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ALGEBRAIC TRANSITION MATRICES

IN THE CONLEY INDEX THEORY

ROBERT FRANZOSA AND KONSTANTIN MISCHAIKOW

Abstract. We introduce the concept of an algebraic transition matrix. These
are degree zero isomorphisms which are upper triangular with respect to a
partial order. It is shown that all connection matrices of a Morse decomposition
for which the partial order is a series-parallel admissible order are related via a
conjugation with one of these transition matrices. This result is then restated
in the form of an existence theorem for global bifurcations. Simple examples
of how these results can be applied are also presented.

1. Introduction

In classical Morse theory the gradient vector field of a Morse function on a com-
pact manifold gives rise to a flow with a finite number of hyperbolic fixed points.
C. Conley introduced a generalization of this in the form of a Morse decomposi-
tion. To be more precise, let ϕ : R × X → X be a continuous flow on a locally
compact Hausdorff space1 and let S be a compact invariant set under ϕ. A Morse
decomposition of S is a collection of mutually disjoint compact invariant subsets of
S,

M(S) := {M(p)|p ∈ P},
indexed by a finite set P , on which it is possible to impose a partial order < such
that if x ∈ S\

⋃
p∈PM(p), then there exists q < p such that α(x) ⊂ M(p) and

ω(x) ⊂ M(q). The individual sets M(p) are called Morse sets. Any partial order
on P which satisfies the above mentioned properties is called an admissible order.
Because of its inherent flexibility (any compact invariant set may be a Morse set)
this decomposition has been used in a variety of settings [9, 4, 11, 18, 20, 31].

Of course, the power of Morse theory comes from its ability to relate local infor-
mation (the Morse indices of the hyperbolic critical points) to global information
(the homology of the compact manifold). This relation appears in the form of the
Morse inequalities. In the Conley theory one begins with the Conley index for

Received by the editors January 3, 1995 and, in revised form, October 4, 1995.
1991 Mathematics Subject Classification. Primary 58F35; Secondary 58F30, 35K57.
Key words and phrases. Conley index, connection matrix, transition matrix, bistable attractor,

travelling waves.
Research was supported in part by NSF Grant DMS-9101412. Part of this paper was written

while the second author was visiting the Instituto de Ciencias Mathematicas de São Carlo of the
Universidade de São Paulo. He would like to take this opportunity to thank the members of the
institute for their warm hospitality.

1All the theoretical results of this paper can be carried out in the setting of admissible semiflows
on metric spaces. For the background on the index theory in this setting the reader is referred to
the work of K. Rybakowski [29].

c©1998 American Mathematical Society

889



890 ROBERT FRANZOSA AND KONSTANTIN MISCHAIKOW

isolated invariant sets. Recall that given the flow ϕ, S ⊂ X is an isolated invariant
set if there exists a compact set N ⊂ X such that

S = Inv(N,ϕ) := {x ∈ N |ϕ(R, x) ⊂ N} ⊂ intN.

The Conley index of S, denoted by h(S), is the homotopy type of a pointed space,
i.e.

h(S) ∼ (Y, y0).

For computational purposes it is more convenient to use the homological version of
the index

CH∗(S) := H∗(Y, y0).

In the Conley theory, the Morse inequalities are replaced by Conley’s connection
matrix. The basic results for this theory can be found in [5, 6, 7, 8]. For the
moment we remark that given a Morse decomposition, a corresponding connection
matrix is a linear map

∆:
⊕
p∈P

CH∗(M(p)) →
⊕
p∈P

CH∗(M(p))

which is both a boundary operator (∆ ◦ ∆ = 0 and ∆ is a degree −1 operator
with respect to the grading on the indices of the Morse sets) and strictly upper
triangular with respect to any admissible ordering (if p 6< q, then the entries in ∆
mapping CH∗(M(q)) to CH∗(M(p)) are necessarily zero). An important feature,
which plays a prominent role in this paper, is that connection matrices need not be
unique.

The Conley theory has an essential feature which distinguishes it from Morse
theory and that is the continuation property of the index. Let us recall its definition.
Let ϕλ : R×X → X , λ ∈ Λ, denote a continuous family of flows parametrized by a
connected, locally contractible, locally path connected space Λ. This is equivalent
to the continuity of the parametrized flow

Φ: R×X × Λ → X × Λ

defined by

Φ(t, x, λ) = (ϕλ(t, x), λ).

Of course, given any U ⊂ Λ, Φ restricts to a parametrized flow

ΦU : R×X × U → X × U.

Let N ⊂ X × Λ. By definition N is an isolation neighborhood for Φ if

Inv(N,Φ) ⊂ intN.

Let Nλ := N ∩ (X × {λ}). Observe that if N is an isolation neighborhood for
Φ, then for all λ ∈ Λ, Nλ is an isolation neighborhood for ϕλ. Two isolated
invariant sets Sλ0 and Sλ1 for the flows ϕλ0 and ϕλ1 , respectively, are said to
be related by continuation if there exist a path connected set U ⊂ Λ such that
λ0, λ1 ∈ U and an isolating neighborhood N of ΦU such that Sλ0 = Inv(Nλ0 , ϕλ0)
and Sλ1 = Inv(Nλ1 , ϕλ1). A fundamental fact is that in this case

h(Sλ0) ∼ h(Sλ1).

In other words, the Conley index is preserved under continuation.
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The definition of continuation of Morse decompositions is obtained in a simi-
lar manner. To be precise, let U ⊂ Λ be connected, let S be a compact invari-
ant set, and let {M(p)|p ∈ P} be a finite collection of disjoint compact invariant
subsets with respect to the parametrized flow ΦU . These, of course, give rise to
parametrized families of invariant sets Sλ and Mλ(p), for λ ∈ U , obtained by inter-
secting with the fibers X ×{λ}. The Morse decomposition is said to continue over
U , if for each λ ∈ U ,

M(Sλ) = {Mλ(p)|p ∈ P}
is a Morse decomposition of Sλ.

An important point which needs to be made is that this definition is weaker than
assuming that

M(S) = {M(p)|p ∈ P}
is a Morse decomposition for S under ΦU . In this latter case, there exists an
admissible partial order < on P which is an admissible order for each Morse de-
composition M(Sλ) = {Mλ(p)|p ∈ P}. However, assuming that we have a Morse
decomposition for each parameter value does not insure the existence of an admis-
sible partial order for M(S). In other words, the existence of admissible orders
<λ for each λ ∈ Λ does not guarantee that these orders are compatible. As shall
be seen in Section 5.1, the results of this paper can be used, in some instances,
to determine when a local admissible order is, in fact, global. We shall refer to
this stronger notion of continuation as follows. Two Morse decompositions M(Sλ0)
and M(Sλ1) are related by an order preserving continuation if there exists a path
connected set U ⊂ Λ containing λ0 and λ1 such that M(S) is a Morse decompo-
sition for ΦU . Equivalently, we shall say that M(S) continues with order over U .
From the local continuation theorem for Morse decompositions [7] we obtain the
following theorem.

Theorem 1.1. Let K ⊂ Λ be compact. Assume that M(S) continues over K.
Then, there exists a finite covering {Ui|i = 1, . . . , I} of K such that M(S) continues
with order over each Ui.

Changing our train of though for a moment, consider a Morse decomposition
M(S) = {M(p)|p ∈ P} and assume that < is not an admissible order. The simplest
way that this can occur is for there to exist an x ∈ S and p, q ∈ P with q < p,
ω(x) ⊂ M(p), and α(x) ⊂ M(q). Thus the set of admissible orderings provides
information concerning the existence of connecting orbits between Morse sets.

