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BOUNDS FOR MULTIPLICITIES

JÜRGEN HERZOG AND HEMA SRINIVASAN

Abstract. Let R = K[x1, x2, . . . , xn] and S = R/I be a homogeneous K-
algebra. We establish bounds for the multiplicity of certain homogeneous
K-algebras S in terms of the shifts in a free resolution of S over R. Huneke
and we conjectured these bounds as they generalize the formula of Huneke
and Miller for the algebras with pure resolution, the simplest case. We prove
these conjectured bounds for various algebras including algebras with quasi-
pure resolutions. Our proof for this case gives a new and simple proof of the
Huneke-Miller formula. We also settle these conjectures for stable and square
free strongly stable monomial ideals I. As a consequence, we get a bound

for the regularity of S. Further, when S is not Cohen-Macaulay, we show
that the conjectured lower bound fails and prove the upper bound for almost
Cohen-Macaulay algebras as well as algebras with a p-linear resolution.

Introduction

This paper is inspired by a beautiful formula (in [13] and [4]) of Huneke and
Miller for the multiplicity of rings with pure resolutions.

Throughout this paper, we fix a field K, and let S be a homogeneous K-algebra.
In other words, S is a finitely generated graded K-algebra, generated over K by
elements of degree 1, and hence is isomorphic to R/I where R = K[x1, . . . , xn] is
a polynomial ring and I is a graded ideal contained in (x1, . . . , xn). Consider the
graded minimal free resolution of S:

0 −→
bs⊕
j=1

R(−dsj) −→ · · · −→
b1⊕
j=1

R(−d1j) −→ R −→ 0.

The ring S is said to have a pure resolution if for all j, the dji do not depend on i
(but only on j). Hence if the resolution is pure it has the following shape:

0 −→ R(−ds)bs −→ · · · −→ R(−d1)
b1 −→ R −→ 0.

When S is a Cohen-Macaulay ring with a pure resolution, Huneke and Miller’s
formula states that the multiplicity e of S is

e(S) = (
s∏

i=1

di)/s!.

In general we define Mi = max{dij : j = 1, . . . , bi} and mi = min{dij : j =
1, . . . , bi} for i = 1, . . . , s.
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Huneke and the second author conjectured the following:

Conjecture 1. For each homogeneous Cohen-Macaulay K-algebra S

(

s∏
i=1

mi)/s! ≤ e(S) ≤ (

s∏
i=1

Mi)/s!.

Notice that the conjecture is true for complete intersections. Indeed, let y1, . . . , ys
be a homogeneous regular sequence generating I. Let ai be the degree of yi for
i = 1, . . . , s. We may assume that a1 ≤ a2 ≤ · · · ≤ as. Since the Koszul complex
associated with this sequence provides a resolution of R/I we have

mi = a1 + . . .+ ai and Mi = as−i+1 + . . .+ as

for i = 1, . . . , s.
On the other hand we have e(R/I) =

∏s
i=1 ai. Hence it follows that

(

s∏
i=1

mi)/s! ≤ (

s∏
i=1

iai)/s! = e(R/I)

≤ (

s∏
i=1

ias−i+1)/s! ≤ (

s∏
i=1

Mi)/s!.

We call a resolution quasi-pure if the mi ≥ Mi−1 for all i, so that there is at
most one shift common to any two consecutive modules in the resolution. We
prove the conjecture for Cohen-Macaulay rings with quasi-pure resolutions. As a
consequence, we get a simpler proof of the Huneke-Miller formula. Our proof of the
conjecture in the quasi-pure case uses solely the equations satisfied by the shifts dij
in the resolution (Lemma 1.1 and Theorem 1.2). These relations by themselves will
not imply the conjecture in general. This is evident even in codimension 2. Using
a different analysis, we prove the conjecture for R/I when I is a stable ideal in the
sense of Eliahou and Kervaire [9]; or a squarefree strongly stable ideal in the sense
of Aramova, Herzog and Hibi [2].

In fact, we show that the conjecture is true in each of the following cases.

(i) S has a quasi-pure resolution;
(ii) I is a perfect ideal of codimension 2, or a codimension 3 Gorenstein ideal

generated by 5 elements. (The upper conjectured inequality is proved for all
codimension 3 Gorenstein ideals);

(iii) I is a Gorenstein monomial ideal of codimension 3 with at least one generator
of smallest possible degree (relative to the number of generators);

(iv) I is a stable ideal;
(v) I is a squarefree strongly stable ideal.

The lower bound in Conjecture 1 fails in general if S is not Cohen-Macaulay.

Even the smaller product
∏h

i=1 mi with h = codimS is in general not a lower bound
for the multiplicity. Indeed, we show in Theorem 1.5 that in the best possible
non-Cohen-Macaulay case, namely when S has a pure resolution and codimS =
codepthS − 1 = s− 1, one has

e(S) < (

s−1∏
i=1

mi)/(s− 1)!.

On the other hand, in the cases (iv) and (v) the upper bound is valid without
the hypothesis that S be Cohen-Macaulay. Thus we are tempted to conjecture that
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the upper bound is valid for any homogeneous K-algebra S. Actually, we expect
the following stronger inequality

Conjecture 2. Let S be a homogeneous K-algebra of codimension h. Then

e(S) ≤ (

h∏
i=1

Mi)/h!.

When S is Cohen-Macaulay this is the same upper bound as in Conjecture 1,
and is stronger otherwise. We show that Conjecture 2 is valid if the defining ideal
of S is stable, or squarefree strongly stable, or if S has a p-linear resolution

0 −→ R(−p− s+ 1)bs −→ · · · −→ R(−p− 1)b2 −→ R(−p)b1 −→ R −→ 0,

but is not necessarily Cohen-Macaulay.
Combining (iv) with a theorem of Bayer and Stillman [6] we obtain the following

quite general inequality: Let I ⊂ R be any graded ideal of codim s, then

e(R/I) ≤
(

reg(I) + s− 1

s

)
,

where reg(I) denotes the Castelnuovo-Mumford regularity. This formula has been
recently improved by N. Terai [15].

1. Quasi-pure resolutions

The purpose of this section is to prove the conjecture for quasi-pure resolutions.
This provides a simple proof of the Huneke-Miller formula. We also prove the upper
conjectured inequality for multiplicities for rings with p-linear resolution.

Throughout this paper R = K[x1, . . . , xn] will denote the polynomial ring in n
variables defined over a field K, I ⊂ R will be a graded ideal, and S = R/I the
residue class ring modulo I. Furthermore, we let

0 −→
bs⊕
j=1

R(−dsj) −→ · · · −→
b1⊕
j=1

R(−d1j) −→ R −→ 0

be the resolution of S.
Given S with the resolution as above, we define Mi = max{dij : j = 1, . . . , bi}

and mi = min{dij : j = 1, . . . , bi} for i = 1, . . . , s to be the maximal and minimal
shifts respectively in the resolution.

The next result has probably first been observed by Peskine and Szpiro [14].

Lemma 1.1. With the above notation, we have

s∑
i=1

(−1)i
bi∑
j=1

dkij =

{
0 for 1 ≤ k < r,
(−1)rr!e(S) for k = r,

where r is the codimension of S.

Proof. From the free R-resolution of S we deduce that the Hilbert series of S has
the form

HS(t) =

∑s
i=0(−1)i

∑bi
j=1 t

dij

(1 − t)n
.

On the other hand the Hilbert series is known to be a rational function of the form

Q(t)

(1− t)d

where d = dimS and where Q(1) = e.
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A comparison of these two formulas yields the equation

s∑
i=0

(−1)i
bi∑
j=1

tdij = Q(t)(1 − t)r.

Denoting the polynomial on the left hand side of this equation by P (t), we see that
for the higher formal derivatives P (k)(t) of P (t) we have

P (k)(1) =

{
0 for 1 ≤ j < r,
(−1)rr!e(S) for j = r.

