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EULER PRODUCTS ASSOCIATED TO METAPLECTIC
AUTOMORPHIC FORMS ON THE 3-FOLD COVER OF GSp(4)

THOMAS GOETZE

ABSTRACT. If ¢ is a generic cubic metaplectic form on GSp(4), that is also
an eigenfunction for all the Hecke operators, then corresponding to ¢ is an
Euler product of degree 4 that has a functional equation and meromorphic
continuation to the whole complex plane. This correspondence is obtained by
convolving ¢ with the cubic 6-function on GL(3) in a Shimura type Rankin-
Selberg integral.

0. INTRODUCTION

Suppose ¢ is a metaplectic automorphic form of minimal level on the 3-fold
cover of GSp(4) that is an eigenfunction of all the Hecke operators. If ¢ has any
non-zero Whittaker coefficients, then ¢ is called generic. In this case, this paper
will show that there is a Dirichlet series in the Whittaker coefficients of ¢ that
has a formulation as a degree 4 Euler product. Moreover, this Euler product has
a meromorphic continuation to the whole complex plane. This association of the
Euler product with ¢ will be obtained via a Shimura type Rankin-Selberg integral
involving ¢ and a -function on the 3-fold cover of GL(3).

Historically, the problem of associating an Euler product which has meromorphic
continuation and functional equation with a metaplectic automorphic form origi-
nated with the work of Shimura [Shi]. More specifically, suppose f(z) = > a(n)¢™
is a holomorphic modular form of half-integral weight k/2, which is an eigenform
of the Hecke operators T}y, i.e. Tp,2 f = A, f. Then via a Rankin-Selberg integral of
the form

(0.1) /f(z)@E(z,s) dz,

where 0(z) is a classical theta function and E(z,s) is an integral weight Eisenstein
series, Shimura obtains an Fuler product of the form

(0.2) [T Ap e +p2%)

P
The analytic continuation and functional equation of this Euler product follow from
the similar properties of E(z,s) in (0.1).

Bump and Hoffstein [BH2] have subsequently extended these techniques of [Shi]
to GL(3) by finding a Rankin-Selberg integral of a metaplectic automorphic form
on the 3-fold cover of GL(3) which produces an Euler product of degree 3. Just as
in [Shi], this Euler product is shown to have meromorphic continuation to the whole
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complex plane and to have a functional equation under s — 1—s. The integral which
represents this Euler product involves the 6-function on the 3-fold cover of GL(3)
over the field Q (e2™/?), which has been studied independently by Proskurin [Pr]
and Bump and Hoffstein [BH1]. In addition, Bump and Hoffstein [BH2] have
conjectured that Euler products with meromorphic continuation and functional
equation may be obtained by convolving metaplectic automorphic forms on the
n-fold cover of GL(r) against #-functions on the n-fold cover of GL(n). This was
carried out in [BH3] in the case r = 2 and n > 2.

Friedberg and Wong [FrW] have also used Shimura’s method to associate an
Euler product to a generic metaplectic automorphic form on the double cover of
the symplectic group GSp(4). They have found an integral (inspired by Novo-
dvorsky’s GSp(4)xGL(2) convolution) involving a metaplectic automorphic form
on the double cover of GSp(4), the §-function on the double cover of GL(2), and a
(non-metaplectic) Eisenstein series on GL(2), that yields a degree 5 Euler product.
This Euler product is shown to have meromorphic continuation and a functional
equation, and furthermore it has the same local Euler factors as the L-function of
an automorphic form on GSp(4). As in [Shi, BH2], the Euler product found by
Friedberg and Wong is explicitly constructed from the Whittaker coefficients of the
metaplectic automorphic form.

Alternatively, Flicker [Fli], Kazhdan and Patterson [KaP2], and Flicker and
Kazhdan [FliKa] have used the trace formula to generalize [Shi] by showing that
(in many situations) there exists a correspondence between metaplectic automor-
phic forms and (non-metaplectic) automorphic forms. Indeed, Shimura actually
proves in [Shi] that the Euler product (0.2) is the L-function of a holomorphic
integral weight modular form. In using the trace formula, however, explicit infor-
mation about the interplay between the metaplectic Fourier coefficients and the
corresponding L-functions (see (0.2)) is not obtained.

If a generalized Shimura correspondence does exist between generic metaplectic
and non-metaplectic automorphic forms, then the associated Euler products ob-
tained by Bump-Hoffstein, Friedberg-Wong, and this paper will be the L-functions
of the corresponding non-metaplectic forms. There is evidence that the degree 4
Euler product obtained in this paper is the L-function of an automorphic form on
GSp(4). Savin [Sa] has shown that there is an algebra isomorphism between the
local Iwahori Hecke algebra of GSp(4) and the local Iwahori Hecke algebra on the
3-fold cover of GSp(4). This suggests that if a Shimura correspondent exists in this
situation, it should be an automorphic form on GSp(4). Since there is a represen-
tation of degree 4 on the L-group of GSp(4), automorphic forms on GSp(4) will
have natural L-functions with Euler products of degree 4. In this sense, having a
degree 4 Euler product is consistent with Savin’s results.

The main results of this paper will be found in Theorems 3.1 and 5.1, which are
summarized as follows:

Main Theorem. Suppose ¢ is a generic metaplectic cusp form of minimal level
on the 3-fold cover of GSp(4) that is an eigenfunction of all the Hecke operators.
Then there is a degree 4 FEuler product, with a meromorphic continutation, which
can be explicitly constructed from the Whittaker coefficients of ¢. This association
is realized as a Shimura type Rankin-Selberg integral of ¢ against an Eisenstein
series induced from a 0-function on the 3-fold cover of GL(3).
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The form of the Shimura integral used in the proof is a translation from the adelic
version of the non-metaplectic GSp(4) x GL(3) convolution that Bump has consid-
ered [B2]. Note, as Bump has, that the non-metaplectic convolution was already
available via “Method B” of Gelbart and Piatetski-Shapiro [GeP-S], although it was
not explicitly constructed there. Although a translation from the non-metaplectic
to the metaplectic works in the case considered here, it is not always possible to
obtain a metaplectic convolution in this manner.

The Shimura type integral considered in the proof of the Main Theorem may be
naturally regarded as a 3-fold GSp(4) x GL(3) convolution. Thus, [FrW] and the
results of this paper suggest that generalizations of Shimura’s techniques to n-fold
covers of GSp(4) will yield Euler products as n-fold GSp(4) x GL(n) convolutions.
In fact, from the evidence obtained for n = 2 and n = 3 the following conjecture
may be made.

Conjecture. Let n be a positive integer, and suppose ¢ is a generic metaplectic
cusp form on the n-fold cover of GSp(4) which is an eigenfunction of all the Hecke
operators. Then there is an Euler product associated to ¢ that has a meromorphic
continuation and a functional equation under s — 1 — s. This association can be
explicitly realized as a Shimura type Rankin-Selberg convolution of ¢ with an n-fold
f-function on GL(n). If n is even this Euler product will be of degree 5, while if n
is odd a degree 4 Euler product will be obtained.

Generalizations of Shimura’s techniques to n-fold G x GL(n) convolutions should
also be possible for higher rank groups G. The conjecture in [BH2] mentioned above,
along with the results in [FrW] and this paper, suggest that it is possible to obtain
an Euler product from the convolution of a generic metaplectic cusp form on an
n-fold cover of GL(r) or GSp(4) with a @-function on the n-fold cover of GL(n).
Although there is little evidence, it is natural to expect that this may hold for
more general groups than just GL(r) and GSp(4). In this sense, the expectation is
that an Euler product with meromorphic continuation and functional equation may
be constructed from a metaplectic automorphic form ¢ on any reductive algebraic
group G. This construction would likely be a GxGL(n) convolution obtained via
an integral involving ¢ and an n-fold #-function on GL(n). The non-metaplectic
analogues of these conjectured convolutions have been studied in [Gi], [GeP-S], and
[So].

The rest of the paper is organized as follows. Section 1 contains notation and
preliminaries needed throughout the paper. In Section 2, the metaplectic auto-
morphic forms that will be used in the Shimura integral are defined. The Shimura
integral is presented and evaluated to be a double Dirichlet series in Section 3.
Then Section 4 provides the definition of the Hecke operators on the 3-fold cover
of GSp(4) and gives an explicit description of the action of the operators on the
Whittaker-Fourier coefficients of a metaplectic form. Next, using this description
of the Hecke operators, the double Dirichlet series obtained in Section 3 is shown to
have an Euler product in Section 5, provided the GSp(4) form is a Hecke eigenform.
Finally, Section 5 ends with a brief discussion about the functional equation for the
Euler product.

The results of this paper were first derived for the author’s Ph.D. thesis at
the University of California, Santa Cruz. As such, the author wishes to thank his
Ph.D. advisor Solomon Friedberg for his many helpful consultations and suggestions



978 THOMAS GOETZE

during the preparation of both thesis and paper. Research for this paper has been
supported in part by NSA grant MDA904-95-H-1053.
1. PRELIMINARIES
For n > 1, let Z,, be the center of GL(n,C) and define
H,, = GL(n,C)/Z,U(n).

GL(n, C) operates on H,, via left multiplication. For notational ease the coordinates

(1.1) 72=<1 xf)(‘yl 1>,

1 zo z3 Y1Y2
(12) T3 = 1 I Y1 s
1 1
and
1 zo x3 24 Y1Y2Ys3
1 x x5 Y1Y2
1.3 =
(1.3) s T "
1 1

will be used for 7,, € H,, n = 2,3,4, where z; € C, y; € RT. The choice of such
coordinates for these symmetric spaces is a direct result of the Iwasawa decompo-
sition.

