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ON THE EXISTENCE OF CONVEX CLASSICAL SOLUTIONS
FOR MULTILAYER FREE BOUNDARY PROBLEMS

WITH GENERAL NONLINEAR JOINING CONDITIONS

ANDREW ACKER

Abstract. We prove the existence of convex classical solutions for a general
multidimensional, multilayer free-boundary problem. The geometric context
of this problem is a nested family of closed, convex surfaces. Except for the
innermost and outermost surfaces, which are given, these surfaces are inter-
preted as unknown layer-interfaces, where the layers are the bounded annular
domains between them. Each unknown interface is characterized by a quite
general nonlinear equation, called a joining condition, which relates the first
derivatives (along the interface) of the capacitary potentials in the two adjoin-
ing layers, as well as the spatial variables. A well-known special case of this
problem involves several stationary, immiscible, two-dimensional flows of ideal
fluid, related along their interfaces by Bernoulli’s law.

1. Introduction

Our purpose is to study the existence question for convex classical solutions of
multilayer free boundary problems of the following general form:

1.1. Problem. In RN , N ≥ 2, let an annular domain Ω∗ of the form Ω∗
= D+

∗ \ Cl(D−∗ ) be given, where Cl(·) denotes the closure of a set. Here, D±∗
denote fixed, bounded, convex, nested domains with boundaries S±∗ = ∂D±∗ . Given
the twice continuously-differentiable functions Fi(x, p, q) : RN × R+ × R+ → R,
i = 1, . . . , k, we seek an ordered family of convex domains (D1, . . . , Dk) such that
Cl(Di) ⊂ Di+1 for i = 0, 1, . . . , k (where D0 = D−∗ and Dk+1 = D+

∗ ), and such
that

Fi(x, |∇Ui(x)|, |∇Ui+1(x)|) = 0 on Si := ∂Di(1.1)

for i = 1, . . . , k, where U(x) solves the boundary value problem

∆U(x) = 0 in Ω∗ \ (S1 ∪ · · · ∪ Sk), U(Si) = i (i = 0, . . . , k, k + 1),(1.2)

and where Ui denotes the restriction of U to the (closure of the) annular domain
Ωi := Di \ Cl(Di−1).

In Problem 1.1, equation (1.1) represents a general, nonlinear “joining condition”
relating the first derivatives of the capacitary potentials on opposite sides of each of
the (convex) free-boundary surfaces Si, i = 1, . . . , k. The main focus of this paper
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is on obtaining existence results for Problem 1.1 which apply to a very general class
of nonlinear joining conditions.

The author’s previous existence results for Problem 1.1 (see [7], [8], [9]) are
limited to joining conditions of the form:

|∇Ui(x)|2 = |∇Uu+1(x)|2 +Ai(x) on Si,(1.3)

i = 1, . . . , k, corresponding to functions Fi(x, p, q) = Ai(x) + q2 − p2 in which
Ai(x) > 0 and the related functions (1/

√
Ai(x)) are concave in Ω∗. To the author’s

knowledge, the only alternative treatment of the existence question for the convex
multilayer problem is due to Laurence and Stredulinsky [20], [21]. Their existence
results in [21] are limited to joining conditions of the form (1.3) in the particular
case where N = 2 and each function Ai(x) is a positive constant. (No existence
proof is yet available for the interesting and closely related multilayer free-boundary
problem proposed in [20]. See [6].) The most general available existence results for
the two-layer problem in the geometrically general (non-convex) setting, due to Alt,
Caffarelli, and Friedman [13], also involve joining conditions of the form (1.3), in
which, however, the function A1(x) satisfies no requirements beyond regularity. The
existence proof of Alt, Caffarelli, and Friedman is based on the method of variational
inequalities, and the convex existence proofs in [9] and [21] were accomplished
essentially by adapting the method of variational inequalities to a convex setting
(in the tradition of the convex variational proofs in [2], [3], [15]). We remark that
the joining condition (1.3) is of special interest in the context of the theory of
two-dimensional ideal fluids, where Problem 1.1 can be interpreted in terms of a
layered flow involving several immiscible ideal fluids. In this setting, (1.3) can be
interpreted as a relation between the speeds of the neighboring flows along their
interface, governed by Bernoulli’s law of fluids.

Our present existence results will be stated in §2 (see Theorems 2.3 and 2.11),
along with a number of concrete special cases which very substantially generalize
the form given in (1.3). The main obstacle to the proof of these results is the
absence of any variational formulation for the generalized problem, necessitating
a new proof based on an alternative principle. Essentially, the new proof is an
adaptation of the idea of obtaining a solution as the limit of an increasing (resp.
decreasing) sequence of inner (outer) solutions (see §§3 and 5).

The author’s old and new existence results for Problem 1.1 are all based on
the application of a one-parameter family of free-boundary perturbation operators
Tε, 0 < ε < 1, which preserve the geometric convexity of the members of the
ordered families of free boundaries occurring in the problem. The author originally
introduced these operators in [1], adapted them to convex free boundary problems
in [2] and [3], and then adapted them (together with their various properties and
uses) to the case of joining conditions of the form (1.3) in [5], [7], [8] and [9]. In [9],
the operators Tε, 0 < ε < 1, are used to define the family of convexity-preserving
variations of the free boundaries by which it is shown that the convex functional
minimizer satisfies (1.3) in a weak sense. For a general discussion of the variational
aspects of the operator method in the context of a convex free-boundary problems,
we refer the reader to the author’s survey article [10]. In essence, the present
generalization of the existence results in [7], [8], and [9] is accomplished by applying
the same operators Tε, but in generalized form corresponding to the generalized
functions Fi(x, p, q), i = 1, . . . , k (see [11]), and in a new context in which the
previous emphasis on their variational properties is replaced by an emphasis on
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their monotonicity properties. By means of these operators, we define (for each
0 < ε < 1) a multilayer fixed-point problem which approximates Problem 1.1 (for
small ε). By using the monotonicity properties of the operators Tε, we prove that
for each sufficiently small ε > 0, this multilayer fixed-point problem has a solution
which is obtained as the limit of an increasing (or decreasing) sequence of successive
approximations which are all inner (outer) solutions (see §§3–5). Then the “weak”
solutions of Problem 1.1 are defined to be the limits of convergent sequences of
these multilayer fixed points (corresponding to positive null sequences of values of
ε). We then show (in §§6–10) that the weak solutions of Problem 1.1 are actually
classical solutions.

It is the author’s impression of the literature on free boundary problems (of
all kinds) that the conditions characterizing the free boundaries are usually very
specific (in each particular problem). By comparison, the present paper studies
the existence question for an unusually broad class of joining conditions (see §2).
However, it is important to realize that the convexity requirement in Problem
1.1 necessitates restrictions on the joining conditions (1.1) which go well beyond
the regularity of the functions Fi(x, p, q), i = 1, . . . , k, and the solvability of the
equations Fi(x, p, q) = 0 for either p or q in terms of the other variables. In fact
the author showed by a counterexample in [6] that (in general) no convex solution
exists even in the two-dimensional, two-layer case of Problem 1.1 if the one joining
condition is of the form (1.3), where A(x) is a negative constant.

For the purpose of focusing attention more directly on the quite difficult questions
associated with the treatment of very general, nonlinear joining conditions of the
form (1.1), the present treatment of the multilayer problem has been restricted
to the case where U is harmonic in the layers Ωi between the free boundaries.
However, the author is quite certain that the operator structure explored here
can be generalized to other cases, in which U solves various other elliptic partial
differential equations in the layers between the free boundaries (see [11], [12], [23]
regarding convergence properties of the operators Tε in the case of one-layer and
two-layer problems for the p-Laplacian). In this context, it should be apparent
that the author’s primary motive for the present work is to develop an alternative,
non-variational version of the general operator method with potential application
to numerous (convex) multilayer problems with general joining conditions. The
author also hopes to extend the operator method to obtain existence results for
Problem 1.1 in the corresponding starlike case.

1.2. Remark. A powerful simplifying principle for the multilayer problem is the
obvious fact that if S = (S1, . . . , Sk) is a classical (or weak) solution of Problem
1.1, then for each i = 1, . . . , k, the surface Si is a classical (or weak) solution of
a two-layer version of Problem 1.1 (see Problem 2.1) relative to its neighboring
surfaces Si±1. This principle permitted the author to simplify the treatment of
the convex variational multilayer problems in [7], [8], [9] by a reduction of the
most difficult aspects of the problem to a suitable analysis of the two-layer case.
Although the present paper also makes maximum use of the same principle (see
§§2–5), it is no longer possible to avoid directly studying the operators Tε in the
multilayer context.

1.3. Remark. Although the method of variational inequalities has been applied very
successfully in the study of numerous free boundary problems, there is great aes-
thetic appeal in the idea of extending the study of the multilayer problem beyond
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the scope of this method. This endeavor also has much practical significance, since
there are numerous interesting joining conditions of the form (1.1) which do not
appear to arise from any natural variational formulation of the problem, but which
might nevertheless occur in models of observed physical phenomena. A number of
such examples are given in §§2.6–2.9.

1.4. Remark. An important aspect of the operator method in all cases is the fact
that each existence proof embodies (in analytical form) an algorithm for the suc-
cessive approximation of solutions. The aspect of successive approximation was
particularly emphasized in [4] and [5].

2. Main results

It is natural to begin any discussion of Problem 1.1 with the important particular
case of two layers and one free boundary. Our study of the general problem is in
many ways based on a reduction to this particular case.

2.1. Two-layer problem. In RN , N ≥ 2, let an annular domain Ω∗ be given of
the form Ω∗ = D+∗ \ Cl(D−∗ ). Here, D±∗ denote fixed, bounded, convex, nested
domains with boundaries S±∗ = ∂D±∗ . Given a twice continuously-differentiable
function F (x, p, q) : RN × R+ × R+ → R, we seek a convex domain D such that
Cl(D−∗ ) ⊂ D ⊂ Cl(D) ⊂ D+

∗ , and

F (x, |∇U−(x)|, |∇U+(x)|) = 0 on S := ∂D,(2.1)

where the functions U±(x) solve the boundary value problems

∆U±(x) = 0 in Ω±, U±(S) = 0, U±(S±∗ ) = 1,(2.2)

and where Ω± denotes the annular domain whose boundary is given by ∂Ω± =
S ∪ S±∗ .

2.2. Assumptions for Problem 2.1. Define the twice-continuously-differentiable
function f(x, p, q) : RN × R+ × R+ → R such that f(x, p, q) = F (x, 1/p, 1/q).
Throughout this paper, our results in the context of Problem 2.1 will all require
various combinations of (but not necessarily all of) the following additional assump-
tions:

(a) The function F (x, p, q) is strictly decreasing in p and strictly increasing in q.
Thus f(x, p, q) is strictly increasing in p and strictly decreasing in q.

(b) For any p0 > 0, there exists a value q0 = q0(p0) > 0 such that F (x, p0, q) > 0
whenever q > q0, independent of x ∈ RN . For any q0 > 0, there exist values
0 < p0 = p0(q0) < p1 = p1(q0) such that F (x, p, q0) > 0 whenever 0 < p < p0 and
F (x, p, q0) < 0 whenever p > p1, independent of x ∈ RN .

(c) For any r0 > 0, there exists a value θ0 = θ0(r0) > 0 such that

f(x, r0 cos(θ), r0 sin(θ)) > 0

for all x ∈ RN and θ ∈ (0, θ0], whereas f(x, r cos(θ), r sin(θ)) < 0 for all x ∈ RN , θ ∈
[(π/2)− θ0, (π/2)), and r ∈ (0, r0].

(d) For any linear function φ(λ) : [0, 1] → Ω∗ × R+ × R+ such that f(φ(0)) ≤ 0
and f(φ(1)) ≤ 0, we have that max{f(φ(λ)) : 0 ≤ λ ≤ 1} ≤ 0.

(e) We assume F (x, p, q) = F+(x, q)−F−(x, p) for all (x, p, q) ∈ RN ×R+×R+,
where the positive functions F±(x, t) : RN × R+ → R are both twice continuously
differentiable, and are such that ∂F±(x, t)/∂t > 0 and ∂2F−(x, t)/∂t2 ≥ 0.
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2.3. Theorem. (a) Problem 2.1 has at least one weak solution S̃ (in the sense of
Definition 3.12), provided that the given function F (x, p, q) satisfies Assumptions
2.2(a)–(d).

(b) Under Assumptions 2.2(a)–(e), any weak solution S̃ of Problem 2.1 is a
classical solution.

2.4. Remark. (a) The proof of Theorem 2.3(a) is given in §3.17, while the proof of
Part (b) is given in Theorem 10.1

2.5. Remarks. (a) Under Assumption 2.2(a), let the equation f(x, p, q) = 0 be
solved by p = h(x, q) : RN × R+ → R+. Then Assumption 2.2(d) is satisfied
if, for any linear mapping φ(λ) : [0, 1] → Ω∗, the function ψ(λ, q) := h(φ(λ), q)
satisfies ψλλ ≤ 0, ψqq ≤ 0, and ψ2

λq ≤ ψλλψqq, where the subscripts denote partial
differentiation. (b) In the context of Part (a), let Assumption 2.2(b) hold. Then
h(x, q) → 0+ (uniformly over all x ∈ RN ) as q → 0+. If f(x, r0 cos(θ), r0 sin(θ)) < 0
for fixed x ∈ RN , θ ∈ (0, π/2), and r0 > 0, then h(x, r0 sin(θ)) > r0 cos(θ). If one
assumes that hqq ≤ 0 (as in Part (a)), then it follows that h(x, r sin(θ)) > r cos(θ)
for all r ∈ (0, r0], whence f(x, r cos(θ), r sin(θ)) < 0 for all r ∈ (0, r0].

2.6. Example. Theorem 2.3 applies in the case of numerous nonlinear joining
conditions (2.1) in which F (x, p, q) does not depend on position. Essentially all such
cases can be expressed in the form F (x, p, q) := φ(q) − p = 0. Then Assumptions
2.2(a)–(e) are all satisfied if the equation F (x, p, q) = 0 is equivalent to an equation
of the form ph(1/q) = 1, where h(q) : R+ → R+ denotes any C2-function such that
hq > 0, hqq ≤ 0, and h(q) → 0+ as q → 0+ (clearly φ(q) = 1/h(1/q)). For example,
Assumptions 2.2(a)–(e) are all satisfied by joining conditions of the following forms:
p = qα for fixed α ∈ (0, 1]; p

∑n
i=1 aiq

−αi = 1, where ai > 0 and 0 < αi ≤ 1;
q(cosh(1/p)− 1) = 1; q tan(1/p) = 1; p ln(1 + (1/q)) = 1; q sinh(1/p) = 1.

2.7. Example. It is easily seen (using Remarks 2.5) that Assumptions 2.2(a)–(e)
are all satisfied by joining equations of the form F (x, p, q) := A(x)+φ(1/q)−p = 0,
where A(x) : RN → R is a uniformly positive C2-function such that the first and
second order directional derivatives of A(x) satisfy the condition: 2A2

ν ≤ AAνν

throughout Ω∗ for any unit vector ν, and where φ(q) : R+ → R+ is a positive C2-
function such that φ(q) → ∞ as q → 0+, φq < 0, and 2φ2

q ≤ φφqq . (This includes
the case where φ(q) = q−α for some fixed α > 0.) Therefore, Theorem 2.3 applies
to these cases.

2.8. Example. It is easily seen (using Remarks 2.5) that Assumptions 2.2(a)–(e)
are all satisfied by joining equations of the form A(x)φ(1/q)p = 1 (corresponding to
F (x, p, q) := (1/[A(x)φ(1/q)])−p = 0), where the C2-functions A(x) : RN → R and
φ(q) : R+ → R+ are chosen such that A(x) is uniformly positive, φq > 0, φ(q) → 0
as q → 0+, and there exist fixed positive constants λ, µ with λµ = 1 such that
φφqq +µφ2

q ≤ 0 for all q > 0 and AAνν +λA2
ν ≤ 0 for all x ∈ Ω∗ and all unit vectors

ν. Therefore, Theorem 2.3 applies to these cases.