From this one deduces the assertion.

Theorem 1.2. Suppose that S is a Cohen-Macaulay with a quasi-pure resolution.
Then Conjecture 1 holds. That is,

(

s∏
i=1

mi)/s! ≤ e(S) ≤ (

s∏
i=1

Mi)/s!.

Proof. Consider the square matrix

M =


∑b1

j=1 d1j

∑b2
j=1 d2j · · · ∑bs−1

j=1 ds−1j

∑bs
j=1 dsj∑b1

j=1 d
2
1j

∑b2
j=1 d

2
2j · · · ∑bs−1

j=1 d2
s−1j

∑bs
j=1 d

2
sj

...
...

...
...

...∑b1
j=1 d

s
1j

∑b2
j=1 d

s
2j · · · ∑bs−1

j=1 dss−1j

∑bs
j=1 d

s
sj


of size s.

We will compute the determinant |M | of M in two different ways. First we re-
place the last column of M by the alternating sum of all columns of M . The result-
ing matrix will be denoted by M ′. It is clear that |M | = (−1)s|M ′|. Moreover, due
to 1.1, the last column of M ′ is the transpose of the vector (0, . . . , 0, (−1)ss!e(S)).
Thus if we expand M ′ with respect to the last column we get

|M | = (−1)s|M ′| = s!e(S)|N |(1)

where N is the matrix
∑b1

j=1 d1j

∑b2
j=1 d2j · · · ∑bs−1

j=1 ds−1j∑b1
j=1 d

2
1j

∑b2
j=1 d

2
2j · · · ∑bs−1

j=1 d2
s−1j

...
...

...
...∑b1

j=1 d
s−1
1j

∑b2
j=1 d

s−1
2j · · · ∑bs−1

j=1 ds−1
s−1j


of size s− 1.

On the other hand,

|M | =
∑

1≤ji≤bi
1≤i≤s

s∏
i=1

dijiV (d1j1 , . . . , dsjs ),(2)
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where

V (d1j1 , . . . , dsjs) =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1 1

d1j1 d2j2 · · · ds−1js−1 dsjs
...

...
...

...
...

ds−1
1j1

ds−1
2j2

· · · ds−1
s−1js−1

ds−1
sjs

∣∣∣∣∣∣∣∣∣
is the Vandermonde determinant.

We note that all the Vandermonde determinants in the sum (2) are nonnegative
because the resolution is quasi-pure, so that dij ≥ di−1k for all i, j and k. Replacing
the products of the diji by their minimum and maximum, we obtain

s∏
i=1

Mi

∑
1≤ji≤bi
1≤i≤s

V (d1j1 , . . . , dsjs) ≥ |M |(3)

≥
s∏

i=1

mi

∑
1≤ji≤bi
1≤i≤s

V (d1j1 , . . . , dsjs).

Next we observe that

|W | =
∑

1≤ji≤bi
1≤i≤s

V (d1j1 , . . . , dsjs)

=

∣∣∣∣∣∣∣∣∣∣
b1 b2 · · · bs−1 bs∑b1

j=1 d1j

∑b2
j=1 d2j2 · · · ∑bs−1

j=1 ds−1js−1

∑bs
j=1 dsjs

...
...

...
...

...∑b1
j=1 d

s−1
1j1

∑b2
j=1 d

s−1
2j2

· · · ∑bs−1

j=1 ds−1
s−1js−1

∑bs
j=1 d

s−1
sjs

∣∣∣∣∣∣∣∣∣∣
.

Now by replacing the last column by the alternating sums of the columns, the
last column becomes the transpose of the vector ((−1)s+1, 0, . . . , 0). Expanding
the determinant along the last column, we get |W | = |N |. Since at least one of
the Vandermonde determinants in the sum for |W | is positive, we conclude that
|N | > 0. Hence the desired result follows from (1) and (3).

Remark 1.3. It is clear from the proof of 1.2 that the conjectured bounds for the
multiplicity follow already once the shifts in the resolution satisfy the following
condition (which is obviously weaker than quasi-purity):

V (d1j1 , . . . , dsjs) ≥ 0

for all sequences d1j1 , . . . , dsjs .

As an easy consequence of 1.2, we get

Corollary 1.4 (Huneke-Miller). Suppose that S is Cohen-Macaulay with a pure
resolution

0 → Rbs(−ds) → · · · → Rb2(−d2) → Rb1(−d1) → R→ 0.

Then e(S) =
∏n

i=1 di/s!.

When S is not Cohen-Macaulay, the lower bound fails, as the next results show.
Nevertheless we can establish the upper bound in the following cases.
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We first consider the case when the codimension of S is one more than the
projective dimension, in which case S is called almost Cohen-Macaulay.

Theorem 1.5. Suppose that S is almost Cohen-Macaulay of codimension s−1 and
has a quasi-pure resolution. Then

e(S) ≤ 1/(s− 1)!(
s−1∏
i=1

Mi).

If the resolution of S is pure, then

e(S) = (

s−1∏
i=1

di)/(s− 1)!− bs

s−1∏
i=1

(
ds − di
di

)/(s− 1)!.

In particular, Conjecture 2 holds.

Proof. The proof proceeds along the same lines as in the Cohen-Macaulay case for
the pure resolution and for the quasi-pure resolutions.

Here we consider the square matrix

M =



∑b1
k=1 1

∑b2
k=1 1 · · · ∑bs−1

k=1 1
∑bs

k1 1∑b1
k=1 d1k

∑b2
k=1 d2k · · · ∑bs−1

k=1 d(s−1)k

∑bs
k1 dsk∑b1

k=1 d
2
1k

∑b2
k=1 d

2
2k · · · ∑bs−1

k=1 d
2
(s−1)k

∑bs
k1 d

2
sk

...
...

...
...

...∑b1
k=1 d

s−1
1k

∑b2
k=1 d

s−1
2k · · · ∑bs−1

k=1 d
s−1
(s−1)k

∑bs
k1 d

s−1
sk


of size s where s− 1 = codimS.

Similar arguments as in the proof of 1.2 show that

|M | = −(s− 1)!e|N |+
∑

1≤ji≤bi
1≤i≤s

s−1∏
i=1

dijiV (d1j1 , . . . , ds−1js−1 )

≤ −(s− 1)!e|N |+ (

s−1∏
i=1

Mi)|N |

where

N =


∑b1

j=1 d1j

∑b2
j=1 d2j · · · ∑bs−1

j=1 ds−1j∑b1
j=1 d

2
1j

∑b2
j=1 d

2
2j · · · ∑bs−1

j=1 d2
s−1j

...
...

...
...∑b1

j=1 d
s−1
1j

∑b2
j=1 d

s−1
2j · · · ∑bs−1

j=1 ds−1
s−1j

 .

Since the determinant of M is positive, we have

e(S) < (
s−1∏
i=1

Mi)/(s− 1)!.

In particular, if the resolution is pure of length one more than the codimension of
S, then

e(S) = (

s−1∏
i=1

di)/(s− 1)!− bs

s−1∏
i=1

(ds − di)/(s− 1)!.
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The next result requires no Cohen-Macaulay hypothesis at all. Instead we pose
a linearity condition.

Theorem 1.6. Suppose that S has a p-linear resolution. Then Conjecture 2 holds.