For w = €*™/3, let K = Q(w). Then K contains 3, the group of cube roots of
unity. Define A = /=3 = 1+ 2w, e(a + bi) = e*™ and N to be the norm map,
ie., for a,b € Q, N(a + bw) = a®> — ab + b2. The ring of integers in K is O = Z[w].
The principal ideal generated by the element m will be denoted by (m), and the
fractional ideal (a)™* = {b € Q(w) | a*b € O}. Also define

I, = SL(n,0),

r.3) = {yel,|y=1mod (3)},
Fmoo = {(ai,j) el’, | Qi j = 0if i > 7, and ;5 = 1},
I'ooB) = {(v€l|y=1Imod (3)} =T,(3) NI, 0

The classes of cusps p; of I'2(3) are, by definition, double coset representatives
of FQ (3)\1—12/1—12’00 in FQ (1e FQ = Ui F2(3)pzr2,oo) In particular, an available set
of representatives for these double cosets is

(1.4)
) () (A1) (e ?)
1 0 +(1-w) -1 1 0
Tw —w
(L) (0 ) (et 1)

(see Section 1 of [Pa]). Throughout the rest of the paper p will denote one of these
representatives.

Let (—) be the cubic residue symbol in @. The following proposition will be

3
useful throughout the rest of the paper.
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Proposition 1.1. There is a map ky, : I',(3) — ps, called the Kubota symbol, with
the following properties:

(i) Kp is a homomorphism;
c .
(i) ro ( ¢ Z ) - (E)g ies 0,
¢ 1 if ¢ = 0;
(iii) kn(y) =1, if y €y 00 and n > 2;
(iv) if AeT,,—1(3) and n > 2, then

(2 )= (3 4) -

This has been proved in the work of Bass, Milnor and Serre [BMS] for level
(v/=3)3. To obtain the result for level 3, Proskurin suggests that the arguments in
[BMS] can still be applied—see [Pr] for the details in the case that n = 3. Alterna-
tively, minor modifications to the work of Bump, Friedberg, and Hoffstein [BFrH2]
could also be applied to improve the level.

Now the notation and definitions for GL(n, C) are complete, but similar notation
and definitions are necessary for the symplectic group GSp(4). For our purposes,
define

G = GSp(4,C) = {g € GL(4,C) | 'gJg = pu(g)J, u(g) € C},

where
-1

Let Z be the center of G and define H = G/Z(U(4) N G). Elements of H will be
denoted 7 with the coordinates

1 zo x3 x4 Y1y2
- 1z ah Y1
(15) T = 1 —x9 1 ’
1 Yo !

where 2 = x3 — 2122, 2; € C, y; € RT. Next define I'(3) = I'4(3) N GSp(4, O)
and let k : I'(3) — p3 denote the restriction of k4 to I'(3). When an embedding
of GL(2,C) in G is required, the following embedding will be used: for v =

a b
( ¢ d ) € GL(2,C), define

eq.

IS

J(y) =

o

1
Finally, the following lemma will be used later:

Lemma 1.2. If 9 | n, forn € O, and p € I'2(3)\I'2/T'2,c0, then

(o (1)) o 1))
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Proof. The first equality follows from Proposition 1.1 (iv). The second equality will
be checked by using an explicit set of cusps, as in (1.4), and the cubic reciprocity
law.

prz((l) ?),then
1 -
el 0)e)

by Proposition 1.1 (iii). So if ¢ # 0 and p = ( Z Z ), then

1 n 1 —nc?
1.6 = .
o (1)) - (),
So, by applying (1.6) to each of the non-identity representatives in (1.4), it suffices
to compute
-n -n —nw —nw?
1), \1£n); ' \1+nw? /), \1+nw/,’

(1in_(?—w)>3’ (11(;(_1@1))3

n
Now <T) = 1, so the lemma has been verified for the first two cusp represen-

(1.7)

tatives listedgin (1.4).

To establish the lemma in the other cases, first recall that for any non-zero
element a’ € Z[w], there exist positive integers v and p such that a’ = (1 —w)” w* a,
for a € Z[w] with a = £1 mod (3). Then the law of cubic reciprocity for Z[w] can
be stated as follows:

1. If a, b are relatively prime and each is congruent to =1 mod (3), then

(.- (%),

2. If a = £ (1 4+ 3(a1 + agw)), then

w —ai—
(2),-e
a’3

<1—w> o
a /3

This formulation is Exercise 2.14 in Cassels and Frohlich [CF].

Now assuming 9|n, let z = n/9. By an appropriate choice of y, z € Z[w], all the
9xy
1+922
remaining cases write £z = x1 +x2w and 9zy = (1—w)” w# a, with a = £1 mod (3).

The choice of y forces x = 0 mod (a). Then by the law of cubic reciprocity

remaining cases from (1.7) are then of the form ( ) . To compute these



EULER PRODUCTS 981

9zy _ l-—w v w " a
1492 ), n 1+ 3(3x1 + 322w) / 5 \1+3(3z1 + 320w) /4 \1+922 /4

3w1\V [ —3z1—3a\ K [ 1T 922
(@) sy (22
1
a <a>3
1.

Thus, the proof of Lemma 1.2 is complete.

2. CUBIC METAPLECTIC AUTOMORPHIC FORMS

Metaplectic automorphic forms are automorphic forms on metaplectic groups.
As with all automorphic forms, one may study the forms either as functions on the
group or as functions on the corresponding symmetric space. For this paper, the
latter approach will be employed.

Definition 2.1. A cubic metaplectic automorphic form on GL(n,C) for T',(3) is
a smooth function F defined on H,, and satisfying:

1. F(y7n) = kn(7)F (1) for all v € T,,(3), 7, € Hp;
2. F is an eigenfunction of all the invariant differential operators on Hy;
3. there is a constant ¢ such that

C

| FOm) [< (o) (2 +) - (a1 +aly)
for all 7, € Hy, v € 'y, and 7, in the form given in (1.1)-(1.3).

Let p be a cusp of I'2(3), ny € (A\)73, and ny € (A\)~>. Then for a cubic meta-
plectic automorphic form f on GL(3) for I's(3), define

Fh s (73)

) Lo L Lo (
= | =5 f T3 6(—”1%1 — ngl'g) dl‘l dl‘g d{E3.
(39/ 2] Jes Jepo Jeys) 1

The factor in front of this integral normalizes the Lebesgue measure on C. It is a
consequence of the local multiplicity one theorem of Shalika [Shal] that there exist
Whittaker-Fourier coefficients b, = of f that satisfy the equality

;N2

(2.1)

nin2 Y1y2
JO nn(73) =05 N(nyng) ™' Wy n Y1 ;

where Wy is the non-degenerate Whittaker function associated to f. See Section 3
of [BH1] for an account of these Whittaker functions.
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The following lemma will be needed later.

+1
Lemma 2.2. If f +1 3 | = f(73), then the Whittaker-Fourier
1
coefficients by, .. of [ salisfy
b7pll7n2 = fnl\,ng = 5)117—712’

where
a b\ [ a —b
c d T\ —c d '

Proof. This follows from the definition of the Whittaker-Fourier coefficients (2.1)
and the matrix identities

a b -1 -1 a —b
c d 1 = 1 —c d
1 1 1 1
and
a b 1 1 a —b
c d -1 = -1 —c d
1 1 1 1

For this paper, the key example of a cubic metaplectic automorphic form on
GL(3) is ©, the cubic theta function. Kazhdan and Patterson have defined theta
series on n-fold metaplectic groups as residues of Eisenstein series [KaP1]. Subse-
quently, Proskurin [Pr] and Bump and Hoffstein [BH1, BH2] have independently
studied © in more detail. In particular, Bump and Hoffstein [BH1] have explicitly
computed the Whittaker-Fourier coefficients 6 (ny,n2) = 0/, of © as defined in
(2.1), if p is an essential cusp (see [Pa], p. 127, for a definition of essential cusp).
Although the explicit values of 6/ , = are not needed here, the following proposition
will be instrumental in the following sections.

Proposition 2.3. (Bump-Hoffstein) If ny,ne € O* are p-adic units, then for the
Gauss sum g(a,b) as defined in (4.1),
(i) 0°(nip*,nap*?) = 0 unless ny € N3, n2 € (N2, ky = ks = 0 or
1 mod (3), and n3nsy is a cube;
(ii) or (n1p3k17n2p3k2) - Npk1+k2 9r (,nl’ n2)}.
(iii) 07(n1p**1¥1, nop*=tt) = NpMi+hz g(ny, p) 0° (n1, n2);
(iv) if 07(ny1,na) # 0, then g(n1,p) = g(na, p).

This is Proposition 5.1 of [BH2], along with some other facts proved there.
If f is a cubic metaplectic automorphic form on GL(3), another cubic metaplectic
automorphic form f (the contragredient form) can be defined on GL(3) as
(2.2)
-1 -1
f(Tg) = f('r3), where ‘13 = -1 byt -1
—1 —1

This formulation will be needed in the convolution integral in Section 3.