Returning to the setting of a Morse decomposition M(Sλ) = {Mλ(p)|p ∈ P}
which continues over a parameter space Λ, let CM(M(Sλ0)) and CM(M(Sλ1))
denote the set of connection matrices for M(Sλ0) and M(Sλ1), respectively. Since
the individual Morse sets continue over Λ,

CH∗(Mλ0(p)) ≈ CH∗(Mλ1(p)),

and hence, the connection matrices are defined on isomorphic linear spaces. There-
fore, if CM(M(Sλ0)) and CM(M(Sλ1)) differ, one may expect that the set of
admissible partial orders at λ0 and λ1 are different. Furthermore, parameter val-
ues at which the sets of admissible partial orders change must correspond to the
existence of global bifurcations.

The ultimate goal of our project is to develop an algebraic means of proving
the existence of and understanding the dynamic implications of these bifurcation
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points. Unfortunately we are still a long way from attaining this, and in this paper
we can only present some preliminary (but nontrivial) results in this direction.
Since the results are fairly abstract we shall attempt to put them into perspective
by discussing two alternative methods which have proven useful in a variety of
contexts.

The idea of the first approach was due to Conley and carried out in a special
setting by J. Reineck [26] (see also [16, 17]). C. McCord and the second author [15]
recently abstracted these ideas and dubbed this approach the method of singular
transition matrices. It is most easily described in the context developed by Reineck,
i.e. that of a parametrized family of ordinary differential equations defined on Rn,

ẋ = f(x, λ),(1)

where the parameter space Λ is the set of real numbers R. For the sake of simplicity,
assume that the Morse decomposition M(Sλ) = {Mλ(p)|p ∈ P} continues over R
and that connection matrices ∆−1 and ∆1 for the Morse decompositions M(S−1)
and M(S1), respectively, are known. Furthermore, let N ⊂ Rn be an isolation
neighborhood for Sλ, λ ∈ R.

In order to understand the bifurcations for intermediate parameter values, i.e.
for −1 < λ < 1, Conley suggested introducing slow dynamics in the parameter
space as follows:

ẋ = f(x, λ), λ̇ = ε(λ2 − 1)(2)

where, for the moment, we assume ε > 0. Define

M(p+) := M1(p), M(p−) := M−1(p)

where M(p±) is taken to be the obvious subset in Rn × {±1} ⊂ Rn × Λ. For
ε > 0 sufficiently small, N × [−2, 2] is an isolating neighborhood for the flow Φε

generated by (2) [16]. Let Kε := Inv(N× [−2, 2],Φε). Now observe that since λ̇ < 0
if λ ∈ (−1, 1), for all ε > 0,

M(Kε) = {M(p±)|p ∈ P}
is a Morse decomposition, and furthermore, there is an admissible ordering given
by

q− < p+,

q− < p− ⇔ q <−1 p,

q+ < p+ ⇔ q <1 p,

where <−1 and <1 are admissible orders for M(S−1) and M(S1), respectively.
Let ∆ε denote a connection matrix for M(Kε). Then, since the dynamics on the
subspaces Rn×{±1} is given exactly by the flows generated by ẋ = f(x,±1), it is
not surprising that

∆ε :
⊕
p∈P

CH∗(M(p−))
⊕
p∈P

CH∗(M(p+))

→
⊕
p∈P

CH∗(M(p−))
⊕
p∈P

CH∗(M(p+))

takes the form

∆ε =

[
∆− Tε
0 ∆+

]
(3)
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where ∆± are connection matrices for M(S±1). Observe that we said “takes the
form” rather than “equals”. This is necessary since the space on which ∆ε is defined
is not the direct sum of the spaces on which ∆± are defined. One of Reineck’s
contributions [26] was to formalize the expression (3). It is possible to make sense
of the limit of Tε as ε→ 0, and the resulting matrices are referred to as the singular
transition matrices [15]. In [26] it is shown that a nonzero element of a singular
transition matrix implies the existence of connecting orbits between appropriate
Morse sets for some parameter value λ ∈ (−1, 1). Thus, these transition matrices
can be used to detect global bifurcations.

This form of transition matrix is by far the most general. In fact, it is sufficient
to assume the existence of an isolated invariant set that continues over Λ and the
existence of Morse decompositions of this invariant set at two different parameter
values. However, since these transition matrices are essentially just submatrices
of a connection matrix, they can only be computed via the dynamics of the slow
system (2).

Actually, this last statement is a little too strong. First, as is shown in [24],
knowledge of the dynamics of the parametrized family (1) can be used to compute
T ; however, if the goal is to understand the dynamics of the parametrized family
this information is of little use.

Second, if we assume that the Morse decomposition continues over the parameter
space, then there are algebraic constraints on T . Since ∆ε is a connection matrix, T
must be both upper triangular with respect to the admissible order < and a degree
−1 operator. Furthermore, it can be shown that T is an isomorphism. Finally,
since ∆ε ◦∆ε = 0, the following matrix equation must be satisfied:

∆−T + T∆+ = 0.(4)

Of course, (4) is merely a sufficient condition, and hence, can only be used to
rule out possible transition matrices. In the extreme case in which ∆± = −0, (4)
provides no information. Finally, even though T may be a well defined linear map,
its algebraic properties are not explained through this construction.

In an attempt to better understand singular transition matrices and for the pur-
pose of applications in which (4) provided little information, C. McCord and the
second author developed a topological transition matrix [13]. The starting point
for this theory is a refinement of the homotopy Conley index, known as a connected
simple system. This consists of the Conley index h(S) and the homotopy type of
all flow induced maps on h(S). Under the assumption of an order preserving con-
tinuation of the Morse decomposition over Λ and using the homology functor to
pass from h(·) to CH∗(·), the continuation theorem was used to define a basis for
CH∗(Mλ(p)) for each λ ∈ Λ and p ∈ P . Now under the assumption that at the
parameter values λ0 and λ1 for which the dynamics is understood Sλ0 =

⋃
Mλ0(p)

and Sλ1 =
⋃
Mλ1(p), i.e. that there are no connecting orbits, the difference between

the local isomorphisms (i.e between the Morse sets at λ0 and λ1) and the global
isomorphism (the isomorphism between the index of S at λ0 and λ1) defines a ma-
trix called the topological transition matrix. Formally, this matrix satisfies similar
properties to those of the singular transition matrices. In particular, it is poten-
tially nontrivial between the same vector spaces as the singular matrix and it is an
isomorphism. Since it is assumed that there are no connections at the parameter
values λ0 and λ1,∆λ0 and ∆λ1 are identically 0, and hence formally (4) is satisfied.
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Finally, off diagonal nonzero entries of this transition matrix, again, imply the exis-
tence of connecting orbits between Morse sets for flows at intermediate parameter
values.