Proof. Without loss of generality we may assume that the base field K is infinite.
Since S has a p-linear resolution it follows that any generic sequence y = y1, . . . , yn
of forms of degree 1 generating the maximal ideal n of S is a proper sequence. In
other words, n annihilates the kernel of

S/(y1, . . . , yi−1)S
yi−→ S/(y1, . . . , yi−1)S

for i = 1, . . . , n− 1; see Theorem 5.7 and its proof in [11].
Let d = dimS; then, since the sequence y is generic, the partial sequence

y1, . . . , yd is a generic system of parameters, and we have e(S) ≤ `(S/(y1, . . . , yd)S).
Let z = z1, . . . , zd be elements of degree 1 in R such that yi = zi + I for

i = 1, . . . , d. We set R̄ = R/zR, S̄ = S/(y1, . . . , yd)S and Ī = IR̄. Then R̄ is a
polynomial ring of dimension n− d, and S̄ = R̄/Ī.

Denote by m̄ the graded maximal ideal of R̄. We claim that Ī = m̄p. Indeed,
suppose this is not the case. Then there exists an element a ∈ S̄ of degree t ≥ p
which belongs to the socle of S̄.

Notice that a belongs to the kernel of the map S̄
yd+1→ S̄. From the long exact

sequence of Koszul homology

· · · −→ H1(y1, . . . , yd+1;S) −→ S̄(−1)
yd+1−→ S̄ −→ S̄/yd+1S̄ −→ 0

we then deduce that the homogeneous componentH1(y1, . . . , yd+1;S)t+1 is nonzero.
Since y1, . . . , yn is a proper sequence it follows that the natural map

H1(y1, . . . , yd+1;S) −→ H1(y1, . . . , yn;S)

is injective; see [11]. Therefore, H1(y1, . . . , yn;S) has a nontrivial homogeneous
component of degree > p. This is a contradiction since H1(y1, . . . , yn;S) is isomor-
phic to TorR1 (S;K), and since TorR1 (S;K) is a graded K-vector space concentrated
in degree p.

Now, as we know that Ī = m̄p, we get

e(S) ≤ `(R̄/m̄p) =

(
n− d+ p− 1

n− d

)
=

(
h+ p− 1

h

)
.

Another interesting situation is when S is Cohen-Macaulay with a resolution
which may not be quasi-pure, but essentially so. To be precise, we consider the
multisets (sets with repetitions of elements)

Di = {di1, . . . , dibi}, i = 1, . . . , s.

Then the left hand side of the formulas in 1.1 may be written as
s∑

i=1

∑
a∈Di

(−1)iak.

It is clear that these sums remain unchanged if we move an element from Di to
Di+2k for some k. We say that a resolution is numerically equivalent to a virtual
resolution with the collection of multisets {D′

i : 1 ≤ i ≤ t}, if after a finite number
of such movements, the multisets {Di, 1 ≤ i ≤ s} of the resolution become the
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multisets {D′
i, 1 ≤ i ≤ t}. Of course, the total number of multisets may not be the

same. We call a resolution numerically quasi-pure, if after a finite number of such
operations the new multisets D′

1, . . . , D
′
s satisfy the quasi-pure condition, that is,

any element in D′
i is greater than or equal to any element in D′

i−1 for all i. Thus
1.2 yields

Corollary 1.7. Let S be Cohen-Macaulay with a numerically quasi-pure resolu-
tion, and let the D′

i be defined as above. We set M ′
i = max{a : a ∈ Di}, and

m′
i = min{a : a ∈ D′

i}. Then

(

s∏
i=1

m′
i)/s! ≤ e(S) ≤ (

s∏
i=1

M ′
i)/s!.

We apply this idea of numerical equivalence in the proof of the next theorem, in
which we consider the case where all but one of the maps in the resolution are in
pure degree di.

Theorem 1.8. Suppose that S is Cohen-Macaulay with a minimal graded resolu-
tion

0 −→ Rbs(−ds) −→ · · · −→
bt⊕
j=1

R(−dtj) −→

· · · −→ Rb1(−d1) −→ R −→ 0,

so that the shifts are in pure degree di, except possibly at the tth place for some t,
1 ≤ t ≤ s. Then the upper bound of Conjecture 1 holds.

Proof. Without loss of generality, dt1 ≤ dt2 ≤ · · · ≤ dtbt . By 1.2, we may assume
that the resolution is not quasi-pure. Then there exists an integer q, 1 ≤ q ≤ s− t,
such that for all integers p, 1 ≤ p ≤ q, there exists an integer kp such that

dt+p ≥ dtj for j < kp, and dt+p < dtkp .

For convenience, we also set k0 = 1.
Now we move the elements dtj , k2p−1 ≤ j ≤ k2p − 1 to Dt+2p for all p with

0 ≤ 2p ≤ q. In other words, the resolution of S is numerically equivalent to a
virtual resolution,

· · · −→ Rbt+2p(−dt+2p)⊕
k2p−1⊕
j=k2p−1

R(−dtj) −→ · · ·

· · · −→
⊕

0≤p≤q/2

k2p+1−1⊕
j=k2p

R(−dtj)⊕
bt⊕

j=kq

R(−dtj) −→ · · ·

· · · −→ Rb1(−d1) −→ R −→ 0

Now we consider a matrix M as in the proof of 1.2 for the multisets corresponding
to these virtual resolutions. The Vandermonde determinants that occur in the sum
are nonnegative because, in every such determinant, there will be an even number
of diji which are less than any given dtjt . So, we may proceed as in the proof of 1.2.
Furthermore, we have modified our multisets while maintaining all the Mi except
for Mt which is actually lower. So, we get the result.
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2. Low codimension

In this section we consider codimension 2 perfect ideals, and codimension 3
Gorenstein ideals.

To begin with, we consider a perfect graded ideal I ⊂ R of codimension 2 in the
polynomial ring R = K[x1, . . . , xn]. Let a1 ≤ a2 ≤ . . . ≤ am be the degrees of a
mimimal set of generators of I. Then I has a minimal free resolution of the form

0 −→
m−1⊕
i=1

R(−bi) −→
m⊕
i=1

R(−ai) −→ I −→ 0.

We may assume that b1 ≤ . . . ≤ bm−1. We set uij = bi − aj for all i and j, and
call (uij) the degree matrix of I. If (gij) is the relation matrix of I, then of course
uij = deg gij for all i and j with gij 6= 0.

We now quote a few results from [12] which will be used in the proof of the next
theorem: set ui = uii and vi = uii+1; then one has

(a) ui ≥ vi ≥ 0 for i = 1, . . . ,m− 1;
(b) ui+1 ≥ vi for i = 1, . . . ,m− 2;
(c) a1 = v1 + · · ·+ vm−1 and am = u1 + · · ·+ um−1;
(d) b1 = v1 + · · ·+ vm−1 + u1 and bm−1 = u1 + · · ·+ um−1 + vm−1;

(e) e(R/I) =
∑m−1

i=1 ui(vi + · · ·+ vm−1).

Observe that the ui and vi determine the whole degree matrix, and conversely
any two sequences ui, vi satisfying (a) and (b) arise from a graded perfect ideal of
codimension 2.

Theorem 2.1. Let I ⊂ R be a graded perfect ideal of codimension 2. With the
notation introduced we have

a1b1 ≤ 2e(R/I) ≤ ambm−1.

Proof. We first prove the lower inequality: we want to show that

m−1∑
i=1

2ui(vi + · · ·+ vm−1) ≥ (v1 + · · ·+ vm−1)(u1 + v1 + · · ·+ vm−1).

Observing that

2u1(v1 + · · ·+ vm−1) ≥ u1(v1 + · · ·+ vm−1) + v1(v1 + · · ·+ vm−1),

and that 2ui ≥ (vi−1 + vi) for i = 2 . . . ,m− 1, it remains to show that

m−1∑
i=2

(vi−1 + vi)(vi + · · ·+ vm−1)

= (v1 + · · ·+ vm−1)(v2 + · · ·+ vm−1).

(4)

The right hand side of (4) may be written as

(v1 + v2)(v2 + · · ·+ vm−1) + (v2 + · · ·+ vm−1)(v3 + · · ·+ vm−1).

