
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 350, Number 3, March 1998, Pages 975–1011
S 0002-9947(98)01817-0

EULER PRODUCTS ASSOCIATED TO METAPLECTIC

AUTOMORPHIC FORMS ON THE 3-FOLD COVER OF GSp(4)

THOMAS GOETZE

Abstract. If φ is a generic cubic metaplectic form on GSp(4), that is also
an eigenfunction for all the Hecke operators, then corresponding to φ is an
Euler product of degree 4 that has a functional equation and meromorphic
continuation to the whole complex plane. This correspondence is obtained by
convolving φ with the cubic θ-function on GL(3) in a Shimura type Rankin-
Selberg integral.

0. Introduction

Suppose φ is a metaplectic automorphic form of minimal level on the 3-fold
cover of GSp(4) that is an eigenfunction of all the Hecke operators. If φ has any
non-zero Whittaker coefficients, then φ is called generic. In this case, this paper
will show that there is a Dirichlet series in the Whittaker coefficients of φ that
has a formulation as a degree 4 Euler product. Moreover, this Euler product has
a meromorphic continuation to the whole complex plane. This association of the
Euler product with φ will be obtained via a Shimura type Rankin-Selberg integral
involving φ and a θ-function on the 3-fold cover of GL(3).

Historically, the problem of associating an Euler product which has meromorphic
continuation and functional equation with a metaplectic automorphic form origi-
nated with the work of Shimura [Shi]. More specifically, suppose f(z) =

∑
a(n) qn

is a holomorphic modular form of half-integral weight k/2, which is an eigenform
of the Hecke operators Tp2 , i.e. Tp2f = λpf . Then via a Rankin-Selberg integral of
the form ∫

f(z) θ(z)E(z, s) dz,(0.1)

where θ(z) is a classical theta function and E(z, s) is an integral weight Eisenstein
series, Shimura obtains an Euler product of the form∏

p

(
1− λp p

−s + pk−2−2s
)−1

.(0.2)

The analytic continuation and functional equation of this Euler product follow from
the similar properties of E(z, s) in (0.1).

Bump and Hoffstein [BH2] have subsequently extended these techniques of [Shi]
to GL(3) by finding a Rankin-Selberg integral of a metaplectic automorphic form
on the 3-fold cover of GL(3) which produces an Euler product of degree 3. Just as
in [Shi], this Euler product is shown to have meromorphic continuation to the whole
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complex plane and to have a functional equation under s 7→ 1−s. The integral which
represents this Euler product involves the θ-function on the 3-fold cover of GL(3)
over the field Q

(
e2πi/3

)
, which has been studied independently by Proskurin [Pr]

and Bump and Hoffstein [BH1]. In addition, Bump and Hoffstein [BH2] have
conjectured that Euler products with meromorphic continuation and functional
equation may be obtained by convolving metaplectic automorphic forms on the
n-fold cover of GL(r) against θ-functions on the n-fold cover of GL(n). This was
carried out in [BH3] in the case r = 2 and n > 2.

Friedberg and Wong [FrW] have also used Shimura’s method to associate an
Euler product to a generic metaplectic automorphic form on the double cover of
the symplectic group GSp(4). They have found an integral (inspired by Novo-
dvorsky’s GSp(4)×GL(2) convolution) involving a metaplectic automorphic form
on the double cover of GSp(4), the θ-function on the double cover of GL(2), and a
(non-metaplectic) Eisenstein series on GL(2), that yields a degree 5 Euler product.
This Euler product is shown to have meromorphic continuation and a functional
equation, and furthermore it has the same local Euler factors as the L-function of
an automorphic form on GSp(4). As in [Shi, BH2], the Euler product found by
Friedberg and Wong is explicitly constructed from the Whittaker coefficients of the
metaplectic automorphic form.

Alternatively, Flicker [Fli], Kazhdan and Patterson [KaP2], and Flicker and
Kazhdan [FliKa] have used the trace formula to generalize [Shi] by showing that
(in many situations) there exists a correspondence between metaplectic automor-
phic forms and (non-metaplectic) automorphic forms. Indeed, Shimura actually
proves in [Shi] that the Euler product (0.2) is the L-function of a holomorphic
integral weight modular form. In using the trace formula, however, explicit infor-
mation about the interplay between the metaplectic Fourier coefficients and the
corresponding L-functions (see (0.2)) is not obtained.

If a generalized Shimura correspondence does exist between generic metaplectic
and non-metaplectic automorphic forms, then the associated Euler products ob-
tained by Bump-Hoffstein, Friedberg-Wong, and this paper will be the L-functions
of the corresponding non-metaplectic forms. There is evidence that the degree 4
Euler product obtained in this paper is the L-function of an automorphic form on
GSp(4). Savin [Sa] has shown that there is an algebra isomorphism between the
local Iwahori Hecke algebra of GSp(4) and the local Iwahori Hecke algebra on the
3-fold cover of GSp(4). This suggests that if a Shimura correspondent exists in this
situation, it should be an automorphic form on GSp(4). Since there is a represen-
tation of degree 4 on the L-group of GSp(4), automorphic forms on GSp(4) will
have natural L-functions with Euler products of degree 4. In this sense, having a
degree 4 Euler product is consistent with Savin’s results.

The main results of this paper will be found in Theorems 3.1 and 5.1, which are
summarized as follows:

Main Theorem. Suppose φ is a generic metaplectic cusp form of minimal level
on the 3-fold cover of GSp(4) that is an eigenfunction of all the Hecke operators.
Then there is a degree 4 Euler product, with a meromorphic continutation, which
can be explicitly constructed from the Whittaker coefficients of φ. This association
is realized as a Shimura type Rankin-Selberg integral of φ against an Eisenstein
series induced from a θ-function on the 3-fold cover of GL(3).
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The form of the Shimura integral used in the proof is a translation from the adelic
version of the non-metaplectic GSp(4)×GL(3) convolution that Bump has consid-
ered [B2]. Note, as Bump has, that the non-metaplectic convolution was already
available via “Method B” of Gelbart and Piatetski-Shapiro [GeP-S], although it was
not explicitly constructed there. Although a translation from the non-metaplectic
to the metaplectic works in the case considered here, it is not always possible to
obtain a metaplectic convolution in this manner.

The Shimura type integral considered in the proof of the Main Theorem may be
naturally regarded as a 3-fold GSp(4) × GL(3) convolution. Thus, [FrW] and the
results of this paper suggest that generalizations of Shimura’s techniques to n-fold
covers of GSp(4) will yield Euler products as n-fold GSp(4)×GL(n) convolutions.
In fact, from the evidence obtained for n = 2 and n = 3 the following conjecture
may be made.

Conjecture. Let n be a positive integer, and suppose φ is a generic metaplectic
cusp form on the n-fold cover of GSp(4) which is an eigenfunction of all the Hecke
operators. Then there is an Euler product associated to φ that has a meromorphic
continuation and a functional equation under s 7→ 1 − s. This association can be
explicitly realized as a Shimura type Rankin-Selberg convolution of φ with an n-fold
θ-function on GL(n). If n is even this Euler product will be of degree 5, while if n
is odd a degree 4 Euler product will be obtained.

Generalizations of Shimura’s techniques to n-fold G×GL(n) convolutions should
also be possible for higher rank groupsG. The conjecture in [BH2] mentioned above,
along with the results in [FrW] and this paper, suggest that it is possible to obtain
an Euler product from the convolution of a generic metaplectic cusp form on an
n-fold cover of GL(r) or GSp(4) with a θ-function on the n-fold cover of GL(n).
Although there is little evidence, it is natural to expect that this may hold for
more general groups than just GL(r) and GSp(4). In this sense, the expectation is
that an Euler product with meromorphic continuation and functional equation may
be constructed from a metaplectic automorphic form φ on any reductive algebraic
group G. This construction would likely be a G×GL(n) convolution obtained via
an integral involving φ and an n-fold θ-function on GL(n). The non-metaplectic
analogues of these conjectured convolutions have been studied in [Gi], [GeP-S], and
[So].

The rest of the paper is organized as follows. Section 1 contains notation and
preliminaries needed throughout the paper. In Section 2, the metaplectic auto-
morphic forms that will be used in the Shimura integral are defined. The Shimura
integral is presented and evaluated to be a double Dirichlet series in Section 3.
Then Section 4 provides the definition of the Hecke operators on the 3-fold cover
of GSp(4) and gives an explicit description of the action of the operators on the
Whittaker-Fourier coefficients of a metaplectic form. Next, using this description
of the Hecke operators, the double Dirichlet series obtained in Section 3 is shown to
have an Euler product in Section 5, provided the GSp(4) form is a Hecke eigenform.
Finally, Section 5 ends with a brief discussion about the functional equation for the
Euler product.

The results of this paper were first derived for the author’s Ph.D. thesis at
the University of California, Santa Cruz. As such, the author wishes to thank his
Ph.D. advisor Solomon Friedberg for his many helpful consultations and suggestions
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during the preparation of both thesis and paper. Research for this paper has been
supported in part by NSA grant MDA904-95-H-1053.

1. Preliminaries

For n ≥ 1, let Zn be the center of GL(n,C) and define

Hn = GL(n,C)/ZnU(n).

GL(n,C) operates onHn via left multiplication. For notational ease the coordinates

τ2 =

(
1 x1

1

)(
y1

1

)
,(1.1)

τ3 =

 1 x2 x3

1 x1

1

 y1y2

y1

1

 ,(1.2)

and

τ4 =


1 x2 x3 x4

1 x1 x5

1 x6

1




y1y2y3

y1y2

y1

1

(1.3)

will be used for τn ∈ Hn, n = 2, 3, 4, where xi ∈ C, yi ∈ R+. The choice of such
coordinates for these symmetric spaces is a direct result of the Iwasawa decompo-
sition.

For ω = e2πi/3, let K = Q(ω). Then K contains µ3, the group of cube roots of
unity. Define λ =

√−3 = 1 + 2ω, e(a + bi) = e4πia, and N to be the norm map,
i.e., for a, b ∈ Q, N(a + bω) = a2 − ab+ b2. The ring of integers in K is O = Z[ω].
The principal ideal generated by the element m will be denoted by (m), and the
fractional ideal (a)−k =

{
b ∈ Q(ω) | akb ∈ O}. Also define

Γn = SL(n,O),

Γn(3) = {γ ∈ Γn | γ ≡ I mod (3)} ,
Γn,∞ = {(ai,j) ∈ Γn | ai,j = 0 if i > j, and ai,i = 1},

Γn,∞(3) = {γ ∈ Γn,∞ | γ ≡ I mod (3)} = Γn(3) ∩ Γn,∞.

The classes of cusps ρi of Γ2(3) are, by definition, double coset representatives
of Γ2(3)\Γ2/Γ2,∞ in Γ2 (i.e. Γ2 =

⋃
i Γ2(3)ρiΓ2,∞). In particular, an available set

of representatives for these double cosets is

{(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
1 0
±1 1

)
,

(
1 0
±ω2 1

)
,(

1 0
±ω 1

)
,

( ±(1− ω) −1
1 0

)
,

(
1 0

±(1− ω) 1

)}
,

(1.4)

(see Section 1 of [Pa]). Throughout the rest of the paper ρ will denote one of these
representatives.