EULER PRODUCTS 983

In addition, any cubic metaplectic automorphic form on GL(3) can be induced
up to a maximal parabolic Eisenstein series on the cubic cover of GL(4). To do
this, first define

I(f.71,5) = (u}v3us)”" f(7s),
with 73 as in (1.2). Then, if P is the standard maximal parabolic subgroup of
GL(4,C) consisting of matrices with bottom row (0 0 0 1), a maximal parabolic
FEisenstein series is constructed by defining

(23) E(fv 7—455) = Z 54(7)I(fv 77—435)'

yePNT'4(3)\I'4(3)

This converges absolutely for Re(s) sufficiently large and is well defined by Propo-
sition 1.1(iv). Then E(f, 74, s) is a cubic metaplectic automorphic form on GL(4)
for T'4(3).

The last ingredient needed to formulate the Shimura type Rankin-Selberg inte-
gral is a generic cubic metaplectic cusp form on GSp(4).

Definition 2.4. ¢ is a cubic metaplectic cusp form on GSp(4) if
1. ¢ satisfies the conditions of Definition 2.1 when GL(n),T',(3), Ky, 7 and H,
are replaced with GSp(4), I'(3), , 7 and H respectively;
2. for any cusp p of T'2(3),

1 us  Ug
/ o | Tp) 1 ull o duq dus dug =0
(C/(3))®
1
and
1 Uz U3 U4
1 us
(b j(p) 7| dus dU3 dug = 0.
(C/(3)) 1 —f2

Moreover, ¢ will be called a generic cubic metaplectic cusp form on GSp(4) if it
also satisfies

3. There exist Whittaker-Fourier coefficients af ., not all zero, such that if

ni € (N7, ny #0and ng € (\)73, ny # 0, then

1 U2 U3 U4

1 !
Lo elaw e
C/(9) J(C/(3))° 1 2

(2.4) X 6(—711U1 — TLQUQ) duy dU3 dus duy
ning

ni

-1
U

where Wy is the non-degenerate Whittaker function associated to ¢.
See [BFrH1] for an account of the Whittaker functions mentioned in part 3 above.

In the notation of [BFrH1|, W, will be W,, ,,, where v1 and v, can be determined
by the eigenvalues of ¢ with respect to the invariant differential operators on H.
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3. THE cuBIic GSp(4) x GL(3) CONVOLUTION

Assume that f is a cubic metaplectic automorphic form on GL(3) that satisfies
the hypothesis of Lemma 2.2 and that ¢ is a cubic generic metaplectic cusp form
on GSp(4). Then the main object of interest in this paper is

(3.1) I(s,¢) = /F(S)\Hm¢(7—) dyy dys dx1 dxo dxs dx4.

Y1y
Here dy; and dz; are Lesbesgue measure on R and C respectively, and consequently

the measure in the integral is the left invariant measure on H.
The goal of this section is to prove

Theorem 3.1. With the above hypotheses on f and ¢, (3.1) may be expressed in
the form

(3.2) I(s,¢) = D(s) G(s),
where

aﬁhnz bZQ,nl
(33) Dis)= > 2 NppEiE

PEL2(3N\I'2/T2,00 g e(X) 75 140
n2€(X) 73, n27#0

and
Y1Yy2
= [ [ waew, "
(3.4) vy '
YLy dy, d
x Wy Y2 Sz
1 Y192

Proof. Recall that a non-metplectic version of this integral has previously been
considered by Bump [B2] and Gelbart and Piatetski-Shapiro [GeP-S]. As in [B2],
notice that for Q = PNG, there is an identification of the coset space T'4(3)NP\I'4(3)
with T4(3) N Q\I'(3). To see this, notice that the cosets of P N T4(3)\I'4(3) can
be parameterized by bottom rows (A B C D), with D = 1mod (3), A,B,C =
0 mod (3), and ged(4, B,C, D) = 1. Then the identification follows since any such
bottom row can be extended to a matrix in I'(3). Friedberg [Fr] has proved this
last statement by constructing the invariants necessary to apply Theorem 5.2 of
[BFrH1].

Unfolding the Eisenstein series E(f,7,5) yields

7(s.0) = | 1(F.7,5) 6(r)
T4(3)NQ\H
Now since 7 - y2 and 7 are in the same coset of Hy,

I(f.7.5) = I(f.7 52.5) = (4393)™ f (7).
Thus Z(s, ¢) becomes
(3.5)

dyy dys dxy dze dxs dzy
Yyiys '

4s dyy dys dxy dze dxs dzy
7,9 :
Y192

I@@=/ 6(r)  (7s) (s132)
T4(3)NQ\H
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To continue the evaluation of Z(s,¢), first an understanding of the quotient

/ /
I'y(3) N Q\H is required. Suppose v € I'2(3) and £ = < 3 > — 7( 3 >;

—ZI2 —I2
then

1
0= v €& ] elu@B)nQ
1
and
1 z2 x3 x4 Y1Y2
1 x  af Y1
e 1 —a 1
1 ya '
1 To T3 Ty Y1Y2
B 1 xh Y1

1 vy
Thus the range of the parameters x1, y; in the quotient I'y(3) N Q\H is determined

by the action of T'y(3) on ( s 5”11 ) . Similarly,
e f g 1 x2 w3 x4 Y1y2
h 1z ah Y1
v 7 1 —x2 1
1 1 Y !
1 xx+e r3+x1e+ f x4+x36—x2f—|—g
o 1 X1 h
- ) 0E))
Y1y2
Y1
X 1 ,
Yo

so the range of the parameters xs, z3, and x4 in the quotient I'4(3) N Q\'H is deter-
mined by the additive action of the ideal (3) on C. Therefore I'y(3) N Q\'H can be
realized as (I'2(3)\'H) x (C/(3))® x R.

Using this description of the fundamental domain for T'y(3) N Q in (3.5) yields

(3.6)

o x 4s dx1 dyi dys dxo dxs dx
0= [ [T ) Tl ()" Tl S
(€/(3))* JOo  JT2(3)\H2 Y1Y2

o A 4s d$1 dyl dyz d$2 d$3
[ e T ) ,
(C/(3))* Yo  JT2(3)\H2 yiys
where
1 z2 3 Y1y2
_ 1 @ af Y1
9= 1 —XT2 1 ’

1 vy



986 THOMAS GOETZE

and

(3.7) B(g) = /C X b g | dos.

To continue further with the evaluation of this integral, Novodvorsky’s idea of
expressing ®(g) in terms of the Whittaker-Fourier coefficients of ¢ will be employed.
Note that for the quadratic GSp(4) x GL(2) convolution Friedberg and Wong [FrW]
have previously used this strategy, and the analysis here mirrors their work. First
consider the function

1 Uz U3 U4

1 U
<I>1(U2,U3;g)=/ ¢ 1 5 g | dus.
c/(3)

Since, for na,n3 € (3),

Oy (uz + ng2, uz + n3; g)

1 no ng 1 wus wug ug —noug + ngus
1 ns 1 us
= ¢ g | dus
/C/(S) 1 —MNg 1 —U2
1 1
1 Ny N3
1 n
=K 1 _22 Dy (uz,us3; 9)
1
= &y (uz,u3; ).

This last equality follows from Proposition 1.1 (iii). Thus, there exists a Fourier
expansion for ®;. In particular,

2(g) = ©1(0,0:9)

1 Ug U3 Uy

1
= Z 3¢ 1 _USQ g | e(—aus — Pus) duy dus dus.
PR CO) '
(v, 3)#(0,0)

Here the cuspidal assumption on ¢ (Definition 2.4 (2)) allows the restriction that
(a, B) # (0,0).
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Next, the sum over o, 3 € (A\)~2 can be replaced by a sum over I's oo \I's and

non-zero elements of (\)~3. Then for § = ( Ccl Z ) € SL(2, O), the matrix identity

1 U9 U3 Uy

1 us
1 —U2
1
1 dus —cuzs —bus + aus Uy
_ 1 1 —bus + ausg
=J07) 1 —dus + cus (6)
1
implies that
1 U2 U3 Uy
_ 1 U
g = >, > JE e VO
8€T3,00\T'2 pye(n) 2 (C/(3))3 .
n2;£0

X e(—naus2) dug dus dus.

Lemma 3.2. A complete set of representatives for I'a oo \I's is given by represen-
tatives of the form py~', where the cusp p runs over a set of representatives for
T'2(3)\I'2/T'2,00(3) and for each such cusp p, v runs through a set of representatives

for pl2.5(3)p~t NT2(3)\I'2(3).
Proof. Write

= UF2(3)pF27oo = UF27oop_1F2(3)~
P P

Now each right T's o, coset in 'y oo p~! T'y (3) can be expressed as I's o, p~1 7 for
some v € T'5(3). Also
Tooop 'y =Tap ' 7 & Y771 € Ta(3) N plae p!
To see this, notice that
Toue p 'y =Tonp 'y & p'y €loop™ 'y

& 4 €plaep™y
& vt eplaeep

but, a priori 7,7’ € T'2(3); thus,

Dooo p7r 7 = Taoe p ' &'y €T2(3) N plaep™
So

Ta00p”'Ta(3) = U Lo 00p™ .
v€ET2(3)Npl2,00p~ 1 \I'2(3)

But since I'2(3) < Ty, then I'2(3) N pla sop™ = pI'2.oo(3)p~!. So doing this for
each p yields the lemma.
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Now Lemma 3.2 and Proposition 1.1 imply

olg)= Y ) 3 o ()

PEl2(3\I2/T2,00 nye(n)~3 7EPT2,00 (3)p™ 1\ I'2(3)

’n,z;éo
1 U U3 Uy
1 U _
(38) S 0 L e
(C/(3))® 12

x e(—naug) duy dus dus.