2.9. Example. Consider joining conditions of the general form:

F (x, p, q) = A(x) +B(x)qβ − pα = 0,

where α, β denote positive constants and A(x), B(x) denote uniformly-positive C2-
functions. Assumptions 2.2(a), (b), (c) are clearly satisfied. By expressing the
joining condition in the equivalent form: F0(x, p, q) := (A+Bqβ)(1/α) − p = 0, one
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can easily verify that Assumptions 2.2(e) is also satisfied. As we will show in the
appendix (§11), Assumption 2.2(d) is satisfied provided that β < α and the first
and second order directional derivatives of A(x) and B(x) satisfy the conditions:

((α+ 1)/α)A2
ν ≤ AAνν ; (1 + (1/(α− β)))B2

ν ≤ BBνν ,

in Ω∗, both for any unit vector ν. (Alternately, one can assume that α = β, B(x) is
a constant, and ((α+1)/α)A2

ν ≤ AAνν in Ω∗ for each direction ν.) Thus, Theorem
2.3 applies under these assumptions. The convex existence results in this example
are very general by contrast to the author’s previous existence results for the convex
two-layer problem (see [9]).

2.10. Remark. With reference to the author’s counterexamples in [6], we remark
that the function F (x, p, q) := λ + q2 − p2 satisfies Assumptions 2.2(a)–(e) in the
case where λ > 0, but does not satisfy Assumption 2.2(d) in the case where λ < 0,
for which the counterexamples were obtained.

2.11. Theorem. (a) Problem 1.1 has at least one (convex ) weak solution S̃ =
(S̃1, . . . , S̃k) (weak in the sense of Definition 5.4), provided that each of the given
functions Fi(x, p, q) : Rn × R+ × R+ → R, i = 1, . . . , k, satisfies Assumptions
2.2(a)–(d).

(b) Any weak solution S̃ = (S̃1, . . . , S̃k) of Problem 1.1 is a classical solution,
provided that each of the given functions Fi(x, p, q) : RN × R+ × R+ → R, i =
1, . . . , k, satisfies Assumptions 2.2(a)–(e).

2.12. Remark. The proof of Theorem 2.11(a) is given in §5.12. Part (b) follows
from Theorem 2.3(b), in view of Theorem 5.13.

2.13. Remark. Obviously Theorem 2.11 applies to particular cases of Problem 1.1
in which each of the functions Fi(x, p, q), i = 1, . . . , k, has any one of the forms
already discussed in Examples 2.6, 2.7, 2.8, and 2.9.

2.14. Remark. The purpose of this remark is to point out a uniqueness result which
applies to classical solutions of Problem 1.1 under different assumptions than those
listed in §2.2. Namely, assume in Problem 1.1 that the given domains D±∗ are
starlike relative to the origin, and that the functions Fi(x, p, q), i = 1, . . . , k, satisfy
Assumption 2.2(a). Also assume for i = 1, . . . , k that Fi(λx, p/λ, q/λ) ≥ 0 whenever
Fi(x, p, q) ≥ 0 and λ ≥ 1. Then there exists at most one classical solution S̃ =
(S̃1, . . . , S̃k) such that the surfaces S̃i, i = 1, . . . , k, all have bounded curvature.
Moreover, this solution (if it exists) must be such that the interior complements of
the surfaces S̃1, . . . , S̃k are all starlike. The proof, which we omit, is closely related
to previous uniqueness proofs in [7], [8], §2, and [11], §2.

3. The convex two-layer problem:

operators, fixed points, weak solutions

3.1. General notation and definitions. We define the ball Bε(x0) = B(x0; ε) =
{x ∈ RN : |x− x0| < ε} for any x0 ∈ RN and ε > 0. We define αΣ = {αx : x ∈ Σ}
for any set Σ and value α > 0. H(Σ) denotes the convex hull of a set Σ, and Nε(Σ)
denotes the ε-neighborhood of Σ (for any ε > 0). For any sets Σi, i = 1, 2, we
define the distances d(Σ1,Σ2) := inf{|x − y| : x ∈ Σ1, y ∈ Σ2} and ∆(Σ1,Σ2) :=
inf{ε > 0 : Σ1 ⊂ Nε(Σ2) and Σ2 ⊂ Nε(Σ1)}. For a set Σ and a point x0, we
define d(x0,Σ) = d({x0},Σ). For any set Σ and any sequence of sets (Σn)∞n=1, we
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say Σn → Σ as n → ∞ if ∆(Σn,Σ) → 0 as n → ∞. We use z(t) to denote any
particular real valued, continuous, strictly increasing function on R+, such that
z(t) → 0 as t→ 0+, and we use ζ(n) to denote any particular positive, decreasing
function defined on N such that ζ(n) ↓ 0 as n → ∞. Similarly, z(t, n) denotes any
particular positive function of t > 0 and n ∈ N such that z(t, n) → 0 as t → 0
and n → ∞. These are all called null functions. Also, | · | denotes volume of an
N -dimensional domain, the area of an (N − 1)-dimensional surface, and the length
of a curve.

3.2. Definitions for the operator method. Let X denote the family of all
(N − 1)-dimensional hypersurfaces of the form S = ∂D, where D is a bounded,
convex domain in RN . For each surface S ∈ X, let D(S) denote the interior com-
plement for S. For S1, S2 ∈ X, we define S1 ≤ S2 (resp. S1 < S2) to mean that
D1 ⊂ D2 (resp. Cl(D1) ⊂ D2), where Di = D(Si), i = 1, 2. Given S1, S2 ∈ X such
that S1 < S2 or S1 > S2, we use Ω(S1, S2) to denote the annular domain whose
boundary is S1 ∪ S2. We also use U+ = U+(S1, S2;x) to denote the capacitary
potential in Ω = Ω(S1, S2), oriented such that U+ = 0 (resp. U+ = 1) on the inner
(outer) boundary of Ω. We also define U−(S1, S2;x) = 1 − U+(S1, S2;x). Given
ε ∈ (0, 1) and surfaces S1, S2 ∈ X with S1 < S2, we define

Φ±ε (S1, S2) = Φ±(S1, S2; ε) := {x ∈ Ω(S1, S2) : U±(S1, S2;x) = ε}.
Observe that Φ±ε (S1, S2) ∈ X due to Lemma 3.4(c). Clearly, we have S1 <
Φ±ε (S1, S2) < S2 and Φ±ε (S1, S2) = Φ∓1−ε(S1, S2). Also, for ε ∈ (0, 1) and any
surfaces S1, S2 ∈ X with S1 < S2, we define

Ψε(S1, S2) = Ψ(S1, S2; ε)

:= ∂(Cl(D(S1)) ∪ {x ∈ Ω(S1, S2) : f(x, (d(x, S1)/ε), (d(x, S2)/ε)) < 0}),
where Ψε(S1, S2) ∈ X due to Lemma 3.6. Finally, for any ε ∈ (0, 1) and any surfaces
S, S± ∈ X with S− < S < S+, we define

Tε(S−, S, S+) = T (S−, S, S+; ε) = Ψε(Ψ−ε (S−, S),Φ+
ε (S, S+)) ∈ X.(3.1)

3.3. Lemma. For surfaces S±0 , S
±
1 ∈ X such that S−0 < S+

0 , S
−
1 < S+

1 , and S±0 ≤
S±1 , we have 0 < U±i (x) < 1 in Ωi and ±(U±1 (x) − U±0 (x)) ≤ 0 in Ω0 ∩ Ω1, where
U±i (x) = U±(S−i , S

+
i ;x) in Ωi = Ω(S−i , S

+
i ).

Proof. This follows from the maximum and comparison principles for harmonic
functions.

3.4. Lemma. Let U(x) = U+(S−, S+;x) in Cl(Ω) where Ω = Ω(S−, S+), S± ∈ X,
and S− < S+. Then:

(a) We have U(x) ≥ (x · ν0 − α)/(β − α) in Ω ∩ {α < x · ν0 < β} for any unit
vector ν0 and values α < β such that S− ⊂ {x · ν0 ≤ α} and S+ ⊂ {x · ν0 ≤ β}.

(b) We have that

U(x) ≥ (d(x, S−)/∆(S−, S+))

and

(1 − U(x)) ≤ (d(x, S+)/d(S−, S+)),

both in Ω.
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(c) For any α ∈ (0, 1), the real-analytic surface Sα := {U(x) = α} is convex. It
is also strictly convex in the sense that any supporting plane intersects Sα at only
one point.

(d) The function Q(x) := |∇U(x)| is weakly decreasing (with increasing U) on
all the curves of steepest ascent of U .

(e) The function Q(x) := |∇U(x)| is subharmonic in Ω, and the function W (x)
:= g(Q(x)) is superharmonic in Ω provided that g(t) : R+ → R is a C2-function
such that d(tg′(t))/dt ≤ 0, where g′(t) = dg/dt ≥ 0 (this includes the case where
g(t) = ln(t)).

(f) For 0 ≤ α < β ≤ 1, let xα ∈ Sα and xβ ∈ Sβ be the endpoints of an arc γ of
steepest ascent of U . Then Q(xβ)|γ| ≤ (β − α) ≤ Q(xα)|γ| if the derivatives exist,
where |γ| denotes the arc-length of γ.

(g) For any unit vector ν0, any values 0 ≤ α < β ≤ 1, and any points xα ∈ Sα

and xβ ∈ Sβ such that (x− xα) · ν0 ≤ 0 for all x ∈ Sα and (x− xβ) · ν0 ≤ 0 for all
x ∈ Sβ, we have that Q(xβ) ≤ ((β − α)/d(α, β)) ≤ Q(xα) if the derivatives exist,
where d(α, β) = (xβ − xα) · ν0.
Proof sketch. Part (a) follows from the comparison principle, and both inequalities
in Part (b) follow from Part (a) (the first inequality in Part (b) also follows from
the fact that d(x, S−) is subharmonic in Ω). Regarding Part (c), see [14], [15], §2,
[17], [19], or [22]. Part (d) is a direct consequence of Part (c) and the Laplace
equation. The assertions in Part (e) also follow from Part (c), as is seen by a direct
computation of ∆Q and ∆W (observe that Q > 0 in Ω, essentially due to part (d)).
Finally, Part (f) follows from Part (d), and Part (g) is obtained by applying Part
(a) to the capacitary potential (U(x) − α)/(β − α) in the domain Ω(Sα, Sβ).

3.5. Lemma. For any S± ∈ X such that ∂Bδ(x0) ≤ S− < S+ ≤ ∂BR(x0)
(for some 0 < δ < R and x0 ∈ RN ), we have ∆−(S−, S+) ≤ ∆+(S−, S+) ≤
(R/δ)∆−(S−, S+), where we define ∆±(S−, S+) = max{d(x, S∓) : x ∈ S±}.
Therefore, ∆(S−, S+) = ∆+(S−, S+) and ∆(S−, S+) ≤ (R/δ)∆−(S−, S+).

(We leave this proof to the reader.)

3.6. Lemma. Let S±0 , S
±
1 ∈ X denote convex surfaces such that S−0 < S+

0 , S
−
1 <

S+
1 , and S±0 ≤ S±1 . Then for any ε ∈ (0, 1), we have that : (a) Φ±ε (S−i , S

+
i ) ∈

X, (b) Φ±ε (S−0 , S
+
0 ) ≤ Φ±ε (S−1 , S

+
1 ) , (c) Ψε(S−i , S

+
i ) ∈ X, (d) Ψε(S−0 , S

+
0 ) ≤

Ψε(S−1 , S
+
1 ), (e) if the surface S−0 is strictly convex, then the function φ0(x) :=

f(x, (d(x, S−0 )/ε), (d(x, S+
0 )/ε)) is strictly positive in the exterior complement of

the surface S0 := Ψε(S−0 , S
+
0 ) relative to the annular domain Ω0 := Ω(S−0 , S

+
0 ).

Therefore S0 = {x ∈ Ω0 : φ0(x) = 0}.
Proof. Parts (a) and (b) follow from Lemmas 3.4(c) and 3.3. Parts (c) and (d) are
given in [11], Lemma 3.8 and Theorem 4.3(b), and Part (e) follows from a slight
generalization of the proof of [11], Theorem 4.3(b).

3.7. Lemma. Let S, S±, Ŝ, Ŝ± ∈ X denote convex surfaces such that S− < S <

S+, Ŝ− < Ŝ < Ŝ+, S ≤ Ŝ, and S± ≤ Ŝ±. Then for any ε ∈ (0, 1), we have that :
(a) Tε(S−, S, S+) ∈ X, and (b) Tε(S−, S, S+) ≤ Tε(Ŝ−, Ŝ, Ŝ+).

Proof. This proof follows from Lemma 3.6 (see [11], Theorem 3.3 and Lemma 3.9).

3.8. Lemma. The surface Tε(S1, S, S2) ∈ X depends continuously on S1, S2, S ∈ X
(such that S1 < S < S2) and on ε ∈ (0, 1).



MULTILAYER FREE BOUNDARY PROBLEMS 2989

Proof sketch. Assume for n → ∞ that S1,n → S1, Sn → S, and S2,n → S2 in
X (where S1 < S < S2) and εn → ε ∈ (0, 1). It follows from the continuity of
F (x, p, q) and well-known properties of harmonic functions that U±(S1,n, S2,n;x) →
U±(S1, S2;x) and

φn(x) := F (x, (εn/d(x, S1,n)), (εn/d(x, S2,n)) → φ(x)

:= F (x, (ε/d(x, S1)), (ε/d(x, S2)),

both as n → ∞, where the convergence is uniform in any particular compact
subset of Ω := Ω(S1, S2). The first convergence result implies that for each point
x in the interior (exterior) complement of Φ±(S1, S2; ε) relative to Ω, the value
±(U±(S1,n, S2,n;x)−εn) is negative (positive) if n ∈ N is sufficiently large. In view
of Lemma 3.6(e), the second convergence result implies that if S1 is strictly convex,
then for each point x in the interior (exterior) complement of Ψ(S1, S2; ε) relative
to Ω, the value φn(x) is negative (positive) if n ∈ N is sufficiently large. It follows
that Φ±(S1,n, S2,n; εn) → Φ±(S1, S2; ε) as n → ∞, and that Ψ(S1,n, S2,n; ε) →
Ψ(S1, S2; ε) as n → ∞, provided that S1 is strictly convex in the second case.
Since the surfaces Φ±(S1, S2; ε) are in fact strictly convex, it follows from (3.1)
that T (S1,n, Sn, S2,n; εn) → T (S1, S, S2; ε) as n→∞.

3.9. Fixed-point problem. Given ε ∈ (0, 1) and surfaces S± ∈ X with S− < S+,
we seek surfaces Sε ∈ X such that S− < Sε < S+ and Tε(S−, Sε, S

+) = Sε.

3.10. Definitions. Given ε ∈ (0, 1) and the surfaces S± ∈ X with S− < S+, we
use the notation Sε(S−, S+) = S(S−, S+; ε) to denote the family of all solutions
of Problem 3.9. Also, S−

ε (S−, S+) (resp. S+
ε (S−, S+)) denotes the family of all

surfaces S ∈ X such that S− < S < S+ and such that Tε(S−, S, S+) ≥ S (resp.
Tε(S−, S, S+) ≤ S). Thus, for fixed ε ∈ (0, 1) and S± ∈ X,S−

ε (S−, S+) (resp.
S+

ε (S−, S+)) is the family of all inner (outer) solutions of the fixed-point problem
3.9. Clearly Sε(S−, S+) = S−

ε (S−, S+) ∩S+
ε (S−, S+).