Let
( ·
·
)

3
be the cubic residue symbol in O. The following proposition will be

useful throughout the rest of the paper.
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Proposition 1.1. There is a map κn : Γn(3) → µ3, called the Kubota symbol, with
the following properties:

(i) κn is a homomorphism;

(ii) κ2

(
a b
c d

)
=

{ ( c
d

)
3

if c 6= 0;

1 if c = 0;
(iii) κn (γ) = 1, if γ ∈ Γn,∞ and n ≥ 2;
(iv) if A ∈ Γn−1(3) and n ≥ 2, then

κn

((
A 0
0 1

))
= κn

((
1 0
0 A

))
= κn−1 (A) .

This has been proved in the work of Bass, Milnor and Serre [BMS] for level
(
√−3)3. To obtain the result for level 3, Proskurin suggests that the arguments in

[BMS] can still be applied–see [Pr] for the details in the case that n = 3. Alterna-
tively, minor modifications to the work of Bump, Friedberg, and Hoffstein [BFrH2]
could also be applied to improve the level.

Now the notation and definitions for GL(n,C) are complete, but similar notation
and definitions are necessary for the symplectic group GSp(4). For our purposes,
define

G = GSp(4,C) =
{
g ∈ GL(4,C) | tgJg = µ(g)J, µ(g) ∈ C

}
,

where

J =


−1

−1
1

1

 .

Let Z be the center of G and define H = G/Z(U(4) ∩ G). Elements of H will be
denoted τ with the coordinates

τ =


1 x2 x3 x4

1 x1 x′3
1 −x2

1




y1y2

y1

1
y−1
2

 ,(1.5)

where x′3 = x3 − x1x2, xi ∈ C, yi ∈ R+. Next define Γ(3) = Γ4(3) ∩ GSp(4,O)
and let κ : Γ(3) → µ3 denote the restriction of κ4 to Γ(3). When an embedding
of GL(2,C) in G is required, the following embedding will be used: for γ =(

a b
c d

)
∈ GL(2,C), define

J (γ) =


1

a b
c d

1

 ∈ G.

Finally, the following lemma will be used later:

Lemma 1.2. If 9 | n, for n ∈ O, and ρ ∈ Γ2(3)\Γ2/Γ2,∞, then

κ

(
J (ρ)J

(
1 n

1

)
J (ρ)−1

)
= κ2

(
ρ

(
1 n

1

)
ρ−1

)
= 1.
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Proof. The first equality follows from Proposition 1.1 (iv). The second equality will
be checked by using an explicit set of cusps, as in (1.4), and the cubic reciprocity
law.

If ρ =

(
1 0
0 1

)
, then

κ2

(
ρ

(
1 n

1

)
ρ−1

)
= 1

by Proposition 1.1 (iii). So if c 6= 0 and ρ =

(
a b
c d

)
, then

κ

(
ρ

(
1 n

1

)
ρ−1

)
=

( −nc2
1 + nac

)
3

.(1.6)

So, by applying (1.6) to each of the non-identity representatives in (1.4), it suffices
to compute (−n

1

)
3

,

( −n
1± n

)
3

,

( −nω
1± nω2

)
3

,

( −nω2

1± nω

)
3

,( −n
1± n (1− ω)

)
3

,

(
n (1− ω)

2

1± n (1− ω)

)
3

.

(1.7)

Now

(−n
1

)
3

= 1, so the lemma has been verified for the first two cusp represen-

tatives listed in (1.4).
To establish the lemma in the other cases, first recall that for any non-zero

element a′ ∈ Z[ω], there exist positive integers ν and µ such that a′ = (1−ω)ν ωµ a,
for a ∈ Z[ω] with a ≡ ±1 mod (3). Then the law of cubic reciprocity for Z[ω] can
be stated as follows:

1. If a, b are relatively prime and each is congruent to ±1 mod (3), then(a
b

)
3

=

(
b

a

)
3

.

2. If a = ± (1 + 3(a1 + a2ω)), then(ω
a

)
3

= ω−a1−a2 ,

(
1− ω

a

)
3

= ωa1 .

This formulation is Exercise 2.14 in Cassels and Fröhlich [CF].
Now assuming 9 |n, let x = n/9. By an appropriate choice of y, z ∈ Z[ω], all the

remaining cases from (1.7) are then of the form

(
9xy

1 + 9xz

)
3

. To compute these

remaining cases write xz = x1+x2 ω and 9xy = (1−ω)ν ωµ a, with a ≡ ±1 mod (3).
The choice of y forces x ≡ 0 mod (a). Then by the law of cubic reciprocity
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9xy

1 + 9xz

)
3

=

(
1− ω

1 + 3(3x1 + 3x2ω)

)ν

3

(
ω

1 + 3(3x1 + 3x2ω)

)µ
3

(
a

1 + 9xz

)
3

=
(
ω3x1

)ν (
ω−3x1−3x2

)µ(1 + 9xz

a

)
3

=

(
1

a

)
3

= 1.

Thus, the proof of Lemma 1.2 is complete.

2. Cubic metaplectic automorphic forms

Metaplectic automorphic forms are automorphic forms on metaplectic groups.
As with all automorphic forms, one may study the forms either as functions on the
group or as functions on the corresponding symmetric space. For this paper, the
latter approach will be employed.

Definition 2.1. A cubic metaplectic automorphic form on GL(n,C) for Γn(3) is
a smooth function F defined on Hn and satisfying:

1. F (γτn) = κn(γ)F (τn) for all γ ∈ Γn(3), τn ∈ Hn;
2. F is an eigenfunction of all the invariant differential operators on Hn;
3. there is a constant c such that

| F (γτn) | ≤ (
y1 + y−1

1

)c (
y2 + y−1

2

)c
. . .
(
yn−1 + y−1

n−1

)c
for all τn ∈ Hn, γ ∈ Γn, and τn in the form given in (1.1)-(1.3).

Let ρ be a cusp of Γ2(3), n1 ∈ (λ)−3, and n2 ∈ (λ)−5. Then for a cubic meta-
plectic automorphic form f on GL(3) for Γ3(3), define

fρn1,n2
(τ3)

=

(
2

39/2

)3 ∫
C/(3)

∫
C/(9)

∫
C/(3)

f

((
ρ

1

)
τ3

)
e(−n1x1 − n2x2) dx1 dx2 dx3.

The factor in front of this integral normalizes the Lebesgue measure on C. It is a
consequence of the local multiplicity one theorem of Shalika [Shal] that there exist
Whittaker-Fourier coefficients bρn1,n2

of f that satisfy the equality

fρn1,n2
(τ3) = bρn1,n2

N(n1n2)
−1Wf

 n1n2

n1

1

 y1y2

y1

1

 ,

(2.1)

where Wf is the non-degenerate Whittaker function associated to f . See Section 3
of [BH1] for an account of these Whittaker functions.
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The following lemma will be needed later.

Lemma 2.2. If f

 ±1
±1

1

 τ3

 = f(τ3), then the Whittaker-Fourier

coefficients bρn1,n2
of f satisfy

bρn1,n2
= bρ|n1|,n2

= bρ
∗
n1,−n2

,

where (
a b
c d

)∗
=

(
a −b
−c d

)
.

Proof. This follows from the definition of the Whittaker-Fourier coefficients (2.1)
and the matrix identities a b

c d
1

 −1
1

1

 =

 −1
1

1

 a −b
−c d

1


and  a b

c d
1

 1
−1

1

 =

 1
−1

1

 a −b
−c d

1

 .

For this paper, the key example of a cubic metaplectic automorphic form on
GL(3) is Θ, the cubic theta function. Kazhdan and Patterson have defined theta
series on n-fold metaplectic groups as residues of Eisenstein series [KaP1]. Subse-
quently, Proskurin [Pr] and Bump and Hoffstein [BH1, BH2] have independently
studied Θ in more detail. In particular, Bump and Hoffstein [BH1] have explicitly
computed the Whittaker-Fourier coefficients θρ(n1, n2) = θρn1,n2

of Θ as defined in
(2.1), if ρ is an essential cusp (see [Pa], p. 127, for a definition of essential cusp).
Although the explicit values of θρn1,n2

are not needed here, the following proposition
will be instrumental in the following sections.

Proposition 2.3. (Bump-Hoffstein) If n1, n2 ∈ O× are p-adic units, then for the
Gauss sum g(a, b) as defined in (4.1),

(i) θρ(n1p
k1 , n2p

k2) = 0 unless n1 ∈ (λ)−3, n2 ∈ (λ)−5, k1 ≡ k2 ≡ 0 or
1 mod (3), and n2

1n2 is a cube;
(ii) θρ(n1p

3k1 , n2p
3k2) = Npk1+k2 θρ(n1, n2);

(iii) θρ(n1p
3k1+1, n2p

3k2+1) = Npk1+k2 g(n1, p) θ
ρ(n1, n2);

(iv) if θρ(n1, n2) 6= 0, then g(n1, p) = g(n2, p).

This is Proposition 5.1 of [BH2], along with some other facts proved there.
If f is a cubic metaplectic automorphic form on GL(3), another cubic metaplectic

automorphic form f̂ (the contragredient form) can be defined on GL(3) as

f̂(τ3) = f(ıτ3), where ıτ3 =

 −1
−1

−1

 tτ−1
3

 −1
−1

−1

 .

(2.2)

This formulation will be needed in the convolution integral in Section 3.
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In addition, any cubic metaplectic automorphic form on GL(3) can be induced
up to a maximal parabolic Eisenstein series on the cubic cover of GL(4). To do
this, first define

I(f, τ4, s) =
(
y3
1y

2
2y3

)2s
f(τ3),

with τ3 as in (1.2). Then, if P is the standard maximal parabolic subgroup of
GL(4,C) consisting of matrices with bottom row (0 0 0 1), a maximal parabolic
Eisenstein series is constructed by defining

E(f, τ4, s) =
∑

γ∈P∩Γ4(3)\Γ4(3)

κ4(γ)I(f, γτ4, s).(2.3)

This converges absolutely for Re(s) sufficiently large and is well defined by Propo-
sition 1.1(iv). Then E(f, τ4, s) is a cubic metaplectic automorphic form on GL(4)
for Γ4(3).

The last ingredient needed to formulate the Shimura type Rankin-Selberg inte-
gral is a generic cubic metaplectic cusp form on GSp(4).

Definition 2.4. φ is a cubic metaplectic cusp form on GSp(4) if

1. φ satisfies the conditions of Definition 2.1 when GL(n),Γn(3), κn, τn and Hn

are replaced with GSp(4), Γ(3), κ, τ and H respectively;
2. for any cusp ρ of Γ2(3),

∫
(C/(3))3

φ

J (ρ)


1 u3 u4

1 u1 u3

1
1

 τ

 du1 du3 du4 = 0

and ∫
(C/(3))3

φ

J (ρ)


1 u2 u3 u4

1 u3

1 −u2

1

 τ

 du2 du3 du4 = 0.