Next, another Fourier expansion will be used to continue the evaluation of ®(g).
Consider

Po(ur;g) = Z Z Z r2(7)

PEL2(BN\I'2/T2,00 nye(X) ™2 VEAT2,00(3)p1\T'2(3)
n2750

1 U2 U3 U4

1 u u’ _
X/ ¢ | T(p) 11 I VAt
(©/(3))? 12

xe(—naug) dug dug dus,

where uj = ug — ujug. This P2 was obtained from (3.8) by changing the matrix
that depends on us,us3, and uyg to a symplectic matrix also depending on u; .
Now since

1 1 Ug U3 Uy
1 m 1w ub
1 1 —UuU2
1 1
1 u9 us Uy
1 wu+n1 ug— (u1 + nl)u2
1 —Uu9 ’
1

it follows from a change of variables that

watun + i) = (700 (1) T walunio)
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So making the assumption that n; € (9), Lemma 1.2 implies that ®o(ui;g) has a
Fourier expansion. In particular,

(3.9)
‘I)( ) ‘I)Q O g Z [C ul, ( nlul)dul

nle()\) 5

= Z Z Z r2(7)

PEL2(BNL2/T200 npye(X) 72 na0 TEAT2,00(3)p71\I2(3)
n1€(>\)75,’ﬂ1750

1 U2 U3 Uy

1 ! N
/ / ¢ | J(p) T T g
€/(9) J(C/(3))? ‘f?

X

X e(—nju; — naus) duy dus dus du;.

Here the cuspidal assumption on ¢ (Definition 2.4 (2)) has allowed the restriction
that n, # 0.
Now replace the expression of ®(g) in (3.6) with (3.9), use (2.4) from the hy-
1

pothesis that ¢ is generic, and write f( 3) = K3 < 3 >f (( ! 3 )T3> for
v e F2(3) Then

1(57@:/ / a? . Nn 3/2Nny?
/@2 Jo 2 2 e ’

PEL2(3N\I2/T2,00 1y €(N) 7%, m1£0
na€(X) 73, na#0

x 3 @(7)53(1 7)

Y EPT'2,00(3)p~1ND2(3)\I'2(3)

ning
n —

X / Wy ! 1 j(ﬂ 1'7)9

T2(3)\H2 1

Ny

P 1 diZ?l dyl dyQ diZ?Q d$3
X

/ <( g ) )(ylyZ) yiys

Write k3 < 1 - ) = ko(y)~! and sum over 7 to collapse the integral further. Also

the change of variables g — J(p)g forces 75 — ( 1 p ) 73. Then, since the action
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of p preserves fundamental domains of I's o, (3),
(3.10)

I(s, ¢) = 3 > af, ..Nny*/*Nn;? /0 /0

pEFz(B)\Fg/Fz,m 7116()\)757711760
n2€(A) 73, na#0

X l/ f << 1 > 73) e(ni1z1 + nowe) dry dzso de]
(C/(3))® p

ninz Y1y2
x W " 1 o 1
ny' v

2v4s QY1 dy2

e
Here the equality
ning
Wy S g
n2_1
nin2yiy2

= e(n1z1 + naxe) Wy iy 1

ny 'Yy
has been used. It may be proved by using a change of variables in (2.4).

Now the integral in brackets in (3.10) is expressible in terms of a Whittaker-
Fourier coefficient of f. To see this notice that

/ f (( 1 ) ’7'3) e(?’LlCE1 + ngl'g) d!El d{EQ d{E3
(c/(3))? P

X P I -z zxe — a3 Y1y2
(C/(3)? 1 1

x e(n1x1 + naxa) dry drs dzs.
So by changing variables and using (2.1) this integral becomes

—— (=n1)(=nz) Y1y
bfin%_nl N(nlng)_l Wf —nN2 Y
1 1
But Wy is a function on H3, so the matrix identity
(—n1)(—n2) Y1Yy2
2 Y2
1 1
ninz Y1Y2 1
= n2 Y2 -1
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and Lemma 2.2 imply that the integral in brackets in (3.10) is just
(3.11)

ning Y1Yy2
by my N(nang) ™ Wy n2 Y2
1 1

Thus by integrating x2 over C/(9) in (3.10), we see that there exist constants b,
(via (3.11)) such that

T N —5/2 N, —

I(s,4) = 3 > AR\ (e (0
PEL2(3\I'2/T'2,00 g €(X) 75,0150
na€(A) 73, n27#0

nin2z Y1y2
X / / W¢
o 7o ! 1 ! 1
ny Y2
ning Y1y2 d
Y1 dy2
x Wy ng Y2 (y1y3)* —=9 -
1 1 Y192
The change of variables y; +— Iz_il and yo +— % then yields (3.2), and hence
completes the proof of Theorem 3.1.

4. CUBIC METAPLECTIC HECKE OPERATORS

The fact that D(s) has an expression as an Euler product will be derived from
the assumption that ¢ is an eigenfunction for almost all of the Hecke operators on
the cubic cover of GSp(4). For each prime p in O, relatively prime to (3), there
exist operators T}6, T,,s which act on the space of cubic metaplectic automorphic
forms on GSp(4). In fact, these two operators generate the whole Hecke algebra
on the cubic cover of GSp(4). The explicit action of these Hecke operators will be
given by describing the effect they have on the Whittaker-Fourier coefficients of an
automorphic form.

First, recall the definition of the cubic Gauss sums

o o ¥ (5),6(%)
cmod d

where d € O with d = 1(mod (3)), a € K*, and c is selected so that Aac € O.
The primary concern here will be in the cases in which d is a power of a prime.
The relevant facts can be found in Proposition 1.6 of [BH3]. For clarity, they are
summarized here in

Proposition 4.1. Suppose that a and p are coprime and k is a non-negative inte-
ger. Then

(i) g(ab,p*) = (%)39(@1)’“);
(i) | g(1,p) |*= Np;

k _ g(l,p) if k=0,
(iii) g(p”*,p) —{ 0 otherwise;
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. Kooy Npg(l,p) ifk=1,
(iv) g(@",p )_{ 0 otherwise.

To define the Hecke operators, first recall that every prime ideal coprime with
(3) has a unique generator p = 1 mod (3). Now suppose

P’ \ p’ ,
p p
Eps = » and &y = 1
1 1
For n = &6 or &3, I'(3)nI'(3) can be written as a disjoint union of right cosets
(4.2) PELB) = [ JTG)mi, ni =vinb: 7,6 € T(3).
i=1

Then T,, acts on the space of cubic metaplectic automorphic forms on GSp(4) by

m

(4.3) (T 9)(7) = Y K(y)R(8:)(mir).
i=1
In what follows write Ty and Tjs for T¢ ; and T , respectively.
As the Whittaker-Fourier coefficients in (2.4) are parameterized by the cusps
p (see (1.4)), there is a need to understand an action of K* on the cusps. As in
Bump and Hoffstein [BH2], for d € K* with numerator and denominator (written in

-1
reduced form) coprime with 3, define d[p] to be the coset ( d 1 ) P ( d 1 ) .
Here representatives p are taken such that p, d[p] € T's.

Theorem 4.2. If a”(ny,n2),b?(n1,n2), and c®(n1,ng) are the Whittaker-Fourier
coefficients of ¢, Tye - ¢, and Tps - ¢ respectively, then
(4.4)

b”(nl, ’IL2>

6
= Np® [ap (n1,m2p~%) 4 a? 1P (n1p~6 nop?)

°l

+a? Pl (nypS nap=3) + ap(n17n2p3)}

4

+Np° [ (map™2 map ™) g™ p) + P (rp map) g (s, )

4

4 S —4
+ a” P (nyip~™ nop?) g(nip=2,p) + a?  Pl(nip*, nap=?) g(n1,p)

—4 -2
+a? Pl(nyp* nop™t) g(nap™,p) + a? [p](”1p2’”2p)9("2’p)}

+ Np4 |:ap2[P] (nlp_27 ’]’Lz) g(n1p_2,p) g(”Zap)
+ apz{P] (nlp_27n2p)m
+a? ) (n1p?, nap™') g(n1,p?) + a? 1) (m1p?, n2) g(na1,p) g(nz,P)}

—Np?* if (ptning) or (p* | ny and p® t ny),
Np*(Np—1)  if (p| n2 and p* tny)
P )
Fa(n1,me) Np*(Np—1)  if (p | m1 and p*{ n1),
Np*(Np? — 1) if p* | na,
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and
(4.5)
c?(n1,n2)
= N2 [V apE ma) + 0y map )
+ ap3 [e] (nlp_37 n2p3) + apfs[p] (n1p37 n?):|
+Np7/2 [ (n1p " map™ ) glnapT,p) + 0 (nap, nap™2) g(ma, )
+a Pnip,nap™) glnap™! p) + @ (mp~! map) gz, )
_— —1
+ @ (n1p™" nap®) g(ap=1,p) + @ P (map, nap) g(na,p)| -
Here it is understood that af, ,. = 0 unless n; € (A\)~° and ny € (A)~3. Note
that for p =1 mod (3), p*[p] and p are in the same double coset of I'5(3)\I'2/T'2 o
k
for any k. Thus aﬁlgsz = a}, »,» and Theorem 4.2 is actually more explicit than

necessary. In fact, (4.4) and (4.5) will only be used when all cusps there are the
same.