3.11. Lemma. Assume that S0 ∈ S+
ε (S−0 , S

+
0 ) for a given value ε ∈ (0, 1), and

for given surfaces S±0 ∈ X. Then S0 ∈ S+
ε (S−, S+) for any surfaces S± ∈ X

such that S− < S0 < S+ and S± ≤ S±0 . Analogously, if S0 ∈ S−
ε (S−0 , S

+
0 ), then

S0 ∈ S−
ε (S−, S+) for any surfaces S± ∈ X such that S− < S0 < S+ and S±0 ≤ S±.

Proof. This follows from Lemma 3.7(b).

3.12. Definition. A surface S̃ ∈ X (such that S−∗ < S̃ < S+
∗ ) is called a weak

solution of Problem 2.1 if there exist a positive null sequence (εn)∞n=1 and a cor-
responding sequence of ordered triples (S−∗,n, Sn, S

+
∗,n)∞n=1 (with S−∗,n < Sn < S+

∗,n
in X) such that ∆(Sn, S̃) → 0 and ∆(S±∗,n, S±∗ ) → 0, both as n → ∞, and such
that for each n ∈ N, Sn solves Problem 3.9 in the particular case where ε and S±

are replaced respectively by εn and S±∗,n (i.e., we have Sn ∈ S(S−∗,n, S
+
∗,n; εn)). The

sequence of ordered triples is called an approximating sequence corresponding to
the weak solution S̃.

3.13. Remarks. (a) Our definition of a weak solution is based essentially on the fact
that if S̃ is a sufficiently regular classical solution of Problem 2.1, then

∆(Tε(S−∗ , S̃, S
+
∗ ), S̃) = εz(ε) as ε ↓ 0,

so that S̃ nearly a solution of Problem 3.9 for small ε ∈ (0, 1) (see [11], Lemma
3.13). (b) The above definition of a weak solution is slightly more general than
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necessary (in the present context), in order to accommodate the requirements of
the multilayer problem in §5.

3.14. Lemma. Given the surfaces S± ∈ X with S− < S+, let Sα = {x ∈ D(S+) :
d(x, S+) = α} ∈ X for 0 < α < d(S−, S+). Then for fixed, sufficiently small α, we
have Sα ∈ S+

ε (S−, S+) for all ε ∈ (0, 1).

Proof. We have Sα,ε := Tε(S−, Sα, S
+) < Sα provided that

f(x, [d(x, S−α,ε)/ε], [d(x, S
+
α,ε)/ε]) > 0

for all x ∈ Sα, where S±α,ε = Φ±ε (Sα, S
±). However, it follows from Lemmas

3.4(b) and 3.5 that (d(x, S+
α,ε)/ε) ≤ ∆+(Sα, S

+) ≤ (R/δ)α and (d(x, S−α,ε)/ε) ≥
d(S−, Sα) ≥ (d(S−, S+)/2), both whenever 0 < ε < 1 and 0 < α < (d(S−, S+)/2),
where we choose x0 ∈ D(S−) and 0 < δ < R such that ∂Bδ(x0) ≤ S− < S+ ≤
∂BR(x0). The assertion follows in view of Assumption 2.2(b).

3.15. Lemma. Let S± ∈ X denote fixed surfaces such that S− < S+. Let Sα =
Φ+

α (S−, S+) ∈ X∩C∞ for α ∈ (0, 1). Then there exist a value α0 > 0 and a function
ε0(α) : (0, α0] → R such that Sα ∈ S−

ε (S−, S+) for α ∈ (0, α0] and ε ∈ (0, ε0(α)].

Proof. One can easily verify that U−α (x) = ((α−U(x))/α) and |∇U−α (x)| = (Q(x)/α)
both in Ω−α , and U+

α (x) = ((U(x)−α)/(1−α)) and |∇U+
α (x)| = (Q(x)/(1−α)) both

in Ω+
α , where U(x) = U+(S−, S+;x),Ω = Ω(S−, S+), Q(x) = |∇U(x)|, U±α (x) =

U±(S±, Sα;x) and Ω±α = Ω(S±, Sα). Also, we have Sα < Sα,ε := Tε(S−, Sα, S
+)

provided that

f(x, [d(x, S−α,ε)/ε], [d(x, S
+
α,ε)/ε]) < 0

for all x ∈ Sα where S±α,ε = Φ±ε (S±, Sα). Also [d(x, S−α,ε)/ε] = (α/Q(x)) + z−α (x, ε)
and [d(x, S+

α,ε)/ε] = ((1−α)/Q(x))+z+
α (x, ε), both for all x ∈ Sα by the theorem of

the mean, where z±α (x, ε) → 0 as ε ↓ 0, uniformly over all x ∈ Sα for each α ∈ (0, 1).
It follows that Sα < Sα,ε provided that

f(x, (α/Q(x)) + z−α (x, ε), ((1 − α)/Q(x)) + z+
α (x, ε)) < 0(3.2)

for all x ∈ Sα. Now (3.2) holds for all sufficiently small ε ∈ (0, 1) (depending on α)
provided that

f(x, (α/Q(x)), ((1 − α)/Q(x))) < 0

for all x ∈ Sα. Since min{Q(x) : U(x) ≤ 1/2} > 0, the assertion now follows from
Assumption 2.2(c).

3.16. Lemma. Assume that S−ε ≤ S+
ε , where S±ε ∈ S±

ε (S−, S+). Then there
exists at least one solution Sε ∈ Sε(S−, S+) of Problem 3.9 such that S−ε ≤ Sε ≤
S+

ε .

Proof. Define the sequence (Sε,n)∞n=1 ⊂ X such that Sε,0 = S+
ε and Sε,n+1 =

Tε(S−, Sε,n, S
+) ∈ X for n = 0, 1, 2, . . . . It follows inductively from Lemma 3.7(b)

that S+
ε ≥ Sε,n ≥ Sε,n+1 ≥ S−ε for n = 0, 1, 2, . . . . Therefore, Sε,n ↓ Sε ∈ X as

n→∞, where (by Lemma 3.8):

Tε(S−, Sε, S
+) = Tε(S−, lim

n→∞Sε,n, S
+) = lim

n→∞Sε,n+1 = Sε.
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3.17. Proof of Theorem 2.3(a). According to Lemmas 3.14 and 3.15, there exist
a value ε0 ∈ (0, 1) and fixed surfaces Ŝ± ∈ X such that S−∗ ≤ Ŝ− < Ŝ+ < S+

∗ and
such that Ŝ± ∈ S±

ε (S−∗ , S
+
∗ ) for all ε ∈ (0, ε0]. It follows by Lemma 3.16 that for any

ε ∈ (0, ε0], there exists a solution Sε of Problem 3.9 at ε such that Ŝ− ≤ Sε ≤ Ŝ+.
Given a null sequence (εn)∞n=1 such that εn ∈ (0, ε0] for each n, let (Sn)∞n=1 denote
a sequence such that for each n ∈ N, Sn ∈ S(S−∗ , S

+
∗ ; εn) denotes a solution of

Problem 3.9 in the case where S± = S±∗ and ε = εn. The surfaces Sn have
equicontinuous, uniformly bounded polar-coordinate representations relative to a
fixed origin located anywhere inD(S−∗ ). Therefore, by the theorem of Ascoli-Arzela,
we can pass to an appropriate subsequence (still indexed by n ∈ N) such that Sn →
S̃ (in the polar-coordinate maximum norm) as n→∞, where S̃ denotes a particular
limit surface (with a continuous polar-coordinate representation). Clearly, S̃ ∈
X, Ŝ− ≤ S̃ ≤ Ŝ+, and ∆(Sn, S̃) → 0 as n → ∞. Thus, S̃ is a weak solution of
Problem 2.1.

4. Uniform results involving solutions

of the two-layer fixed point problem

The purpose of the present section is to develop some uniform estimates for
solutions of the two-layer fixed-point problem (Problem 3.9) which will be essential
in our study of the multilayer fixed-point problem and the multilayer free-boundary
problem.

4.1. Lemma. For given constants 0 < δ0 < R0 and any given unit vector ν0,
define Kr = rK and S±r = rS±, and Ωr = rΩ for any r ∈ (0, 1], where K =
H({0} ∪ Cl(Bλ(δ0ν0))), λ = (δ20/R0), S− = ∂K, S+ = {x /∈ K : d(x,K) = 1}, and
Ω = Ω(S−, S+). Also define Ur(x) = U+(S−r , S

+
r ;x) in Ωr, Sr,α = Φ+

α (S−r , S
+
r ) =

{Ur(x) = α}, and Sr,α,ε = Tε(S−r , Sr,α, S
+
r ) for r ∈ (0, 1] and α, ε ∈ (0, 1). Then

there exist a value α0 ∈ (0, 1) and a positive, continuous function ε0(α) : (0, α0] →
R (neither of which depends on the unit vector ν0) such that if α ∈ (0, α0] and
ε ∈ (0, ε0(α)], then Sr,α < Sr,α,ε for all r ∈ (0, 1].

Proof. For any r ∈ (0, 1] and α, ε ∈ (0, 1), we have that Sr,α = rSα, where
Sα = Φ+

α (S−, S+). By a change of scale, we also have that Sr,α,ε = rŜr,α,ε =
rTr,ε(S−, Sα, S

+), where we define

Ŝr,α,ε = Tr,ε(S−, Sα, S
+)

:= {x ∈ Ω(S−α,ε, S
+
α,ε) : fr(x, [d(x, S−α,ε)/ε], [d(x, S

+
α,ε)/ε]) = 0},

for all r ∈ (0, 1], with S±α,ε = Φ±ε (S±, Sα) and fr(x, p, q) = f(rx, rp, rq). Clearly
Sr,α,ε > Sr,α for r ∈ (0, 1] if and only if Ŝr,α,ε > Sα for r ∈ (0, 1]. A sufficient
condition for the latter is that

f(rx, r[d(x, S−α,ε)/ε], r[d(x, S
+
α,ε)/ε]) < 0(4.1)

for all r ∈ (0, 1] and x ∈ Sα. However, by the argument given in the proof of
Lemma 3.15, (4.1) holds if we have

sup{f(y, (αr/Q(x)), ((1 − α)r/Q(x))) : x ∈ Sα, r ∈ (0, 1], y ∈ RN} < 0

for sufficiently small α > 0 (i.e., for α ∈ (0, α0], where α0 > 0 is sufficiently
small), where Q(x) = |∇U | and U(x) = U+(S−, S+;x). However, this follows from
Assumption 2.2(c).
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4.2. Corollary. Let the constants 0 < δ0 < R0 be fixed. For all values α ∈ (0, 1)
and r ∈ (0, 1], and for all points x0 6= 0, define S−r (x0) = ∂Kr(x0) and S+

r (x0) =
{x /∈ Kr(x0) : d(x,Kr(x0)) = r}, where Kr(x0) = H({x0}∪Cl[Bλr(p0(x0, r))]), λ =
(δ20/R0), and p0(x0, r) = ((|x0| − δ0r)/|x0|)x0. Then there exist a value α0 ∈ (0, 1)
and a positive, continuous function ε0(α) : (0, α0] → R (neither of which depends
on the unit vector ν0) such that if α ∈ (0, α0] and ε ∈ (0, ε0(α)], then

Sr,α,ε(x0) := Tε(S−(x0), Sr,α(x0), S+
r (x0)) > Sr,α(x0) := Φ+

α (S−r (x0), S+
r (x0))

uniformly for all x0 6= 0 and r ∈ (0, 1].

Proof. For each x0 6= 0, the surfaces S±(x0) and Sr,α(x0) are obtained from the
corresponding surfaces S±r and Sr,α defined in Lemma 4.1 (in the specific case where
ν0 = −(x0/|x0|)) by applying the transformation y = y(x) = x−x0. Therefore, the
assertion follows from Lemma 4.1 by replacing f(x, p, q) by the function f̂(x, p, q) :=
f(x− x0, p, q).

4.3. Remark. It is obvious in the context of Lemma 4.1 that there exists a null
function z0(·) such that U(x) := U+(S−, S+;x) ≤ z0(|x|) in Ω, and that there exists
a positive function p(t) : (0, 1) → R such that d(S−, S−α,ε) ≥ p(α(1 − ε)) for each
α, ε ∈ (0, 1), where S−α,ε := Φ−ε (S−, Sα) = {U(x) = α(1−ε)}. By rescaling, we have
Ur(x0;x) ≤ z0(|x−x0|/r) in Ωr(x0) and d(S−r (x0), S−r,α,ε(x0)) ≥ p(α(1− ε))r, both
uniformly for all x0 6= 0 and all r ∈ (0, 1], where S−r,α,ε(x0) := Φ−ε (S−r (x0), Sr,α(x0)),
and Ur(x0;x) = U+(S−r (x0), S+

r (x0);x) in Ωr(x0) := Ω(S−r (x0), S+
r (x0)).

4.4. Lemma. Let X0 = {S ∈ X : ∂B(0; δ0) ≤ S ≤ ∂B(0;R0)}, where the constants
0 < δ0 < R0 are given. Then there exist constants η0 > 0 and ε0 ∈ (0, 1) such that
d(S−, S−ε ) ≥ η0d(S−, S+) for any ε ∈ (0, ε0], any surfaces S± ∈ X0 satisfying
S− < S+, and any surface Sε ∈ S+

ε (S−, S+), where we define S−ε = Φ−ε (S−, Sε).

Proof. In the context of Lemma 4.1 and Corollary 4.2, choose ε0 = ε0(α), where
α ∈ (0, α0] is fixed. Let Sε and S± be any fixed surfaces in X0 such that S− <

Sε < S+ and Ŝε := Tε(S−, Sε, S
+) ≤ Sε. In the notation of Corollary 4.2, we have

that S−r (x0) ≤ S− for any r ∈ (0, 1] and x0 ∈ S−, as follows from properties of X0.
Choose the value r > 0 to be maximum subject to the requirements that (a) r ≤ 1,
(b) S+

r (x0) ≤ S+ for all x0 ∈ S−, and (c) Sr,α(x0) ≤ Sε for all x0 ∈ S−. Then,
by continuity, one of the following alternatives must hold: either (a) r = 1, or (b)
S+ ∩ S+

r (x0) 6= ∅ for at least one point x0 ∈ S−, or else (c) Sε ∩ Sr,α(x0) 6= ∅ for
at least one point x0 ∈ S−. However, Corollary 4.2 implies that

Sr,α(x0) < Sr,α,ε(x0) ≤ Ŝε := Tε(S−, Sε, S
+) ≤ Sε

for all x0 ∈ S−, so that the alternative (c) is impossible. Therefore, one of the
alternatives (a) and (b) holds. In other words, we must have that Sr,α(x0) ≤ Sε for
all x0 ∈ S−, where r = min{1, d(S−, S+)}. Due to Lemma 3.6(b), it follows that
S−r,α,ε(x0) := Φ−ε (S−(x0), Sr,α(x0)) ≤ S−ε := Φ−ε (S−, Sε). Therefore, we have

d(x0, S
−
ε ) ≥ d(x0, S

−
r,α,ε(x0)) ≥ p(α(1 − ε))min{1, d(S−, S+)}

for all x0 ∈ S−, where we have applied an estimate in Remark 4.3. This completes
the proof, in view of the fact that there exists a uniform upper bound for the values
{d(S−, S+) : S± ∈ X0, S

− < S+}.
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4.5. Corollary. In the context of Lemma 4.4, for any ε ∈ (0, ε0] and any surfaces
S± ∈ X0 such that S− < S+, there exists a surface Ŝε ∈ Sε(S−, S+) such that
d(S−, Ŝε) ≥ η0d(S−, S+) and such that S ≥ Ŝε for all surfaces S ∈ S+

ε (S−, S+).
We call Ŝε the minimal solution of Problem 3.9 at ε.