The first of this summands cancels against the first summand on the left of (4),
and one obtains

m−1∑
i=3

(vi−1 + vi)(vi + · · ·+ vm−1) = (v2 + · · ·+ vm−1)(v3 + · · ·+ vm−1).

Hence the assertion follows by induction.
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In order to prove the upper inequality we have to show that

(u1 + · · ·+ um−1)(u1 + · · ·+ um−1 + vm−1) ≥
m−1∑
i=1

2vi(u1 + · · ·+ ui).

Here we used
m−1∑
i=1

2ui(vi + · · ·+ vm−1) =

m−1∑
i=1

2vi(u1 + · · ·+ ui).

Observing that

2vm−1(u1 + · · ·+ um−1) ≤ vm−1(u1 + · · ·+ um−1) + um−1(u1 + · · ·+ um−1),

and that 2vi ≤ (ui + ui+1) for i = 1, . . . ,m− 2, it remains to show

m−2∑
i=1

(u1 + · · ·+ ui)(ui + ui+1)

= (u1 + · · ·+ um−1)(u1 + · · ·+ um−2).

(5)

The right hand side of (5) may be written as

(um−2 + um−1)(u1 + · · ·+ um−2) + (u1 + · · ·+ um−2)(u1 + · · ·+ um−3)

The first of this summands cancels against the last summand on the left of (5), and
one obtains

m−3∑
i=1

(u1 + · · ·+ ui)(ui + ui+1) = (u1 + · · ·+ um−2)(u1 + · · ·+ um−3).

Hence the assertion follows by induction.

Among the perfect ideals of codimension 3, the Gorenstein ideals are best un-
derstood. For the rest of this section we discuss our conjecture for this class of
ideals.

The Buchsbaum-Eisenbud structure theorem [3] identifies them as ideals of pfaf-
fians. For monomial Gorenstein ideals of codimension 3 one has an even more
restrictive structure theorem; see [5]. We shall use these results in our computa-
tions.

To describe the results we fix some notation. Let I be a graded Gorenstein
ideal of codimension 3 in R = K[x1, . . . , xn]. As a consequence of the Buchsbaum-
Eisenbud structure theorem, I is generated by an odd number of homogeneous
generators, say y1, . . . , y2r+1. Let ai be the degree of yi for i = 1, . . . , 2r + 1. We
may assume that a1 ≤ a2 ≤ . . . ≤ a2r+1. Let c be the last shift in the resolution.
Then R/I has a resolution of the form

0 → R(−c) →
2r+1⊕
j=1

R(−(c− aj)) →
2r+1⊕
j=1

R(−aj) → R→ 0,

and our conjectured inequalities are

ca1(c− a2r+1) ≤ 6e(R/I) ≤ ca2r+1(c− a1)

Here we show that the conjectured upper bound holds. We also prove the lower
bound in the following cases:

(a) c ≥ 2a2r+1,
(b) I is generated by 5 elements,
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(c) I is a monomial ideal and a1 = r.

Theorem 2.2. Let I ⊂ R be a graded Gorenstein ideal of codimension 3 generated
by 2r + 1 elements. With the notation introduced, assume that c ≥ 2a2r+1. Then
Conjecture 1 holds.

Proof. By 1.1, we get 6e(R/I) = c3 −∑2r+1
i=1 ((c − ai)

3 − a3
i ) We note also that

rc =
∑2r+1

i=1 ai. So, we get that

6e(R/I) = c3(−2r)− c2(3

2r+1∑
i=1

ai) + 3c

(
2r+1∑
i=1

a2
i

)
+ 2

2r+1∑
i=1

a3
i .

This simplifies to

6e(R/I) = c2(−2rc) + c2

(
3

2r+1∑
i=1

ai

)
− 3c

(
2r+1∑
i=1

a2
i

)
+ 2

2r+1∑
i=1

a3
i

= c2

(
2r+1∑
i=1

ai

)
− 3c

(
2r+1∑
i=1

a2
i

)
+ 2

2r+1∑
i=1

a3
i

=
2r+1∑
i=1

(ai(c
2 − 3cai + 2a2

i ))

=
2r+1∑
i=1

ai(c− ai)(c− 2ai).

If c ≥ 2a2r+1, it follows that

a1(c− a2r+1)

2r+1∑
j=1

(c− 2aj) ≤ 6e ≤ a2r+1(c− a1)

2r+1∑
j=1

(c− 2aj).

Since
∑2r+1

j=1 (c− 2aj) = c, the conclusion follows.

The conjectured upper bound for the multiplicity will follow from the next nu-
merical result.

Lemma 2.3. Given integers a1, . . . , am, m = 2r + 1, and an integer c such that

(1) a1 ≤ a2 ≤ . . . ≤ am;
(2)

∑m
i=1 ai = rc;

(3) c ≥ ai + am+2−i for i ≥ 2.

Then cam(c− a1) ≥
∑m

i=1 ai(c− ai)(c− 2ai).

Proof. If c ≥ 2am, then we have the result by the same arguments as in the proof
of 2.2. So we may assume that c < 2am.

We set M = cam(c−a1)−
∑2r+1

i=1 ai(c−ai)(c−2ai). We must show that M ≥ 0.
Let t be such that c ≥ 2at and c ≤ 2at+1. Then, t ≥ r + 1. Since

ai(c− ai)− aj(c− aj) = (ai − aj)(c− ai − aj),

it follows that

ai(c− ai) ≤ at(c− at) for all i ≤ t

and

ai(c− ai) ≥ am(c− am) for all i ≥ t+ 1.



2890 JÜRGEN HERZOG AND HEMA SRINIVASAN

Therefore,

M = amc(c− a1)−
m∑

i=t+1

ai(c− ai)(c− 2ai)−
t∑

i=1

ai(c− ai)(c− 2ai)

≥ amc(c− a1) + am(c− am)
m∑

i=t+1

(2ai − c)−
t∑

i=1

ai(c− ai)(c− 2ai)

= am[c(c− a1) + (c− am)

m∑
i=t+1

(c− 2ai)]−
t∑

i=1

ai(c− ai)(c− 2ai)(6)

= amc(am − a1) +

t∑
i=1

(am(c− am)− ai(c− ai))(c − 2ai)

= amc(am − a1) +

t∑
i=1

(am − ai)(c− am − ai)(c− 2ai).

Thus the lemma is proved if c ≥ am + at. If not, c < am + at, and we distinguish
two cases:

(a) a1 ≤ . . . ≤ at < at+1 ≤ . . . ≤ ak < ak+1 = . . . = am.
(b) a1 ≤ . . . ≤ at < at+1 ≤ at+2 = . . . = am.

Case (a): We reduce to case (b). Let s ≥ t be the smallest integer for which there
exists a k > s such that c− as < ak < am. When such an s does not exist, we are
in case (b). We choose k to be the largest such integer.

If c = ak + a2r+3−k, then

ak(c− ak)(2ak − c) = a2r+3−k(c− a2r+3−k)(c− 2a2r+3−k).

Hence, we can remove both ak and a2r+3−k altering neither M nor any of our hy-
potheses and have M ≥ 0 by induction on r. (The case r = 0 is trivial.) So, we
may assume that c > ak + a2r+3−k. Now, if we replace ak by ak + 1 and ai by
at − 1 where i is the smallest index for which ai = at, it does not alter any of our
hypotheses and decreases M by 6(ak− ai +1)(ak + ai− c). We repeat this process.
After a finite number of steps we are in case 2, or we are done because c ≥ at+am.

Case (b): By (6), M ≥ amc(am − a1) +
∑t

i=1(am − ai)(c − am − ai)(c − 2ai).
By hypothesis, c ≥ am + am+2−t−2 = am + am−t, and so,

m−t∑
i=1

(am − ai)(c− am − ai)(c− 2ai) ≥ 0.