Theorem 4.2 will be proved by explicitly writing down right coset representatives
n; as in (4.2), computing k = k(v;)k(8;), and giving the resulting contributions to
the Whittaker-Fourier coefficients for both 7 = §,6 and 7 = §,s. The contribution
to the Whittaker-Fourier coefficient af,, .. is determined by evaluating an integral
of the form

1 U9 U3 Uy

1 w uh
[ elmaw b
c/(9) J(C/(3))? f?

xe(—nju; — naus) duy dus dus du;.
To do this, write

ni T (p) =n: T (p)m; ' mi = T (d[p]) s

for some d. Then the contribution is determined by changing variables in u; to
obtain an integral in the form of (2.4).
For the operator Tjs, the coset representatives are:

I L Ar=1}
1

This coset contributes Np®a(ny, nap=3).

p° ap?

4
P a
II. ,{ a mod p, a, kK = | — .
P’ —a { P2 f <p) }

p

2 1

These cosets contribute Np®a?”1? (n1p=2, nop=1)g(nap=1, p).



994 THOMAS GOETZE

5 2 d
p p3 252 . b,d,e mod p, ptd, )
III. 3 , A
D e = bdmod p, K = (—)
D p
These cosets contribute zero.
ro,
IV. P bll € ,{ emod p, bmod p?, p { e, Kk = (S) }
p p
p
These cosets contribute zero.
o ap?
p° 2 a\ ™"
V. , N .
» —a amod p*, p { a, K <p>

p2

These cosets contribute Np5ap4[p] (n1p~*,nap) g(na, p).

a,b mod p, e,d mod p?,

4 3
p* ap® etab d e(ab + e) = bdp mod p?,

VL p bp €

5 ,{ a(ab + €) = —dp mod p?,
p —ap -1
2 ab
p p 1 abe, k = (—)
p
These cosets contribute Np4ap2[p] (n1p~2,n2) g(n1p=2,p) g(na, p).
4
P 3 °p d bvdvemOdp27 pjfdv
VII peobpe d
' p? ") €2 = bdmod p, Kk = (—)
p? p

These cosets contribute zero.

p* ap® ep® d

a,e mod p, d mod p?,
p3 ep p p
VIIIL. 3 , <d)
p>  —ap ptad k=|-
p2 p
These cosets contribute zero.
4 2
e d
. p P bl;o ep d mod p, e mod p?, b mo;i 53, p 1 bde,
’ p? ") €2 = bdmod p, k = (i>
p2 p
These cosets contribute zero.
p! ep?
p bp e e\t
X. P ;9 emod p?, bmod p*, p t e, K = | = ,
P’ g

These cosets contribute zero.
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p* ap®
p° 3
XI. | —a ,{amodp,mzl}.
P
These cosets contribute Npﬁapﬁ[p] (n1p~%, nap?).
p® ap® ¢ d b, c mod p, a mod p?, d mod p?,
p> b cp?—ab blac + d) = c*p? mod p?,
XIL , o
P 3 b, k= b
p3 p ) ?
These cosets contribute Np®a?'?l (nyp=4 nop?)g(nip—2, p).
2 ap® ¢ d a mod p, b, c mod p?, d mod p>,
4 _ b d) = 2 d 3’
XIIL p b2 cp cztb ’ (ac + d) ¢"p mod p
p®  —ap b
Fo) Lrte= ()

These cosets contribute Np?(Np — 1)ap2 (Pl (n1p=2, nop) g(nip=2, p?).

3 d,
Ty e | [ bedmedp b 1
XIV. g , b\~
p 2 = bd mod p?, Kk = (—2>
P

2

These cosets contribute Np3a?”[#) (n1p~2,n2p) g(nip=2, p?).

3 e d
3 3
XV p b3 e ’ b,Qdf mod p°, p3 1 b, '
P e = bdmod p°, k = 1
P
Np®(Np — 1)a?(nq,nz) if p* | nq,
These cosets contribute { —Np®a’(n,ns) if p? | n1, but p®fnq,
0 if p2 1 ny.
3 ep d
XVI p3 bp? ep b mod p, e mod p?, d mod p?, p | d,
‘ p3 "] €2 = bdmod p, k=1 :
P
4 _ P :
These cosets contribute Np*(Np — 1)a”(n1, m2) %fp [
0 ifp f nq.
P’ oap® ep®  d
P’ ep? 3
XVII. P —ap? ,{a,e mod p, d mod p*, p 1 ad, /@:1}.
»

—Np3(Np — 1)a?(n1,n2) ifp 1 na,

These cosets contribute .
{ Np?(Np — 1)%2a”(n1,n2) ifp | no.
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p® ap? ep+ abp d a,b mod p, e mod p?, d mod p3,
XVIII p bp? ep e(ab + e) = bd mod p,
. P’ —apt | t abde, k = (%>
p3 p ’ - p
—Np?al?l (ny,ns) if p t ning,

Np?(Np — 1)a’”(n1,n2) if p| ny and p 1t no,
Np?(Np — 1)a’(n1,na) if pfny and p | no,
~Np*(Np — 1)%a?(n1,n2) ifp | nyandp | no.

These cosets contribute

3
P 2 v dp d mod p27 e mod p37 b mod p4’ p)[b’
XIX p b € b
. p4 ’ e2 = bd mod p2, K = )
P’ 3

These cosets contribute Np4ap72[”] (n1p?, nap~1)g(n1, p?).
3

2
poapep +abp d a mod p, b,e mod p?, d mod p3,

p bp? ep -
XX. , d
p* —ap? ptad, p| ae—d, k= (a_>
p® p

These cosets contribute zero.

3 2 2
p ep” dp d mod p, e mod p?, b mod p°, p1{b,
XXI poboe b
' p° 'Y €2 = bdmod p, k = [ =
p3 p

These cosets contribute Np®a? ¥ (nyp*, nop=2) g(n1, p).

p’ ep®
1 b & 3 6
XXII. 6 ,{emodp,bmodp,/izl}.

p3

These cosets contribute NpSaP '

l(n1p%, nap=3).

2 2
p 6295 ¢ CZB ¢ mod p, a mod p?, d mod p*, p 1 ¢,
XXTII. , . 9 c
p —ap d = acmod p*, Kk = | —
p4 p
These cosets contribute zero.
p? ap?® ¢ d b mod p, a,c mod p?, d mod p*,
4 2 _ — 2 2
XXIV. P b]QQ cp (;bp 7 p 1 be, bQ(ac-l—d) = ¢*p mod p?,
pe —ap P
p* p
These cosets contribute zero.
p? ap® ¢ d a mod p, b mod p?, ¢ mod p?,
XXV p>  bp cp— abp d mod p*, blac+d) = ¢ mod p?,
. p3 _ap?) ) be -1
4 ptbe, kK = (—2>
p P

These cosets contribute zero.
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3 cp c;l2 a mod p, ¢ mod p2,1 d mod p?,
XXVL 5 s | d\ "~
p° —ap pled, K =
* p
These cosets contribute zero.
2 2 2
pmap-cp d a,c mod p, d mod p?,
P p? o
XXVII. 3 3 | d
p’  —ap ptd, Kk = (=
I p
These cosets contribute zero.
2
p a]?? cp d2 a,c mod p?, d mod p?,
XXVIIL. pee d\ !
p°  —ap ptad, k = | —
p! p
These cosets contribute zero.
p? ap ep+ab d a mod p, b, e mod p3, d mod p?,
2 _ = 2 2
XXIX. P b]z ep3 ’ b(d —ae) = e’p mod p?,
p —ap <ab>
4 p'fabv K = -
p p
—2
These cosets contribute Np*a? [Pl (n1p? ny) g(n1, p) g(na, p).
2 2
p*a ep”+ab d a mod p, e mod p?, b,d mod p?,
XXX P P a
’ p° —ap® | "\ pta, d=aemod p? Kk = —>
p
These cosets contribute Np®aP |

?lnip*, nap=t) g(nap™', p).
p ap c d
4

» op? c mod p?, a mod p?, d mod p°, pfe,
XXXI. s |, c
p®  —ap plact+d, vk = | 3
p5 p

These cosets contribute zero.

p ap cp d

P’ p?

XXXII. 3 3
p- —ap

d
,{a,cmodp2, d mod p°, pJ[d,KJZ( )}
e

These cosets contribute zero.

J b mod p, a mod p?,
p aé) bCQ > b ¢ mod p3, d mod p°,
XXXIII. p 53 b __a;?,p {4 blac + d) = ¢® mod p,
be !
p° ptbe kK = (EC)
These cosets contribute zero.
D a c d a,b mod p?, ¢ mod p*, d mod p°,
2 pp? p— 2| (a®—ac+d
XXXIV. peobp’ep—abp | pta, p* | (a%b —ac+dp),
p —ap a
P -G
L __\p
These cosets contribute NpSa? |

2 (n1p27 n2p) g(n27 p)
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1 a ¢ d

XXXV. P v’ {a,cmod p*, dmod p®, k = 1}.
p3 _ap?, 9 ) 9 )
b

These cosets contribute Np®a”(nq, nap?).

Since p = 1 mod (3), choose a,b,¢,d, and e above (and below) from the ideal
(3). This is necessary to ensure that «(6;) and x(7;) are defined.