Proof. For fixed ε ∈ (0, ε0], let Ŝε = ∂D̂ε ∈ X, where D̂ε denotes the intersect
of the interior complements of all surfaces S ∈ S+

ε (S−, S+). Clearly, we have
d(Ŝε, S

−) ≥ η0d(S−, S+), due to Lemma 4.4. For x0 ∈ Ŝε, and for any n ∈ N,
there exist an outer solution Sn ∈ S+

ε (S−, S+) and a point xn ∈ Sn such that
|xn − x0| < 1/n. Since Sn ≥ Ŝε, it follows (by Lemma 3.6(b)) that S±n,ε ≥ Ŝ±ε for
all n ∈ N, where S±n,ε := Φ±ε (Sn, S

±) and Ŝ±ε := Φ±ε (Ŝε, S
±). Therefore, we have

±[d(xn, S
±
n,ε)−d(xn, Ŝ

±
ε )] ≥ 0 for sufficiently large n ∈ N (so that xn ∈ Ω(Ŝ−ε , Ŝ

+
ε )).

Therefore,

f(x0, [d(x0, Ŝ
−
ε )/ε], [d(x0, Ŝ

+
ε )/ε]) = lim

n→∞ f(xn, [d(xn, Ŝ
−
ε )/ε], [d(xn, Ŝ

+
ε )/ε])

≥ lim inf
n→∞ f(xn, [d(xn, S

−
n,ε)/ε], [d(xn, S

+
n,ε)/ε]) ≥ 0.

Since x0 is arbitrary in Ŝε, it follows that Tε(S−, Ŝε, S
+) ≤ Ŝε, i.e. Ŝε ∈ S+

ε (S−, S+).
Therefore Tε(S−, Ŝε, S

+) ∈ S+
ε (S−, S+), by Lemma 3.7. Therefore Tε(S−, Ŝε, S

+)
≥ Ŝε, due to the minimality of Ŝε in S+

ε (S−, S+). Therefore Tε(S−, Ŝε, S
+) = Ŝε,

whence Ŝε ∈ Sε(S−, S+).

4.6. Lemma. Let X1 = {S ∈ X : S ≤ ∂B(0;R0)}. Then there exists a positive,
continuous, increasing function h(r) : R+ → R+ with the following property: For
any values ε ∈ (0, 1), δ > 0, α ∈ (0, h(δ)] and any surfaces S±, Sε ∈ X1 such
that S− < S+, d(S−, S+) ≥ δ, Sε ∈ S−

ε (S−, S+), and d(Sε, S
+) ≥ αδ, we have

d(Sε, S
+) ≥ αd(S−, S+). Under the same assumptions, we also have d(S+

ε , S
+) ≥

(α/2)d(S−, S+) for ε ∈ (0, 1/2], where S+
ε := Φ+

ε (Sε, S
+).

Proof. This proof is based on a comparison to the operator method in the limiting
case in which the convex surfaces become parallel planes. Let x0, ν0 ∈ RN (such
that |ν0| = 1) be fixed. For any r > 0, define S+

r = {φ(x) = 0}, S−r = {φ(x) =
r}, Sr,α = {φ(x) = αr}, U−r,α(x) = ((φ(x) − αr)/(1 − α)r) in Ω−r,α := {αr <

φ(x) < r}, U+
r,α(x) = ((αr − φ(x))/αr) in Ω+

r,α := {0 < φ(x) < αr}, where φ(x) =
(x0 − x) · ν0. Then Tε(S−r , Sr,α, S

+
r ) < Sr,α (where the ordering “<” is defined

relative to the direction ν0) for all ε ∈ (0, 1) provided that f(x, (1 − α)r, αr) > 0
for all x ∈ Sr,α. However, for any given value δ > 0, there exists a value h(δ) > 0
(which does not depend on x0 or ν0) so small that f(x, (1 − α)r, αr) > 0 for all
x ∈ RN , r ∈ [δ, 2R0], and α ∈ (0, h(δ)]. Thus, for any fixed α ∈ (0, h(δ)], we have
Ŝr,ε := Tε(S−r , Ŝr, S

+
r ) < Ŝr for all ε ∈ (0, 1) and r ∈ [δ, 2R0], where Ŝr := Sr,α.

For fixed α ∈ (0, h(δ)] and ε ∈ (0, 1), let S± and Sε be any fixed surfaces in X1 such
that S− < Sε < S+, Ŝε := Tε(S−, Sε, S

+) ≥ Sε, d(S−, S+) ≥ δ, and d(Sε, S
+) ≥

αδ. Let M denote the set of all pairs (x0, ν0) such that x0 ∈ S+, |ν0| = 1, and
(x0 − z) · ν0 ≥ 0 for all z ∈ D(S+). For any r > 0, let S±r (x0, ν0), Ŝr(x0, ν0), and
Ŝr,ε(x0, ν0) denote the surfaces S±r , Ŝr, and Ŝr,ε corresponding to each particular
choice of (x0, ν0) ∈ M . For any (x0, ν0) ∈ M , it is easily verified that S+ ≤
S+

r (x0, ν0) for all r > 0, and that S− ≤ S−r (x0, ν0) and Sε ≤ Ŝr(x0, ν0), both for all
r ∈ (0, δ]. Now choose the value r > 0 to be maximum subject to the requirement



2994 ANDREW ACKER

that S− ≤ S−r (x0, ν0) and Sε ≤ Ŝr(x0, ν0). Then r ∈ [δ, 2R0], and by continuity,
one of the following alternatives must hold: either (a) S− ∩ S−r (x0, ν0) 6= ∅ for at
least one pair (x0, ν0) ∈ M , or else (b) Sε ∩ Ŝr(x0, ν0) 6= ∅ for at least one pair
(x0, ν0) ∈ M . However, since r ∈ [δ, 2R0], it follows by (a slight generalization of)
Lemma 3.7(b) that

Sε ≤ Ŝε ≤ Ŝr,ε(x0, ν0) ≤ Ŝr(x0, ν0)

for all (x0, ν0) ∈ M , so that the alternative (b) is impossible. Therefore (a) holds,
implying that r ≥ d(S−, S+). Therefore, d(Sε, S

+) ≥ αd(S−, S+), as was asserted.

4.7. Corollary. In the context of Lemma 4.6, for any δ > 0, there exists a value
ε0 = ε0(δ) ∈ (0, 1) such that for any ε ∈ (0, ε0] and any surfaces S±, Sε ∈ X1 such
that S− < S+, d(S−, S+) ≥ δ, Sε ∈ S−

ε (S−, S+), and d(Sε, S
+) ≥ δh(δ/2), there

exists a surface Ŝε ∈ Sε(S−, S+) such that Ŝε ≥ Sε and d(Ŝε, S
+) ≥ δh(δ/2).

Proof. Define the sequence (Sε,n)∞n=1 inductively such that Sε,1 = Sε and Sε,n+1 =
Tε(S−, Sε,n, S

+) for all n ∈ N. By Lemma 3.7, we have Sε,n ∈ S−
ε (S−, S+) and

Sε,n ≤ Sε,n+1 < S+ for all n ∈ N. Assuming that d(Sε,n, S
+) ≥ δh(δ/2) for some

n ∈ N (as is certainly true in the case n = 1), we have d(Sε,n+1, S
+) ≥ (δ/2)h(δ/2)

for sufficiently small ε > 0. Since Sε,n+1 ∈ S−
ε (S−, S+), it follows from Lemma 4.6

that actually d(Sε,n+1, S
+) ≥ δh(δ/2). Therefore, if ε > 0 is sufficiently small, then

d(Sε,n, S
+) ≥ δh(δ/2) for all n ∈ N. Therefore, Sε,n ↑ Ŝε ∈ Sε(S−, S+), where

d(Ŝε, S
+) ≥ δh(δ/2).

4.8. Lemma. Let Assumptions 2.2(a)–(c) hold. Given constants 0 < δ0 < R0, let
X0 = {S ∈ X : ∂B(0; δ0) ≤ S ≤ ∂B(0;R0)}. Then for any given value d0 > 0,
there exist constants 0 < C0 ≤ 1 ≤ C1 < ∞ such that for any ε ∈ (0, 1), any
surfaces S± ∈ X0 such that S− < S+, and any surface Sε ∈ Sε(S−, S+) such
that d(S±, S±ε ) ≥ 2d0 (where S±ε := Φ±ε (S±, Sε)), we have C0 ≤ (ε/d(x0, S

±
ε )) ≤

C1 for all x0 ∈ Sε. Moreover, we have Q−ε (x) ≤ C1 in Ω(S−0 , Sε), Q+
ε (x) ≤

C1 in Ω(S+
ε , S

+), Q+
ε (x) ≥ C0 in Ω(Sε, S

+
0 ), and Q−ε (x) ≥ C0 in Ω(S−, S−ε ),

where U±ε (x) = U±(S±, Sε;x), Q±ε (x) = |∇U±ε (x)|, and S±0 = {x ∈ Ω(S−, S+) :
d(x, S±) = d0}.
Proof. Let an admissible pair S± ∈ X0 be fixed. We first obtain the uniform
upper bounds for Q±ε (x) and (ε/d(x0, S

±
ε )) (with x0 ∈ Sε). For any ε ∈ (0, 1)

and solution Sε ∈ Sε(S−, S+) such that d(S−, S−ε ) ≥ 2d0, it follows from Lemma
3.4(f) that Q−ε (x) ≤ (1/d(x, S−)) ≤ B1 := (1/d0) for all x ∈ Ω(S−, Sε) such
that d(x0, S

−) ≥ d0. Therefore (ε/d(x0, S
−
ε )) ≤ (ε/d(S−ε , Sε)) ≤ Q−ε (x1) ≤ B1,

by Lemma 3.4(g), where x0 ∈ Sε and x1 ∈ S−ε is chosen such that d(x1, Sε) =
d(S−ε , Sε). Since F (x0, [ε/d(x0, S

−
ε )], [ε/d(x0, S

+
ε )]) = 0, it follows by Assumption

2.2(a) that F (x0, B1, [ε/d(x0, S
+
ε )]) ≤ 0 for all x0 ∈ Sε. Therefore, (ε/d(x0, S

+
ε )) ≤

C1 for x0 ∈ Sε by Assumption 2.2(b), where we define C1 = max{1, B1, q0(B1)} ≥
B1. Therefore d(x1, Sε) ≥ (ε/C1) for x1 ∈ S+

ε , from which it follows by Lemma
3.4(f) that Q+

ε (x) ≤ C1 on S+
ε . Thus Q+

ε (x) ≤ C1 throughout Ω(S+
ε , S

+), by
Lemma 3.4(d).

We now turn to the proof of the uniform, positive lower bounds for Q±ε (x) and
(ε/d(x0, S

±
ε )) (with x0 ∈ Sε). Given ε ∈ (0, 1) and a solution Sε ∈ Sε(S−, S+)

such that d(S+, S+
ε ) ≥ 2d0, we have (x1 − x0) · ν0 ≤ R0 for any x0 ∈ Ω(Sε, S

+)
and x1 ∈ S+, where ν0 = ν(x0) = ∇U+

ε (x0)/Q+
ε (x0). Therefore, Q+

ε (x0) ≥
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(1 − U+
ε (x0))/R0 for x0 ∈ Ω(Sε, S

+), due to Lemma 3.4(g). On the other hand,
for any x0 ∈ Ω(Sε, S

+
0 ), we have that S−(x0) ≤ Sε, S

+(x0) ≤ S+, and (1 −
U+

ε (x)) ≥ (1 − U+(x0;x)) for all x ∈ Ω(Sε, S
+) ∩ Ω(S−(x0), S+(x0)) (by Lemma

3.3), where S−(x0) = ∂B(0; δ0/2), S+(x0) = ∂H(B(0; δ0)∪{(1+(d0/|x0|)x0)}), and
U+(x0;x) = U+(S−(x0), S+(x0);x). However, the continuous function φ(x0) :=
(1− U+(x0;x0)) : (B(0;R0) \B(0; δ0)) → R is strictly positive (by the strict max-
imum principle for harmonic functions), and therefore uniformly bounded from
below by a positive constant C > 0. Therefore, Q+

ε (x0) ≥ B0 := C/R0, uniformly
for ε ∈ (0, 1), Sε ∈ Sε(S−, S+) such that d(S+, S+

ε ) ≥ 2d0, and x0 ∈ Ω(Sε, S
+
0 )

by Lemma 3.4(g). Therefore, (ε/d(x0, S
+
ε )) ≥ B0 for x0 ∈ Sε, due to Lemma

3.4(f). Since F (x0, [ε/d(x0, S
−
ε )], [ε/d(x0, S

+
ε )]) = 0 for x0 ∈ Sε, it follows by

Assumption 2.2(a) that F (x0, [ε/d(x0, S
−
ε )], B0) ≤ 0 for x0 ∈ Sε. Therefore,

(ε/d(x0, S
−
ε )) ≥ C0 := min{1, B0, p0(B0)} > 0 for x0 ∈ Sε, by Assumption 2.2(b).

Thus, Q−ε (x1) ≥ C0 for all x1 ∈ S−ε , due to Lemma 3.4(g). Finally, we have
Q−ε (x) ≥ C0 throughout Ω(S−, S−ε ), by Lemma 3.4(d).

4.9. Corollary. Let S̃ ∈ X denote a (fixed) weak solution of Problem 2.1, where
we assume §2.2(a)–(c). Then there exist positive constants 0 < C0 ≤ C1 < ∞
(depending on d0 := (1/3)min{d(S−∗ , S̃), d(S̃, S+

∗ )}) such that C0 ≤ |∇Ũ±(x)| ≤ C1

uniformly over all x ∈ Ω̃± such that d(x, S±∗ ) ≥ d0, where we define Ũ±(x) =
U±(S±∗ , S̃;x) in Ω̃± := Ω(S±∗ , S̃).

Proof. Let (S−∗,n, Sn, S
+
∗,n)∞n=1 be an approximating sequence corresponding to a

positive null sequence (εn)∞n=1. Since d(S̃, S±∗ ) ≥ 3d0, we have d(Sn, S
±
∗,n) ≥ 2d0

for all sufficiently large n ∈ N. Since Sn ∈ S(S−∗,n, S+∗,n; εn) for each n ∈ N, the
assertions of Lemma 4.8 apply to (S−∗,n, Sn, S

+∗,n) for all sufficiently large n ∈ N.
The present assertions follow from this, in view of the fact that U±n → Ũ± and
∇U±n → ∇Ũ±, both uniformly relative to all compact subsets of Ω̃±, where we
define U±n (x) = U±(S±n , Sn;x) in Ω±n := Ω(S±n , Sn).