In this case, however, the construction of the matrix is done via algebraic topol-
ogy. Hence, the algebraic properties of topological transition matrices are clear. In
particular, if we let Tλ1,λ0 denote the topological transition matrix from λ0 to λ1,
and assume that the parameter space is simply connected, then, for example,

Tλ2,λ0 = Tλ2,λ1 ◦ Tλ1,λ0(5)

and

Tλ1,λ0 = T−1
λ0,λ1

.(6)

It is reasonable at this point to ask whether these latter properties are of any
interest. The answer is yes and worth explaining since it justifies the need for
the algebraic machinery we are attempting to develop. (5) was used in [13] to
establish the existence of global bifurcations. This result, in turn, was exploited
to prove the existence of specific travelling waves for a general family of predator-
prey systems [25]. In both of these cases the connection matrices at the known
parameter values were identically 0, and hence (4) was of no use in determining the
singular transition matrices. (6) has been used for a singular perturbation problem.
In [10] information concerning a parametrized family of equations of the form (1)
was assumed and knowledge of connecting orbits for a system of the form (2) was
obtained. In particular, for ε > 0 the dynamics is sufficiently simple to compute the
singular transition matrix. However, for ε < 0, the case of interest, the dynamics
is too complicated to study directly. In [14] it is shown that when both topological
and singular matrices can be defined, then they both agree. Therefore, for ε < 0
the singular transition matrix is the inverse of the singular transition matrix for
ε > 0.

The reason for including these two examples was to emphasize the importance
of having an algebraic understanding of the transition matrix. Unfortunately, the
results of [14] only hold in rather restrictive settings. The purpose of this paper is
to obtain yet another transition matrix which we refer to as an algebraic transition
matrix which is defined in a reasonably general context, i.e. whenever one has an
order preserving continuation of a Morse decomposition. Of course definitions are
easy to make; however, we also show that these matrices can be used to generate
all connection matrices at a particular parameter value (thus addressing in part
the nonuniqueness question) and that these matrices can be used to detect global
bifurcations. We leave it to future papers to explore the relationship between
algebraic, topological, and singular transition matrices.

This paper is organized as follows. In Section 2, the necessary background on
partial orders is presented. Section 3 contains the essential algebraic results. In
Section 4 the algebraic results of Section 3 are recast in the form of theorems related
to global bifurcations and the algebraic transition matrices are defined. Finally, in
the last section, we discuss some simple applications of our results to differential
equations.
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2. Partial orders

We assume that the reader is familiar with topics from the theory of partial
orders as in [5]. Throughout the paper P represents a finite set with a partial order
<. If Q is a subset of P , the <Q denotes the partial order < restricted to Q.

An interval in P is the set I ⊂ P which is such that if p, q ∈ I and p < r < q
then r ∈ I. The set of intervals in < is denoted by I(<). An adjacent n-tuple of
intervals in < is an n-tuple of mutually disjoint nonempty intervals, (I1, . . . , In),
whose union is an interval in < and which are such that if p ∈ Ii, q ∈ Ij , and
p < q, then i < j. The set of adjacent n-tuples of intervals in < is denoted by
In(<). An adjacent 2-tuple of intervals is also called an adjacent pair of intervals.
If (I1, . . . , In) is an adjacent n-tuple of intervals whose union is I, then (I1, . . . , In)
is called a decomposition of I, if A,B ⊂ P are disjoint then we say that A and B
are noncomparable if neither a < b nor b < a for every a ∈ A, b ∈ B, and we say
that B is totally greater than A if a < b for every a ∈ A and b ∈ B.

A partial order < on P is called stackable if there is a decomposition of P ,
(I1, . . . , In), such that < restricted to each Ii is trivial and such that if i < j then
Ij is totally greater than Ii. Note that a trivial order is stackable and a total order
is stackable.

In Section 3 an inductive proof of the existence of a matrix that is upper trian-
gular with respect to a partial order < on P is structured as follows: First we show
that the matrix exists if P contains one element. Then we show that the matrix
exists if there is a decomposition (I1, I2) of P such that the matrix exists for the
partial ordered sets I1 and I2 and such that either I1 and I2 are noncomparable or
I2 is totally greater than I1.

It is not difficult to see that the proof does not imply the existence of the desired
matrix for arbitrary partial orders <, and thus one is led to the question, for what
partial orders does the existence proof work?

This naturally leads to the following recursive definition of those partial orders
for which the proof works:

Definition 2.1. A partial order < on P is series parallel if either P contains ex-
actly one element or there is a decomposition (I1, I2) of P such that the partial
orders <I1 and <I2 are series parallel and such that either I1 and I2 are noncom-
parable or I2 is totally greater than I1.

Obviously a nonrecursive characterization of these partial orders would be prefer-
able. Theorem 2.3, below, states that series-parallel is equivalent to N -free, as
defined in the following:

Definition 2.2. 1. An N in < is a four-tuple (a, b, c, d) of elements of P such that
the only relations in < between a, b, c, and d are: a < b, c < b, and c < d.

2. A partial order < on P is said to be N -free if P contains no N ’s.

Thus, in Figure 0, (a, b, c, d) is an N in < if the solid-line relations, and only
the solid-line relations, hold between a, b, c, and d. Furthermore, < is N -free if
whenever each of the solid-line relations holds, then at least one of the dotted-line
relations also holds.

It is not difficult to see that stackable (and therefore both trivial and total)
orders are Z-free.

Theorem 2.3 (see [28]). A partially ordered set is series-parallel if and only if it
is N -free.
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Figure 0

Corollary 2.4. If < is N -free, then there exists a decomposition (I1, I2) of P such
that <I1 and <I2 are N -free and such that either I1 and I2 are noncomparable or
I2 is totally greater than I1.

3. The algebraic theory

In this section we present the algebraic theory that we apply to transition systems
in the remainder of the paper. The main result of this section, Theorem 3.5,
describes conditions under which connection matrices are related by similarity. It
is through these similarities that we develop and apply our transition theory in the
following sections.

We assume that the reader is familiar with the algebraic connection matrix theory
as presented in [6]. Recall,

Definition 3.1. Given G, a graded module braid over <, and C = {C(p)}p∈P ,
a collection of graded modules, let ∆:

⊕
p∈P C(p) →

⊕
p∈P C(p) be a <-upper

triangular boundary map. Then,

1. if H∆, the graded module braid generated by ∆, is isomorphic to G, then ∆
is called a C-connection matrix of G;

2. if, furthermore, C(p) is isomorphic to G(p) for each p ∈ P , then ∆ is called a
connection matrix of G.

To simplify notation, for I ∈ I(<) we denote
⊕

p∈I C(p) by C(I), and the

corresponding homology module in H∆ by H(I).
Assume G, C, and ∆ are as in Definition 3.1. Let I be an interval in <, and set

CI = {C(p)}p∈I . It easily follows that ∆(I) is a CI -connection matrix of G| <I .
Furthermore, it is not difficult to see that under these circumstances H(∆(I)) nat-
urally corresponds to H∆| <I , and that if θ : H∆ → G is an isomorphism then
θ| <I : H(∆(I)) → G| <I is too.

In [6] it is shown that if G is chain complex generated, each C(p) is free, and,
for each p ∈ P , H(p) is isomorphic to G(p) (where H(p) is the homology of the
chain complex C(p) with boundary map ∆(p)) then the corresponding collection of
C-connection matrices is not empty.

In this paper we work only with the connection matrices (i.e, not with the more
general C-connection matrices). We denote the collection of connection matrices of
G by CM(G).

Connection matrices are not unique. The fact is established via a simple example
in [6]; the nonuniqueness can also be seen to be, in part, a consequence of Proposi-
tion 3.4, below. The following two propositions, which are easy to verify, are used in
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establishing Proposition 3.4. Recall that if C = {C(p)}p∈P and ∆: C(P ) → C(P )
is <-upper triangular boundary map, then C∆ denotes the chain complex braid
defined by ∆.