For the operator T)3, the representatives are:

P
/ p3
I. 1 , { k=1 }
1
This coset contributes Np®/2a?’P)(nyp=3, ny).
P , X
b b\~
T, p ) 7{bmodp,pjfb7"€: <;> }
1
These cosets contribute Np™/2aPll(n1p=, nop=)g(n1p=1,p).
P
b
g pb { bmod p?, p { b, k = <_> }
p p
1
These cosets contribute Np7/2ap71[p} (n1p,nap=?) g(n1,p).
P
/ 1 b 3
Iv". . ,{bmodp,nzl}.
1
These cosets contribute Np¥/2a?#l (nyp3, nop=3).
p? apg2 d )
I\
v 3 1 ’{ a‘7dm0dp7 p 'f d7 Kk = <_) }
—a »
p
These cosets contribute zero.
p? ap ¢ d
2
VT'. 4 ¢ ,{ a,c,d mod p, c, K = (E) }
b —a p, p 1 p
p
These cosets contribute zero.
2
p ) Z d b,c,d mod p, p 1 b(c? — bd),
VIT. b “1, (c2 - bd)_l
p K =
p p

These cosets contribute zero.
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p? a ep+ab d

’ p bp € _ (@
VIIT'. 2 4 ,{ a,b,d,emod p, p t a, Kk = (p) }
p
These cosets contribute Np7/2a? "l (nyp, nap=1) g(nap=1, p).
p? ep d
bd?
IX'. P ;2 © ,{ d,e mod p, bmod p?, p { bd, K = <—> }
p
p
These cosets contribute zero.
P’ ep® d
1 b d\ !
X' 3 ¢ ,{ d,e mod p, bmod p3, p t d, K = (—> }
p
p
These cosets contribute zero.
p ap d
3 d
/ p 2 — Z
XT'. 1 —a ,{a,dmodp,pj(d,ﬁ:—(p) }
P2
These cosets contribute zero.
p a c¢ d
P2 ep o\ !
XIT'. p —a 7{ cmod p, a,d mod p?, p { a, Kk = (—) }
»’ g

1

These cosets contribute Np™/2a?l?!(n1p=1, nap) g(na, p).

p ?712) Z cpfab a,b,c mod p, d mod p?, p1b(d+ ac),
XIIT'. , (bQ(d—F ac))
p —ap k= (———
p? p

These cosets contribute zero.

poa c d a,b mod p, ¢,d mod p?,

XIV'. D b]QQ c—ab ’ c— ab\ !
p°  —ap ptalc—ab), k =
P’ p
These cosets contribute zero.
P c d
p bp e\ 7!
XV’ P —ap 7{bmodp, c,d mod p?, ptec, Kk = (1—?> }
P2
These cosets contribute zero.
P c d
2 — bd
XVT. P pbg ¢ ,{b,c,dmodpQ, p1b(c® —bd), k= (C > }
P’ 3

These cosets contribute zero.



1000 THOMAS GOETZE

p €p
d
XVIT'. 1 pb3 € ,{ d,e mod p?, bmod p3, p t d, Kk = <1—?) }
p?
These cosets contribute zero.
1 a d
/ p3 3
XVIIT. 1 —a ,{a,dmodp,n:zl}.

p3

These cosets contribute Np9/2ap3 [e] (n1p~3

7”2]93)'

1 a ¢ Qd b,c mod p, a mod p?, d mod p3,
b cp®—ab

2
XIX'. p , AN
p  —ap ptbr=|-
P’ P

These cosets contribute Np™/2aPle)(n,p=1

,n2p®) g(nip=',p).

1a ¢ d a mod p, b, c mod p?, d mod p3,
’ p b cp—ab
XX 2 2 ) b
p®  —ap ptb k==
p3 p
These cosets contribute Np7/2a? "l (nyp, nap) g(n1, p).
1 c d
, 1 b ¢ 3
XXT'. » ,{b,c,dmodp,nzl}.
PP

These cosets contribute Np%/2q? /] (n1p®,na).

5. THE EULER PRODUCT

The expression of the Shimura type Rankin-Selberg integral (3.1) as a double
Dirichlet series D(s) times G(s) in (3.2) is valid for any cubic metaplectic auto-
morphic form on GL(3) that satisfies the hypothesis of Lemma 2.2. However, by
taking f = ©, the cubic theta function, it will be shown that D(s) has an expres-
sion as an Euler product. Note that © satisfies the hypothesis of Lemma 2.2, since
O(y73) = O(73) for all v € SL(3,0) (see (2.17) of [BH1]). The choice of © here
(and the similar use of theta functions by Bump-Hoffstein [BH2] and Friedberg-
Wong [FrW]) follows Shimura’s original technique [Shi] in the sense that the theta
function picks off the Whittaker-Fourier coefficients of ¢ that allow D(s) to have
an Euler product. The goal, in this section, is to prove

Theorem 5.1. Suppose that ¢ is a cubic generic cusp form on GSp(4) that is an
eigenfunction of the Hecke operators Ty, Tps for each prime p € O with (p,\) = 1,
with eigenvalues given by



EULER PRODUCTS 1001
Tps - ¢ = (Np®ppe — Np® — Np?)
and
Tps - ¢ = Np9/2 Hp3 @.

Let D(s) be the Dirichlet series constructed as in (3.3) using the cubic theta
function ©. Then for Re(s) > 3/4,

5 5
Cr(12s — 4) D(s) = R(6s — 5) R (6s — 5),
where
Ris)= J] (1~ 1peNp~ + ppeNp~2 — p,sNp=3 4+ Np~4) 7
(p,A)=1
and
Ra(s)= (1—-Na21)7" % 3 sy Oams
ale) = Mg 97
pET2(3)\I'2 /T2, 00 nie(\)"°
nze()\)73

pl2Tnina=(p,A)>1

Proof. First fix a prime p = 1 mod (3), and take n; € (A\)™°, ng € (\)~3 such
that p t 27ning. Let x = Np, 2 = Np~* and let p1,us be the eigenvalues of ¢
corresponding to Tye, and T} respectively. Also put

F(z%) =1— N_;ZG I (& g +$5) 22 B8 4 10,2
T T
Then Theorem 5.1 will follow from
Lemma 5.2.
o) P

N
a k1, k29 k2| k1 VY
61 ) 2, gm0
k1,k2=0

Proof. Let G(6n) be the coefficient of 25" in the left-hand side of (5.1). Proposi-
tion 2.3 implies the equality

o] P P
2 : anlpkl ,naph2 9n2Pk27n1Pk1
N k1+2ko 28—1/2
o (p )
00
5.2 Z S 5
( ) — 9%2,n1x2k1+4k226k‘1+12k2
k}17k12:0

14 3/2,6 p
X (an1p3k1,n2p3k2 +9(n2,p)$ z an1p3k1+1)n2p3k2+1) .
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Now define

_pp . 3ki+4ks p
B(k1, k2) = 0z n 22 G p3R1 nop3ha

and

Clkr, ko) = Oy 23517253 g (g p)al

nip3k1+1

7n2p3k2 +1-

Then the coefficient of 25" appearing in the right-hand side of (5.2), hereafter
designated G’(6n), is given by

G'(0) = B(0,0),
G'(6) = B(1,0)+C(0,0),
(5.3) G'(6n) = B(n,0)+C(n—1,0)+ B(n—2,1)+C(n—3,1)
B(O,%)+C(17"T_2) if n > 2 is even,
{3(1,%—1“0(0,%—1) if n > 2is odd.

Consequently, by defining G'(6n) = 0 if n < 0, for all n we get

G(6n) = G'(6n) — 3G (60— 6) + (% +2% +2°) G (6n — 12)

(5.4)
— p2z®G’ (6n — 18) + z'° G’ (6n — 24).

Now it can be checked explicitly for n = 0,1,2,3,4,5 that G(6n) has the form
suggested in (5.1). By virtue of (5.3) and (5.4) it suffices to know u1G’(6n) and
oG’ (6n) from Theorem 4.2, for each n under consideration. Using Theorem 4.2
and Proposition 2.3 one finds the following:

G'(0) = 05, n,a”

n1,n2?

ni,n2 ni,map3

G (0) =05, 0y | —2*a? . +2%a”

+ 1‘5a21p2)n2p9(n17p) + $4aﬁlp2,n29(n1,p)2} ;

UQGI(O) - oﬁz,nl $9/2af7,1p3,n2 + $7/2azlp,n2pg(n17p):| 9

G/(G) = 05121”1 _$5/2af11p3,n2 + :Z?B/Qafllp)nng(nl,p)} )

NlGI(G) = 97@2»”1 -($2 +z— 1) $13/2afl11037n2 + $17/2afllp37n2173
+ 1‘15/2a21p5)n2p9(n1,p) + (xZ + T — 1) xll/zaﬁlpﬂlﬂ’g(nl’p)

+ 215/24° 29(n1,p) + 5513/2@2117577129(”1’]9)2} ’

nip,n2p
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p

7
s+ 2 aﬂlPSanz

112G’ (6) = 05, 1, (x +1)a%h, ., + (@+1)a°

nl ;2P

+ wﬁaﬁ1p2,n2pg(nl’p) + xﬁafllp4,nng(n1’ ) + xSafllP nzg(nl’p)2:| ’

G'(12) = 00, », _x4ap s +atdl o tatal mpg(m,p)} :

ni,n2p-

G (12) = 05, 0, xloap + (@ +2+z-1)2% 420

ni,n2 ni,n2p n1,n2p%

+(:z: +:z:—1) +z'taf s +2'%’ g(n1,p)

n1;D ;N2 n1ps nz;D nips,n2p
+al%l o g(ni,p) + (2° +:v—1) af) sy d(115D)
+ xlO r 4g(n17 )+ZE n1p n2g(n17p)2

n1p*,nap
9 P 2
+z’a), s ,.9(n1,p) } ,

peG'(12) = 00, o, |(x+ 1) 2720”4 (x4 1)27/2a”

n1p‘ s12 nlpsﬂlzps

$p192p 4 p17/24p PICIND)

n1p%,n2 n1p%,n2p

+ @+ 1) 2%l e, p) + (1) 22 g(n,p)