4.10. Lemma. In the context of Lemma 4.8, there exist a value α0 ∈ (0, 1) and
a positive, continuous, monotone increasing function z1(t) : [0,∞) → R (with
z1(0) = 0), such that for any ε ∈ (0, 1/2] and α ∈ (0, α0], any surfaces S± ∈ X0

such that S− < S+, and any Sε ∈ Sε(S−, S+) such that d(S±, S±ε ) ≥ 2d0, we have:

(C0δ0/R0)d(x, Sε) ≤ U+
ε (x) ≤ εz1(d(x, Sε)/ε) in Ω(Sε, S

+
ε ).(4.2)

Q+
ε (x) ≤ C+(α) := (2N/z−1

1 (α)) in Cl(Ω(S+
ε,α, S

+
ε )),(4.3)

where U+
ε (x) := U+(Sε, S

+;x) and S+
ε,α = {U+

ε (x) = αε}.
Proof. Since C0d(x, S+

ε ) ≤ ε for x ∈ Sε, by Lemma 4.8, it follows by Lemma 3.5
that C0d(x, Sε) ≤ (R0/δ0)ε for all x ∈ S+

ε . Thus, the first inequality in (4.2) holds
for all x ∈ Sε ∪ S+

ε . Therefore, it holds throughout Ω(Sε, S
+
ε ), since d(x, Sε) is

subharmonic there. Turning to the second inequality in (4.2), we have U+
ε (x) ≤ ε

in Ω(Sε, S
+
ε ). Thus (in terms of notation from Corollary 4.2 and Remark 4.3),

for any x0 ∈ Sε, we have U+
ε (x) ≤ εUr(x0;x) in ω(x0) := Ω(Sε, S

+) ∩ Ωr(x0)
for r = r(x0) = min{1, d(x0, S

+
ε )}, since the inequality holds on ∂ω(x0). Now

Ur(x0;x) ≤ z0(|x−x0|/r) in Ωr(x0) for each x0 ∈ Sε, due to Remark 4.3. Moreover,
we have r = r(x0) ≥ (ε/C1) for x0 ∈ Sε, due to Lemma 4.8. Thus, Ur(x0;x) ≤
z0(C1|x − x0|/ε) in Ωr(x0) for each x0 ∈ Sε, from which the assertion follows.
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Turning to the proof of (4.3), it follows from Lemma 4.8 and Lemma 3.4(g) that
d(x, Ŝ+

ε ) ≥ (ε/C1) for x ∈ Ω(Sε, S
+
ε ) and ε ∈ (0, 1/2], where Ŝ+

ε = {U+
ε (y) =

2ε}. Let α0 = min{1, z1(1/C1)} > 0. For any α ∈ (0, α0], and for any point
x ∈ Ω(Sε, S

+
ε ) such that U+

ε (x) ≥ αε, we have αε ≤ z1(d(x, Sε)/ε) by (4.2), from
which it follows that

d(x, Sε ∪ Ŝ+
ε ) ≥ min{d(x, Sε), d(x, Ŝ+

ε )} ≥ εmin{z−1
1 (α), (1/C1)} = εz−1

1 (α).

Therefore if x ∈ Ω(S+
ε,α, S

+
ε ), then

Q+
ε (x) ≤ N(sup{U+

ε (y) : y ∈ Ω(Sε, Ŝ
+
ε )}/d(x, Sε ∪ Ŝ+

ε )) ≤ C+(α).

4.11. Lemma. In the context of Lemma 4.8, there exists a positive, continuous,
monotone increasing function z2(t) : [0,∞) → R (with z2(0) = 0), such that for any
ε ∈ (0, ε0], any surfaces S± ∈ X0 such that S− < S+, and any Sε ∈ Sε(S−, S+)
such that d(S±, S±ε ) ≥ 2d0, we have:

εz2(d(x, Sε)/ε) ≤ U−ε (x) ≤ ε in Ω(S−ε , Sε).(4.4a,b)

It follows from (4.4a) that

d(x, Sε) ≤ εz−1
2 (α) if U−ε (x) = αε for α ∈ (0, 1].(4.5)

Proof. For fixed constants 1 < µ < λ, and for a variable unit vector ν0, let
Û−(ν0;x) = U−(Ŝ−(ν0), Ŝ+(ν0);x) in Ω̂(ν0) := Ω(Ŝ−(ν0), Ŝ+(ν0)), where Ŝ±(ν0)
= ∂K±(ν0), K+(ν0) = H({0} ∪Bµ(λν0)), and

K−(ν0) = H({ν0} ∪B((λ−1)/λ)µ(λν0)) = {x ∈ K+(ν0) : d(x, ∂K+(ν0)) ≥ (µ/λ)}.
Then ẑ2(t) := Û−(ν0; tν0) > 0 for 0 < t ≤ 1, where this expression is independent
of ν0, due to the congruence of the figures. For any x0 6= 0 and small r > 0,
define U−r (x0;x) = Û−(ν0; (x − x0)/r) for x ∈ Ωr(x0) := x0 + rΩ̂(ν0), where
ν0 = −(x0/|x0|). Observe that U−r (x0;x0 + ν0t) = ẑ2(t/r) for 0 < t ≤ r, and that
∂Ωr(x0) = S−r (x0)∪S+

r (x0), where S±r (x0) := x0 +rŜ±(ν0) (and ν0 = −(x0/|x0|)).
For any ε ∈ (0, 1), surfaces Sε, S

± ∈ X0 such that Sε ∈ Sε(S−, S+), and x0 ∈ Sε,
we conclude from Lemma 4.8 that (δ0/R0)|x−0 − x0| ≤ d(x−0 , Sε) ≤ (ε/C0), where
x−0 denotes the point of intersection of S−ε with the line-segment joining x0 to the
origin. Using this, it is easily checked that if we choose λ = (2R0/δ0) and µ = 2,
then S+

r (x0) ≤ Sε and S−r (x0) ≤ S−ε , both for all x0 ∈ Sε and ε ∈ (0, ε1], where
r = (R0ε/C0δ0) and ε1 = min{ε0, (C0δ

2
0d0/R

2
0)}. Thus, we have

U−ε (x0 + ν0t) ≥ εU−r (x0;x0 + ν0t) = εẑ2(t/r) ≥ εẑ2(C0δ0t/R0ε) =: εz2(t/ε)(4.6)

for x0 ∈ Sε and t ∈ (0, r] (where ν0 = −(x0/|x0|)). Inequality (4.4a) follows from
(4.6) and the fact that d(x0 + tν0, Sε) ≤ t for t ∈ (0, r].

5. The convex multilayer problem: fixed points and weak solutions

5.1. Definitions, notation, assumptions. In the context of Problem 1.1, let Y =
Y(S−∗ , S+∗ ) denote the family of all k-tuples S = (S1, . . . , Sk) such that Si ∈ X for
i = 1, . . . , k and such that S−∗ < S1 < · · · < Sk < S+

∗ . For Si = (Si,1, . . . , Si,k) ∈ Y,
i = 1, 2, we say S1 ≤ S2 if S1,j ≤ S2,j for j = 1, . . . , k. Also, we define ∆(S1, S2) =
max{∆(S1,j , S2,j) : j = 1, . . . , k}, and we say that Sn → S as n → ∞ (for S, Sn ∈
Y) if ∆(Sn, S) → 0 as n → ∞. We assume throughout this section that the given
functions Fi(x, p, q) : RN ×R+×R+ → R, i = 1, . . . , k, satisfy Assumptions 2.2(a)–
(d). For each i = 1, . . . , k, the notations Tε,i(Si−1, Si, Si+1), Sε,i(Si−1, Si+1), and
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S±
ε,i(Si−1, Si+1) coincide with Tε(S−, S, S+),Sε(S−, S+), and S±

ε (S−, S+) in the
case where S = Si ∈ X, S± = Si±1 ∈ X, and F = Fi (here we define S0 =
S−∗ , Sk+1 = S+∗ ). Finally, we define the mappings Tε(S) : Y → Y, 0 < ε < 1, such
that (Tε(S))i = Tε,i(Si−1, Si, Si+1) for i = 1, . . . , k.

5.2. Problem. For any ε ∈ (0, 1), we seek a multisurface Sε := (Sε,1, . . . , Sε,k) ∈ Y
such that Tε(Sε) = Sε (i.e., such that Sε,i ∈ Sε,i(Sε,i−1, Sε,i+1) for i = 1, 2, . . . , k,
where Sε,0 = S−∗ and Sε,k+1 = S+

∗ ).

5.3. Definitions. We define S±
ε = S±

ε (S−∗ , S+∗ ) = {S = (S1, . . . , Sk) ∈ Y : Si ∈
S±

ε,i(Si−1, Si+1) for i = 1, . . . , k} and Sε = Sε(S−∗ , S
+
∗ ) = S−

ε ∩ S+
ε for each

ε ∈ (0, 1). We call S−
ε (resp. S+

ε ) the family of inner (resp. outer) solutions of
Problem 5.2 at ε, whereas Sε is the family of all solutions of Problem 5.2 at ε.

5.4. Definition. A multisurface S̃ = (S̃1, . . . , S̃k) ∈ Y(S−∗ , S
+
∗ ) is a weak solution

of Problem 1.1 if there exist a sequence of ordered (k+2)-tuples (S−∗,n, Sn, S
+∗,n)∞n=1

and a corresponding positive null sequence (εn)∞n=1 such that for each n ∈ N, we
have Sn ∈ S(S−∗,n, S+∗,n; εn) (i.e. S−∗,n < S+∗,n in X, Sn ∈ Y(S−∗,n, S+∗,n), and Sn solves
Problem 5.2 with ε and S±∗ replaced by εn and S±∗,n, respectively), and such that
S±∗,n → S±∗ and Sn → S̃ both as n→∞. The sequence (S−∗,n, Sn, S

+
∗,n)∞n=1 is called

an approximating sequence corresponding to the weak solution S̃.

5.5. Theorem. There exist constants ε0 ∈ (0, 1) and C > 0 such that for every
ε ∈ (0, ε0], there exists at least one solution Sε := (Sε,1, . . . , Sε,k) ∈ Sε of Problem
5.2 at ε such that d(Sε,i, Sε,i+1) ≥ C for i = 0, . . . , k.

5.6. Remarks. (a) As in the two-layer case, the intuitive justification for our defini-
tion of a weak solution of Problem 1.1 is based on the fact that if S̃ is a sufficiently
regular classical solution of Problem 1.1, then ∆(S̃, Tε(S̃)) = εz(ε) as ε ↓ 0, so that
S̃ is nearly a solution of Problem 5.2 for small ε > 0. (b) The remainder of this
section is devoted mainly to the proofs of Theorems 5.5 and 2.11(a). For the proof
of Theorem 5.5, we actually show (for aesthetic reasons) that the “fixed point”
can be obtained as the limit of either a decreasing sequence of outer solutions (of
Problem 5.2) or an increasing sequence of inner solutions, although obviously the
study of either one of these two cases would suffice for establishing existence. The
proof involving decreasing sequences of outer solutions is more straightforward.

5.7. Lemma. There exist two fixed multisurfaces

S±1 := (S±1,1, . . . , S
±
1,n) ∈ Y(S−∗ , S

+
∗ )

such that S±1 ∈ S±
ε (S−∗ , S+∗ ) for all ε ∈ (0, ε̂0], where ε̂0 ∈ (0, 1) is sufficiently

small.

Proof. We will prove the existence of S−1 . As an application of Lemma 3.15, we
define the convex C∞-surfaces S−1,i, i = 1, . . . , k inductively (as i decreases, be-
ginning with i = k) such that S−1,i ∈ S−

ε,i(S
−
∗ , S

−
1,i+1) for ε ∈ (0, εi] and for each

i = 1, . . . , k, where S−1,k+1 = S+
∗ . Since S−∗ < S−1,1 < · · · < S−1,k < S−∗ , it follows

from Lemma 3.11 that S−1,i ∈ S−
ε,i(S

−
1,i−1, S

−
1,i+1) for i = 1, . . . , k, provided that

0 < ε ≤ ε̂0 := min{ε1, . . . , εk}. The analogous construction of S+
1 is based on

Lemma 3.14.
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5.8. Definitions. For i = 1, . . . , k, let η+
i > 0 and ε+0,i ∈ (0, 1) denote the con-

stants η0 and ε0 of Lemma 4.4 in the case where f = fi, and let hi(t) and ε−0,i(t)
denote the functions h(t) and ε0(t) of Lemma 4.6 and Corollary 4.7 in the case
where f = fi. For any given, sufficiently small δ > 0, we define the values
δ+0 , . . . , δ

+
k , δ

−
1 , . . . , δ

−
k+1, and η±1 , . . . , η

±
k recursively such that δ−0 = δ+k+1 = δ and

δ±i∓1 = η±i δ
±
i for i = 1, . . . , k, where η−i = hi(δ−i /2) and η+

i was defined previously.
In terms of these values, we define ε̃0(δ) = min{ε−0,1, . . . , ε

−
0,k, ε

+
0,1, . . . , ε

+
0,k, ε̂0} ∈

(0, 1), where ε−0,i := ε−0,i(δ
−
i ) ∈ (0, 1) for i = 1, . . . , k, the values ε+0,1, . . . , ε

+
0,k were

defined previously, and ε̂0 occurs in Lemma 5.7. We also define

Y+
δ = {S = (S1, . . . , Sk) ∈ Y : d(Sk, S

+
∗ ) ≥ δ and

d(Si−1, Si) ≥ η+
i d(Si−1, Si+1) for i = 1, . . . , k},

Y−δ = {S = (S1, . . . , Sk) ∈ Y : d(S−∗ , S1) ≥ δ and

d(Si, Si+1) ≥ η−i d(Si−1, Si+1) for i = 1, . . . , k}.

5.9. Remarks. (a) Observe that if the multisurfaces S± := (S±1 , S
±
2 , . . . , S

±
k ) ∈ Y

are chosen such that

d(S−1 , S
−
∗ ) ≥ δ, d(S+

k , S
+
∗ ) ≥ δ and d(S±i , S

±
i∓1) ≥ η±i d(S

±
i , S

±
i±1)

for i = 1, . . . , k, then d(S±i , S
±
i±1) ≥ δ±i for i = 1, . . . , k. (b) It follows from Part

(a) that for each sufficiently small δ > 0, there exists a value C = C(δ) > 0 such
that d(Si, Si+1) ≥ C for i = 0, . . . , k, uniformly for all multisurfaces S ∈ Y±δ .

5.10. Lemma. Given the fixed values δ > 0 and ε ∈ (0, ε̃0(δ)], let S±n := (S±n,1, S
±
n,2,

. . . , S±n,k) denote a multisurface in S±
ε (S−∗ , S+∗ )∩Y±δ . Then there exists at least one

multisurface S±n+1 = (S±n+1,1, S
±
n+1,2, . . . , S

±
n+1,k) ∈ Y(S−∗ , S

+
∗ ) such that for each

i = 1, . . . , k, we have (a) S±n+1,i ∈ Sε,i(S±n,i−1, S
±
n,i+1), (b) S+

n+1,i ≤ S+
n,i, (c)

S−n+1,i ≥ S−n,i, and (d) d(S−n+1,i, S
−
n,i+1) ≥ η−i d(S

−
n,i−1, S

−
n,i+1). It follows from

these properties that S±n+1 ∈ S±
ε (S−∗ , S

+
∗ ) ∩ Y±δ .

Proof. For each i = 1, . . . , k, the existence of a surface S+
n+1,i ∈ Sε,i(S+

n,i−1, S
+
n,i+1)

with property (b) follows from Corollary 4.5, whereas the existence of a surface
S−n+1,i ∈ Sε,i(S−n,i−1, S

−
n,i+1) with properties (c) and (d) follows from Corollary 4.7.

Clearly

S+
n+1,i−1 ≤ S+

n,i−1 < S+
n+1,i ≤ S+

n,i < S+
n+1,i+1 ≤ S+

n,i+1,(5.1)

S−n,i−1 ≤ S−n+1,i < S−n,i ≤ S−n+1,i < S−n,i+1 ≤ S−n+1,i+1(5.2)

for i = 1, . . . , k. In view of (5.1) and (5.2), it follows from Lemma 3.11 that

S±n+1,i ∈ S±
ε,i(S

±
n+1,i−1, S

±
n+1,i+1)(5.3)

for i = 1, . . . , k. Thus, S±n+1 ∈ S±
ε (S−∗ , S

+
∗ ). Now Lemma 4.4 implies that

d(S+
n+1,i−1, S

+
n+1,i) ≥ η+

i d(S
+
n+1,i−1, S

+
n+1,i+1) > η+

i d(S
+
n+1,i, S

+
n+1,i+1)(5.4)
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for i = 1, . . . , k. Since d(S+
n+1,k, S

+
∗ ) ≥ d(S+

n,k, S
+
∗ ) ≥ δ (due to (5.1)), it follows

from (5.4) that S+
n+1 ∈ Y+

δ . We also have

d(S−n+1,i, S
−
n+1,i+1) ≥ d(S−n+1,i, S

−
n,i+1)

≥ η−i d(S
−
n,i−1, S

−
n,i+1) ≥ η−i d(S

−
n+1,i−1, S

−
n+1,i)

(5.5)

for i = 1, . . . , k, due to (5.2) and property (d), while also

d(S−∗ , S
−
n+1,1) ≥ d(S−∗ , S

−
n,1) ≥ δ,(5.6)

due to (5.2) and the fact that S−n ∈ Y−δ . It follows from (5.5), (5.6), and Remark
5.9(a) that for each i = 1, . . . , k, we have

d(S−n+1,i−1, S
−
n+1,i+1) ≥ d(S−n+1,i−1, S

−
n+1,i) ≥ δ−i ,(5.7)

d(S−n+1,i, S
−
n+1,i+1) ≥ δ−i+1 = δ−i η

−
i = δ−i hi(δ−i /2).(5.8)

In view of (5.7) and (5.8), it follows from Lemma 4.6 that

d(S−n+1,i, S
−
n+1,i+1) ≥ η−i d(S

−
n+1,i−1, S

−
n+1,i+1)(5.9)

for i = 1, . . . , k. Then (5.6) and (5.9) imply that S−n+1 ∈ Y−δ .