Thus we get

M ≥ amc(am − a1)−
t∑

i=m−t+1

(am − ai)(am + ai − c)(c− 2ai).
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Since am ≥ am + ai − c and am − a1 ≥ am − ai, we just need to check that
c ≥∑t

i=m−t+1(c− 2ai), equivalently,
∑t

i=m−t+1 2ai ≥ (2t−m− 1)c. But,

rc =

m−t∑
i=2

(ai + am) + (a1 + at+1) +

t∑
i=m−t+1

ai

≤ (m− t)c +

t∑
i=m−t+1

ai.

Therefore (r + t−m)c ≤∑t
i=m−t+1 ai, and hence

(2t−m− 1)c = (2r + 2t− 2m)c ≤ 2

t∑
i=m−t+1

ai,

as desired.

Theorem 2.4. Let I ⊂ R be a graded Gorenstein ideal of codimension 3 as above.
Then the conjectured upper bound holds for the multiplicity of R/I.

Proof. Let ai, i = 1, 2, . . . , 2r + 1 = m, be the degrees of the generators of I in
ascending order. So that, rc =

∑2r+1
i=1 ai and c ≥ ai + a2r+3−i for all i.

By 2.3 we have

am(c− a1)c ≥
2r+1∑
i=1

ai(c− ai)(c− 2ai) = 6e(R/I).

Theorem 2.5. Let I ⊂ R be as above a graded Gorenstein ideal of codimension 3
generated by 5 elements. Then the conjectured lower bound holds for the multiplicity
of R/I.

Proof. We need to prove the inequality a1(c − a5)c ≤ 6e. By 2.2, we may assume
that c < 2a5. We will use the formula of Herzog, Trung and Valla [12] for the
multiplicity of a graded Gorenstein ideal of codimension 3. In our particular case
the formula is

e = v1(u1 + u2)(w1 + w2) + v2u2w2,

where vi = c− ai − a6−i, wi = c− ai+1 − a6−i and ui = c− ai − a5−i for i = 1, 2.
So, u1 + u2 = a5 and w1 + w2 = a1. It follows that e = v1a5a1 + v2u2w2.

We will distinguish two cases. First we assume that w2 ≤ v1. Then

ca1(c− a5) = ca1(v1 + a1) = ca1v1 + ca1(w1 + w2)

< 2a5a1v1 + 2a5a1v1 + 2a5a1v1 < 6e.

In the second case we assume that w2 > v1. Then a1 + a5 > a3 + a4, and hence

2u2 − u1 = 2c− 2a2 − 2a3 − c + a4 + a1

= (c− a2 − a5) + (a5 − a3) + (a4 − a3) + a1 − a2

> a4 − a1 + a1 − a2 ≥ 0,

which implies a5 = u1 + u2 < 3u2.
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Now we get

ca1(c− a5) = ca1(v1 + a1) ≤ 2a5v1a1 + 2a5a1w1 + 2a5a1w2

= 2a5v1a1 + 2a5w1a1 + 2a5w1w2 + 2a5w2w2

< 2a5v1a1 + 2a5v1a1 + 2a5v1a1 + 6u2v2w2 = 6e.

We now turn to the monomial Gorenstein ideals of codimension 3. By the
structure theorem [5] for monomial Gorenstein ideals of codimension 3, there exist
relatively prime monomials p1, . . . , p2r+1 such that R/I is isomorphic to R/J where
J is minimally generated by the monomials,

{
r+t−1∏
i=t

pi : 1 ≤ t ≤ 2r + 1, p2r+1+i = pi}.

Let ai = deg(pi). Then the graded resolution of R/J is of the form

0 → R

(
−

2r+1∑
i=1

ai

)
→

2r+1⊕
t=1

R

(
−

r+t∑
i=t

ai

)
→

2r+1⊕
t=1

R

(
−

r+t−1∑
i=t

ai

)
→ R→ 0.

With this notation we have

Lemma 2.6. Let I be a Gorenstein ideal of codimension 3 generated by 2r + 1
monomials. Then 3e(R/I) =

∑m
i=1 aiTi, and

Ti + Tr+i+1 =

(
r+i∑

k=i+1

ak

)(
2r+1+i∑
k=r+i+1

ak

)

where we set at = at+k(2r+1), for all integers k and t.

Proof. By 1.1, we get

6(R/I) =

(
2r+1∑
t=1

ai

)3

−
2r+1∑
t=1

(r+t∑
i=t

ai

)3

−
(
r+t−1∑
i=t

ai

)3
 .

This expression is symmetric in aj for all j. Let Tj be the coefficient of aj in the
expression for the multiplicity e(R/I), so that, e = ajTj+D where D is independent
of aj . In the light of the symmetry observed above, it suffices to prove that:

(a) There are no terms containing a2
1 or a3

1 and

(b) T1 + Tr+2 =
(∑r+1

k=2 ak

)(∑2r+2
k=r+2 ak

)
.

So, we just pick terms with a1 in

6(R/I) =

(
2r+1∑
t=1

ai

)3

−
2r+1∑
t=1

(r+t∑
i=t

ai

)3

−
(
r+t−1∑
i=t

ai

)3


=

(
2r+1∑
t=1

ai

)3

−
2r+1∑
t=1

ar+t

a2
r+t + 3ar+t

r+t−1∑
i=t

ai + 3

(
r+t−1∑
i=t

ai

)2
 .
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The terms with a1 are

3a2
1

(
2r+1∑
i=2

ai

)
+ 3a1

(
2r+1∑
i=2

ai

)2

− 3a1

(
2r+1∑
i=r+2

ai

)2

− 3a2
1

(
2r+1∑
i=2

ai

)
− 3a1

(
r+1∑
i=2

a2
i

)

− 6a1

 r∑
j=2

 2r+1∑
i=r+j+1

ai +

(
j−1∑
i=2

ai

) aj

− 6a1ar+1

r∑
i=2

ai

= 6a1

 r∑
j=3

aj

j−1∑
i=2

ai

+

(
r+1∑
i=2

ai

)(
2r+1∑
i=r+2

ai

)

−
 r∑

j=2

 2r+1∑
i=r+j+1

ai +

(
j−1∑
i=2

ai

) aj

 .
Hence we see that there are no terms with a2

1 and that

T1 = a2ar+2 + a3(ar+2 + ar+3) + · · ·+ ar+1

(
2r+1∑
i=r+2

ai

)
.

So, by symmetry,

Tr+2 = ar+3a2 + ar+4(a2 + a3) + · · ·+ a1

(
r+1∑
i=2

ai

)
.

Thus,

T1 + Tr+2 =a2ar+2 + a3(ar+2 + ar+3) + · · ·+ ar+1

(
2r+1∑
i=r+2

ai

)

+ ar+3a2 + ar+4(a2 + a3) + · · ·+ a1

(
r+1∑
i=2

ai

)

=

(
r+1∑
i=2

ai

)(
2r+2∑
i=r+2

ai

)
This concludes the proof because by symmetry we get,

3e(R/I) =

2r+1∑
j=1

ajTj

and

Ti + Tr+i+1 =

(
r+i∑

k=i+1

ak

)(
2r+1+i∑
k=r+i+1

ak

)
.

Next, we prove the lower bound on e(R/I) if we assume that the smallest degree
for the generator is r.
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Theorem 2.7. Let I be a grade three Gorenstein ideal generated by 2r + 1 mono-
mials. Then

6e(R/I) ≥ rm2m3.

In particular, if one of the generators has the smallest possible degree, namely r,
then we have the conjectured lower bound.