+ :Z?17/2 Z1p7 "2pg(nlv ) +$15/2 Z1p5,n2g(nl’p)2:| ’
G'(18) = 0"2 m [ 13/2af11p3 nap? T x15/2af11p9 ng
+ xll/zafnp n2p4g(n17 p)+ x13/2a21p nng(nl’p)} ’
U1G1(18) = 9n2 n { 25/2a21p3,n2 + (xB +a’ - 1) 21/2af11p nap?
+ $25/2a21p 3,ngpS + (xQ +x— 1) ng/zazlpg,nz + x27/2a21p ,n2ps
+a®Pal o g p) 22l L g(np)

+ $23/2aﬁ1p,n2pg(nlap) + (x +a’+a— 1) 5619/2@211) n2p4g(n1’p)
+ (E23/2ap 7+ (:EZ tz— 1) 21/20'21;0 nng(nl’p)

nip,n2p

25/2 p 23/2 p 2
+z anlp ,napt +a anlp nzg(nl’p)

+a®al L nzg(nl,p)ﬂ :

poG'(18) = 04, 1, [(a:+1) 104P + (z + 1) 2%

@y map3 @y mops

+(@+1)za? o+ (x+1)z'ta’? s + 224"

U1 pS,ms Oy 8 ,map n1pl?,ny

+za? g(n1,p) + (@ +1)xa? ., g(ni,p)

nlps nap n1p ,n2p

+ @+ D)2l g, p) +attal o g(na,p)

+CE10 P 8 g(nlup)Q 9

nip=,n2

G'(24) =00, . |2%a” . +a®

ni,n2p n1:D sN2p

+ 2%a n1p n2p4g(n1ap)+x9a21p1o,n2pg(n1,p) ,
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' _p[.14 p 3, .2 _ 12 _p 14 _p
w1 G'(24) = 05, ny [x U ot T (2 +2°+z-1)x Up s T A
15 p 3 2 _ 13 _p 15 p
T ey T (x Tt 1) T 0 maps T T Gy 6 g po

2 _ 14 _p 16 p 15 P
+ (13 +x 1) T a’n1p12 na +x n1;012,n2103 +z n1P8,n2Pg(n1’p)

+a'%a) 14>n2p9(n17 )+$14 A g(n1,p)

nip n1p*,nap
+ (2* + 2% +2-1) xlzaﬁlp nopr9(n1,p) + att At 79 (71, P)
+ (2 +a—1)ad) o g(n,p) +aPal o ig(na,p)
+ zMa lesjmg(nl, p)? +z'a Z1p14’n2g(n17p)2 )

112G (24) = 00, 1 [(:p +1) 2™l Lt (1) 2 Pal
+(z+1) x27/2a21p9,n2 +(@+1) $27/2aﬁlp nap? T 2*a a5 15 s
+2?2al o g(nap) + (@ + 1) a2l g(na,p)
+(e+1)a®al | g(n,p) + (w4 1) 2%l o g(na,p)
+(x+1) x25/2af11p7,n2p4g(n1, p) + $27/20’Z1p13 napd(N1,D)
+a®al L g(n,p)?

G'(30) = 00, 1 x21/2a21p3)n2p6 + x23/2afnp 9 nap?

+ 225/2, lelsm + 219724 le n2p7g(n1,p)
+ 2212, Z1p7)n2p4g(n1, p) + 2%/ lelgmpg(m,p)

So by using these formulae in (5.4) it follows that

G(O) = a’fn,ng 972277117

G(12) = —2*00, ., a”

and
G(6) = G(18) = G(24) = G(30) = 0,

as required in (5.1).
To finish the proof of Lemma 5.2 it remains to show that G(6n) = 0 for n > 6.
First, write

G(6n) = Z G;(6n),

where
G1(6n) is the sum of coefficients of 26"

such that k1 = ko =0 mod (3), k1, ke > 3,
G2(6n) is the sum of coefficients of 26"
such that k1 = ko =1 mod (3), ky, ke > 3,
(6n) is the sum of coefficients of 25" such that k; = 0,
4(6m) is the sum of coefficients of 25" such that k; = 1,
G'5(6n) is the sum of coefficients of 26" such that kg = 0, k1 # 0 or 1,
G(6n) is the sum of coefficients of 26" such that kg = 1, k1 # 0 or 1.
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Then it suffices to prove that, for all n > 6,

4
(5.5) > Gi(6n) =0
i=1
and
(5.6) Gs(6n) = Gg(6n) = 0.

Equation (5.6) will be proved first. To this end, write

(5.7) Z D> 0°(na,napht) Aj(ky, 0) b/,
J=0 k1=3n—-35
Ky >2
where
Aok, ko) = a”(n1p™, nap*?),
Ak, k) = _x—/;ZAo(/ﬁ,/@),

- (% + a3+ x5) Ao (kq, k),

)
As(ky, ko) = —pax®Ag(k, k2),
Ag(kr, ko) = 2" Ag(k1, k2).
(

Then using Proposition 2.3, (5.7) becomes

Zenz ny L 5(n N AJ(3(n - ])7 0)
So to prove G5(6n) = 0 for all n > 6, it suffices to prove
4
(5.8) > 2D 45(3(n - §),0) = 0.

Now, using the definition of the A; and Theorem 4.2, one can find that
(5.9)

A1(3n—3,0) = —g%/? [a”(nlp3n_6, ng) + ap(n1p3"_6, nng) + a”(nlp3"

32 n—4

g(na, p) a” (n1p®"~*, nap),

(5.10)
A2(3n —6,0) = [x3 + xﬂ ap(nlpgn_ﬁ, ng) + x5a”(n1p3n_12, n2p3)

3n—10
7”2]9)7

—6

+ 2%a” (n1p®" =%, nap®) + ' g(na, p)a’ (nap

3n—4

+ 2tg(na, p)a? (n1p®" 4, nop) + 23(2? — 1)a? (n1p>"

(5.11)
As(3n—9,0)

—CE15/2 [ap(n1p3n—12,n2) + ap(n1p3n—12,n2p3) + ap(n1p3n—6,n2)]

£13/2 3n—10

g(n2,p)a’(n1p ,N2p).

ng)}

1005
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Then using (5.9)-(5.11), (5.8) follows immediately. Next, by writing

4

Z ham 9(n2, p) @ P/ A;(3(n = j),1),
7=0

as in (5.8), it is straightforward to verify that (5.6) holds in this case as well. To
prove (5.5), first write

(5.12)
! _—
n=> 0° (napke, nipkr) Aj(ky, ko)a k1 F2k2)/2,
=0 (ke k2) €K™
where
Kjl" = {(kl,kz) c 72 | k1 = ko =0 mod (3), k1, ks > 3, k1 + 2ko = 3(71_j)}7
Kfm = {(ki,k2) €Z* | ky = ks =1 mod (3), k1, k2 >3, k1 + 2ks = 3(n—j)},
K" = {(0,k2) € Z° | ky = 0 mod (3), 2ky = 3(n— j)},
K;&n — {(1 ko) € Z* | ko = 1 mod (3), 1 + 2k = 3(n—j)},

The congruence conditions on k5 for KJB” and K;’" are included to ensure that the
coefficient of 7 (nyp*2, nyp*) is not zero. Then, consider the

Claim. For i € {1,2,3,4} and n > 6, the coefficient of a”(nip*,nop*2*3) in
G;(6(n +2)) is equal to z* times the coefficient of a”(np*, nop*?) in G;(6n).

By induction, this claim reduces (5.5) to the cases of n = 6 and n = 7. To prove
the claim, notice that (2.3) implies

(5.13)
p(ki+k2)/3 08, if (k1, ko) € K;”‘,
o ks Ky x(k1+k2—2)/3 (n27p) 97’;27”1 if (k17k2) c K?m’
9(”21’ , 1P )= N . -
2/ 08, . if (k1,ke) € K",
zF2/3 g(ng, p) 0 if (ky, ko) € K;l,n
Therefore,
(5.14)
4
6”) = Z 957,2,111 AJ (kla k2) x(k1+k2)/3 x(k1+2k2)/2’
=0 (ky,k )EK
(5.15)
4 —
n) = Z 00y 1 9(n2,p) Aj(ky, ko) k1 +k2=2)/3 g(ki+2ka)/2
0

(k1,ko)EKT™

4
(5.16) Gs(6n) = Z Z 08y e Aj (ki bey) a¥2/3 gk +262)/2
I=0 (k1,k2)e K"
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and
(5.17)

4
=3 S T g(naap) Ak, k) P/ g R2,
I=0 (k1,k2)eK] ™

To expand G;(6(n + 2)), first an understanding of K;’”+2 is needed. If (k1,k2) €
K;", then (ky,ke + 3) € K;’”’LQ. For ¢ = 3 and i = 4, this completely describes

K;7"+2, while the only elements of K;’”” and K?’"H that are not of this form are

(3(n— §),3) € K}

and
(B(n—1-j)+1,4) € K"

Now, using this description of K;’"JFZ and (5.13), write
(5.18)