Moreover, φ will be called a generic cubic metaplectic cusp form on GSp(4) if it
also satisfies

3. There exist Whittaker-Fourier coefficients aρn1,n2
, not all zero, such that if

n1 ∈ (λ)−5, n1 6= 0 and n2 ∈ (λ)−3, n2 6= 0, then

∫
C/(9)

∫
(C/(3))3

φ

J (ρ)


1 u2 u3 u4

1 u1 u′3
1 −u2

1

 τ


× e(−n1u1 − n2u2) du4 du3 du2 du1

= aρn1,n2
N(n

−3/2
1 n−2

2 )Wφ




n1n2

n1

1
n−1

2

 τ

 ,

(2.4)

where Wφ is the non-degenerate Whittaker function associated to φ.

See [BFrH1] for an account of the Whittaker functions mentioned in part 3 above.
In the notation of [BFrH1], Wφ will be Wν1,ν2 , where ν1 and ν2 can be determined
by the eigenvalues of φ with respect to the invariant differential operators on H.
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3. The cubic GSp(4) × GL(3) convolution

Assume that f is a cubic metaplectic automorphic form on GL(3) that satisfies
the hypothesis of Lemma 2.2 and that φ is a cubic generic metaplectic cusp form
on GSp(4). Then the main object of interest in this paper is

I(s, φ) =

∫
Γ(3)\H

E(f̂ , τ, s)φ(τ)
dy1 dy2 dx1 dx2 dx3 dx4

y7
1y

9
2

.(3.1)

Here dyi and dxj are Lesbesgue measure on R and C respectively, and consequently
the measure in the integral is the left invariant measure on H.

The goal of this section is to prove

Theorem 3.1. With the above hypotheses on f and φ, (3.1) may be expressed in
the form

I(s, φ) = D(s)G(s),(3.2)

where

D(s) =
∑

ρ∈Γ2(3)\Γ2/Γ2,∞

∑
n1∈(λ)−5,n1 6=0
n2∈(λ)−3, n2 6=0

aρn1,n2
bρn2,n1

N(n1n2
2)

2s−1/2
,(3.3)

and

G(s) =

∫ ∞

0

∫ ∞

0

(y1y
2
2)

4sWφ


y1y2

y1

1
y−1
2


×Wf

 y1y2

y2

1

 dy1 dy2

y7
1y

9
2

.

(3.4)

Proof. Recall that a non-metplectic version of this integral has previously been
considered by Bump [B2] and Gelbart and Piatetski-Shapiro [GeP-S]. As in [B2],
notice that forQ = P∩G, there is an identification of the coset space Γ4(3)∩P\Γ4(3)
with Γ4(3) ∩ Q\Γ(3). To see this, notice that the cosets of P ∩ Γ4(3)\Γ4(3) can
be parameterized by bottom rows (A B C D), with D ≡ 1 mod (3), A,B,C ≡
0 mod (3), and gcd(A,B,C,D) = 1. Then the identification follows since any such
bottom row can be extended to a matrix in Γ(3). Friedberg [Fr] has proved this
last statement by constructing the invariants necessary to apply Theorem 5.2 of
[BFrH1].

Unfolding the Eisenstein series E(f̂ , τ, s) yields

I(s, φ) =

∫
Γ4(3)∩Q\H

I(f̂ , τ, s)φ(τ)
dy1 dy2 dx1 dx2 dx3 dx4

y7
1y

9
2

.

Now since τ · y2 and τ are in the same coset of H4,

I(f̂ , τ, s) = I(f̂ , τ · y2, s) =
(
y2
1y

4
2

)2s
f̂ (τ3) .

Thus I(s, φ) becomes

I(s, φ) =

∫
Γ4(3)∩Q\H

φ(τ) f̂ (τ3)
(
y1y

2
2

)4s dy1 dy2 dx1 dx2 dx3 dx4

y7
1y

9
2

.

(3.5)
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To continue the evaluation of I(s, φ), first an understanding of the quotient

Γ4(3) ∩ Q\H is required. Suppose γ ∈ Γ2(3) and ξ =

(
x′3

−x2

)
− γ

(
x′3

−x2

)
;

then

% =

 1
γ ξ

1

 ∈ Γ4(3) ∩Q

and

%


1 x2 x3 x4

1 x1 x′3
1 −x2

1




y1y2

y1

1
y−1
2



=


1 x2 x3 x4

γ

(
1 x1

1

)
x′3
−x2

1




y1y2

y1

1
y−1
2

 .

Thus the range of the parameters x1, y1 in the quotient Γ4(3)∩Q\H is determined

by the action of Γ2(3) on

(
y1 x1

1

)
. Similarly,

1 e f g

γ
h
i
1




1 x2 x3 x4

1 x1 x′3
1 −x2

1




y1y2

y1

1
y−1
2



=


1 x2 + e x3 + x1e+ f x4 + x′3e− x2f + g

γ

(
1 x1

1

)
γ

(
x′3

−x2

)
+

(
h
i

)
1



×


y1y2

y1

1
y−1
2

 ,

so the range of the parameters x2, x3, and x4 in the quotient Γ4(3)∩Q\H is deter-
mined by the additive action of the ideal (3) on C. Therefore Γ4(3) ∩Q\H can be

realized as (Γ2(3)\H)× (C/(3))
3 × R.

Using this description of the fundamental domain for Γ4(3) ∩Q in (3.5) yields

I(s, φ) =

∫
(C/(3))3

∫ ∞

0

∫
Γ2(3)\H2

φ (τ) f̂ (τ3)
(
y1y

2
2

)4s dx1 dy1 dy2 dx2 dx3 dx4

y7
1y

9
2

=

∫
(C/(3))2

∫ ∞

0

∫
Γ2(3)\H2

Φ(g) f̂ (τ3)
(
y1y

2
2

)4s dx1 dy1 dy2 dx2 dx3

y7
1y

9
2

,

(3.6)

where

g =


1 x2 x3

1 x1 x′3
1 −x2

1




y1y2

y1

1
y−1
2

 ,
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and

Φ(g) =

∫
C/(3)

φ




1 x4

1
1

1

 g

 dx4.(3.7)

To continue further with the evaluation of this integral, Novodvorsky’s idea of
expressing Φ(g) in terms of the Whittaker-Fourier coefficients of φ will be employed.
Note that for the quadratic GSp(4)×GL(2) convolution Friedberg and Wong [FrW]
have previously used this strategy, and the analysis here mirrors their work. First
consider the function

Φ1(u2, u3; g) =

∫
C/(3)

φ




1 u2 u3 u4

1 u3

1 −u2

1

 g

 du4.

Since, for n2, n3 ∈ (3),

Φ1(u2 + n2, u3 + n3; g)

=

∫
C/(3)

φ




1 n2 n3

1 n3

1 −n2

1




1 u2 u3 u4 − n2u3 + n3u2

1 u3

1 −u2

1

 g

 du4

= κ




1 n2 n3

1 n3

1 −n2

1


Φ1(u2, u3; g)

= Φ1(u2, u3; g).

This last equality follows from Proposition 1.1 (iii). Thus, there exists a Fourier
expansion for Φ1. In particular,

Φ(g) = Φ1(0, 0; g)

=
∑

α,β∈(λ)−3

(α,β) 6=(0,0)

∫
(C/(3))3

φ




1 u2 u3 u4

1 u3

1 −u2

1

g
e(−αu2 − βu3) du4 du3 du2.

Here the cuspidal assumption on φ (Definition 2.4 (2)) allows the restriction that
(α, β) 6= (0, 0).
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Next, the sum over α, β ∈ (λ)−3 can be replaced by a sum over Γ2,∞\Γ2 and

non-zero elements of (λ)−3. Then for δ =

(
a b
c d

)
∈ SL(2,O), the matrix identity


1 u2 u3 u4

1 u3

1 −u2

1



= J (δ−1)


1 du2 − cu3 −bu2 + au3 u4

1 −bu2 + au3

1 −du2 + cu3

1

J (δ)

implies that

Φ(g) =
∑

δ∈Γ2,∞\Γ2

∑
n2∈(λ)−3

n2 6=0

∫
(C/(3))3

φ

J (δ−1)


1 u2 u3 u4

1 u3

1 −u2

1

J (δ)g


× e(−n2u2) du4 du3 du2.

Lemma 3.2. A complete set of representatives for Γ2,∞\Γ2 is given by represen-
tatives of the form ργ−1, where the cusp ρ runs over a set of representatives for
Γ2(3)\Γ2/Γ2,∞(3) and for each such cusp ρ, γ runs through a set of representatives
for ρΓ2,∞(3)ρ−1 ∩ Γ2(3)\Γ2(3).

Proof. Write

Γ2 =
⋃
ρ

Γ2(3)ρΓ2,∞ =
⋃
ρ

Γ2,∞ρ−1Γ2(3).

Now each right Γ2,∞ coset in Γ2,∞ ρ−1 Γ2 (3) can be expressed as Γ2,∞ ρ−1 γ for
some γ ∈ Γ2(3). Also

Γ2,∞ ρ−1 γ = Γ2,∞ ρ−1 γ′ ⇔ γ′γ−1 ∈ Γ2(3) ∩ ρ Γ2,∞ ρ−1.

To see this, notice that

Γ2,∞ ρ−1 γ = Γ2,∞ ρ−1 γ′ ⇔ ρ−1γ′ ∈ Γ2,∞ρ−1γ

⇔ γ′ ∈ ρΓ2,∞ρ−1γ

⇔ γ′γ−1 ∈ ρΓ2,∞ρ−1,

but, a priori γ, γ′ ∈ Γ2(3); thus,

Γ2,∞ ρ−1 γ = Γ2,∞ ρ−1 γ′ ⇔ γ′γ−1 ∈ Γ2(3) ∩ ρΓ2,∞ρ−1.

So

Γ2,∞ρ−1Γ2(3) =
⋃

γ∈Γ2(3)∩ρΓ2,∞ρ−1\Γ2(3)

Γ2,∞ρ−1γ.

But since Γ2(3) � Γ2, then Γ2(3) ∩ ρΓ2,∞ρ−1 = ρΓ2,∞(3)ρ−1. So doing this for
each ρ yields the lemma.
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Now Lemma 3.2 and Proposition 1.1 imply

Φ(g) =
∑

ρ∈Γ2(3)\Γ2/Γ2,∞

∑
n2∈(λ)−3

n2 6=0

∑
γ∈ρΓ2,∞(3)ρ−1\Γ2(3)

κ2(γ)

×
∫

(C/(3))3
φ

J (ρ)


1 u2 u3 u4

1 u3

1 −u2

1

J (ρ−1γ)g

(3.8)

× e(−n2u2) du4 du3 du2.

Next, another Fourier expansion will be used to continue the evaluation of Φ(g).
Consider

Φ2(u1; g) =
∑

ρ∈Γ2(3)\Γ2/Γ2,∞

∑
n2∈(λ)−3

n2 6=0

∑
γ∈ρΓ2,∞(3)ρ−1\Γ2(3)

κ2(γ)

×
∫

(C/(3))3
φ

J (ρ)


1 u2 u3 u4

1 u1 u′3
1 −u2

1

J (ρ−1γ)g


×e(−n2u2) du4 du3 du2,

where u′3 = u3 − u1u2. This Φ2 was obtained from (3.8) by changing the matrix
that depends on u2, u3, and u4 to a symplectic matrix also depending on u1.

