all the maximal wandering subspaces have dimension 1. (ii) is also related
to the decompositions of *-representations of Ay. Let U be an abstract irrational
rotation unitary system in a C*-algebra Ay, and 7 a faithful *-representation of Ay
on a Hilbert space H. Let M be a maximal wandering subspace for 7(i/) and let
K = [n(U)M]. Then K reduces 7(Ag). Let mx and w1 be the restrictions of 7 on
K and K respectively. Then 7 is decomposed into the direct sum of 75 and w1
such that mx has a complete wandering subspace M, but mx 1 has no wandering
vectors. Suppose m = 7y @ w1 is another such decomposition and suppose the
answer to (ii) is yes. Then the “non-trivial” parts mx and 77, must be unitarily
equivalent.
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Problem. Give a complete characterization of wandering vector multipliers for
irrational rotation unitary systems.
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