5.11. Proof of Theorem 5.5. Choose δ > 0 so small that S±1 ∈ Y±δ , where the
multisurfaces S±1 were introduced in Lemma 5.7. For each sufficiently small ε > 0,
let the monotone sequences (S±ε,n)∞n=1 (with S±ε,1 := S±1 ) be defined recursively by
Lemma 5.10. Then for sufficiently small δ > 0, and for any ε ∈ (0, ε̃0(δ)], we
have S±ε,n ∈ S±

ε (S−∗ , S
+
∗ ) ∩ Y±δ for all n ∈ N. Therefore d(S±ε,n,i, S

±
ε,n,i+1) ≥ C >

0 uniformly for i = 0, . . . , k, n ∈ N, and sufficiently small ε (by Remarks 5.9),
where we use the component-wise representation S±ε,n = (S±ε,n,1, S

±
ε,n,2, . . . , S

±
ε,n,k).

For fixed ε > 0 and fixed i = 1, . . . , k, it follows from Lemma 5.10(b), (c) that
(S−ε,n,i)

∞
n=1 (resp. (S+

ε,n,i)
∞
n=1) is a weakly increasing (decreasing) sequence of convex

surfaces such that S−ε,n,i < S+∗ (resp. S+
ε,n,i > S−∗ ). Therefore, for each sufficiently

small ε > 0 and for each i = 1, . . . , k, there exists a surface S±ε,i ∈ X such that
∆(S±ε,n,i, S

±
ε,i) → 0 as n→ ∞. It easily follows by continuity that d(S±ε,i, S

±
ε,i+1) ≥

C > 0 for i = 0, . . . , k. Moreover,

S±ε,i = lim
n→∞S±ε,n+1,i = lim

n→∞Tε,i(S±ε,n,i−1, S
±
ε,n+1,i, S

±
ε,n,i+1)

= Tε,i(S±ε,i−1, S
±
ε,i, S

±
ε,i+1)

for i = 1, . . . , k, due to Lemma 3.8 and the fact that S±ε,n+1,i ∈ Sε(S±ε,n,i−1, S
±
ε,n,i+1)

(see Lemma 5.10(a)). Therefore S±ε,i ∈ Sε,i(S±ε,i−1, S
±
ε,i+1) for i = 1, . . . , k, whence

S±ε := limn→∞ S±ε,n ∈ Sε(S−∗ , S+∗ ).

5.12. Proof of Theorem 2.11(a). Let a positive null sequence (εn)∞n=1 be given
such that εn ∈ (0, ε̃0] for all n ∈ N. For each n ∈ N, let Sn = (Sn,1, . . . , Sn,k) ∈ Y
denote a solution of Problem 5.2 at the value ε = εn such that d(Sn,i, Sn,i+1) ≥
C > 0 for all i = 0, . . . , k (this exists due to Theorem 5.5). Also, for each n and
i, the surface Sn,i is starlike relative to all points in some fixed ball Bδ(0) ⊂ D−∗ .
Therefore, the family of surfaces {Sn,i : n ∈ N, i = 1, . . . , k} corresponds to a family
of polar-coordinate representations (relative to any fixed origin located inside D−∗ )
which is equicontinuous and uniformly bounded. Applying the theorem of Ascoli-
Arzela, we pass to a subsequence (still denoted by (Sn)∞n=1) such that Sn,i → S̃i ∈ X
as n → ∞ for each i = 1, . . . , k. It easily follows from the properties of the
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multisurfaces Sn, n ∈ N, that S̃ := (S̃1, . . . , S̃k) ∈ Y and d(S̃i, S̃i+1) ≥ C > 0 for
i = 0, . . . , k. By definition, S̃ is the weak solution of Problem 1.1.

5.13. Theorem. If S̃ := (S̃1, . . . , S̃k) ∈ Y is a weak solution of Problem 1.1, then
for each i = 1, . . . , k, the surface S̃i ∈ X is a weak solution of Problem 2.1 (in the
sense of Definition 3.12) in the particular case where one defines S−∗ = S̃i−1, S

+
∗ =

S̃i+1 and F = Fi.

5.14. Remark. To prove Theorem 2.11(b), we must show that weak solutions of
Problem 1.1 are in fact classical solutions of Problem 1.1. However, in view of
Theorem 5.13, the regularity properties of weak solutions of Problem 1.1 follow
from the same regularity properties of weak solutions of Problem 2.1.

5.15. Theorem. Let (S±∗,n)∞n=1 and (S̃n)∞n=1 be sequences such that for each n ∈ N,
S̃n = (S̃1,n, . . . , S̃k,n) is a weak solution of Problem 1.1 corresponding to the surfaces
S±∗,n ∈ X (with S−∗,n < S+

∗,n). Suppose that S±∗,n → S±∗ ∈ X and S̃n → S̃ ∈
Y(S−∗ , S

+
∗ ), both as n→∞. Then S̃ is a weak solution of Problem 1.1.

Proof. For each n ∈ N, there exist sequences (εn,m)∞m=1, (S±∗,n,m)∞m=1, (Sn,m)∞m=1

such that εn,m ↓ 0, S±∗,n,m → S±∗,n, and Sn,m → S̃n as m → ∞, and such that
Sn,m ∈ S(S−∗,n,m, S

+∗,n,m; εn,m) for each m ∈ N. For each n ∈ N, we define ε̂n =
εn,m(n), Ŝ

±
∗,n = S±∗,n,m(n), and Ŝn = Sn,m(n), where m(n) is chosen so large that

εn,m(n) < (1/n), ∆(S±∗,n,m(n), S
±
∗ ) < 2∆(S±∗,n, S

±
∗ ), and ∆(Sn,m(n), S̃) < 2∆(S̃n, S̃).

Then Ŝn → S̃ and Ŝ±∗,n → S±∗ as n→∞, and Ŝn ∈ S(Ŝ−∗,n, Ŝ
+
∗,n; ε̂n) for all n ∈ N.

6. Preliminary regularity properties of weak solutions

of Problem 2.1

6.1. Notational conventions. Throughout the remainder of this paper, S̃ de-
notes a given weak solution of Problem 2.1 (in the sense of Definition 3.12), and
(S−∗,n, Sn, S

+∗,n)∞n=1 denotes an approximating sequence corresponding to a pos-
itive null sequence (εn)∞n=1. We define Ũ±(x) = U±(S±∗ , S̃;x) and Q̃±(x) =
|∇Ũ±(x)| both in Ω̃± := Ω(S±∗ , S̃), and Ũ±n (x) = U±(S±∗,n, Sn;x) and Q±n (x) =
|∇U±n (x)| both in Ω±∗,n := Ω(S±∗,n, Sn). For n ∈ N and α ∈ (0, 1), we also define
Ω∗,n = Ω(S−∗,n, S

+
∗,n), S̃±α = {Ũ±(x) = α}, S±n = {U±n (x) = εn}, Ω±n = Ω(Sn, S

±
n ),

S±n,α = {U±n (x) = αεn},Ω±n,α = Ω(Sn, S
±
n,α), Ŝ±n,α = {U±n (x) = α}, and Ω̂±n,α =

Ω(Sn, Ŝ
±
n,α). Also, ν̃(x) denotes the exterior normal to the level surface of Ũ±

through the point x ∈ Ω∗, and νn(x) denotes the exterior normal to the level sur-
face of U±n through the point x ∈ Ω∗,n \Sn (thus ν̃(x) = ±(∇Ũ±(x)/Q̃±(x)) in Ω̃±

and νn(x) = ±(∇U±n (x)/Q±n (x)) in Ω±∗,n).

6.2. Theorem. Under Assumptions 2.2(a)–(d), any (convex ) weak solution S̃ of
Problem 2.1 has the following properties : (a) We have that C0 ≤ Q̃±(x) ≤ C1 in
{x ∈ Ω̃± : d(x, S±∗ ) ≥ d0}, where d0 = (1/3)min{d(S̃, S−∗ ), d(S̃, S+

∗ )}. (b) S̃ is
a uniformly C1-surface. (c) The functions Ũ±(x) are differentiable on S̃ in the
following sense: For any fixed x0 ∈ S̃, there exist positive values λ±0 = λ±(x0) ∈
[C0,C1] such that

Ũ±(x) = ±λ±0 ν̃0 · (x− x0) + o(|x − x0|)
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as x → x0 relative to Ω̃±, where ν̃0 = ν̃(x0) = the exterior normal to S̃ at x0.
We define the derivatives at x0 ∈ S̃ by ∇Ũ±(x0) = ±λ±0 ν̃0. (d) Let Q̃±(x) =
|∇Ũ±(x)| = λ±(x) for x ∈ S̃. Then the function ±Q̃±(x) : S̃ → R is lower
semicontinuous in the sense that

±Q̃±(x0) ≤ lim inf
x→x0

(±Q̃±(x)),

(e) For any fixed x0 ∈ S̃ and constant 0 < C < 1, we have |∇Ũ±(x)−∇Ũ±(x0)| ≤
z(x0, ε) uniformly in {x ∈ Ω̃± ∩ Bε(x0) : d(x, S̃) ≥ Cε}, where z(x0, ε) → 0 as
ε ↓ 0. (f) For any x0 ∈ S̃, we have Q̃+(x) ↑ Q̃+(x0) and Q̃−(x) ↓ Q̃−(x0) as
x→ x0 along a curve of steepest ascent of the function Ũ±(·).
Proof. Part (a) is due to Corollary 4.9. The proofs of Parts (b), (c), and (e) (based
on Part (a)) are due to Caffarelli and Spruck [15], Theorem 4.12. Part (f) follows
from Part (e), Lemma 3.4(d), and Lemma 6.4. Finally, the proof of Part (d) (based
on Part (f)) is given in [9], Lemma 5.2.

6.3. Lemma. Let S denote any fixed uniformly C1-surface in X, and let (Sn)∞n=1

denote any sequence of surfaces in X such that ∆(Sn, S) → 0 as n→∞. Let ν(x)
be the exterior normal to S at x ∈ S, and, for each n ∈ N and x ∈ Sn, choose νn(x)
such that νn(x) · (y − x) ≤ 0 for all y ∈ D(Sn). Then there exists a null function
z(t, n) : R+ × N → R such that

|νn(x)− ν(x0)| ≤ z(|x− x0|, n)

uniformly for all x0 ∈ S, x ∈ Sn, and n ∈ N.

Proof. According to [9], Lemma 3.4, there exists a null function ζ0(n) such that
|νn(xn)− ν(x̂n)| ≤ ζ0(n) for any point xn ∈ Sn, where x̂n ∈ S is chosen such that
|x̂n − xn| = d(S, xn). Thus

|νn(xn)− ν(x0)| ≤ |νn(xn)− ν(x̂n)|+ |ν(x̂n)− ν(x0)| ≤ ζ0(n) + z(|x̂n − x0|)
≤ ζ0(n) + z(|x̂n − xn|+ |xn − x0|),

where |x̂n − xn| ≤ ζ1(n) := C∆(Sn, S) for some constant C (independent of xn ∈
Sn).

6.4. Lemma. Let S ∈ X be a uniformly C1-surface. For an x ∈ Ω∗, let ν(x) de-
note the unit exterior normal to the level surface of U± through x, where U±(x) :=
U±(S±∗ , S;x). Then for any given compact subset K of Ω∗, there exists a null
function z(t) such that

|ν(x)− ν(y)| ≤ z(|x− y|)
for all x, y ∈ K.

Proof. Assume the assertion is not true. Then there exist sequences of points
xn, yn ∈ K, n ∈ N, such that |xn−yn| → 0 as n→∞, while |ν(xn)−ν(yn)| ≥ ρ0 > 0
for all n ∈ N. By passing to a subsequence (still indexed by n ∈ N), we can
assume xn, yn → x0 ∈ K as n → ∞. Clearly x0 ∈ S, since ν(x) is continuous
in Ω∗ \ S. Then xn ∈ S′n and yn ∈ S′′n, where S′n, S

′′
n denote level surfaces of

the functions U±(x) such that ∆(S, S′n),∆(S, S′′n) → 0 as n → ∞. Therefore,
|ν(xn)− ν(x0)| ≤ z(|xn− x0|, n) and |ν(yn)− ν(x0)| ≤ z(|yn− x0|, n) for all n ∈ N,
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by Lemma 6.3. Therefore |ν(xn) − ν(yn)| → 0 as n → ∞, a contradiction which
proves the assertion.

6.5. Lemma. Let S̃ ∈ X be a weak solution of Problem 2.1, and (S−∗,n, Sn, S
+∗,n)∞n=1

a corresponding approximating sequence. If S̃ is a uniformly C1-surface, then for
any compact subset K of Ω∗, we have (using notation from §6.1):

sup{|νn(x) − ν̃(x)| : x ∈ K \ Sn} → 0 as n→∞.

Proof. Since U±n (x) → Ũ±(x) relative to compact subsets of Ω̃±, we have ∇U±n (x)
→ ∇Ũ±(x) in Ω̃± as n→∞. Since Q̃±(x) > 0 in Ω̃±, it follows that νn(x) → ν̃(x)
uniformly in compact subsets of Ω̃±. Therefore, if the assertion is false, then there
exist a value ρ0 > 0 and a sequence (xn) such that xn ∈ K \ Sn and |νn(xn) −
ν̃(xn)| ≥ ρ0 for all n ∈ N, and such that d(xn, S̃) → 0 as n → ∞. By passing
to a subsequence (still indexed by n ∈ N), we can assume that xn → x0 ∈ S̃ as
n → ∞. Therefore, we have xn ∈ S′n for n ∈ N, where (a) S′n denotes a level
surface of U+

n or U−n for each n ∈ N, and (b) ∆(S̃, S′n) → 0 as n→∞. For n→∞,
we have νn(xn) → ν̃(x0) by Lemma 6.3, and ν̃(xn) → ν̃(x0) by Lemma 6.4. This
contradiction proves the assertion.

6.6. Lemma. Let S̃ ∈ X be a weak solution of Problem 2.1, let (S−∗,n, Sn, S
+
∗,n)∞n=1

be a corresponding approximating sequence. For each n ∈ N, let M±
n denote the

set of all pairs (x, y) (with x 6= y) such that (a) x and y are both in the closure of
Ω±n := Ω(Sn, S

±
n ), and (b) x and y are the endpoints of an arc of steepest ascent

γ±n (x, y) of the function U±n (·). If S̃ is a uniformly C1-surface, then

lim
n→∞ sup{|γ±n (x, y)| : (x, y) ∈M±

n } = 0,(6.1)

lim
n→∞ sup{(|γ±n (x, y)|/|x− y|) : (x, y) ∈M±

n } = 1,(6.2)

where |γ±n (x, y)| denotes the arc-length of γ±n (x, y).