Now since


1

1 n1

1
1




1 u2 u3 u4

1 u1 u′3
1 −u2

1



=


1 u2 u3 u4

1 u1 + n1 u3 − (u1 + n1)u2

1 −u2

1

 ,

it follows from a change of variables that

Φ2(u1 + n1; g) = κ

(
J (ρ) J

(
1 n1

1

)
J (ρ)−1

)
Φ2(u1; g).
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So making the assumption that n1 ∈ (9), Lemma 1.2 implies that Φ2(u1; g) has a
Fourier expansion. In particular,

Φ(g) = Φ2(0; g) =
∑

n1∈(λ)−5

∫
C/(9)

Φ2(u1; g) e(−n1u1) du1

=
∑

ρ∈Γ2(3)\Γ2/Γ2,∞

∑
n2∈(λ)−3,n2 6=0
n1∈(λ)−5,n1 6=0

∑
γ∈ρΓ2,∞(3)ρ−1\Γ2(3)

κ2(γ)

×
∫

C/(9)

∫
(C/(3))3

φ

J (ρ)


1 u2 u3 u4

1 u1 u′3
1 −u2

1

J (ρ−1γ)g


× e(−n1u1 − n2u2) du4 du3 du2 du1.

(3.9)

Here the cuspidal assumption on φ (Definition 2.4 (2)) has allowed the restriction
that n1 6= 0.

Now replace the expression of Φ(g) in (3.6) with (3.9), use (2.4) from the hy-

pothesis that φ is generic, and write f̂(τ3) = κ3

(
1

γ

)
f̂

((
1

γ

)
τ3

)
for

γ ∈ Γ2(3). Then

I(s, φ) =

∫
(C/(3))2

∫ ∞

0

∑
ρ∈Γ2(3)\Γ2/Γ2,∞

∑
n1∈(λ)−5,n1 6=0
n2∈(λ)−3, n2 6=0

aρn1,n2
Nn−3/2

1 Nn−2
2

×
∑

γ∈ρΓ2,∞(3)ρ−1∩Γ2(3)\Γ2(3)

κ2(γ) κ3

(
1

γ

)

×
∫

Γ2(3)\H2

Wφ




n1n2

n1

1
n−1

2

J (ρ−1γ)g


× f̂

((
1

γ

)
τ3

)
(y1y

2
2)

4s dx1 dy1 dy2 dx2 dx3

y7
1y

9
2

.

Write κ3

(
1

γ

)
= κ2(γ)−1 and sum over γ to collapse the integral further. Also

the change of variables g 7→ J (ρ)g forces τ3 7→
(

1
ρ

)
τ3. Then, since the action
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of ρ preserves fundamental domains of Γ2,∞(3),

I(s, φ) =
∑

ρ∈Γ2(3)\Γ2/Γ2,∞

∑
n1∈(λ)−5,n1 6=0
n2∈(λ)−3, n2 6=0

aρn1,n2
Nn−3/2

1 Nn−2
2

∫ ∞

0

∫ ∞

0

×
[∫

(C/(3))3
f̂

((
1

ρ

)
τ3

)
e(n1x1 + n2x2) dx1 dx2 dx3

]

× Wφ




n1n2

n1

1
n−1

2




y1y2

y1

1
y−1
2




× (y1y
2
2)

4s dy1 dy2

y7
1y

9
2

.

(3.10)

Here the equality

Wφ




n1n2

n1

1
n−1

2

 g



= e(n1x1 + n2x2)Wφ




n1n2y1y2

n1y1

1
n−1

2 y−1
2




has been used. It may be proved by using a change of variables in (2.4).
Now the integral in brackets in (3.10) is expressible in terms of a Whittaker-

Fourier coefficient of f . To see this notice that∫
(C/(3))3

f̂

((
1

ρ

)
τ3

)
e(n1x1 + n2x2) dx1 dx2 dx3

=

∫
(C/(3))3

f̂

( ρ∗

1

) 1 −x1 x1x2 − x3

1 −x2

1

 y1y2

y2

1


× e(n1x1 + n2x2) dx1 dx2 dx3.

So by changing variables and using (2.1) this integral becomes

bρ
∗
−n2,−n1

N(n1n2)
−1 Wf

 (−n1)(−n2)
−n2

1

 y1y2

y2

1

.
But Wf is a function on H3, so the matrix identity (−n1)(−n2)

−n2

1

 y1y2

y2

1


=

 n1n2

n2

1

 y1y2

y2

1

 1
−1

1
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and Lemma 2.2 imply that the integral in brackets in (3.10) is just

bρn2,n1 N(n1n2)
−1 Wf

 n1n2

n2

1

 y1y2

y2

1

.
(3.11)

Thus by integrating x2 over C/(9) in (3.10), we see that there exist constants bρn2,n1

(via (3.11)) such that

I(s, φ) =
∑

ρ∈Γ2(3)\Γ2/Γ2,∞

∑
n1∈(λ)−5,n1 6=0
n2∈(λ)−3, n2 6=0

aρn1,n2
bρn2,n1 Nn−5/2

1 Nn−3
2

×
∫ ∞

0

∫ ∞

0

Wφ




n1n2

n1

1
n−1

2




y1y2

y1

1
y−1
2




× Wf

 n1n2

n2

1

 y1y2

y2

1

 (y1y
2
2)

4s dy1 dy2

y7
1y

9
2

.

The change of variables y1 7→ y1

|n1| and y2 7→ y2

|n2| then yields (3.2), and hence

completes the proof of Theorem 3.1.

4. Cubic metaplectic Hecke operators

The fact that D(s) has an expression as an Euler product will be derived from
the assumption that φ is an eigenfunction for almost all of the Hecke operators on
the cubic cover of GSp(4). For each prime p in O, relatively prime to (3), there
exist operators Tp6 , Tp3 which act on the space of cubic metaplectic automorphic
forms on GSp(4). In fact, these two operators generate the whole Hecke algebra
on the cubic cover of GSp(4). The explicit action of these Hecke operators will be
given by describing the effect they have on the Whittaker-Fourier coefficients of an
automorphic form.

First, recall the definition of the cubic Gauss sums

g(a, d) =
∑

c mod d

( c
d

)
3
e
(ac
d

)
,(4.1)

where d ∈ O with d ≡ 1(mod (3)), a ∈ K×, and c is selected so that λac ∈ O.
The primary concern here will be in the cases in which d is a power of a prime.
The relevant facts can be found in Proposition 1.6 of [BH3]. For clarity, they are
summarized here in

Proposition 4.1. Suppose that a and p are coprime and k is a non-negative inte-
ger. Then

(i) g(ab, pk) =

(
a

pk

)
3

g(b, pk);

(ii) | g(1, p) |2= Np;

(iii) g(pk, p) =

{
g(1, p) if k = 0,
0 otherwise;
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(iv) g(pk, p2) =

{
Np g(1, p) if k = 1,
0 otherwise.

To define the Hecke operators, first recall that every prime ideal coprime with
(3) has a unique generator p ≡ 1 mod (3). Now suppose

ξp6 =


p6

p3

p3

1

 and ξp3 =


p3

p3

1
1

 .

For η = ξp6 or ξp3 , Γ(3)ηΓ(3) can be written as a disjoint union of right cosets

Γ(3)ηΓ(3) =
m⋃
i=1

Γ(3)ηi, ηi = γiηδi γi, δi ∈ Γ(3).(4.2)

Then Tη acts on the space of cubic metaplectic automorphic forms on GSp(4) by

(Tη · φ)(τ) =

m∑
i=1

κ(γi)κ(δi)φ(ηiτ).(4.3)

In what follows write Tp6 and Tp3 for Tξp6 and Tξp3 respectively.

As the Whittaker-Fourier coefficients in (2.4) are parameterized by the cusps
ρ (see (1.4)), there is a need to understand an action of K× on the cusps. As in
Bump and Hoffstein [BH2], for d ∈ K× with numerator and denominator (written in

reduced form) coprime with 3, define d[ρ] to be the coset

(
d

1

)
ρ

(
d

1

)−1

.

Here representatives ρ are taken such that ρ, d[ρ] ∈ Γ2.

Theorem 4.2. If aρ(n1, n2), b
ρ(n1, n2), and cρ(n1, n2) are the Whittaker-Fourier

coefficients of φ, Tp6 · φ, and Tp3 · φ respectively, then

bρ(n1, n2)

= Np6
[
aρ(n1, n2p

−3) + ap
6[ρ](n1p

−6, n2p
3)

+ ap
−6[ρ](n1p

6, n2p
−3) + aρ(n1, n2p

3)
]

+ Np5
[
ap

2[ρ](n1p
−2, n2p

−1) g(n2p
−1, p) + ap

4[ρ](n1p
−4, n2p) g(n2, p)

+ ap
4[ρ](n1p

−4, n2p
2) g(n1p−4, p) + ap

−4[ρ](n1p
4, n2p

−2) g(n1, p)

+ ap
−4[ρ](n1p

4, n2p
−1) g(n2p

−1, p) + ap
−2[ρ](n1p

2, n2p) g(n2, p)
]

+ Np4
[
ap

2[ρ](n1p
−2, n2) g(n1p−2, p) g(n2, p)

+ ap
2[ρ](n1p

−2, n2p) g(n1p−2, p2)

+ ap
−2[ρ](n1p

2, n2p
−1) g(n1, p

2) + ap
−2[ρ](n1p

2, n2) g(n1, p) g(n2, p)
]

+ aρ(n1, n2)


−Np4 if (p - n1n2) or (p2 | n1 and p3 - n1),
Np4(Np− 1) if (p | n2 and p2 - n1),
Np4(Np− 1) if (p | n1 and p2 - n1),
Np4(Np2 − 1) if p3 | n1,

(4.4)
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and

cρ(n1, n2)

= Np9/2
[
ap

3[ρ](n1p
−3, n2) + ap

−3[ρ](n1p
3, n2p

−3)

+ ap
3[ρ](n1p

−3, n2p
3) + ap

−3[ρ](n1p
3, n2)

]
+ Np7/2

[
ap[ρ](n1p

−1, n2p
−1) g(n1p−1, p) + ap

−1[ρ](n1p, n2p
−2) g(n1, p)

+ ap
−1[ρ](n1p, n2p

−1) g(n2p
−1, p) + ap[ρ](n1p

−1, n2p) g(n2, p)

+ ap[ρ](n1p
−1, n2p

2) g(n1p−1, p) + ap
−1[ρ](n1p, n2p) g(n1, p)

]
.

(4.5)

Here it is understood that aρn1,n2
= 0 unless n1 ∈ (λ)−5 and n2 ∈ (λ)−3. Note

that for p ≡ 1 mod (3), pk[ρ] and ρ are in the same double coset of Γ2(3)\Γ2/Γ2,∞
for any k. Thus a

pk[ρ]
n1,n2 = aρn1,n2

, and Theorem 4.2 is actually more explicit than
necessary. In fact, (4.4) and (4.5) will only be used when all cusps there are the
same.