Proof. By 2.6, the multiplicity is given by 6e(R/I) = 2
∑m

i=1 aiTi where Ti +

Tr+i+1 =
(∑r+i

k=i+1 ak

)(∑2r+1+i
k=r+i+1 ak

)
. Hence,

6e(R/I) =
m∑
i=1

(aiTi + ar+i+1Tr+i+1) ≥
n∑
i=1

[Ti + Tr+i+1]

=
n∑
i=1

(
r+i∑

k=i+1

ak

)(
2r+1+i∑
k=r+i+1

ak

)
≥ m2

n∑
i=1

(
r+i∑

k=i+1

ak

)
= m2rm3.

3. Stable ideals

In this section we prove our conjecture for stable ideals. We first introduce some
notation: for a monomial u ∈ R we let m(u) = max(u) be the largest integer such
that xm(u) divides u, and min(u) the smallest such number. According to Eliahou
and Kervaire one calls a monomial ideal I stable, if for all monomials u ∈ I one has
(xiu)/xm(u) ∈ I for all i ≤ m(u). The importance of this notion is partially due
to the fact that the generic initial ideal of an arbitrary homogeneous ideal is stable
(even strongly stable), if charK = 0.

It suffices to check the property ‘stable’ for the generators of the monomial ideal
I. A minimal set of monomial generators of I is uniquely determined. We denote
this set by G(I). A subset S of monomials of G(I) with the property that any
u ∈ G(I) is of the form (xiv)/xm(v) for some v ∈ S and some i ≤ m(v) is called a
set of Borel generators of I. We denote the unique smallest such set by B(I).

As in the introduction, we let Mi = Mi(I) be largest, and mi = mi(I) be the
smallest ith shift in the resolution of R/I. It follows from the graded Eliahou-
Kervaire resolution F of R/I that

Mi = max{deg u : u ∈ G(I),m(u) ≥ i}+ i− 1

and
mi = min{deg u : u ∈ G(I),m(u) ≥ i}+ i− 1.

Indeed, Fi is a free R-module with homogeneous basis f(σ;u) where u ∈ G(I) and
σ ⊂ {1, . . . , n} with max(σ) < max(u) and |σ| = i − 1. Moreover, deg f(σ;u) =
deg u+ (i− 1).

For later applications we need

Lemma 3.1. Let I ⊂ R be a stable ideal. Then

(a) codimR/I = max{min(u) : u ∈ I} = max{min(u) : u ∈ G(I)};
(b) codepthR/I = max{max(u) : u ∈ G(I)}.

Proof. (a) The associated prime ideals containing I are all of the form (x1, . . . , xi)
for some i. Thus there is just one minimal prime, and obviously it is equal to
(x1, . . . , xj) where j = max{min(u) : u ∈ I}. This proves the first assertion.
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(b) follows immediately from the description of the resolution of R/I.

Our main result of this section is

Theorem 3.2. Let I ⊂ R be a stable ideal such that R/I is Cohen-Macaulay. Then
Conjecture 1 holds.

The proof of the theorem is based on a few technical lemmata.
We first remark that in the above formulas for mi and Mi we may replace G(I)

by B(I), if we wish. We also may replace m(u) ≥ i by m(u) = i in the second
formula. Indeed we have

Lemma 3.3. mi = min{deg u : u ∈ G(I),m(u) = i}+ i− 1.

Proof. Let u ∈ G(I) such that m(u) ≥ i and deg u = di = mi − (i − 1). Say,
u = xa1

1 · · ·xamn . Then, since I is stable, we have

v = xa1
1 · · ·xai−1

i−1 x
∑n

t=i at
i ∈ I.

If v ∈ G(I), then we are done. Suppose there exists f ∈ G(I) which properly
divides v; then deg f < deg v = di. Hence by the definition of u we must have
m(f) < i. This implies that f divides xa1

1 · · ·xai−1

i−1 . But then f divides u, which is
a contradiction.

We denote by bi(I) the smallest (with respect to the lexicographic order) element
u ∈ G(I) which has the property that deg u = mi − i + 1 and m(u) = i. Such an
element exists by Lemma 3.3.

Lemma 3.4.

mi(I, xn) = mi(I) for all i ≤ n− 1.

Proof. Since bi(I) ∈ (I, xn) it follows from the definition of bi(I, xn) that deg bi(I) ≥
deg bi(I, xn). But it is also clear that bi(I, xn) ∈ I, so that deg bi(I, xn) ≥ deg bi(I).
Hence the assertion follows.

Lemma 3.5. There exists a number t, 0 ≤ t ≤ n− 1, such that

(a) mi(I : xn) = mi(I) for i ≤ t,
(b) mi(I : xn) ≥ mi(I) − 1 for t < i ≤ n.
(c) mi(I) = mn(I)− (n− i) for t < i ≤ n.

Proof. Let u ∈ G(I : xn); then u ∈ G(I) or uxn ∈ G(I). Indeed, since uxn ∈ I,
there exists g ∈ G(I) such that g|uxn. If g = g′xn, then g′ ∈ G(I : xn) and
u = g′; so uxn ∈ G(I). Otherwise, g divides u in which case u ∈ G(I) since
G(I : xn) ∩ I ⊂ G(I). It follows that mi(I : xn) ≥ mi(I) − 1. This implies in
particular assertion (b).

We set di = deg bi(I) for i = 1, . . . , n. We first observe that di ≤ dn, and set

t = min{i : di 6= dn} − 1.

Notice that di < dn for i ≤ t, and di = dn for i > t. Thus (c) follows trivially from
the definition of t.

Finally we set gi = bi(I : xn); then gi ∈ G(I) or gixn ∈ G(I). If gi ∈ G(I), then
deg gi = deg bi, and mi(I : xn) = mi(I) for i ≤ t. If gi 6∈ G(I), then gixn ∈ G(I).
It follows that deg gi + 1 ≥ dn > di, and hence deg gi = di. On the other hand,
we have deg gi ≤ di for i ≤ t, since for these i, bi(I) ∈ (I : xn). It follows that
mi(I : xn) = mi(I) for i ≤ t. This proves (a).
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Lemma 3.6. For all i one has Mi(I : xn) ≤Mi(I).

Proof. Let B(I) = {u1, . . . , ur, v1xn, . . . , vsxn} with all ui ∈ K[x1, . . . , xn−1]:
Then B(I : xn) ⊂ {u1, . . . , ur, v1, . . . , vs}. Therefore we have

Mi(I : xn) ≤ max{deg uj , deg vk : max(uj) ≥ i,max(vk) ≥ i}+ i− 1

≤ Mi(I).

Proof. [Theorem 3.2.] Let I ⊂ R be stable. Since we may assume that each variable
divides one of the generators, it follows from 3.1 that depthR/I = 0. Hence if R/I
is Cohen-Macaulay, as we assume, there exists a pure power of xn belonging to I.
Let a > 0 be the smallest integer such that xan ∈ I. Since I is stable, we conclude
that a ≥ deg u for all u ∈ G(I). Hence we have

Mi = a + i− 1 for all i,

and so

ei(R/I) ≤ e(R/(x1, . . . , xn)a) = (
n∏
i=1

Mi)/n!.

In order to prove the lower bound we consider the exact sequence

0 −→ R/(I : xn) −→ R/I −→ R/(I, xn) −→ 0.

As R/I has finite length, the multiplicities of the rings in the above exact sequence
is just their length. So, arguing by induction on the length, we have

e(R/I) = e(R/(I, xn)) + e(R/(I, xn))

≥ (

n−1∏
i=1

mi(I, xn))/(n− 1)! + (

n∏
i=1

mi(I : xn))/n!.

Therefore it follows from 3.4 and 3.5 that

n!e(R/I) ≥ n

n−1∏
i=1

mi +

t∏
i=1

mi

n∏
i=t+1

(mn − i− 2)

= n

n−1∏
i=1

mi +

t∏
i=1

mi

n−1∏
i=t+1

mi(mn − n + t)

=

n−1∏
i=1

mi(mn + t) ≥
n∏
i=1

mi.