Proof sketch. For given κ > 1, it follows from Lemmas 3.5, 4.8, 6.4, and 6.5 that
there exist positive null sequences (αn)∞n=1 and (βn)∞n=1 such that

B(x0;αn) ∩ Sn 6= ∅; B(x0;αn) ∩ S±n 6= ∅; B(y;αn) ∩ S̃ 6= ∅(6.3a,b,c)

for any x0 ∈ S̃, n ∈ N, and y ∈ Sn, and such that

|νn(x) − ν̃(x0)| ≤ βn(6.4)

for any x0 ∈ S̃, x ∈ B(x0;καn), and n ∈ N. For each x0 ∈ S̃, let Rn(x0) (resp.
R⊥n (x0)) denote the set of all points y ∈ Cl(B(x0;καn)) having the property that
|(y−x)·ν̃(x0)| ≥ |y−x| cos(βn) (resp. |(y−x)·ν̃(x0)| ≤ |y−x| sin(βn)) for at least one
corresponding point x = x(y) ∈ Cl(B(x0;αn)). It follows from (6.3a,b) and (6.4)
that for any x0 ∈ S̃, and for sufficiently large n ∈ N (independent of x0 ∈ S̃), the
domains Ω±n ∩B(x0;καn) are both simply connected and are contained in R⊥n (x0),
and any admissible arc γ±n (x, y) joining x ∈ B(x0;αn) ∩ Sn to y ∈ S±n must be
such that γ±n (x, y) ⊂ Rn(x0) ∩ R⊥n (x0) ⊂ B(x0;καn). Therefore, in view of (6.4),
we have that |νn(z) − νn(z′)| ≤ 2βn, uniformly for all sufficiently large n ∈ N, all
x0 ∈ S̃, all admissible arcs γ±n (x, y) joining x ∈ B(x0;αn) ∩ Sn to y ∈ S±n , and all
pairs of points z, z′ ∈ γ±n (x, y). Therefore, there exists a sequence (ρn) such that
ρn ↓ 1 as n → ∞, and such that (|γ±n (x, y)|/|x − y|) ≤ ρn in the same uniform
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sense. On the other hand, for every n ∈ N and x ∈ Sn, we have x ∈ B(x0;αn) for
some x0 ∈ S̃, by (6.3c). The assertions (6.1), (6.2) follow.

6.7. Lemma. Let S̃ ∈ X be a weak solution of Problem 2.1, and (S−∗,n, Sn, S
+∗,n)∞n=1

a corresponding approximating sequence. Let the sequences (x̃n)∞n=1 and (x±n )∞n=1

be given such that x̃n ∈ S̃ and x±n ∈ Ω±n ∩ Ω̃∓ for all n ∈ N, and (x±n − x̃n) → 0 as
n → ∞. For each n ∈ N, let γ±n denote the arc of steepest ascent of U±n (·) which
joins its initial point x±n to the surface S±∗,n. Then there exists a sequence (x̂±n )∞n=1

such that x̂±n ∈ Ω̃± ∩ γ±n for all n ∈ N, and such that (x̂±n − x̃n) → 0 as n→∞.

Proof. As in the proof of Lemma 6.6, there exist, for given κ > 1, positive null
sequences (αn)∞n=1, (βn)∞n=1 such that for each n ∈ N, we have x±n ∈ B(x̃n;αn)
and |νn(x) − ν̃(x̃n)| ≤ β for all x ∈ B(x̃n;καn). Therefore, γ±n ∩ Ω̃∓ ⊂ Rn(x̃n) ∩
R⊥n (x̃n) ⊂ B(x̃n;καn) for n ∈ N, from which the assertion follows.

6.8. Lemma. Let S̃ ∈ X be a weak solution of Problem 2.1, and (S−∗,n, Sn, S
+
∗,n)∞n=1

an approximating sequence. If S̃ has the properties stated in Theorem 6.2(a),(b),
then for fixed α ∈ (0, 1), we have

lim
n→∞ inf{Q−n (x) : x ∈ S−n,α} ≥ αC0,(6.5)

lim
n→∞ sup{(d(x, Sn)/d(x, S+

n )) : x ∈ S+
n,α} ≤ (α/(1 − α)),(6.6)

lim
n→∞ sup{(d(x, S+

n,α)/d(x, S+
n )) : x ∈ Sn} ≤ α,(6.7)

where C0 > 0 is a constant in Theorem 6.2(a).

Proof. For each n ∈ N and x ∈ Sn, let γ±n (x) be a curve of steepest ascent of
U±n which joins x to S±n . Also define γ±n,α(x) = γ±n (x) ∩ Ω±n,α and γ̂±n,α(x) =
γ±n (x)∩Ω(S±n,α, S

±
n ), and let π±n,α(x) denote the point of intersection of γ±n (x) with

S±n,α. Lemma 3.4(f) implies

±(αεn −Q±n (π±n,α(x))|γ±n,α(x)|) ≥ 0,(6.8)

±((1− α)εn −Q±n (π±n,α(x))|γ̂±n,α(x)|) ≤ 0,(6.9)

both for all x ∈ Sn. It follows from (6.8), (6.9) and Lemma 6.6 that

Q−n (π−n,α(x)) ≥ (αεn/|γ−n,α(x)|) ≥ (αεn/|γ−n (x)|)
≥ αεn/d(x, S−n )(1 + ζ(n)) ≥ αC0/(1 + ζ(n)),

(d(y, Sn)/d(y, S+
n ))(1 − ζ(n)) ≤ (|γ+

n,α(x)|/|γ̂+
n,α(x)|) ≤ (α/(1 − α)),

for y = π+
n,α(x), and

(d(x, S+
n,α)/d(x, S+

n ))(1 − ζ(n)) ≤ (|γ+
n,α(x)|/|γ+

n (x)|) ≤ α,

all uniformly over all x ∈ Sn and n ∈ N. Since the mappings π−n,α(x) : Sn → S−n,α,
n ∈ N, are all onto, the assertions follow.

6.9. Lemma. Under Assumptions 2.2(a)–(d), let S̃ ∈ X be a weak solution of
Problem 2.1, and let (S−∗,n, Sn, S

+
∗,n)∞n=1 be an approximating sequence. Then: (a)

For any α ∈ (0, α0), we have Q+
n (x) ≤ C+(α) < ∞ uniformly over all x ∈ S+

n,α

and all sufficiently large n ∈ N. (b) There exists a null function z(α) : [0, 1] → R
such that d(x, Sn) ≤ εnz(α) uniformly over all x ∈ S−n,α and all sufficiently large
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n ∈ N. (c) We have d(x, S−n,α) ≤ εnz(α)(1 + ζ(n)) uniformly over all n ∈ N and
x ∈ Sn, where z(α) and ζ(n) are null functions. (d) We have that d(x, S−n,α) ≤
C1z(α)(1 + ζ(n))d(x, S−n ), uniformly for all x ∈ Sn and n ∈ N.

Proof. Parts (a) and (b) follow from Lemma 4.10 (eq. (4.3)) and Lemma 4.11 (eq.
(4.5)), respectively (where we define z(α) = z−1

2 (α)), and Part (d) follows from
Part (c) and Lemma 4.8. It remains to prove Part (c). Let α ∈ (0, 1) be fixed. For
any n ∈ N and x ∈ Sn, choose y ∈ S−n,α and z ∈ Sn such that |y − x| = d(x, S−n,α)
and |z − y| = d(y, Sn). Clearly (x− y) = |x− y|νn(y), (z − y) = |z − y|νn(z), and

d(x, S−n,α) = |x− y| ≤ (|y − z|/[νn(y) · νn(z)]) ≤ εnz(α)/[νn(y) · νn(z)],

where the above inequalities are due to Part (b) and the convexity of Sn. However,
it follows from Lemmas 6.4 and 6.5 that |νn(y)− νn(z)| ≤ ζ(n), uniformly over all
n ∈ N, y ∈ S−n,α and z ∈ Sn such that |z − y| = d(y, Sn) ≤ εnz(α).

6.10. Lemma. Under Assumptions 2.2(a)–(d), let S̃ ∈ X be a weak solution of
Problem 2.1, and let (S−∗,n, Sn, S

+
∗,n)∞n=1 be an approximating sequence (correspond-

ing to a positive null sequence (εn)∞n=1). Then for any point x0 ∈ S̃, there exist
sequences (x±n )∞n=1 such that x±n → x0 as n→∞, x±n ∈ Ω±n for all n ∈ N, and

lim sup
n→∞

F (x0, Q
−
n (x−n ), Q+

n (x+
n )) ≤ 0.

Proof. Choose sequences (xn)∞n=1 and (y±n )∞n=1 such that xn ∈ Sn and y±n ∈ Ω±n for
each n ∈ N, and such that xn → x0, (|y±n − xn|/εn) → 0, and (U±n (y±n )/εn) → 0,
all as n → ∞. For each n ∈ N, we have F (xn, [εn/d(xn, S

−
n )], [εn/d(xn, S

+
n )]) = 0.

Since C0 ≤ [εn/d(xn, S
±
n )] ≤ C1 uniformly for all sufficiently large n ∈ N (due to

Lemma 4.8), we conclude from the continuity of F that for any η > 0, we have

F (x0, [εn/d(xn, S
−
n )], [εn/d(xn, S

+
n )]) < η(6.10)

for all sufficiently large n ∈ N. Let γ±n denote the (unique) arc of steepest ascent
of U±n joining y±n to the point z±n ∈ S±n . Then it follows from Lemmas 3.4(f) and
6.6 that

Q+
n (z+

n ) ≤ (εn/|γ+
n |) ≤ (εn/d(y+

n , S
+
n ))

≤ [εn/d(xn, S
+
n )](1 − (|y+

n − xn|/d(xn, S
+
n )))−1 ≤ [εn/d(xn, S

+
n )](1 + ζ(n)),

(6.11)

Q−n (z−n ) ≥ ((εn − U−n (y−n ))/|γ−n |) ≥ [εn/d(y−n , S
−
n )](1 − ζ(n))

≥ [εn/d(xn, S
−
n )](1− ζ(n))(1 + (|y−n − xn|/d(xn, S

−
n )))−1

≥ [εn/d(xn, S
−
n )](1 − ζ(n)).

(6.12)

In view of (6.10), (6.11), (6.12), it follows from Assumption 2.2(a) that for any given
η > 0, we have F (x0, Q

−
n (z−n ), Q+

n (z+
n )) < η for n ∈ N sufficiently large. Finally, for

each sufficiently large n ∈ N, one applies the continuity of the function F (x0, p, q)
and the continuity and positivity of the functions Q±n (x) to choose the points x±n ∈
Ω±n so close to the corresponding points z±n ∈ S±n that F (x0, Q

−
n (x−n ), Q+

n (x+
n )) < η.

6.11. Lemma. Under Assumptions 2.2(a)–(d), let S̃ ∈ X be a weak solution of
Problem 2.1, and let (S−∗,n, Sn, S

+∗,n)∞n=1 be an approximating sequence. For fixed
x0 ∈ S̃, choose Cartesian coordinates such that x0 lies at the origin and ν̃0 =
ν̃(x0) = eN := (0, . . . , 0, 1). In the new coordinates, let Eδ = Dδ × [−δ, δ] for
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δ > 0, where Dδ = {y ∈ RN−1 : |y| ≤ δ}. Then: (a) for sufficiently small δ > 0
and sufficiently large n (and for any α ∈ (0, 1)), the intersections of the surfaces
S̃, Sn, S

±
n , S

±
n,α with Eδ are respectively the graphs of Lipschitz-continuous functions

z = S̃(y), Sn(y), S±n (y), S±n,α(y) : Dδ → R. Moreover, the Lipschitz constants of
these functions are of order z(δ) (in the case of S̃(y) : Dδ → R) and z(δ, n) (in the
case of Sn(y), S±n (y), S±n,α(y) : Dδ → R) as δ ↓ 0 and n → ∞. (b) For sufficiently
small δ > 0, we have that

Sn(y), S±n (y), S±n,α(y) → S̃(y) as n→∞,

all uniformly in Dδ. (c) We have that

|S±n,α(y)− Sn(y)| ≤ (1 + z(δ, n0))z±(α)d(xn(y), S±n ),

uniformly over all α ∈ (0, 1), y ∈ Dδ, and n ≥ n0, where xn(y) = (y, Sn(y)) and
where z±(α) : (0, 1) → R+ denote fixed functions such that z±(α) ↓ 0 as α ↓ 0.

Proof. It follows from Lemma 4.8 and the definition of a weak solution that
d(x0, Sn), d(x0, S

±
n ), d(x0, S

±
n,α) → 0, all as n → ∞. By Lemmas 6.4 and 6.5, we

have |ν̃(x)− ν̃0| ≤ z(δ) and |νn(x)− ν̃0| ≤ z(δ, n) uniformly in Bδ(x0) \ Sn as δ ↓ 0
and n → ∞. Part (a) easily follows from this. Part (b) also follows from Lemmas
4.8, 6.4, and 6.5. Turning to the proof of Part (c), let y ∈ Dδ correspond to the point
xn = (y, zn) = (y, Sn(y)) ∈ Sn. Then d(xn, S

±
n,α) → 0 as n → ∞, by Lemma 4.8.

For n ∈ N sufficiently large (depending on δ > 0), we have d(xn, S
±
n,α) = |xn−x±n,α|,

where x±n,α = (y±n,α, z
±
n,α) ∈ E2δ ∩ S±n,α. Clearly |z±n,α − zn| ≤ d(xn, S

±
n,α). Also,

the vector (x±n,α − xn) is parallel to ±νn(x±n,α) (where |νn(x±n,α) − ν̃0| ≤ z(δ, n) by
Lemmas 6.4 and 6.5). Therefore |y − y±n,α| ≤ d(xn, S

±
n,α)z(δ, n), whence

|z±n,α − S±n,α(y)| ≤ L(δ, n)|y − y±n,α| ≤ L(δ, n)d(xn, S
±
n,α)z(δ, n),

where L(δ, n) denotes a uniform Lipschitz constant for the functions S±n,α : Dδ → R,
α ∈ (0, 1). By combining the above inequalities, one sees that

|S±n,α(y)− Sn(y)| ≤ |S±n,α(y)− z±n,α|+ |z±n,α − zn| ≤ d(xn, S
±
n,α)(1 + L(δ, n))z(δ, n),

where the estimate is easily seen to hold uniformly over all y ∈ Dδ. Finally, we
have d(x, S±n,α) ≤ z±(α)(1+ ζ(n))d(x, S±n ) uniformly for all x ∈ Sn, as follows from
Lemma 6.8 (eq. (6.7)) and Lemma 6.9(d). The assertion follows.

6.12. Lemma. In the context of Lemma 6.11, for fixed x0 ∈ S̃ and fixed, suffi-
ciently small δ > 0, let z = S̃(y), Sn(y), S±n (y), S±n,α(y) : Dδ → R be the represen-
tations of the intersections with Eδ of the surfaces S̃, Sn, S

±
n , S

±
n,α. Then for any

η > 0, there exists a value α0 = α0(η) ∈ (0, 1) such that for any fixed α ∈ (0, α0],
and for sufficiently large n ∈ N (depending on α), we have

F (x̃(y), Q−n (x−n,α(y)), Q+
n (x+

n,α(y))) > −η
uniformly over all y ∈ Dδ, where x̃(y) = (y, S̃(y)), xn(y) = (y, Sn(y)), and x±n,α(y)
= (y, S±n,α(y)). (b) For any small α ∈ (0, 1), there exist positive values C±(α) such
that Q+

n (x) ≤ C+(α) on S+
n,α and Q−n (x) ≥ C−(α) on S−n,α, both uniformly for all

sufficiently large n ∈ N.