Theorem 4.2 will be proved by explicitly writing down right coset representatives
ηi as in (4.2), computing κ = κ(γi)κ(δi), and giving the resulting contributions to
the Whittaker-Fourier coefficients for both η = ξp6 and η = ξp3 . The contribution
to the Whittaker-Fourier coefficient aρn1,n2

is determined by evaluating an integral
of the form

∫
C/(9)

∫
(C/(3))3

φ

ηi J (ρ)


1 u2 u3 u4

1 u1 u′3
1 −u2

1

 τ


×e(−n1u1 − n2u2) du4 du3 du2 du1.

To do this, write

ηi J (ρ) = ηi J (ρ) η−1
i ηi = J (d[ρ]) ηi

for some d. Then the contribution is determined by changing variables in ui to
obtain an integral in the form of (2.4).

For the operator Tp6 , the coset representatives are:

I.


p6

p3

p3

1

 ,
{
κ = 1

}
.

This coset contributes Np6aρ(n1, n2p
−3).

II.


p5 ap3

p4

p2 −a
p

 ,

{
a mod p, p - a, κ =

(
a

p

) }
.

These cosets contribute Np5ap
2[ρ](n1p

−2, n2p
−1)g(n2p

−1, p).
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III.


p5 ep2 d

p3 bp2 e
p3

p

 ,


b, d, e mod p, p - d,

e2 ≡ bd mod p, κ =

(
d

p

)−1

.

These cosets contribute zero.

IV.


p5 ep3

p2 bp2 e
p4

p

 ,

{
e mod p, b mod p2, p - e, κ =

(
e

p

) }
.

These cosets contribute zero.

V.


p4 ap3

p5

p −a
p2

 ,

{
a mod p2, p - a, κ =

(
a

p

)−1 }
.

These cosets contribute Np5ap
4[ρ](n1p

−4, n2p) g(n2, p).

VI.


p4 ap3 e+ ab d

p4 bp e
p2 −ap

p2

 ,


a, b mod p, e, d mod p2,
e(ab + e) ≡ bdp mod p3,
a(ab + e) ≡ −dp mod p2,

p - abe, κ =

(
ab

p

)−1

.

These cosets contribute Np4ap
2[ρ](n1p

−2, n2) g(n1p−2, p) g(n2, p).

VII.


p4 ep d

p3 bp e
p3

p2

 ,

 b, d, e mod p2, p - d,

e2 ≡ bd mod p, κ =

(
d

p

) .

These cosets contribute zero.

VIII.


p4 ap2 ep2 d

p3 ep
p3 −ap

p2

 ,

 a, e mod p, d mod p2,

p - ad, κ =

(
d

p

) .

These cosets contribute zero.

IX.


p4 ep2 dp

p2 bp e
p4

p2

 ,


d mod p, e mod p2, b mod p3, p - bde,

e2 ≡ bd mod p, κ =

(
be2

p

) .

These cosets contribute zero.

X.


p4 ep3

p bp e
p5

p2

 ,

{
e mod p2, b mod p4, p - e, κ =

(
e

p

)−1 }
.

These cosets contribute zero.
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XI.


p3 ap3

p6

1 −a
p3

 ,
{
a mod p3, κ = 1

}
.

These cosets contribute Np6ap
6[ρ](n1p

−6, n2p
3).

XII.


p3 ap3 c d

p5 b cp2 − ab
p −ap

p3

 ,


b, c mod p, a mod p2, d mod p3,
b(ac + d) ≡ c2p2 mod p3,

p - b, κ =

(
b

p

)−1

.

These cosets contribute Np5ap
4[ρ](n1p

−4, n2p
2)g(n1p−4, p).

XIII.


p3 ap3 c d

p4 b cp− ab
p2 −ap2

p3

 ,


a mod p, b, c mod p2, d mod p3,
b(ac + d) ≡ c2p mod p3,

p - ab, κ =

(
b

p2

)−1

.

These cosets contribute Np3(Np− 1)ap
2[ρ](n1p

−2, n2p) g(n1p−2, p2).

XIV.


p3 c dp

p4 b cp
p2

p3

 ,


b, c, d mod p2, p - b,

c2 ≡ bd mod p2, κ =

(
b

p2

)−1

.

These cosets contribute Np3ap
2[ρ](n1p

−2, n2p) g(n1p−2, p2).

XV.


p3 e d

p3 b e
p3

p3

 ,

{
b, d, e mod p3, p - b,
e2 ≡ bd mod p3, κ = 1

}
.

These cosets contribute

 Np5(Np− 1)aρ(n1, n2) if p3 | n1,
−Np5aρ(n1, n2) if p2 | n1, but p3 - n1,
0 if p2 - n1.

XVI.


p3 ep d

p3 bp2 ep
p3

p3

 ,

{
b mod p, e mod p2, d mod p3, p - d,
e2 ≡ bd mod p, κ = 1

}
.

These cosets contribute

{
Np4(Np− 1)aρ(n1, n2) if p | n1,
0 if p - n1.

XVII.


p3 ap2 ep2 d

p3 ep2

p3 −ap2

p3

 ,
{
a, e mod p, d mod p3, p - ad, κ = 1

}
.

These cosets contribute

{ −Np3(Np− 1)aρ(n1, n2) if p - n2,
Np3(Np− 1)2aρ(n1, n2) if p | n2.
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XVIII.


p3 ap2 ep+ abp d

p3 bp2 ep
p3 −ap2

p3

 ,


a, b mod p, e mod p2, d mod p3,
e(ab + e) ≡ bd mod p,

p - abde, κ =

(
bde

p

)
.

These cosets contribute


−Np3a[ρ](n1, n2) if p - n1n2,
Np3(Np− 1)aρ(n1, n2) if p | n1 and p - n2,
Np3(Np− 1)aρ(n1, n2) if p - n1 and p | n2,
−Np3(Np− 1)2aρ(n1, n2) if p | n1 and p | n2.

XIX.


p3 ep dp

p2 b e
p4

p3

 ,

 d mod p2, e mod p3, b mod p4, p - b,

e2 ≡ bd mod p2, κ =

(
b

p2

) .

These cosets contribute Np4ap
−2[ρ](n1p

2, n2p
−1)g(n1, p

2).

XX.


p3 ap ep2 + abp d

p2 bp2 ep
p4 −ap2

p3

 ,


a mod p, b, e mod p2, d mod p3,

p - ad, p | ae− d, κ =

(
ad

p

)−1

.

These cosets contribute zero.

XXI.


p3 ep2 dp2

p b e
p5

p3

 ,

 d mod p, e mod p3, b mod p5, p - b,

e2 ≡ bd mod p, κ =

(
b

p

) .

These cosets contribute Np5ap
−4[ρ](n1p

4, n2p
−2) g(n1, p).

XXII.


p3 ep3

1 b e
p6

p3

 ,
{
e mod p3, b mod p6, κ = 1

}
.

These cosets contribute Np6ap
−6[ρ](n1p

6, n2p
−3).

XXIII.


p2 ap2 c d

p5 cp3

p −ap
p4

 ,


c mod p, a mod p3, d mod p4, p - c,

d ≡ ac mod p2, κ =

(
c

p

) .

These cosets contribute zero.

XXIV.


p2 ap2 c d

p4 bp cp2 − abp
p2 −ap2

p4

 ,


b mod p, a, c mod p2, d mod p4,
p - bc, b(ac+ d) ≡ c2p mod p2,

κ =

(
b2c

p

)
.

These cosets contribute zero.

XXV.


p2 ap2 c d

p3 bp cp− abp
p3 −ap3

p4

 ,


a mod p, b mod p2, c mod p3,
d mod p4, b(ac+ d) ≡ c2 mod p2,

p - bc, κ =

(
bc

p2

)−1

.

These cosets contribute zero.
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XXVI.


p2 ap2 cp d

p3 cp2

p3 −ap3

p4

 ,


a mod p, c mod p2, d mod p4,

p - cd, κ =

(
d

p

)−1

.

These cosets contribute zero.

XXVII.


p2 ap2 cp2 d

p3 cp3

p3 −ap3

p4

 ,


a, c mod p, d mod p4,

p - d, κ =

(
d

p

)−1

.

These cosets contribute zero.

XXVIII.


p2 ap cp d

p3 cp2

p3 −ap2

p4

 ,


a, c mod p2, d mod p4,

p - ad, κ =

(
d

p

)−1

.

These cosets contribute zero.

XXIX.


p2 ap ep+ ab d

p2 bp ep
p4 −ap3

p4

 ,


a mod p, b, e mod p3, d mod p4,
b(d− ae) ≡ e2p mod p2,

p - ab, κ =

(
ab

p

)
.

These cosets contribute Np4ap
−2[ρ](n1p

2, n2) g(n1, p) g(n2, p).

XXX.


p2 a ep2 + ab d

p bp ep
p5 −ap3

p4

 ,

a mod p, e mod p3, b, d mod p4,

p - a, d ≡ ae mod p2, κ =

(
a

p

) .

These cosets contribute Np5ap
−4[ρ](n1p

4, n2p
−1) g(n2p

−1, p).

XXXI.


p ap c d

p4 cp3

p2 −ap2

p5

 ,

 c mod p2, a mod p3, d mod p5, p - c,

p | ac + d, κ =

(
c

p2

) .

These cosets contribute zero.

XXXII.


p ap cp d

p3 cp3

p3 −ap3

p5

 ,

{
a, c mod p2, d mod p5, p - d, κ=

(
d

p

)}
.

These cosets contribute zero.

XXXIII.


p ap c d

p3 bp2 cp2 − abp2

p3 −ap3

p5

 ,


b mod p, a mod p2,
c mod p3, d mod p5,
b(ac + d) ≡ c2 mod p,

p - bc, κ =

(
bc

p

)−1

.

These cosets contribute zero.

XXXIV.


p a c d

p2 bp2 cp− abp
p4 −ap3

p5

 ,


a, b mod p2, c mod p4, d mod p5,
p - a, p2 | (a2b− ac+ dp),

κ =

(
a

p

)−1

.

These cosets contribute Np5ap
−2[ρ](n1p

2, n2p) g(n2, p).
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XXXV.


1 a c d

p3 cp3

p3 −ap3

p6

 ,
{
a, c mod p3, d mod p6, κ = 1

}
.

These cosets contribute Np6aρ(n1, n2p
3).

Since p ≡ 1 mod (3), choose a, b, c, d, and e above (and below) from the ideal
(3). This is necessary to ensure that κ(δi) and κ(γi) are defined.

For the operator Tp3 , the representatives are:

I′.


p3

p3

1
1

,
{
κ = 1

}
.

This coset contributes Np9/2ap
3[ρ](n1p

−3, n2).

II′.


p3

p2 b
p

1

 ,

{
b mod p, p - b, κ =

(
b

p

)−1 }
.

These cosets contribute Np7/2ap[ρ](n1p
−1, n2p

−1)g(n1p−1, p).

III′.


p3

p b
p2

1

 ,

{
b mod p2, p - b, κ =

(
b

p

) }
.

These cosets contribute Np7/2ap
−1[ρ](n1p, n2p

−2) g(n1, p).

IV′.


p3

1 b
p3

1

 ,
{
b mod p3, κ = 1

}
.

These cosets contribute Np9/2ap
−3[ρ](n1p

3, n2p
−3).

V′.


p2 ap2 d

p3

1 −a
p

 ,

{
a, d mod p, p - d, κ =

(
d

p

)−1 }
.