4
G1(6(n +2)) Z ST B Ay, by + 3) 2t ka3 g h42k2) /2
=0 (k1,k2)eK;™

4
+ 3 0 Ay (3(n — §),3) 2" 22D/,
7=0
(5.19)
4 —
G TL—|—2 Z Z ofplz,nl g(nQap)Aj(k17k2+3)
J=0 (kl,kz)GK?’"
« gt p(k1tka—2)/3 (k1+2k2)/2
4 _ ‘ ‘
5 O Aj(B(n— j — 1) + 1,4) 2" 230 +2/2,
=0
(5.20)

4
G3(6(n+2)) = > Onm Ajlkr ko +3)at a2 g F2h)/2,
T=0 (k1 ka) €K™

(5.21)

4
Gab(n+2) =" 3 O, g(no.p) Aj(ka ky + 3) at ab2/3 gt 2h)/2,
Jj=0 (kl,kg)eK;.l’"

Now observe that for k&1 > 5 and ky > 3, Proposition 4.1 implies all the Gauss
sums in (4.4) and (4.5) vanish. So for n > 6 it follows from the action of the Hecke
operators that the coefficient of a?(ni1p*t, nap*?) in A;(k1, ko) is identical to the
coefficient of a”(n1p*t, nap*23) in A;(k1, k2 + 3). Therefore the proof of the claim
is complete in the cases ¢ = 3 and ¢« = 4. To finish in the cases of ¢ = 1 and
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i = 2 it remains to show that the second sums in both (5.18) and (5.19) vanish, or
equivalently that

4
(5.22) > A;(3(n - 4),3) a2 =0
§=0
and
4
(5.23) > A4;BMn—j—1)+1,4) 252 =,
§=0
Explicitly,
(5.24) Ao(3n,3)2""/? = x5"/2ap(n1p3", nop?),
(5.25)
Al (3n -3, 3)x5(n—1)/2 — _x5(n—1)/2x—2M2ap(n1p3n—3, n2p3)
= —gPn/2 [a?(n1p®" %, nap®) + a” (n1p®™, na)
+ a”(n1p® % nop®) + a? (n1p®, nap®)]
(5.26)
A2(37’L _ 6’3)$5(n—2)/2 — x5(n—2)/2 [x_ll'l’l + 1‘3 + 1‘5] ap(n1p3n—6,n2p3)
=g""/? [ap(nll’g", ng) + ap(nlp?m_ﬁ, n2)

+2a”(n1p®™ "% nop®) + a? (n1p®" %, nap®)

4 ap(n1p3n—127n2p6)] ’
(5.27)

Ag (37’L —9, 3)1,5(11—3)/2 — $5(n—3)/2x2u2ap(nlp3n—97 n2p3)

= — /2 [ap(nlp?m_u, nap®) + a? (n1p* =%, ny)

+a”(nap® 1%, nop®) + a” (nap® ¢, nop®)]
(5.28) Ay(3n — 12, 3)x5("_4)/2 = 2°20P (nyp®" 12 ngp?),
and
(5.29) Ao(3(n —1) +1,4)z°"/2 = 25720 (1 p®" =2 ngp?),
(5.30)

A (3(n —2) +1,4)2®D/2 = o205 D/20P () p1 5 ngp?)
= —2""2 [a” (n1p*" 8, nop®) + @ (1 p*" 5, map”)
+ a”(np®" 2, nap) + a” (np®" 2, n2p4)] )
(5.31)
A2(3(n—3)+ 1, 4)x5("_2)/2 = [ulx_l + a3+ xﬂ a?(np®" 8, n2p4)x5(”_2)/2
= go/? [a” (n1p® M nop”) + a” (n1p®" %, nap)
+ 2a” (n1p*" 8, nap?) + a? (n1p®" 8, nap”)

+ ap(nlp3n—27 an)} )
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(5.32)
A3(3(n _ 4) + 174>x5(n—3)/2 — —ugxgap(nlpgn_ll,n2p4)x5("_3)/2

—a"/? [ap(nlpgn_M, nap) + a’ (nap
3n—8

3n—14 7
, 2P )

+ a” (n1p®™ %, nop) + a? (nap®* %, nap™)] |

(5.33) Ag(3(n—5) +1,4)z°=H/2 = £5n/20P (np3n 14 ngpt).

Now summing (5.24)-(5.28) yields (5.22) and summing (5.29)-(5.33) yields (5.23).
Now to finish the proof of Lemma 5.2, it remains to show (5.5) in the cases
n =6 and n = 7. But due to (5.6) this is equivalent to showing G(36) = 0
and G(42) = 0. These two facts can be verified by using (5.4), as was done with
G(0),G(6),G(12), G(18),G(24), and G(30). The additional information needed
from Theorem 4.2 is:

111G’ (30)
= 0y [11733/20121;73,"21)3 + (27 + 2% + 2 1) ng/zaﬁlps,nzpa

L (- 1),
+ x35/2a21p9,”2p5 + ($2 +x— 1) $33/2a’ﬁ1p15,n2 + $37/2QZ1P15>"2P3
+ 1‘35/20421;011)712;09(”17]9) + $35/2a21p17,n2pg(n1’p)
+ 20 9 ) + (2 0w 1) 22l (0, p)
+ $31/2a21p,"2p109(n17p) + $33/2a’ﬁ1p7>"21’g(n1’p)
+ (@t a® o —1) 20l L g(np) 2l o g(np)
+ (1'2 +x— 1) $31/2a21p13,n2p9(n17p) + x35/2a21p13)n2:049(n1’p)
+2%%al 1 g(n,p)? +a®Pal L g(na,p)?]

pu2G'(30)
o+ (x4 1)2'%a’

n1p8,nap3

o+ (z+1)zMa?

_ 14 _p
- 9”2,711 (CL‘ + 1) Ta ni,n2p

ni,n2p

+ (x4 1) z'%a” o + (x4 1)z'%" ,H(@+1) z1%a?

n1p%,n2p! ni1pl2,n n1p'?,nap3

17 _p 16 p 14 _p
+z Uy p18,ms +z anlpmynng(nl’p) ++ )z anlp“,nzlflg(nl’p)

+ (x4 1) 2'a’ (n1,p) + (z +1)za” (n1,p)

n1pt,nap”d n1p10,naop9
=+ (x+ 1) 'T’lsap (nlap)+xlﬁa’p (nlap)

n1p'0,napt9d n1p'®,nap9
+x15a21p14)n2g(n1 ) p)2:| )
' (36)

_nP 12 _p 13 _p 14 _p 15 _p
= Onony | @ an1,n2109+x Ay ps @nyp }

Map® +x 12 popd +x an1p1s,n2

+a'%a’ (n1,p) + z'%al (n1,p) + x”‘aﬁlpw,nz,,g(nl,p)} ,

n1pt,nap”d n1p'0,nyptd
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112G’ (36)
= 952,111 (ZIJ =+ 1) $33/2azlp3,n2p6 + (ZE + 1> x33/2a21P3,n2P9
+@+1)z % leg,nzps +t+le P24 fhp 9 napo T (z+1)z 24 21;015,712
+ (e +1)2%2al a2l L+ 28TPal L g(na,p)
+(a+ 1)@l () + (o 1)@ 2al L eg(n,p)
(x + 1) a¥/q le7,n2p49(n17p) + (x + 1) /24 21;07,712:079(”1’]9)
+(@+1)x /2 lels,nng(nlvp) +(z+1) 35/20211,13 nzp4g(nl’p)
+ 2572 lelgmpg(nl, p) +2%/%q len,mg(nl,p)ﬂ ;
G'(42)
= Oz, xQQ/Qafnp?’ nap? T x31/2aﬁlp nap® T zBB/QaﬁlP”’ nap?
+ 5535/2@21;021 ny T $27/2afnp nzplog(nla p)+ x29/2a21p n2p7g(n1,p)
+ 5631/2@211713 n2p4g(nla p)+ x33/2a21p19 nng(nl’p) ’

As an immediate consequence of Lemma 5.2, Theorem 5.1 follows by pulling out
the Euler factors in R(s). The fact that the Euler product has a meromorphic
continuation to the whole complex plane follows from the meromorphic continuation
of the Eisenstein series E(f,7,3).

In order to prove a functional equation for the Euler product, Theorem 3.1 and
Theorem 5.1 need to be extended to the situation where ¢ and © are replaced
with non-metaplectic minimal parabolic Eisenstein series on GSp(4) and GL(3)
respectively. As this has not yet been carried out, the rest of the section serves
only as a suggestion of what the author believes the functional equation will be.

Suppose u1, p2, V1, V2 are complex numbers and define

3 1
(534) a1 = 2u1 + Mo — 5, Qo = o — 5
and
V1 -V V2 V2
5.35 =1—-—— = — 4+ = = — —1.
( ) B1 5 Vo, B2 5 + 5 B3 =v1+ 5
Also define

L(s,¢) = 372/3 (27) ™% I'(s — 3a1)['(s — 3a2)D(s + 3a1)D(s + 3a2) R(s) R (),

where R(s), Ra(s) are defined as in Theorem 5.1. Then, assuming that the Rankin-
Selberg integral in Theorem 3.1 can be extended to non-cusp forms, arguments
similar to those in Chapter 10 of [B1] may be used to deduce a local functional
equation. By use of the triplication formula for the I-function (compare the use
of the duplication formula in [FrW]) it should be possible to show that L(s, ¢)
possesses a functional equation as s — 1 — s.
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