The upper bound will be proved in the next theorem, more generally, for arbi-
trary, not necessarily Cohen-Macaulay stable ideals.

For the lower bound of the multiplicity in Theorem 3.2 we need the hypothe-
sis that R is Cohen-Macaulay. Indeed, consider the following example: let R =
K[x1, x2, x3, , x4], and B(I) = {x1x2, x

2
2x4}; then

e(R/I) = 3, m1 = 2, m2 = 3, m3 = 5, m4 = 6,

and

3 <
2 · 3 · 5 · 6

24
.
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Theorem 3.7. For any stable ideal I with codimR/I = s, we have

e(R/I) ≤ (

s∏
i=1

Mi)/s!.

Proof. We consider again the exact sequence

0 −→ R/(I : xn) −→ R/I −→ R/(I, xn) −→ 0.

By 3.1, we have dimR/I = n−max{min(u) : u ∈ I}. If dimR/I = dimR/(I, xn),
then

n−max{min(u) : u ∈ I} = (n− 1)−max{min(u) : u ∈ Ī},

where Ī = (I + (xn))/(xn) ⊂ R/(xn). This is only possible if xan ∈ I for some
integer a > 0. In this case R/I is Cohen-Macaulay (of codim n), and we know the
result from 3.2.

If dimR/I > dimR/(I, xn), then e(R/I) = e(R/(I : xn)). If (I : xn) = I, then
I is an ideal K[x1, . . . , xn−1], and we know the result by induction on the number
of variables. So we may assume that I is properly contained in (I : xn), and that
e(R/I) = e(R/(I : xn)). Let t = codimR/(I : xn); then t ≤ s. Therefore by
Noetherian induction and by Lemma 3.6 we have

e(R/I) = e(R/(I : xn))

≤ (
t∏

i=1

Mi(I : xn))/t! ≤ (
s∏

i=1

Mi(I))/s!

Recall that the Castelnuovo-Mumford regularity reg(I) of a graded ideal I ⊂ R
is defined to be the maximum of the numbers Di(I) = Mi(I) − i + 1. Denote by
in(I) the generic initial ideal of I with respect to the reverse lexicographic order.
One has e(R/I) = e(R/ in(I)), reg(I) = reg(in(I)) and codepth I = codepth in(I);
see [7] and [6]. Furthermore, in(I) is Borel-fixed, by a theorem of Galligo [10] and
Bayer-Stillman [6] (see also [7]).

In case charK = 0, it follows that in(I) is stable. On the other hand, if charK >
0, we consider the polynomial ring R0 in n variables over the rational numbers. Let
J0 ⊂ R0 be the ideal defined by the same monomials as in (I). One has βij(J0) ≤
βij(in(I)) for all i and j. This implies that reg(J0) ≤ reg(in(I)). Furthermore, we
have e(R/J0) = e(R/in(I)) and codim(J0) = codim(in(I)). Let us denote by J , the
ideal in(I) when charK = 0 and the generic initial ideal of J0 with respect to the
reverse lexiocographical order, when charK > 0. Then we get, e(R/J) = e(R/I),
codim(J) = codim(I), reg(J) ≤ reg(I) and J is stable. Thus we get

Corollary 3.8. Let I ⊂ R be a graded ideal of codim s. Then

e(R/I) ≤
(

reg(I) + s− 1

s

)
.
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Proof. Let J be as above, so that J is stable and e(R/J) = e(R/I). Theorem 3.7,
together with the above observations implies that

e(R/I) = e(R/J)

≤
s∏

i=1

((Di(J) + i− 1)/i)

≤
s∏

i=1

((reg(I) + i− 1)/i)

=

(
reg(I) + s− 1

s

)
.

4. Squarefree strongly stable ideals

In this section we prove Conjecture 1 for squarefree strongly stable ideals. This
class of monomial ideals was first introduced in [2]. Already somewhat before,
squarefree lexsegment ideals and their resolution were studied by Evans and Char-
alambous [8]. Recall that a monomial ideal I ⊂ R = K[x1, . . . , xn] is called square-
free strongly stable if it is generated by squarefree monomials such that for each
u ∈ G(I) we have that xj(u/xi) ∈ I for all j < i such that xj does not divide u. In
particular, the monomial xj(u/xi) is again squarefree.

Let I be squarefree strongly stable. The graded free R-resolution F of S = R/I
is very similar to the Eliahou-Kervaire resolution; see [2]. The free module Fi
has a basis f(σ;u) with u ∈ G(I), σ ⊂ {1, . . . , n}, |σ| = i − 1, max(σ) < m(u)
and σ ∩ supp(u) = ∅ where supp(u) is the set of indices i such that xi divides u.
Moreover, one has deg f(σ;u) = deg u+ i− 1.

It is immediate from this description that

Mi = max{deg u : u ∈ G(I), max(u)− deg u ≥ i− 1}+ i− 1

and
mi = min{deg u : u ∈ G(I), max(u)− deg u ≥ i− 1}+ i− 1.

Just as for stable ideals we can compute the codepth and codimension of R/I
when I is squarefree strongly stable.

Proposition 4.1. Let I ⊂ R be a squarefree strongly stable ideal. Then

(a) codimR/I = max{min(u) : u ∈ I} = max{min(u) : u ∈ G(I)};
(b) codepthR/I = max{max(u)− deg(u) : u ∈ G(I)} + 1.

Proof. In order to simplify notation we introduce for any monomial ideal J the
number

v(J) = max{min(u) : u ∈ G(J)}.
Since I is squarefree strongly stable it follows that (x1, . . . , xv(I)) contains I. This
implies that codim(R/I) ≤ v(I). Thus, since all minimal prime ideals of a monomial
ideal are generated by subsets of {x1, . . . , xn}, it suffices to show that if P =
(xi1 , . . . , xir ) is a prime ideal of R with I ⊂ P , then r ≥ v(I).

First suppose that i1 ≥ 2. Write I = x1I1 + I2 with I1 and I2 generated by
monomials in K[x2, . . . , xn]. Since P is a prime ideal, and since x1 6∈ P it follows
that I2 ⊂ P . Thus, since I2 is squarefree strongly stable, induction yields r ≥ v(I2).
On the other hand, v(I2) ≥ v(I). This proves the assertion in this case.
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Next suppose that i1 = 1. Let I ′ = (I, x1)/(x1), R′ = K[x2, . . . , xn] and
P ′ = (P, x1)/(x1). Then P ′ is a prime ideal in R′ with I ′ ⊂ P ′. By induction on
the number of variables we have r − 1 ≥ v(I)− 1, and hence r ≥ v(I).

(b) follows immediately from the description of the minimal free resolution of
R/I.

For the proof of the main result of this section we need the following technical

Lemma 4.2. Let I ⊂ R be a squarefree strongly stable ideal. Then

Mi(I : xn) ≤Mi(I) and codepthR/(I : xn) ≤ codepthR/I.

Proof. Let G(I) = {u1, . . . , ur, v1xn, . . . , vsxn} with ui, vj ∈ K[x1, . . . , xn−1] for
all i and j. Then

G(I : xn) ⊂ {u1, . . . , ur, v1, . . . , vs}.
Next notice that max(vjxn)− deg vjxn ≥ max(vj)− deg vj for all j, so that

codepthR/(I : xn)− 1 ≤ max
i,j

{max(ui)− deg ui,max(vj)− deg vj}
≤ max

i,j
{max(ui)− deg ui,max(vjxn)− deg vjxn}

= codepthR/I − 1.

The inequality for the Mi is proved similarly.

Theorem 4.3. Let I ⊂ R be a squarefree strongly stable ideal with codimR/I = s.
Then

e(R/I) ≤ (

s∏
i=1

Mi)/s!.