Proposition 3.2. Let C = {C(p)}p∈P and C′ = {C′(p)}p∈P be collections of
graded modules, and ∆: C(P ) → C(P ) and ∆′ : C ′(P ) → C ′(P ) be <-upper tri-
angular boundary maps. If T : C(P ) → C ′(P ) is <-upper triangular and such that
T∆ = ∆′T , then T := {T (I)}I∈I(<) is a chain map from C∆ to C∆′.

We call T the chain map induced by T , and we call the homology map induced
by T , the graded module braid homology map induced by T .

The following proposition is a simple matrix-algebra result.

Proposition 3.3. Let T : C(P ) → C′(P ) be <-upper triangular, and assume
(I1, . . . , Im) is a decomposition of P . Then

1. T is an isomorphism if and only if T (Ij) is an isomorphism for each j =
1, . . . ,m (in particular T is an isomorphism if and only if T (p) is an isomor-
phism for each p ∈ P ).

2. If T is an isomorphism with inverse T−1, then T−1 is <-upper triangular and
T−1(I) = T (I)−1 for each I ∈ I(<).

The following proposition implies that if ∆ is a connection matrix for a graded
module braid G, then any other matrix that is “similar” to ∆ by a <-upper trian-
gular isomorphism is also a connection matrix for G. The proof is straightforward
and therefore is omitted.

Proposition 3.4. Let C = {C(p)}p∈P and C′ = {C′(p)}p∈P be collections of
grade modules, and ∆: C(P ) → C(P ) be a <-upper triangular boundary map.
If T : C(P ) → C ′(P ) is a <-upper triangular isomorphism, then ∆′ := T∆T−1

is a <-upper triangular boundary map and T := {T (I)}I∈I(<) is an isomorphism
between C∆ and C∆′. In particular, with such ∆ and T , if ∆ ∈ CM(G).

With ∆,∆′, and T as in Proposition 3.4, we say that ∆ and ∆′ are similar and
T is a similarity (isomorphism) between them.

Proposition 3.4 implies that given one connection matrix ∆, others can be com-
puted by using similarity isomorphisms. It is natural to ask if this method is
exhaustive, and therefore if all connection matrices can be computed knowing one
of them. This question essentially asks if the converse to Proposition 3.4 holds, i.e.,
if it is true that if ∆,∆′ ∈ CM(G), where G is a graded module braid over <, then
there exists a <-upper triangular similarity isomorphism between them. In general,
the answer is unknown. However, as is shown in Theorem 3.5 below, the answer is
affirmative if < is an N -free order and G(p) is free and finitely generated for each
p ∈ P . In the following sections we show that this partial result is strong enough
to establish a broadly applicable transition theory.

Theorem 3.5. Let G be a graded module braid over an N -free order <, and assume
that G(p) is free and finitely generated for each p ∈ P . If ∆,∆′ ∈ CM(G), then
there exists a <-upper triangular isomorphism T such that ∆′ = T∆T−1.

Theorem 3.5 follows from Theorem 3.8, below; the proof of Theorem 3.5 is
presented after that of Theorem 3.8.

Definition 3.6. Let ∆ and ∆′ be similar and T be a similarity isomorphism be-
tween them. Assume that θ : H∆ → H∆′ is an isomorphism.
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1. If the homology map induced by T equals θ(P ) then we say that T weakly
covers θ.

2. If the graded module braid homology map induced by T equals θ then we say
that T covers θ.

The following proposition relates the graded-module-braid boundary map ∂(J, I),
in H∆, to the map ∆(J, I), defined by appropriate restriction of ∆.

Proposition 3.7 (see [6]). If [α] ∈ H(J), then ∂(J, I)[α] = [∆(J, I)α].

Theorem 3.8. Let C = {C(p)}p∈P and C′ = {C′(p)}p∈P be collections of free
graded modules, ∆: C(P ) → C(P ) and ∆′ : C ′(P ) → C′(P ) be <-upper triangular
boundary maps, and θ : H∆ → H∆′ be an isomorphism. Assume that (I1, I2) is a
decomposition of P such that either I1 and I2 are noncomparable or such that I2
is totally greater than I1. If for each i = 1, 2 there exists Ti : C(Ii) → C ′(Ii), a
<Ii-upper triangular similarity isomorphism between ∆(Ii) and ∆′(Ii) that weakly
covers θ| <Ii , then there exists T : C(P ) → C′(P ), a <-upper triangular similarity
isomorphism between ∆ and ∆′ that weakly covers θ and is such that T (Ii) = Ti
for each i = 1, 2.

It is unknown if there exists a T , as in Theorem 3.8, that covers θ. However, it
is only the existence of the map T that is needed in Theorem 3.8 to establish The-
orem 3.5, and therefore to establish the transition theory in the following sections.

Proof of Theorem 3.8. To define T , clearly we must set T (Ii) = Ti, for i = 1, 2,
and T (I1, I2) = 0. It remains to define T (I2, I1).

In the case where I1 and I2 are noncomparable, we must have T (I2, I1) = 0. It
is not difficult to see that the result holds in this case.

Now consider the case where I2 is totally greater than I1. We need to define
T (I2, I1) : C(I2) → C(I1). Note that regardless of how T (I2, I1) is defined, the
resulting map T is <-upper triangular, and therefore by Proposition 3.3 is an iso-
morphism.

Consider the following submodules of C(I2):

A := Im ∆(I2),

A1 := (∆(I2, I1)
−1(Im ∆(I1))) ∩ ker∆(I2),

A2 := ker∆(I2).

It is not difficult to see that A ⊂ A1 ⊂ A2. Let B be a subspace of A1 comple-
mentary to A, let C be a subspace of A2 complementary to A1, and let D be a
subspace of C(I2) complementary to A2. Note that D is mapped isomorphically to
A by ∆(I2).

We define T (I2, I1) on A,B,C, and D separately.
For δ ∈ D define T (I2, I1)δ = 0.
Now let ψ be an element of a basis for C. ψ ∈ ker∆(I2), so therefore T2ψ ∈

ker∆′(I2). We have
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[∆′(I2, I1)T2ψ] = ∂′(I2, I1)[T2ψ] (by Proposition 3.7)

= ∂′(I2, I1)θ(I2)[ψ] (since T2 induces θ(I2))

= θ(I1)∂(I2, I1)[ψ] (since θ is a map between

graded module braids)

= θ(I1)[∆(I2, I1)ψ] (by Proposition 3.7)

= [T1∆(I2, I1)ψ] (since T1 induces θ(I1)).

Let τ ∈ C ′(I1) be such that ∆′(I1)τ = T1∆(I2, I1)ψ − ∆′(I2, I1)T2ψ. Define
T (I2, I1)ψ = τ .

Let β be an element of a basis for B. By definition of B, ∆(I2)β = 0 and
there exists γ ∈ C(I1) such that ∆(I1)γ = ∆(I2, I1)β. It is easy to see that
(−γ) ⊕ β ∈ ker∆, and therefore [(−γ) ⊕ β] ∈ H(P ). θ(P ) : H(P ) → H ′(P ); we
claim that there exists σ ∈ C ′(I1) such that [σ ⊕ T2β] = θ(P )[(−γ) ⊕ β]. To that
end let ν⊕µ ∈ C ′(I1)⊕C′(I2) = C ′(P ) be such that [ν⊕µ] = θ(P )[(−γ)⊕β]. Note
that [µ] = p′(P, I2)[ν ⊕ µ] = p′(P, I2)θ(P )[(−γ) ⊕ β] = θ(I2)p(P, I2)[(−γ) ⊕ β] =
θ(I2)[β] = [T2β], and therefore there exists ρ ∈ C′(I2) such that ∆′(I2)ρ = T2β−µ.
Let σ = ν + ∆′(I2, I1)ρ. Note that ∆′(0 ⊕ ρ) = ∆′(I2, I1)ρ ⊕∆′(I2)ρ = (σ − ν) ⊕
(T2β−µ) = (σ⊕T2β)− (ν⊕µ). Thus [σ⊕T2β] = [ν⊕µ] = θ(P )[(−γ)⊕β], proving
the claim.