These cosets contribute zero.

VI′.


p2 ap c d

p2 c
p −a

p

 ,

{
a, c, d mod p, p - c, κ =

(
c

p

) }
.

These cosets contribute zero.

VII′.


p2 c d

p2 b c
p

p

 ,


b, c, d mod p, p - b(c2 − bd),

κ =

(
c2 − bd

p

)−1

.

These cosets contribute zero.
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VIII′.


p2 a ep+ ab d

p bp e
p2 −a

p

 ,

{
a, b, d, e mod p, p - a, κ =

(
a

p

) }
.

These cosets contribute Np7/2ap
−1[ρ](n1p, n2p

−1) g(n2p
−1, p).

IX′.


p2 ep d

p b e
p2

p

 ,

{
d, e mod p, b mod p2, p - bd, κ =

(
bd2

p

) }
.

These cosets contribute zero.

X′.


p2 ep2 d

1 b e
p3

p

 ,

{
d, e mod p, b mod p3, p - d, κ =

(
d

p

)−1 }
.

These cosets contribute zero.

XI′.


p ap d

p3

1 −a
p2

 ,

{
a, d mod p2, p - d, κ =

(
d

p

) }
.

These cosets contribute zero.

XII′.


p a c d

p2 cp
p −a

p2

 ,

{
c mod p, a, d mod p2, p - a, κ =

(
a

p

)−1 }
.

These cosets contribute Np7/2ap[ρ](n1p
−1, n2p) g(n2, p).

XIII′.


p ap c d

p2 b cp− ab
p −ap

p2

 ,


a, b, c mod p, d mod p2, p - b(d+ ac),

κ =

(
b2(d + ac)

p

) .

These cosets contribute zero.

XIV′.


p a c d

p bp c− ab
p2 −ap

p2

 ,


a, b mod p, c, d mod p2,

p - a(c− ab), κ =

(
c− ab

p

)−1

.

These cosets contribute zero.

XV′.


p c d

p bp c
p2 −ap

p2

 ,

{
b mod p, c, d mod p2, p - c, κ =

(
c

p

)−1}
.

These cosets contribute zero.

XVI′.


p c d

p b c
p2

p2

 ,

{
b, c, d mod p2, p - b(c2 − bd), κ =

(
c2 − bd

p

)}
.

These cosets contribute zero.
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XVII′.


p ep d

1 b e
p3

p2

 ,

{
d, e mod p2, b mod p3, p - d, κ =

(
d

p

) }
.

These cosets contribute zero.

XVIII′.


1 a d

p3

1 −a
p3

 ,
{
a, d mod p3, κ = 1

}
.

These cosets contribute Np9/2ap
3[ρ](n1p

−3, n2p
3).

XIX′.


1 a c d

p2 b cp2 − ab
p −ap

p3

 ,


b, c mod p, a mod p2, d mod p3,

p - b, κ =

(
b

p

)−1

.

These cosets contribute Np7/2ap[ρ](n1p
−1, n2p

2) g(n1p−1, p).

XX′.


1 a c d

p b cp− ab
p2 −ap2

p3

 ,


a mod p, b, c mod p2, d mod p3,

p - b, κ =

(
b

p

) .

These cosets contribute Np7/2ap
−1[ρ](n1p, n2p) g(n1, p).

XXI′.


1 c d

1 b c
p3

p3

 ,
{
b, c, d mod p3, κ = 1

}
.

These cosets contribute Np9/2ap
−3[ρ](n1p

3, n2).

5. The Euler product

The expression of the Shimura type Rankin-Selberg integral (3.1) as a double
Dirichlet series D(s) times G(s) in (3.2) is valid for any cubic metaplectic auto-
morphic form on GL(3) that satisfies the hypothesis of Lemma 2.2. However, by
taking f = Θ, the cubic theta function, it will be shown that D(s) has an expres-
sion as an Euler product. Note that Θ satisfies the hypothesis of Lemma 2.2, since
Θ(γτ3) = Θ(τ3) for all γ ∈ SL(3,O) (see (2.17) of [BH1]). The choice of Θ here
(and the similar use of theta functions by Bump-Hoffstein [BH2] and Friedberg-
Wong [FrW]) follows Shimura’s original technique [Shi] in the sense that the theta
function picks off the Whittaker-Fourier coefficients of φ that allow D(s) to have
an Euler product. The goal, in this section, is to prove

Theorem 5.1. Suppose that φ is a cubic generic cusp form on GSp(4) that is an
eigenfunction of the Hecke operators Tp6 , Tp3 for each prime p ∈ O with (p, λ) = 1,
with eigenvalues given by
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Tp6 · φ =
(
Np6µp6 − Np6 − Np4

)
and

Tp3 · φ = Np9/2 µp3 φ.

Let D(s) be the Dirichlet series constructed as in (3.3) using the cubic theta
function Θ. Then for Re(s) > 3/4,

ζK(12s− 4)D(s) = R(6s− 5

2
)Rλ(6s− 5

2
),

where

R(s) =
∏

(p,λ)=1

(
1− µp3Np−s + µp6Np−2s − µp3Np−3s + Np−4s

)−1

and

Rλ(s) =
(
1− Nλ−2s−1

)−1 ∑
ρ∈Γ2(3)\Γ2/Γ2,∞

∑
n1∈(λ)−5

n2∈(λ)−3

p|27n1n2⇒(p,λ)>1

aρn1,n2
θρn2,n1

N(n1n2
2)

(s+3)/3
.

Proof. First fix a prime p ≡ 1 mod (3), and take n1 ∈ (λ)−5, n2 ∈ (λ)−3 such
that p - 27n1n2. Let x = Np, z = Np−s, and let µ1, µ2 be the eigenvalues of φ
corresponding to Tp6 , and Tp3 respectively. Also put

F (z6) = 1− µ2

x2
z6 +

(µ1

x
+ x3 + x5

)
z12 − µ2x

3z18 + x10z24.

Then Theorem 5.1 will follow from

Lemma 5.2.

F (z6)

∞∑
k1,k2=0

aρ
n1pk1 ,n2pk2

θρ
n2pk2 ,n1pk1

N(pk1+2k2)2s−1/2
= (1− x4z12)aρn1,n2

θρn2,n1 .(5.1)

Proof. Let G(6n) be the coefficient of z6n in the left-hand side of (5.1). Proposi-
tion 2.3 implies the equality

∞∑
k1,k2=0

aρ
n1pk1 ,n2pk2

θρ
n2pk2 ,n1pk1

N(pk1+2k2)2s−1/2

=

∞∑
k1,k2=0

θρn2,n1x
5
2k1+4k2z6k1+12k2

×
(
aρ
n1p3k1 ,n2p3k2

+ g(n2, p)x
3/2z6aρ

n1p3k1+1,n2p3k2+1

)
.

(5.2)
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Now define

B(k1, k2) = θρn2,n1x
5
2k1+4k2aρ

n1p3k1 ,n2p3k2

and

C(k1, k2) = θρn2,n1x
5
2k1+4k2+ 3

2 g(n2, p)a
ρ
n1p3k1+1,n2p3k2+1 .

Then the coefficient of z6n appearing in the right-hand side of (5.2), hereafter
designated G′(6n), is given by

G′(0) = B(0, 0),

G′(6) = B(1, 0) + C(0, 0),

G′(6n) = B(n, 0) + C(n− 1, 0) +B(n− 2, 1) + C(n− 3, 1)(5.3)

+ . . .+

{
B
(
0, n2

)
+ C

(
1, n−2

2

)
if n ≥ 2 is even,

B
(
1, n−1

2

)
+ C

(
0, n−1

2

)
if n ≥ 2 is odd.

Consequently, by defining G′(6n) = 0 if n < 0, for all n we get

G(6n) = G′(6n)− µ2

x2
G′(6n− 6) +

(µ1

x
+ x3 + x5

)
G′(6n− 12)

− µ2x
3G′(6n− 18) + x10G′(6n− 24).

(5.4)

Now it can be checked explicitly for n = 0, 1, 2, 3, 4, 5 that G(6n) has the form
suggested in (5.1). By virtue of (5.3) and (5.4) it suffices to know µ1G

′(6n) and
µ2G

′(6n) from Theorem 4.2, for each n under consideration. Using Theorem 4.2
and Proposition 2.3 one finds the following:

G′(0) = θρn2,n1a
ρ
n1,n2

,

µ1G
′(0) = θρn2,n1

[
− x4aρn1,n2

+ x6aρn1,n2p3

+ x5aρn1p2,n2p
g(n1, p) + x4aρn1p2,n2

g(n1, p)
2
]
,

µ2G
′(0) = θρn2,n1

[
x9/2aρn1p3,n2

+ x7/2aρn1p,n2pg(n1, p)
]
,

G′(6) = θρn2,n1

[
x5/2aρn1p3,n2

+ x3/2aρn1p,n2pg(n1, p)
]
,

µ1G
′(6) = θρn2,n1

[(
x2 + x− 1

)
x13/2aρn1p3,n2

+ x17/2aρn1p3,n2p3

+ x15/2aρn1p5,n2p
g(n1, p) +

(
x2 + x− 1

)
x11/2aρn1p,n2pg(n1, p)

+ x15/2aρn1p,n2p4g(n1, p) + x13/2aρn1p5,n2
g(n1, p)

2
]
,
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µ2G
′(6) = θρn2,n1

[
(x+ 1)x6aρn1,n2

+ (x+ 1)x6aρn1,n2p3 + x7aρn1p6,n2

+ x6aρn1p2,n2p
g(n1, p) + x6aρn1p4,n2p

g(n1, p) + x5aρn1p2,n2
g(n1, p)

2
]
,

G′(12) = θρn2,n1

[
x4aρn1,n2p3 + x5aρn1p6,n2

+ x4aρn1p4,n2p
g(n1, p)

]
,

µ1G
′(12) = θρn2,n1

[
x10aρn1,n2

+
(
x3 + x2 + x− 1

)
x8aρn1,n2p3 + x10aρn1,n2p6

+
(
x2 + x− 1

)
x9aρn1p6,n2

+ x11aρn1p6,n2p3 + x10aρn1p2,n2p
g(n1, p)

+ x10aρn1p8,n2p
g(n1, p) +

(
x2 + x− 1

)
x8aρn1p4,n2p

g(n1, p)

+ x10aρn1p4,n2p4g(n1, p) + x9aρn1p2,n2
g(n1, p)

2

+ x9aρn1p8,n2
g(n1, p)

2
]
,

µ2G
′(12) = θρn2,n1

[
(x+ 1)x17/2aρn1p3,n2

+ (x+ 1)x17/2aρn1p3,n2p3

+ x19/2aρn1p9,n2
+ x17/2aρn1p5,n2p

g(n1, p)

+ (x+ 1)x15/2aρn1p,n2pg(n1, p) + (x+ 1)x15/2aρn1p,n2p4g(n1, p)

+ x17/2aρn1p7,n2p
g(n1, p) +x15/2aρn1p5,n2

g(n1, p)
2
]
,

G′(18) = θρn2,n1

[
x13/2aρn1p3,n2p3 + x15/2aρn1p9,n2

+ x11/2aρn1p,n2p4g(n1, p) + x13/2aρn1p7,n2p
g(n1, p)