Proof. Let us first suppose that R/I is Cohen-Macaulay. Then

max{max(u)− deg(u) : u ∈ G(I)} + 1 = max{min(u) : u ∈ G(I)}.
For any monomial u one has min(u) ≤ max(u) − deg(u) + 1. Thus if we choose
v ∈ G(I) such that min(v) is maximal, then we must have that min(v) = max(v)−
deg(v) + 1. This implies that v = xm−d+1xm−d+2 · · ·xm if m = max(v) and d =
deg v.

We may assume that xn divides one of the elements of u ∈ G(I). We then claim
that m = n. Indeed, let u ∈ G(I) be divisible by xn, and let t = deg u.

Assume that t > d; since n − t + 1 ≤ m − d + 1 (by the choice of v) it follows
that n − m ≤ t − d. Therefore u has at most t − d factors xi with i > m, and
hence at least t − (t − d) = d factors xi with i ≤ m. Since I is stable, and since
v ∈ I it follows that any squarefree monomial w of degree d with max(w) ≤ m
belongs to I. This implies that u 6∈ G(I). Thus we must have that t ≤ d; but then
n− d ≤ n− t ≤ m− d, and this implies m = n.

Now we are in the situation that v = xn−d+1 · · ·xn is an element of G(I). This
implies in particular that I contains all squarefree monomials of degree d. We now
consider the indicator algebra A = K[x1, . . . , xn]/(I, x2

1, . . . , x
2
n). Obviously one

has dimK Ai = fi−1 where f = f−1, f0, f1, f2, . . . is the f -vector associated with
the simplicial complex ∆ of I; see [2].

Notice that e(R/I) is the number of maximal faces of ∆. Thus if dim ∆ = δ,
then Aδ+2 = 0 and e(R/I) = dimAδ+1. We have just seen that Ad = 0. On the
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other hand Ad−1 6= 0, since otherwise we would have that xn−d+2 . . . xn ∈ I which
contradicts the fact that v ∈ G(I). In conclusion we see that

e(R/I) = dimAd−1 ≤
(

n

d− 1

)
.

As Mi = d+ i− 1 for i = 1, . . . , n− d+ 1 we get

1

(n− d+ 1)!

∏
i=1,... ,n−d+1

Mi =

(
n

d− 1

)
≥ e(R/I),

as desired.
Now we treat the general case and proceed as for the stable ideals: consider the

exact sequence

0 −→ R/(I : xn) −→ R/I −→ R/(I, xn) −→ 0.

By 4.1 we have dimR/I = n −max{min(u) : u ∈ I}. If dimR/I = dimR/(I, xn),
then

n−max{min(u) : u ∈ I} = (n− 1)−max{min(u) : u ∈ Ī},
where Ī = (I +(xn))/(xn) ⊂ R/(xn). This is only possible if I contains an element
of the form xixi+1 · · ·xn. In this situation however we may proceed in the proof of
the Cohen-Macaulay case.

Thus we may assume that dimR/I > dimR/(I, xn). Then, using 4.2, the proof
is word by word the same as in the case of stable ideals; cf. the proof of 3.7.

Now we turn to the proof of the lower inequality, and first observe

Remark 4.4. Let I ⊂ R be a squarefree strongly stable ideal. Then

G(I : xn) ⊂ {u : u ∈ G(I),max u 6= n} ∪ {u/xn : u ∈ G(I),max u = n},
and

G(Ī) = {u : u ∈ G(I),max u 6= n}.
Lemma 4.5. Let R/I be Cohen-Macaulay, and let s = codepthR/I. Then there
exists an integer t, 0 ≤ t < n, such that

mi(I) < n− s+ i, for i < t and mi(I) = n− s + i, for i ≥ t.

Proof. Since R/I is Cohen-Macaulay, there exist u = xixi+1 · · ·xn in G(I) for some
i. By Proposition 4.1, we have i = s, so that v = xs · · ·xn ∈ I. Thus,

mi(I) ≤ n− s+ 1 + i − 1 = n− s+ i

for all i. Let t be such that mi(I) < n− s + i for all i < t and mt(I) = n− s + t.
For i > t, let u be of minimal degree in G(I) with maxu − deg u ≥ i − 1. Then
deg(u) + t − 1 ≥ mt(I) = n − s + t. This implies that deg(u) ≥ n − s + 1 and
mi(I) ≥ n− s+ 1 + i− 1 = n− s+ i. Thus, mi(I) = n− s+ i for all i ≥ t.

Lemma 4.6. Let s and t be the numbers introduced in 4.5. Then

mi(Ī) = mi(I), for i ≤ s− 1,
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mi(I : xn) ≥ mi(I)− 1, for i < t and

mi(I : xn) = n− s + i− 1, for i ≥ t.

Proof. Since G(I) ⊂ G(Ī), mi(Ī) ≥ mi(I) for all i ≤ s − 1. But, if u in G(I) is
divisible by xn, then either u′ = (u/xn)xi ∈ G(I) for some i, or deg(u) + i − 1 >
mi(I). This implies that mi(Ī) ≤ mi(I), and hence mi(Ī) = mi(I).

Now, suppose that mi(I) = n−s+i so that v = xs · · ·xn is an element of minimal
degreee in {u : max(u)−deg(u) ≥ i−1, u ∈ G(I)}. Then v′ = xs · · ·xn−1 ∈ (I : xn)
and max v′ − deg v′ ≥ i− 1. The minimality of v forces v′ to be in G(I : xn). So,

mi(I : xn) = mi(I)− 1 = n− s+ i− 1, i ≥ t.

Since, v ∈ G(I) and I is squarefree strongly stable, no monomial of smaller
degree in G(I) is a multiple of xn. So, for i < t, an element of minimal degree, say
di, in {u : max(u)− deg(u) ≥ i − 1, u ∈ G(I)} is not a multiple of xn. Hence di is
the minimal degree in {u : max(u)− deg(u) ≥ i− 1, u ∈ G(I : xn)} as well, and so

mi(I : xn) = mi(I), i < t.

Theorem 4.7. Let I ⊂ R be a squarefree strongly stable such that R/I is Cohen-
Macaulay. Then

e(R/I) ≥ (

n∏
i=1

mi)/s!.

Proof. Consider the exact sequence

0 −→ R/(I : xn) −→ R/I −→ R/(I, xn) −→ 0.

By the Proposition 4.1 and Remark 4.4, these rings all have the same dimension
unless R/I = K, in which case we already know the result. Since the multiplicity
is additive,

e(R/I) = e(R/I : xn) + e(R/(I, xn)).

SinceR/I is Cohen-Macaulay of codimension s, v = xs · · ·xn is inG(I). IfR/(I, xn)
is not Cohen-Macaulay, then codepth of R/(I, xn) is less than s−1 and vxs−1/xn =
xs−1 · · ·xn−1 is not in G(I). So, for all i ≤ s, mi(I) < n − s + i. In other
words, the integer t in Lemma 4.5 is actually greater than s. Hence by Lemma 4.6,
mi(I) = mi((I : xn)) for all i ≤ s. Then by induction,

e(R/I) ≥ e(R/(I : xn)) ≥
s∏

i=1

mi(I : xn) =

s∏
i=1

mi(I),

as desired.
On the other hand, if R/(I, xn) is Cohen-Macaulay, then by induction, we get

e(R/I) ≥
∏s

i=1 mi(I : xn)

s!
+

∏s−1
i=1 mi(Ī)

(s− 1)!
,
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and hence

s!e(R/I) ≥
s∏

i=1

mi(I : xn) + s

s−1∏
i=1

mi(Ī)

=

t−1∏
i=1

mi(I)

s∏
i=t

(n− s+ i− 1) + s

t−1∏
i=1

mi(I)

s−1∏
i=t

(n− s + i)

=

t−1∏
i=1

mi(I)

s−1∏
i=t

(n− s + i)(n− s+ t+ s)

≥
s∏

i=1

mi(I).
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