With β, γ and σ as above, define T (I2, I1)β = σ + T1γ.
Finally to define T (I2, I1) on A, note that for each α ∈ A, we have α = ∆(I2)δ

for a unique δ ∈ D. For such α define T (I2, I1)α = ∆′(I2, I1)T2δ − T1∆(I2, I1)δ.
Now T : C(P ) → C ′(P ) is defined. T is <-upper triangular and an isomorphism.

We claim that ∆′T = T∆, and that T induces the homology map θ(P ) : H(P ) →
H ′(P ).

It is clear that ∆′T = T∆ holds on the subspace C(I1) ⊕ 0 ⊂ C(I1) ⊕ C(I2) =
C(P ). To show that ∆′T = T∆ on 0⊕ C(I2), we look separately at the subspaces
0 ⊕ A, 0 ⊕ B, 0 ⊕ C, and 0 ⊕D of 0 ⊕ C(I2). Thus let α ∈ A be as above. Then
α = ∆(I2)δ for a unique δ ∈ D.

∆′T (0⊕ α) = ∆′(T (I2, I1)α⊕ T2α)

= ∆′((∆′(I2, I1)T2δ − T1∆(I2, I1)δ)⊕ T2α)

(by definition of T (I2, I1)α)

= (∆′(I2, I1)T2∆(I2)δ + ∆′(I1)∆′(I2, I1)T2δ

−∆′(I1)T1∆(I2, I1)δ)⊕∆′(I2)T2α

= (∆′(I2, I1)∆′(I2)T2δ + ∆′(I1)∆′(I2, I1)T2δ

− T1∆(I1)∆(I2, I1)δ)

(since T1 and T2 are similarity isomorphisms)

= T1∆(I2, I1)∆(I2)δ ⊕ 0

(since ∆′2 = 0,∆2 = 0, and α ∈ ker∆(I2))

= T1∆(I2, I1)α⊕ 0

= T∆(0⊕ α).
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Let β be in B, and assume that γ and σ are as above.

∆′T (0⊕ β) = ∆′((σ + T1γ)⊕ T2β) (by definition of T (I2, I1)β)

= ∆′(I1)T1γ ⊕ 0 (since σ ⊕ T2β ∈ ker∆′)

= T1∆(I1)γ ⊕ 0 (since T1 is a similarity

isomorphism)

= T1∆(I2, I1)β ⊕ 0

= T∆(0⊕ β).

Now assume ψ ∈ C, and let τ be as above.

∆′T (0⊕ ψ) = ∆′(τ ⊕ T2ψ) (by definition of T (I2, I1)ψ)

= (∆′(I2, I1)T2ψ + ∆′(I1)τ) ⊕∆′(I2)T2ψ

= T1∆(I2, I1)ψ ⊕ T2∆(I2)ψ (by definition of τ , and since

T2 is a similarity isomorphism)

= T1∆(I2, I1)ψ ⊕ 0 (since ψ ∈ ker∆(I2))

= T∆(0⊕ ψ).

Finally assume δ ∈ D, and let α = ∆(I2)δ as above.

∆′T (0⊕ δ) = ∆′(0⊕ T2δ) (since, by definition, T (I2, I1)δ = 0)

= ∆′(I2, I1)T2δ ⊕∆′(I2)T2δ

= (T (I2, I1)α+ T1∆(I2, I1)δ)⊕ T2∆(I2)δ

(by definition of T (I2, I1)α, and since

T2 is a similarity isomorphism)

= (T (I2, I1)∆(I2)δ + T1∆(I2, I1)δ)⊕ T2∆(I2)δ

= T (∆(I2, I1)δ ⊕∆(I2)δ)

= T∆(0⊕ δ).

It follows that ∆′T = T∆.
Finally we show that T induces θ(P ). Let T∗ be the homology map induced

by T . We show that T∗ = θ(P ). Thus let ω ∈ H(P ). ω[λ ⊕ κ] for some λ ⊕ κ ∈
C(I1) ⊕ C(I2) = C(P ). We consider the cases where κ = 0 and κ 6= 0 separately.
Thus assume κ = 0. Then λ ∈ ker∆(I1), and

T∗ω = [T1λ⊕ 0]

= i′(I1, P )[T1λ]

= i′(I1, P )θ(I1)[λ] (since T1 induces θ(I1))

= θ(P )i(I1, P )[λ] (since θ is a map between graded

module braids)

= θ(P )[λ ⊕ 0]

θ(P )ω.
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Now assume κ 6= 0. It follows that κ ∈ A1 and it is not difficult to see that it
suffices to consider κ ∈ B and λ⊕ κ = (−γ)⊕ β as above.

T∗ω = [T ((−γ)⊕ β)]

= [(T (I2, I1)β + T1(−γ))⊕ T2β]

= [((σ + T1γ) + T1(−γ))⊕ T2β)] (by definition of T (I2, I1)β)

= [σ ⊕ T2β]

= θ(P )[(−γ)⊕ β]

= θ(P )ω.

It now follows that the homology map induced by T is θ(P ), and the proof of
Theorem 3.8 is complete.

Proof of Theorem 3.5. Since ∆,∆′ ∈ CM(G), it follows that H∆ and H∆′ are iso-
morphic to G. Thus there exists an isomorphism θ : H∆ → H∆′. ∆:

⊕
p∈P C(p) →⊕

p∈P C(p) and ∆′ :
⊕

p∈P C
′(p) →

⊕
p∈P C

′(p). Each C(p) and C′(p) is isomor-

phic to G(p) and therefore is free. We prove, by induction on the number of elements
in P , that there exists a <-upper triangular isomorphism T such that ∆′ = T∆T−1

and such that T weakly covers θ.
Consider the case where P has one element. The chain complex C(P ) with

boundary map ∆ has homology isomorphic to G(P ), which is isomorphic to C(P ).
Since G(P ) (and therefore C(P )) is free and finitely generated, it follows that ∆
must be trivial. Similarly ∆′ is trivial. Therefore H(P ) = C(P ) and H ′(P ) =
C ′(P ), and by setting T = θ(P ) it is easy to see that the result holds in this case.

Now assume that the result holds if the number of elements in P is less than n,
and let P have n elements (n > 1). Since < is Z-free, Corollary 2.4 implies that
there exists a decomposition (I1, I2) of P such that <I1 and <I2 are Z-free and
such that either I1 and I2 are noncomparable or I2 is totally greater than I1.

For i = 1, 2,∆(Ii), ∆′(Ii) ∈ CM(G| <Ii). By induction, for i = 1, 2, there
exists a <Ii -upper triangular isomorphism Ti : C(Ii) → C′(Ii) such that ∆′(Ii) =
Ti∆(Ii)T

−1
i and such that Ti weakly covers θ| <Ii . By Theorem 3.8 there exists a

<-upper triangular isomorphism T such that ∆′ = T∆T−1 and such that T weakly
covers θ.

Thus by induction it now follows that there exists a <-upper triangular isomor-
phism T such that ∆′ = T∆T−1.