]
,

µ1G
′(18) = θρn2,n1

[
x25/2aρn1p3,n2

+
(
x3 + x2 + x− 1

)
x21/2aρn1p3,n2p3

+ x25/2aρn1p3,n2p6 +
(
x2 + x− 1

)
x23/2aρn1p9,n2

+ x27/2aρn1p9,n2p3

+ x25/2aρn1p5,n2p
g(n1, p) + x25/2aρn1p11,n2p

g(n1, p)

+ x23/2aρn1p,n2pg(n1, p) +
(
x3 + x2 + x− 1

)
x19/2aρn1p,n2p4g(n1, p)

+ x23/2aρn1p,n2p7 +
(
x2 + x− 1

)
x21/2aρn1p7,n2p

g(n1, p)

+ x25/2aρn1p7,n2p4 + x23/2aρn1p5,n2
g(n1, p)

2

+ x23/2aρn1p11,n2
g(n1, p)

2
]
,

µ2G
′(18) = θρn2,n1

[
(x+ 1)x10aρn1,n2p3 + (x+ 1)x10aρn1,n2p6

+ (x+ 1)x11aρn1p6,n2
+ (x+ 1)x11aρn1p6,n2p3 + x12aρn1p12,n2

+ x11aρn1p8,n2p
g(n1, p) + (x+ 1)x10aρn1p4,n2p

g(n1, p)

+ (x+ 1)x10aρn1p4,n2p4g(n1, p) + x11aρn1p10,n2p
g(n1, p)

+ x10aρn1p8,n2
g(n1, p)

2
]
,

G′(24) = θρn2,n1

[
x8aρn1,n2p6 + x9aρn1p6,n2p3 + x10aρn1p12,n2

+ x8aρn1p4,n2p4g(n1, p) + x9aρn1p10,n2p
g(n1, p)

]
,
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µ1G
′(24) = θρn2,n1

[
x14aρn1,n2p3 +

(
x3 + x2 + x− 1

)
x12aρn1,n2p6 + x14aρn1,n2p9

+ x15aρn1p6,n2
+
(
x3 + x2 + x− 1

)
x13aρn1p6,n2p3 + x15aρn1p6,n2p6

+
(
x2 + x− 1

)
x14aρn1p12,n2

+ x16aρn1p12,n2p3 + x15aρn1p8,n2p
g(n1, p)

+ x15aρn1p14,n2p
g(n1, p) + x14aρn1p4,n2p

g(n1, p)

+
(
x3 + x2 + x− 1

)
x12aρn1p4,n2p4g(n1, p) + x14aρn1p4,n2p7g(n1, p)

+
(
x2 + x− 1

)
x13aρn1p10,n2p

g(n1, p) + x15aρn1p10,n2p4g(n1, p)

+ x14aρn1p8,n2
g(n1, p)

2 + x14aρn1p14,n2
g(n1, p)

2
]
,

µ2G
′(24) = θρn2,n1

[
(x+ 1)x25/2aρn1p3,n2p3 + (x+ 1)x25/2aρn1p3,n2p6

+ (x+ 1)x27/2aρn1p9,n2
+ (x+ 1)x27/2aρn1p9,n2p3 + x29/2aρn1p15,n2

+ x27/2aρn1p11,n2p
g(n1, p) + (x+ 1)x23/2aρn1p,n2p4g(n1, p)

+ (x+ 1)x23/2aρn1p,n2p7g(n1, p) + (x+ 1)x25/2aρn1p7,n2p
g(n1, p)

+ (x+ 1)x25/2aρn1p7,n2p4g(n1, p) + x27/2aρn1p13,n2p
g(n1, p)

+ x25/2aρn1p11,n2
g(n1, p)

2
]
,

G′(30) = θρn2,n1

[
x21/2aρn1p3,n2p6 + x23/2aρn1p9,n2p3

+ x25/2aρn1p15,n2
+ x19/2aρn1p,n2p7g(n1, p)

+ x21/2aρn1p7,n2p4g(n1, p) + x23/2aρn1p13,n2p
g(n1, p)

]
.

So by using these formulae in (5.4) it follows that

G(0) = aρn1,n2
θρn2,n1 ,

G(12) = −x4θρn2,n1 a
ρ
n1,n2

,

and

G(6) = G(18) = G(24) = G(30) = 0,

as required in (5.1).
To finish the proof of Lemma 5.2 it remains to show that G(6n) = 0 for n ≥ 6.

First, write

G(6n) =

6∑
i=1

Gi(6n),

where
G1(6n) is the sum of coefficients of z6n

such that k1 ≡ k2 ≡ 0 mod (3), k1, k2 ≥ 3,
G2(6n) is the sum of coefficients of z6n

such that k1 ≡ k2 ≡ 1 mod (3), k1, k2 ≥ 3,
G3(6n) is the sum of coefficients of z6n such that k1 = 0,
G4(6n) is the sum of coefficients of z6n such that k1 = 1,
G5(6n) is the sum of coefficients of z6n such that k2 = 0, k1 6= 0 or 1,
G6(6n) is the sum of coefficients of z6n such that k2 = 1, k1 6= 0 or 1.
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Then it suffices to prove that, for all n ≥ 6,

4∑
i=1

Gi(6n) = 0(5.5)

and

G5(6n) = G6(6n) = 0.(5.6)

Equation (5.6) will be proved first. To this end, write

G5(6n) =

4∑
j=0

∑
k1=3n−3j

k1≥2

θρ(n2, n1pk1)Aj(k1, 0)xk1/2,(5.7)

where

A0(k1, k2) = aρ(n1p
k1 , n2p

k2),

A1(k1, k2) =
−µ2

x2
A0(k1, k2),

A2(k1, k2) =
(µ1

x
+ x3 + x5

)
A0(k1, k2),

A3(k1, k2) = −µ2x
3A0(k1, k2),

A4(k1, k2) = x10A0(k1, k2).

Then using Proposition 2.3, (5.7) becomes

4∑
j=0

θρn2,n1 x
5(n−j)/2 Aj(3(n− j), 0).

So to prove G5(6n) = 0 for all n ≥ 6, it suffices to prove

4∑
j=0

x5(n−j)/2 Aj(3(n− j), 0) = 0.(5.8)

Now, using the definition of the Aj and Theorem 4.2, one can find that

A1(3n− 3, 0) = −x5/2
[
aρ(n1p

3n−6, n2) + aρ(n1p
3n−6, n2p

3) + aρ(n1p
3n, n2)

]
− x3/2 g(n2, p) a

ρ(n1p
3n−4, n2p),

(5.9)

A2(3n− 6, 0) =
[
x3 + x5

]
aρ(n1p

3n−6, n2) + x5aρ(n1p
3n−12, n2p

3)

+ x5aρ(n1p
3n−6, n2p

3) + x4g(n2, p)a
ρ(n1p

3n−10, n2p),

+ x4g(n2, p)a
ρ(n1p

3n−4, n2p) + x3(x2 − 1)aρ(n1p
3n−6, n2),

(5.10)

A3(3n− 9, 0)

= −x15/2
[
aρ(n1p

3n−12, n2) + aρ(n1p
3n−12, n2p

3) + aρ(n1p
3n−6, n2)

]
− x13/2g(n2, p)a

ρ(n1p
3n−10, n2p).

(5.11)
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Then using (5.9)-(5.11), (5.8) follows immediately. Next, by writing

G6(6n) =

4∑
j=0

θρn2,n1 g(n2, p)x
5(n−j)/2 Aj(3(n− j), 1),

as in (5.8), it is straightforward to verify that (5.6) holds in this case as well. To
prove (5.5), first write

Gi(6n) =

4∑
j=0

∑
(k1,k2)∈Ki,n

j

θρ(n2pk2 , n1pk1)Aj(k1, k2)x
(k1+2k2)/2,

(5.12)

where

K1,n
j =

{
(k1, k2) ∈ Z2 | k1 ≡ k2 ≡ 0 mod (3), k1, k2 ≥ 3, k1 + 2k2 = 3(n− j)

}
,

K2,n
j =

{
(k1, k2) ∈ Z2 | k1 ≡ k2 ≡ 1 mod (3), k1, k2 ≥ 3, k1 + 2k2 = 3(n− j)

}
,

K3,n
j =

{
(0, k2) ∈ Z2 | k2 ≡ 0 mod (3), 2k2 = 3(n− j)

}
,

K4,n
j =

{
(1, k2) ∈ Z2 | k2 ≡ 1 mod (3), 1 + 2k2 = 3(n− j)

}
.

The congruence conditions on k2 for K3,n
j and K4,n

j are included to ensure that the

coefficient of θρ(n2p
k2 , n1p

k1) is not zero. Then, consider the

Claim. For i ∈ {1, 2, 3, 4} and n ≥ 6, the coefficient of aρ(n1p
k1 , n2p

k2+3) in
Gi(6(n+ 2)) is equal to x4 times the coefficient of aρ(n1p

k1 , n2p
k2) in Gi(6n).

By induction, this claim reduces (5.5) to the cases of n = 6 and n = 7. To prove
the claim, notice that (2.3) implies

θρ(n2p
k2 , n1p

k1) =


x(k1+k2)/3 θρn2,n1

if (k1, k2) ∈ K1,n
j ,

x(k1+k2−2)/3 g(n2, p) θ
ρ
n2,n1

if (k1, k2) ∈ K2,n
j ,

xk2/3 θρn2,n1
if (k1, k2) ∈ K3,n

j ,

xk2/3 g(n2, p) θ
ρ
n2,n1

if (k1, k2) ∈ K4,n
j .

(5.13)

Therefore,

G1(6n) =

4∑
j=0

∑
(k1,k2)∈K1,n

j

θρn2,n1 Aj(k1, k2)x
(k1+k2)/3 x(k1+2k2)/2,

(5.14)

G2(6n) =

4∑
j=0

∑
(k1,k2)∈K2,n

j

θρn2,n1 g(n2, p)Aj(k1, k2)x
(k1+k2−2)/3 x(k1+2k2)/2,

(5.15)

G3(6n) =

4∑
j=0

∑
(k1,k2)∈K3,n

j

θρn2,n1 Aj(k1, k2)x
k2/3 x(k1+2k2)/2,(5.16)
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and

G4(6n) =

4∑
j=0

∑
(k1,k2)∈K4,n

j

θρn2,n1 g(n2, p)Aj(k1, k2)x
k2/3 x(k1+2k2)/2.

(5.17)

To expand Gi(6(n + 2)), first an understanding of Ki,n+2
j is needed. If (k1, k2) ∈

Ki,n
j , then (k1, k2 + 3) ∈ Ki,n+2

j . For i = 3 and i = 4, this completely describes

Ki,n+2
j , while the only elements of K1,n+2

j and K2,n+2
j that are not of this form are

(3(n− j), 3) ∈ K1,n+2
j

and

(3(n− 1− j) + 1, 4) ∈ K2,n+2
j .