4. Algebraic transition matrices

Our focus in this section is on the interpretation of Theorem 3.5 in the context
of continuation. We begin with the definition of an algebraic transition matrix and
then show that these can be used to prove the existence of connecting orbits. This,
in turn, can be interpreted as a theorem about global bifurcations.

Let M be a Morse decomposition. If < is an admissible ordering of M, then the
associated homology braid index is denoted by H(<) and the corresponding collec-
tion of connection matrices by CM(<). Of course for a fixed Morse decomposition,
one is interested in the set of connection matrices for the flow defined order. We
refer to this as the set of connection matrices for M and denote it by CM(M).

The following theorem implies that homology braids and connection matrices
are invariant under order preserving continuations.
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Theorem 4.1 (see [7]). Let M(S) = {M(p)|p ∈ P} be a Morse decomposition for
ΦU with admissible order <. Then, given λ0, λ1 ∈ U , H(<λ0) and H(<λ1) are
isomorphic and therefore CM(<λ0) = CM(<λ1).

The contrapositive of Theorem 4.1 indicates that if CM(<λ0) 6= CM(<λ1) then
the admissible orderings <λ0 and <λ1 are not related by continuation. Thus if
M(Sλ0) and M(Sλ1) are the associated Morse decompositions and < is the par-
tial order on P defining <λ0 then on any path in U from λ0 to λ1 there is a γ
such that < is not an admissible ordering for the associated Morse decomposition
M(Sγ). Therefore there exists a p < q such that the set of connecting orbits,
C(Mγ(p),Mγ(q)), associated to the Morse decomposition M(Sλ0), is nonempty.
The transition theorem describes conditions under which one can determine al-
gebraically, by examining similarity isomorphisms between connection matrices in
CM(Mλ0) and CM(Mλ1), which Morse sets are connected.

Theorem 3.5 indicates that if ∆λ0 ,∆λ1 ∈ CM(<) then there exists an <-upper
triangular isomorphism Tλ1,λ0 such that

∆λ1 = Tλ1,λ0 ◦∆λ0 ◦ T−1
λ1,λ0

.(7)

If we wish to express this relation in matrix form then we need to choose bases. Of
course, though the spaces CH∗(Mλ0(p)) and CH∗(Mλ1(p)) are isomorphic they are
different, and hence, there are many potential representations for the identity (7).
To eliminate this ambiguity, we shall use the continuation property of the index to
uniformly choose bases for all the indices. In particular, if Mλ0(p) and Mλ1(p) are
related by continuation, then there exists a continuation induced isomorphism (see
[30, 13])

Fλ1,λ0 : CH∗(Mλ0(p)) → CH∗(Mλ1(p)).

Now assume Mλ(p) continues over U ⊂ Λ and let λ0, λ1 ∈ U . Let Bλ0 denote a basis
for CH∗(Mλ0(p)). Then the basis for CH∗(Mλ1(p)) is defined to be Fλ1,λ0(Bλ0).
Observe that under the assumption that U is simply connected, this is a well defined
procedure for choosing bases for the Conley indices at different parameter values.
The immediate implication of this assumption is that we need only consider<-upper
triangular isomorphisms Tλ1,λ0 whose diagonal entries are the identity matrix.

Definition 4.2. Let M(S) be a Morse decomposition which continues with order
< over a simply connected set U ⊂ Λ. For λ0, λ1 ∈ U the set of algebraic transition
matrices from CM(M(Sλ0)) to CM(M(Sλ1)) is the collection

T U
λ1,λ0

:= {Tλ1,λ0 |Tλ1,λ0 is < -upper triangular, ∆λ1 = Tλ1,λ0∆λ0T
−1
λ1,λ0

where ∆λi ∈ CM(M(Sλi)) for i = 0, 1}

where the bases for the Conley indices are determined by the continuation isomor-
phism Fλ1,λ0 .

Theorem 4.3. Let < be a stackable order associated with the decomposition
{I1, I2, . . . , In}. Let M(S) be a Morse decomposition which continues with order <
over a simply connected set U ⊂ Λ. Then, given any λ0, λ1 ∈ U , the set of algebraic
transition matrices T U

λ1,λ0
6= ∅.

Furthermore, assume that there exists j such that for all Tλ1,λ0 ∈ T U
λ1,λ0

,

Tλ1,λ0(Ij−1, Ij) is nontrivial. Then, there exists a set V ⊂ U such that U\V consists
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of two components U0 and U1 such that λ0 ∈ U0, λ1 ∈ U1, and for all λ ∈ V ,

C(Mλ(Ij),Mλ(Ij−1)) 6= ∅.

Proof. We begin by showing that T U
λ1,λ0

6= ∅. Note that Theorem 4.1 implies that

CM(<λ0) = CM(<λ1). Furthermore, < stackable implies that < is N -free. Thus,
if ∆λi ∈ CM(<λi), i = 0, 1, then Theorem 3.5 implies there exists T such that
∆λ1 = T∆λ0T

−1. So T ∈ T U
λ1,λ0

implying that T U
λ1,λ0

6= ∅.

Suppose that c : [0, 1] → U is a path from λ0 to λ1 in U such that for all s ∈ [0, 1],
C(Mc(s)(Ij), Mc(s)(Ij−1)) = ∅, containing no Morse decomposition in CIj ,Ij−1 . Let
<∗ be the stackable order having associated decomposition (I1, . . . , Ij−2, Ij−1 ∪
Ij , Ij+1, . . . , In). It is easy to see that M(Sλ0) and M(Sλ1) are related by a <∗

order preserving continuation over c([0, 1]) ⊂ U . Let <∗λ0
and <∗λ1

be the admissible
orderings ofM(Sλ0) andM(Sλ1), respectively, corresponding to <∗. Since <∗λ0

and
<∗λ1

are related by continuation;

CM(<∗λ0
) = CM(<∗λ1

).

Now ∆λ0 ∈ CM(M(Sλ0)) ⊂ CM(<∗λ0
), and ∆λ1 ∈ CM(M(Sλ1 )) ⊂ CM(<∗λ1

).
So ∆λ0 ,∆λ1 ∈ CM(<∗λ0

). CM(<∗λ0
) is the set of connection matrices of the homol-

ogy index braid H(<∗λ0
), a graded module braid over the stackable (and therefore

Z-free) order <∗, made up of free and finitely generated homology complexes.
By Theorem 3.5 there exists a <∗-upper triangular T such that ∆λ0 = T∆λ1T

−1.
Since < is an extension of <∗ it follows that T is <-upper triangular, and therefore
T ∈ T . Since T is <∗-upper triangular it follows that T (Ij , Ij−1) is trivial, contra-
dicting the assumption that T (Ij , Ij−1) is nontrivial for every T ∈ T . Thus if c is
any path from λ0 to λ1 in U , then for at least one parameter value λ ∈ c((0, 1))

C(Mλ(Ij),Mλ(Ij−1)) 6= ∅.
Hence, there exists a set V which separates λ0 from λ1.

5. Applications

We conclude this paper with some simple applications which are meant to indi-
cate how algebraic transition matrices may be used.

5.1. Bistable attractors. This first example may appear artificial; however, it
plays an important step in a description of the dynamics on the global attractors
of bistable gradient-like systems. The reader is referred to [18] for a description of
the equations. Here we only present the abstract algebraic result.

Let ϕλ : R×X → X be a continuous family of flows parametrized by λ ∈ [0, 1].
Let Φ: R ×X × [0, 1] → X × [0, 1] be the associated parametrized flow. We shall
make the following assumptions.

A1 There is a Morse decomposition

M(Sλ) = {Mλ(p
±)|p = 0, 1, . . . , P − 1} ∪ {M(P )}

which continues across [0, 1].

A2 There is a continuous Lyapunov function

V : S × [0, 1] → R

such that

V (Mλ(p+), λ) = V (Mλ(p−), λ).
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A3 The Conley indices, using Z2 coefficients, for the Morse sets are given by

CHk(Mλ(p±)) ≈
{

Z2 if k = p,

0 otherwise,
p = 0, . . . , P − 1,

and

CHk(Mλ(P )) ≈
{

Z2 if k = P,

0 otherwise.

A4 Let

∆0 :
P−1⊕
p=0

(CH∗(M0(p
−))⊕ CH∗(M0(p

+)))⊕ CH∗(M0(P ))

→
P−1⊕
p=0

(CH∗(M0(p
−))⊕ CH∗(M0(p

+)))⊕ CH∗(M0(P ))

be a connection matrix for M(S0) with Z2 coefficients. Assume that

∆0 =



0 0 1 1 0 0 . . . 0
0 0 1 1 0 0 . . . 0
0 0 0 0 1 1 . . . 0
0 0 0 0 1 1 . . . 0

. . .
...

... 1
1

0 0 . . . 0


.

Theorem 5.1. Given A1–A4, if ∆λ denotes a connection matrix for M(Sλ), then
for all λ ∈ [0, 1],

∆λ = ∆0.

Proof. Let <λ denote the flow defined order for M(Sλ). A2 implies that p+ and
p− are not related by <λ for all λ ∈ [0, 1]. A4 implies that

0± <0 1± <0 · · · <0 P − 1± <0 P.

Let T0,0 denote the set of algebraic transition matrices at λ = 0. Then it is easy to
check that the identity matrix is the only <0-upper triangular matrix, and hence,
the only element of T0,0. This implies that ∆0 is the unique connection matrix at
λ = 0.

Observe that if we knew that M(S) continued over [0, 1] while preserving an
order, then by the previous argument we would be done. We shall now prove this
using an induction argument.

By Theorem 1.1 there exist intervals

{(αk, βk)|αk < βk−1 < αk+1 < βk, k = 1, . . . , K}
which cover [0, 1] such that M(S) continues with order <k over (αk, βk).

Observe that on [0, β1) ⊂ (α1, β1), <0 is an extension of any order which satisfies
A2. Thus, for every λ ∈ [0, β1), Tλ,0 = {id}. This, in turn, implies that ∆λ = ∆0

and <1=<0.
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Now for some k ≥ 1, assume that <k=<0 and that for λ ∈ (αk, βk), ∆λ = ∆0.
We need to show that <k+1=<0. Observe that on (αk+1, βk), <

k is an extension
of any order which satisfies A2. In particular, <k is an extension of <k+1 which
is admissible over all of (αk+1, βk+1). Thus, given λ ∈ (αk, βk) and for all µ ∈
(αk+1, βk+1), Tµ,λ = {id}. Therefore, for all µ ∈ (αk+1, βk+1), ∆µ = ∆λ = ∆0 and
hence, <k+1=<k=<0.

5.2. Travelling waves for gradient systems. Consider a system of reaction
diffusion equations of the form

ut = Duxx +∇F (u)(8)

where x, t ∈ R, u ∈ Rn, D is a diagonal matrix with positive diagonal entries
{d1, d2, . . . , dn}, and F : Rn → R is sufficiently smooth. A travelling wave solution
of (8) has the form u(x, t) = u(x − θt) = u(τ). It is easy to check that such a
solution must satisfy the following system of ordinary differential equations:

u̇ = v, Dv̇ = −θv −∇F (u).(9)

We shall restrict our attention to positive wave speeds, that is θ > 0. It is easy to
check that the function

H(u, v) := 1
2 〈Dv, v〉+ F (u)

is a Lyapunov function for (9) in the sense that along solutions

dH

dτ
= −θ‖v‖2.

Thus, bounded trajectories (which are the ones of interest) of (9) consist of
equilibria and connecting orbits between equilibria. To make our analysis of the
orbits manageable we use the following assumptions.

B1 F has a finite number of nondegenerate critical points, {Mp|p = 1, . . . , P}
where F (Mp) > F (Mp−1).

B2 There exists Q0 such that if Q < Q0, then the level surfaces {u ∈ Rn|F (u) =
Q} are convex and lim‖u‖→∞ F (u) = −∞.

Let Sθ denote the set of bounded solutions to (9) at wave speed θ. In [1] it is
shown that under assumption B2, Sθ is a compact set. Also, observe that given a
critical point Mp of F , (Mp, 0) is an equilibrium for (9). Combining this with the
existence of a Lyapunov function gives the following result.

Lemma 5.2.

M(S) := {M(p) = (Mp, 0)|p = 1, . . . , P}

is a Morse decomposition which continues with order

1 < 2 < · · · < P − 1 < P

over θ ∈ (0,∞).

It is reasonably straightforward to compute the Conley indices of these objects
which gives the following proposition.

Proposition 5.3. Using Z2 coefficients, the Conley indices of Sθ and the Morse
sets are as follows.
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1.

CHk(Sθ;Z2) ≈
{

Z2 if k = n,

0 otherwise.

2. Let η denote the number of negative eigenvalues of D2F (Mp) where Mp is a
critical point of F . Then

CHk(M(p);Z2) ≈
{

Z2 if k = η,

0 otherwise.

For the purpose of describing the connection matrices for these Morse decompo-
sitions it is useful to partition the Morse sets according to their index. Let

Jk := {M(p)|CHk(M(p)) 6≈ 0}.
Let ∆θ denote a connection matrix for M(Sθ) and let

∆θ(Jm, Jk) :
⊕
p∈Jk

CH∗(M(p)) →
⊕
p∈Jm

CH∗(M(p))

denote the corresponding submatrix. Then, it follows directly from the definition
of a connection matrix that the only nonzero elements of ∆θ lie in ∆θ(Jk−1, Jk).

The final general remark which we wish to make concerns the computation of
the connection matrix for large values of |θ|. We begin with the observation that
B2 implies that the set of bounded solutions, K, to the gradient system

u̇ = −∇F (u)(10)

is compact and that

M(K) := {Mp|p = 1, . . . , P}(11)

is a Morse decomposition with an admissible order 1 < 2 < · · · < P . Furthermore,

CH∗(M(p)) ≈ CH∗(Mp).

Now assume that the system (10) is Morse-Smale. Then, it follows from [2] (see
also [19, 25]) that for |θ| sufficiently large ∆θ is isomorphic to the connection matrix
associated with

M(K) := {Mp|p = 1, . . . , P}.
To be more precise, given a gradient Morse-Smale system, Reineck [27] showed that
connection matrices are unique. Let ∆grad denote the connection matrix for the
Morse decomposition (11). Then, there exists a conjugation between ∆grad and ∆θ

for |θ| sufficiently large. In an abuse of notation we shall write this as

∆grad = ∆θ.(12)

We could continue in this general vein for some time, but for the sake of clarity
we now restrict our attention to the case where n = 2 and P = 5.

The first question to address is what are the possible sets Jk? Since n = 2,
k ≤ 2. Furthermore, by Proposition 5.3 the kernel of ∆θ modulo the image of ∆θ

must be isomorphic Z2. We leave it to the reader to check that this implies that
the only possible partitions are as follows:

(1) J1 = {1, 2} and J2 = {3, 4, 5},
(2) J1 = {1, 3} and J2 = {2, 4, 5},
(3) J0 = {1}, J1 = {2, 3} and J2 = {4, 5},
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(4) J0 = {1, 2}, J1 = {3, 4} and J2 = {5},
(5) J0 = {1, 3}, J1 = {2, 4} and J2 = {5}.