Now, using this description of Ki,n+2
j and (5.13), write

G1(6(n+ 2)) =

4∑
j=0

∑
(k1,k2)∈K1,n

j

θρn2,n1 Aj(k1, k2 + 3)x4 x(k1+k2)/3 x(k1+2k2)/2

+

4∑
j=0

θρn2,n1 Aj(3(n− j), 3)xn−j x3(n+2−j)/2.

(5.18)

G2(6(n + 2)) =

4∑
j=0

∑
(k1,k2)∈K2,n

j

θρn2,n1 g(n2, p)Aj(k1, k2 + 3)

× x4 x(k1+k2−2)/3 x(k1+2k2)/2

+
4∑

j=0

θρn2,n1 Aj(3(n− j − 1) + 1, 4)xn−j x3(n−j+2)/2.

(5.19)

G3(6(n+ 2)) =

4∑
j=0

∑
(k1,k2)∈K3,n

j

θρn2,n1 Aj(k1, k2 + 3)x4 xk2/3 x(k1+2k2)/2.

(5.20)

G4(6(n + 2)) =

4∑
j=0

∑
(k1,k2)∈K4,n

j

θρn2,n1 g(n2, p)Aj(k1, k2 + 3)x4 xk2/3 x(k1+2k2)/2.

(5.21)

Now observe that for k1 ≥ 5 and k2 ≥ 3, Proposition 4.1 implies all the Gauss
sums in (4.4) and (4.5) vanish. So for n ≥ 6 it follows from the action of the Hecke
operators that the coefficient of aρ(n1p

k1 , n2p
k2) in Aj(k1, k2) is identical to the

coefficient of aρ(n1p
k1 , n2p

k2+3) in Aj(k1, k2 + 3). Therefore the proof of the claim
is complete in the cases i = 3 and i = 4. To finish in the cases of i = 1 and
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i = 2 it remains to show that the second sums in both (5.18) and (5.19) vanish, or
equivalently that

4∑
j=0

Aj(3(n− j), 3)x5(n−j)/2 = 0(5.22)

and
4∑

j=0

Aj(3(n− j − 1) + 1, 4)x5(n−j)/2 = 0.(5.23)

Explicitly,

A0(3n, 3)x5n/2 = x5n/2aρ(n1p
3n, n2p

3),(5.24)

A1(3n− 3, 3)x5(n−1)/2 = −x5(n−1)/2x−2µ2a
ρ(n1p

3n−3, n2p
3)

= −x5n/2
[
aρ(n1p

3n−6, n2p
3) + aρ(n1p

3n, n2)

+ aρ(n1p
3n−6, n2p

6) + aρ(n1p
3n, n1p

3)
]
,

(5.25)

A2(3n− 6, 3)x5(n−2)/2 = x5(n−2)/2
[
x−1µ1 + x3 + x5

]
aρ(n1p

3n−6, n2p
3)

=x5n/2
[
aρ(n1p

3n, n2) + aρ(n1p
3n−6, n2)

+ 2aρ(n1p
3n−6, n2p

3) + aρ(n1p
3n−6, n2p

6)

+ aρ(n1p
3n−12, n2p

6)
]
,

(5.26)

A3(3n− 9, 3)x5(n−3)/2 = − x5(n−3)/2x2µ2a
ρ(n1p

3n−9, n2p
3)

= − x5n/2
[
aρ(n1p

3n−12, n2p
3) + aρ(n1p

3n−6, n2)

+ aρ(n1p
3n−12, n2p

6) + aρ(n1p
3n−6, n2p

3)
]
,

(5.27)

A4(3n− 12, 3)x5(n−4)/2 = x5n/2aρ(n1p
3n−12, n2p

3),(5.28)

and

A0(3(n− 1) + 1, 4)x5n/2 = x5n/2aρ(n1p
3n−2, n2p

4),(5.29)

A1(3(n− 2) + 1, 4)x5(n−1)/2 = −µ2x
−2x5(n−1)/2aρ(n1p

3n−5, n2p
4)

= −x5n/2
[
aρ(n1p

3n−8, n2p
4) + aρ(n1p

3n−8, n2p
7)

+ aρ(n1p
3n−2, n2p) + aρ(n1p

3n−2, n2p
4)
]
,

(5.30)

A2(3(n− 3) + 1, 4)x5(n−2)/2 =
[
µ1x

−1 + x3 + x5
]
aρ(n1p

3n−8, n2p
4)x5(n−2)/2

= x5n/2
[
aρ(n1p

3n−14, n2p
7) + aρ(n1p

3n−8, n2p)

+ 2aρ(n1p
3n−8, n2p

4) + aρ(n1p
3n−8, n2p

7)

+ aρ(n1p
3n−2, n2p)

]
,

(5.31)
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A3(3(n− 4) + 1, 4)x5(n−3)/2 = −µ2x
3aρ(n1p

3n−11, n2p
4)x5(n−3)/2

− x5n/2
[
aρ(n1p

3n−14, n2p
4) + aρ(n1p

3n−14, n2p
7)

+ aρ(n1p
3n−8, n2p) + aρ(n1p

3n−8, n2p
4)
]
,

(5.32)

A4(3(n− 5) + 1, 4)x5(n−4)/2 = x5n/2aρ(n1p
3n−14, n2p

4).(5.33)

Now summing (5.24)-(5.28) yields (5.22) and summing (5.29)-(5.33) yields (5.23).
Now to finish the proof of Lemma 5.2, it remains to show (5.5) in the cases
n = 6 and n = 7. But due to (5.6) this is equivalent to showing G(36) = 0
and G(42) = 0. These two facts can be verified by using (5.4), as was done with
G(0), G(6), G(12), G(18), G(24), and G(30). The additional information needed
from Theorem 4.2 is:

µ1G
′(30)

= θρn2,n1

[
x33/2aρn1p3,n2p3 +

(
x3 + x2 + x− 1

)
x29/2aρn1p3,n2p6

+ x33/2aρn1p3,n2p9 + x35/2aρn1p9,n2
+
(
x3 + x2 + x− 1

)
x31/2aρn1p9,n2p3

+ x35/2aρn1p9,n2p6 +
(
x2 + x− 1

)
x33/2aρn1p15,n2

+ x37/2aρn1p15,n2p3

+ x35/2aρn1p11,n2p
g(n1, p) + x35/2aρn1p17,n2p

g(n1, p)

+ x31/2aρn1p,n2p4g(n1, p) +
(
x3 + x2 + x− 1

)
x27/2aρn1p,n2p7g(n1, p)

+ x31/2aρn1p,n2p10g(n1, p) + x33/2aρn1p7,n2p
g(n1, p)

+
(
x3 + x2 + x− 1

)
x29/2aρn1p7,n2p4g(n1, p) + x33/2aρn1p7,n2p7g(n1, p)

+
(
x2 + x− 1

)
x31/2aρn1p13,n2p

g(n1, p) + x35/2aρn1p13,n2p4g(n1, p)

+x33/2aρn1p11,n2
g(n1, p)

2 + x33/2aρn1p17,n2
g(n1, p)

2
]
,

µ2G
′(30)

= θρn2,n1

[
(x+ 1)x14aρn1,n2p6 + (x+ 1)x14aρn1,n2p9 + (x+ 1)x15aρn1p6,n2p3

+ (x+ 1)x15aρn1p6,n2p6 + (x+ 1)x16aρn1p12,n2
+ (x+ 1)x16aρn1p12,n2p3

+ x17aρn1p18,n2
+ x16aρn1p14,n2p

g(n1, p) + (x+ 1)x14aρn1p4,n2p4g(n1, p)

+ (x+ 1)x14aρn1p4,n2p7g(n1, p) + (x+ 1)x15aρn1p10,n2p
g(n1, p)

+ (x+ 1)x15aρn1p10,n2p4g(n1, p) + x16aρn1p16,n2p
g(n1, p)

+x15aρn1p14,n2
g(n1, p)

2
]
,

G′(36)

= θρn2,n1

[
x12aρn1,n2p9 + x13aρn1p6,n2p6 + x14aρn1p12,n2p3 + x15aρn1p18,n2

]
+x12aρn1p4,n2p7g(n1, p) + x13aρn1p10,n2p4g(n1, p) + x14aρn1p16,n2p

g(n1, p)
]
,
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µ2G
′(36)

= θρn2,n1

[
(x+ 1)x33/2aρn1p3,n2p6 + (x+ 1)x33/2aρn1p3,n2p9

+ (x+ 1)x35/2aρn1p9,n2p3 + (x+ 1)x35/2aρn1p9,n2p6 + (x+ 1)x37/2aρn1p15,n2

+ (x+ 1)x37/2aρn1p15,n2p3 + x39/2aρn1p21,n2
+ x37/2aρn1p17,n2p

g(n1, p)

+ (x+ 1)x31/2aρn1p,n2p7g(n1, p) + (x+ 1)x31/2aρn1p,n2p10g(n1, p)

+ (x+ 1)x33/2aρn1p7,n2p4g(n1, p) + (x+ 1)x33/2aρn1p7,n2p7g(n1, p)

+ (x+ 1)x35/2aρn1p13,n2p
g(n1, p) + (x+ 1)x35/2aρn1p13,n2p4g(n1, p)

+ x37/2aρn1p19,n2p
g(n1, p) + x35/2aρn1p17,n2

g(n1, p)
2
]
,

G′(42)

= θρn2,n1

[
x29/2aρn1p3,n2p9 + x31/2aρn1p9,n2p6 + x33/2aρn1p15,n2p3

+ x35/2aρn1p21,n2
+ x27/2aρn1p,n2p10g(n1, p) + x29/2aρn1p7,n2p7g(n1, p)

+ x31/2aρn1p13,n2p4g(n1, p) + x33/2aρn1p19,n2p
g(n1, p)

]
.

As an immediate consequence of Lemma 5.2, Theorem 5.1 follows by pulling out
the Euler factors in R(s). The fact that the Euler product has a meromorphic
continuation to the whole complex plane follows from the meromorphic continuation

of the Eisenstein series E(f̂ , τ, s).
In order to prove a functional equation for the Euler product, Theorem 3.1 and

Theorem 5.1 need to be extended to the situation where φ and Θ are replaced
with non-metaplectic minimal parabolic Eisenstein series on GSp(4) and GL(3)
respectively. As this has not yet been carried out, the rest of the section serves
only as a suggestion of what the author believes the functional equation will be.

Suppose µ1, µ2, ν1, ν2 are complex numbers and define

α1 = 2µ1 + µ2 − 3

2
, α2 = µ2 − 1

2
(5.34)

and

β1 = 1− ν1

2
− ν2, β2 =

−ν1

2
+
ν2

2
, β3 = ν1 +

ν2

2
− 1.(5.35)

Also define

L(s, φ) = 3−2s/3 (2π)−4sΓ(s− 3α1)Γ(s− 3α2)Γ(s + 3α1)Γ(s + 3α2)R(s)Rλ(s),

where R(s), Rλ(s) are defined as in Theorem 5.1. Then, assuming that the Rankin-
Selberg integral in Theorem 3.1 can be extended to non-cusp forms, arguments
similar to those in Chapter 10 of [B1] may be used to deduce a local functional
equation. By use of the triplication formula for the Γ-function (compare the use
of the duplication formula in [FrW]) it should be possible to show that L(s, φ)
possesses a functional equation as s→ 1− s.
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