Because of the similarities between (1) and (2) and between (4) and (5), we shall
only consider the cases (1), (3), and (4).

Before beginning the computations, it is worth reflecting on what is being com-
puted. First, observe that since the connection matrix is a degree −1 operator, it
detects connecting orbits between critical points whose unstable manifolds differ in
dimension by one. Thus, one expects that these connections occur, at least generi-
cally, via transverse intersections of the appropriate stable and unstable manifolds.
This, in turn, implies that the connections persist under perturbations. With this
in mind, we adopt the point of view that connection matrices are directly com-
putable. M. Eidenschink and Mischaikow [3] are currently developing numerical
algorithms for computing connection matrices for systems of ordinary differential
equations. This, combined with the work of M. Mrozek and Mischaikow [22, 23],
provides a technique for rigorously determining the connection matrices for fixed
choices of θ. In the language of travelling waves, the connections found via the
connection matrix correspond most closely to Fischer waves.

The algebraic transition matrices are degree 0 operators, and hence, detect con-
necting orbits between fixed points with unstable manifolds of the same dimension.
Again, generically one expects that these connections occur for only a discrete set
of parameter values. Therefore, we adopt the point of view that these connec-
tions cannot be computed directly since the wave speed for which they occur is not
known. These type of connections correspond to bistable waves.

With this in mind our strategy is as follows. Having fixed n, P , and the sets Jp,
we compute all connection matrices for the order < determined by the Lyapunov
function H . By Theorem 3.5, this can be done by finding one connection matrix (we
do this by studying the gradient system (10)) and then conjugating by all algebraic
transition matrices.

However, we wish to do this last step in a more refined manner and so introduce
the following notion. An algebraic transition matrix T is elementary if it has
exactly one off diagonal entry which is nonzero. It is easy to check that all algebraic
transition matrices can be obtained as products of elementary transition matrices.
Thus beginning with our one connection matrix we generate all other connection
matrices by conjugation by products of elementary transition matrices. We display
this construction in the form of a graph, called an elementary transition graph, in
which the vertices are connection matrices and the edges are elementary transition
matrices.

5.2.1. J1 = {1, 2} and J2 = {3, 4, 5}. As was mentioned above we begin our analysis
by considering the connection matrix ∆grad associated with the Morse decomposi-
tion (11) for the gradient system (10). It is easy to check that the only nonzero
block in ∆grad is

∆grad(J1, J2) :=

[
∆3,1 ∆4,1 ∆5,1

∆3,2 ∆4,2 ∆5,2

]
where

∆p,q : CH2(M(q)) → CH1(M(p)).

Observe that the fixed points Mp, p = 1, 2, are saddles and hence have one-
dimensional stable manifolds. Furthermore, by the Morse-Smale assumption and
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B2, these stable manifolds are heteroclinic orbits from the repelling fixed points
Mp, p = 3, 4, 5. By [12] we can conclude that

∆p,q = number of connecting orbits from Mq to Mp mod 2.

Since each Mp, p = 1, 2, 3, must have exactly two heteroclinic orbits associated with
it the sum of the row entries of ∆grad(J1, J2) equals 0 mod2. Since the rank of ∆grad

is two the rank of ∆grad(J1, J2) is two, and hence each row contains two nonzero
entries. This analysis provides necessary conditions for the connection matrices for
the gradient system. To see that all such matrices can occur as connection matrices
consider a nonlinearity F of the form

F (u1, u2) = f(u1)− u2
2.

Clearly, all the critical points of F lie on the u1 axis. It is easy to determine the
connection matrices for systems of this form and by appropriate arrangements of
the critical points all connection matrices can be realized.

Having determined the connection matrices ∆grad we now use the relation (12)
to determine the connection matrices for large θ.

We now need to determine all the possible elementary transition matrices. How-
ever, if T is an algebraic transition matrix then it must be of the form

T =


1 T1,2 0 0 0
0 1 0 0 0
0 0 1 T3,4 T3,5

0 0 0 1 T4,5

0 0 0 0 1

 .
So let Ep,q denote the elementary transition matrix where the only nonzero off
diagonal entry is Tp,q = 1. The resulting elementary transition graph is shown in
Figure 1.

It is reasonable to ask what is gained by these computations. Recall that we
argued that connection matrices are computable objects. Thus, for a given nonlin-
earity we foresee choosing two wave speeds and computing the connection matrices.
For these two wave speeds the ∆(J1, J2) entries will be given by one of the “ver-
tices” of the elementary transition graph. If these submatrices are different, then
they can be connected by a series of edges on the graph. For example, if one matrix
lies in the lower half of the graph and the other lies in the upper half, then any
path which connects these two matrices contains an edge labelled E1,2. Hence, in
this case, one could conclude that for an intermediate wave speed there exists a
travelling wave from (M2, 0) to (M1, 0).

5.2.2. J0 = {1, 2}, J1 = {3, 4}, and J2 = {5}. Again, we begin the analysis by
considering the gradient system (10).

Proposition 5.4. The connection matrix

∆grad :

5⊕
p=0

CH∗(Mp) →
5⊕

p=0

CH∗(Mp)
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Figure 1. The elementary transition graph for J1 = {1, 2} and
J2 = {3, 4, 5}. Only the entries in ∆(J1, J2) are indicated, since
the other entries in ∆ are zero. The ∗ indicate connection matrices
which can occur for θ very large.

is of the form

∆grad =


0 0 α β 0
0 0 δ γ 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


where αδ + βγ = 1.
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Figure 2. The elementary transition graphs for J0 = {1, 2}, J1 =
{3, 4}, and J2 = {5}. Only the entries in ∆(J0, J1) are indicated,
since the other entries in ∆ are zero.

Proof. Since the connection matrix is a degree −1 operator, ∆grad must be of the
form 

0 0 α β 0
0 0 δ γ 0
0 0 0 0 a
0 0 0 0 b
0 0 0 0 0

 .
As was indicated in the previous case, M3 and M4 are saddle points and each
branch of the stable manifold represents a heteroclinic orbit from M5. Therefore,
a = b = 0. But the rank of ∆grad equals 2, and hence, αδ + βγ = 1.

We now use the relation (12) to conclude that we have calculated the potential
connection matrices for the travelling wave problem for large wave speed. Observe
that the only elementary transition matrices are E1,2 and E3,4. The corresponding
elementary transition graphs are given in Figure 2. We leave it to the reader to
check that each elementary transition graph can be realized by an appropriate
connection matrix of a gradient flow in the plane.

5.2.3. J0 = {1}, J1 = {2, 3}, J2 = {4, 5}. Using similar arguments as before, we
can use the gradient system to determine that for large wave speed the connection
matrix

∆:

5⊕
p=0

CH∗(M(p)) →
5⊕

p=0

CH∗(M(p))

must be of the following type
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

 ,


0 1 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

 ,

0 0 1 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
Since the only possible elementary transition matrices are E2,3 and E4,5 it is easy
to check that the elementary transition graphs are as indicated in Figure 3.
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Figure 3. The elementary transition graphs for J0 = {1}, J1 =
{2, 3}, and J2 = {4, 5}. Only the entries in ∆(J0, J1) and ∆(J1, J2)
are indicated, since the other entries in ∆ are zero.
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