Proof. We observe that F (x, [εn/d(x, S−n )], [εn/d(x, S+
n )]) = 0 for all x ∈ Sn and

n ∈ N. In view of this, it follows from the continuity of the function F (x, p, q) (and
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the fact that C0 ≤ [εn/d(x, S±n )] ≤ C1 for all n ∈ N and x ∈ Sn) that if n ∈ N is
sufficiently large, then

F (x̃(y), [εn/d(xn(y), S−n )], [εn/d(xn(y), S+
n )]) > −(η/2)(6.13)

for all y ∈ Dδ. For sufficiently large n ∈ N, let γ := γ±n,α(y) denote the arc of
steepest ascent of U±n joining the point x±n,α(y) := (y, S±n,α(y)) to the surface S±n .
Then |γ+

n,α(y)| ≤ d(x+
n,α(y), S+

n )(1+ζ(n)) for all n ∈ N (where ζ(n) → 0 as n→∞),
by Lemma 6.6 (and obviously |γ±n,α(y)| ≥ d(x±n,α(y), S±n )). Therefore

(1− α)εn =
∫

γ

Q+
n (x)|dx| ≤ Q+

n (x+
n,α(y))|γ+

n,α(y)|

≤ (1 + ζ(n))Q+
n (x+

n,α(y))d(x+
n,α(y), S+

n )

≤ (1 + ζ(n))Q+
n (x+

n,α(y))[d(xn(y), S+
n ) + |S+

n,α(y)− Sn(y)|]
≤ (1 + ζ(n))Q+

n (x+
n,α(y))d(xn(y), S+

n )[1 + (1 + z(δ, n))z+(α)]

for sufficiently large n ∈ N (by Lemma 6.11(c)), from which it follows that

Q+
n (x+

n,α(y)) ≥ ((1 − α)/(1 + ζ(n))[(1 + z(δ, n))z+(α)])[εn/d(xn(y), S+
n )](6.14)

for sufficiently large n ∈ N. A similar argument using Lemma 6.11(c) shows that

(1− α)εn =
∫

γ

Q−n (x)|dx| ≥ Q−n (x−n,α(y))|γ−n,α(y)| ≥ Q−n (x−n,α(y))d(x−n,α(y), S−n )

≥ Q−n (x−n,α(y))(d(xn(y), S−n )− |S−n,α(y)− Sn(y)|)
≥ Q−n (x−n,α(y))d(xn(y), S−n )[1− (1 + z(δ, n))z−(α)],

from which it follows that

Q−n (x−n,α(y)) ≤ ((1− α)/[1− (1 + z(δ, n))z−(α)])[εn/d(xn(y), S−n )](6.15)

for sufficiently large n ∈ N, and for all y ∈ Dδ and α ∈ (0, 1). Now Part (a) follows
from eqs. (6.13), (6.14), and (6.15), and the assumed continuity and monotonicity
properties of the function F (x, p, q). Finally, regarding Part (b), for α ∈ (0, 1)
sufficiently small and n ∈ N sufficiently large, we have Q+

n (x) ≤ C+(α) for all
x ∈ S+

n,α, due to Lemma 6.9(a), while Q−n (x) ≥ C−(α) := (αC0/2) for all x ∈ S−n,α,
due to Lemma 6.8, eq. (6.5).

7. Proof that F (x0, Q̃
−(x0), Q̃+(x0)) ≤ 0 for all x0 ∈ S̃

7.1. Theorem. Under Assumptions 2.2(a)–(d), let S̃ ∈ X be a weak solution of
Problem 2.1. Then, in the notation of §6.1, we have F (x0, Q̃

−(x0), Q̃+(x0)) ≤ 0
for all x0 ∈ S̃.

7.2. Proposition. Let S̃ be a weak solution of Problem 2.1 (with the proper-
ties stated in Theorem 6.2(a),(b)), and let (S−∗,n, Sn, S

+
∗,n)∞n=1 be a correspond-

ing approximating sequence. Let the sequences (x̃n) and (x±n ) be given such that
x̃n ∈ S̃, x±n ∈ Ω̃± ∩Ω±∗,n and x±n − x̃n → 0 as n→∞. For n ∈ N, let γ̃±n denote the
curve of steepest ascent of Ũ± initiating at x̃n, and let p̃±n (t) : [0, 1) → γ̃±n denote
the parametrization of γ̃±n such that Ũ±(p̃±n (t)) = t for all t ∈ [0, 1). Also for n ∈ N,
let γ±n denote the maximal curve of steepest ascent of U±n passing through the point
x±n , and, for sufficiently small b0 ∈ (0, 1), let p±n (t) : (α±n , b0) → γ±n denote the
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parametrization of γ±n ∩{Ũ± < b0} such that Ũ±(p±n (t)) = t for t ∈ (α±n , b0). Then
p±n (t)− p̃±n (t) → 0 as n→∞ for t ∈ (0, b0).

Proof. For simplicity, we eliminate “±” from the notation, so that S±∗ , Ω̃±, Ũ±(x),
Q̃±(x), p̃±n (t), S±∗,n,Ω±∗,n, U±n (x), Q±n (x), and p±n (t), become S∗, Ω̃, Ũ(x), Q̃(x), p̃n(t),
S∗,n,Ω∗,n, Un(x), Qn(x), and pn(t). Choose b0 ∈ (0, 1) and n0 ∈ N such that
2d(x, S̃) ≤ d(x, S∗,n) and C0 ≤ Q̃(x) ≤ C1, both for all x ∈ {Ũ(x) ≤ b0}, and such
that ∇Ũ(x) ·∇Un(x) ≥ (1/2)Q̃(x)Qn(x) throughout {Ũ(x) ≤ b0}∩Ω∗,n for n ≥ n0.
(This choice of b0 and n0 is possible due to Theorem 6.2(a) and Lemma 6.5). There
exist a uniform constant A0 > 0 and a null function ζ0(n) such that

d(p̃n(t), ∂(Ω̃ ∩ Ω∗,n)) ≥ A0t− ζ0(n); d(pn(t), ∂(Ω̃ ∩ Ω∗,n)) ≥ A0t− ζ0(n)(7.1)

for t ∈ (αn, b0), independent of n ∈ N. This follows from the fact that ∆(S̃, Sn) → 0
as n→∞ and d(x, S̃) ≥ A0t for all x ∈ Ω̃ such that Ũ(x) = t (by Theorem 6.2(a)).
Clearly, we have

p̃′n(t) = Ṽ (p̃n(t)) for t ∈ [0, 1),

where Ṽ (x) = ∇Ũ(x)/Q̃2(x) in Ω̃ ∪ S̃. Also,

p′n(t) = Vn(pn(t)) for t ∈ (αn, b0),

where Vn(x) = ∇Un(x)/(∇Un(x) · ∇Ũ(x)) in {Ũ(x) < b0} ∩ Ω∗,n. Let δn(t) =
|pn(t)− p̃n(t)| for t ∈ (αn, b0). Then

δn(t) ≤ |xn − x̃n|+ |p̃n(t)− p̃n(0)|+ |pn(t)− pn(tn)|,(7.2)

where we choose tn ∈ (αn, b0) such that pn(tn) = xn. However, we have

|p̃n(t)− p̃n(0)| ≤
∫ t

0

|Ṽ (p̃n(t′))| dt′ ≤ (t/C0)(7.3)

for t ∈ (0, b0), since |Ṽ (x)| = (1/Q̃(x)) ≤ (1/C0) in {Ũ(x) < b0}. Similarly,

|pn(t)− pn(tn)| ≤
∫ t

tn

|Vn(pn(t′))| dt′ ≤ (2/C0)(t− tn)(7.4)

for n ≥ n0 and t ∈ (tn, b0), since |Vn(x)| ≤ (2/Q̃(x)) ≤ (2/C0) in {Ũ(x) < b0}∩Ω∗,n
for n ≥ n0. Also, |xn − x̃n| → 0 and tn = Ũ(xn) → 0 as n → ∞. Therefore, it
follows from (7.2), (7.3), and (7.4) that there exist a uniform constant C and a null
function ζ1(n) such that

δn(t) ≤ Ct+ ζ1(n),(7.5)

uniformly for all t ∈ (αn, b0) and all n ∈ N. Also, we have that

δ′n(t) ≤ |Vn(pn(t))− Ṽ (p̃n(t))| ≤ |Vn(pn(t))− Ṽ (pn(t))| + |Ṽ (pn(t))− Ṽ (p̃n(t))|.
(7.6)

Now max{|Un(x) − Ũ(x)| : x ∈ Cl(Ω̃ ∩ Ω∗,n)} ≤ ζ2(n) as n → ∞, from which it
follows from a standard estimate for derivatives of harmonic functions (see [18],
§2.7) that

qn(x) := |∇(Un(x) − Ũ(x))| ≤ Rn(x) := Nζ2(n)/d(x, ∂(Ω̃ ∩ Ω∗,n))(7.7)
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relative to the region {Ũ(x) < b0}. However, a direct calculation based on the
definitions of Ṽ (x) and Vn(x) shows that

|Vn(x)− Ṽ (x)| ≤ 2qn(x)/|∇Un(x) · ∇Ũ(x)| ≤ 4qn(x)/(Q̃(x)[Q̃(x) − qn(x)])(7.8)

for any x ∈ {Ũ(x) < b0} ∩ Ω∗,n such that qn(x) < Q̃(x). Since Q̃(x) ≥ C0 in
{Ũ(x) < b0}, it follows from (7.7) and (7.8) that

|Vn(x) − Ṽ (x)| ≤ 4Rn(x)/[C0(C0 −Rn(x))](7.9)

whenever Rn(x) < C0 in {Ũ(x) < b0} ∩ Ωn. It follows by substituting (7.1) into
(7.9) that

|Vn(pn(t)) − Ṽ (pn(t))| ≤ ζ3(n)/(t− ζ3(n)),(7.10)

for t ∈ (ζ3(n), b0), where ζ3(n) denotes a (specific) null function. Let Ln(t) denote
the straight line-segment joining p̃n(t) to pn(t), and let γn(t) denote the projection
of Ln(t) on the surface {Ũ = t} along radial lines emanating from the origin (located
inside D−∗ ). Clearly γn(t) is a smooth arc in {Ũ = t} which joins p̃n(t) to pn(t).
Moreover, |γn(t)| ≤ M0|Ln(t)| = M0δn(t) for some uniform constant M0, where
|γn(t)| denotes the length of the arc γn(t). We have that

Q̃2(x∗)(∂Ṽ ∗(x∗)/∂τ) = (∇− 2∂/∂ν̃)(∂Ũ(x∗)/∂τ)(7.11)

at any (fixed) point x∗ ∈ {Ũ = t}, where ν̃ = ν̃(x∗) := ∇Ũ(x∗)/Q̃(x∗) and τ⊥ν̃.
By Lemma 6.4, we have |ν̃(x) − ν̃(y)| ≤ z(t) for all x, y ∈ Ω̃ such that |x − y| ≤
2t. Since ∂Ũ(x∗)/∂τ = 0, it follows that |∂Ũ(x)/∂τ | ≤ z(t) for all x ∈ Ω̃ such
that |x − x∗| ≤ 2t. It follows by (7.1) and a standard derivative estimate that
|∂Ṽ (x∗)/∂τ | ≤ z(t)/t. Since this estimate holds uniformly for all points x∗ ∈ γn(t),
it follows that

|Ṽ (pn(t))− Ṽ (p̃n(t))| ≤ (z(t)/t)δn(t).(7.12)

It follows by combining (7.6), (7.10), and (7.12) that

δ′n(t) ≤ (z(t)/t)δn(t) + 2ζ3(n)/t(7.13)

for all n ≥ n0 and t ∈ (αn, b0) such that t ≥ 2ζ3(n). Choose b1 ∈ (0, b0) sufficiently
small, so that z(b1) < 1/2. Let (an) denote a positive null sequence such that
an > max{αn, ζ3(n)} for each n ∈ N. For any value b ∈ (0, b1), and for sufficiently
large n ∈ N (so that an < b), it follows by integrating (7.13) on the interval [an, b]
that

δn(b) ≤ δn(an)(b/an)z(b) + (ζ3(n)/z(b))((b/an)z(b) − 1).(7.14)

But δn(an) ≤ Can + ζ1(n), due to (7.5). By substituting this inequality into (7.14),
one concludes that

δn(b) ≤ (bz(b)/z(b))(Cz(b)a1−z(b)
n + [ζ3(n) + z(b)ζ1(n)]/az(b)

n ).(7.15)

However, one can easily choose the null sequence (an) such that

([ζ3(n) + z(b)ζ1(n)]/az(b)
n ) → 0

as n → ∞. Therefore, we conclude that δn(b) → 0 as n → ∞, for any fixed value
b ∈ (0, b1).
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7.3. Lemma. Let S̃ be a weak solution of Problem 2.1 (having the properties stated
in Theorem 6.2(a), (b)), and let (S−∗,n, Sn, S

+∗,n)∞n=1 be a corresponding approximat-
ing sequence. Given the sequences (x±n ) and (x̃±n ) such that x±n , x̃±n → x±0 ∈ Ω̃±,
let (γ̃±n ) denote the sequence of arcs of steepest descent of Ũ± joining x̃±n to S̃, and
let (γ±n ) denote the sequence of arcs of steepest descent of U±n , joining x±n to Sn.
Then ∆(γ̃±n , γ

±
n ) → 0 as n→∞.

Proof sketch. There is a relatively elementary proof based on Lemma 6.5.

7.4. Proof of Theorem 7.1. Let S̃ be a weak solution of Problem 2.1, and
let (S−∗,n, Sn, S

+
∗,n)∞n=1 be a corresponding approximating sequence (of solutions of

Problem 3.9), corresponding to the positive null sequence (εn)∞n=1. For the pur-
pose of obtaining a contradiction, assume there exists a point x0 ∈ S̃ such that
e(x0) := F (x0, Q̃

−(x0), Q̃+(x0)) > 0. Then there exist positive values µ±0 such that
±(Q̃±(x0) − µ±0 ) > 0 and F (x0, µ

−
0 , µ

+
0 ) ≥ (e(x0)/2). In terms of notation intro-

duced in the proof of Proposition 7.2, we have ±(Q̃±(p̃±(t))− Q̃±(x0)) ↑ 0 as t ↓ 0
due to Theorem 6.2(f). Therefore, ±(Q̃±(p̃±(t0))−µ±0 ) > 0 for a fixed, sufficiently
small value t0 > 0. By the continuity of Q̃±(x), we have ±(Q̃±(x) − µ±0 ) > 0 in
Bδ(p̃±(t0)) ⊂ Ω̃± for a sufficiently small value δ = δ(t0) > 0. Since U±n (x) → Ũ±(x)
as n→∞ uniformly in compact subsets of Ω̃±, it follows that ∇U±n (x) → ∇Ũ±(x)
as n→∞ uniformly in compact subsets of Ω̃±. Therefore, ±(Q±n (x) − µ±0 ) > 0 in
Bδ(p̃±(t0)), provided that n is sufficiently large. Thus,

F (x0, Q
−
n (x−), Q+

n (x+)) ≥ (e(x0)/2)(7.16)

for sufficiently large n ∈ N, and for all x± ∈ Bδ(p̃±(t0)). On the other hand, by
Lemma 6.10, there exist sequences of points (x±n ) such that x±n ∈ Ω±n for all n ∈ N,
and such that x±n → x0 and F (x0, Q

−
n (x−n ), Q+

n (x+
n )) ≤ ζ(n), both as n → ∞. For

each n ∈ N, let γ±n denote the arc of steepest ascent of U±n (·) which passes through
the point x±n . It follows from Lemma 6.7 and Proposition 7.2 that γ±n ∩Bδ(p̃±(t0)) 6=
∅ for sufficiently large n ∈ N. Moreover, since ±Q±n (x) is monotone decreasing with
increasing U±n on γ±n (by Lemma 3.4(d)), we have that ±(Q±n (x±)−Q±n (x±n )) ≤ 0
for sufficiently large n ∈ N, and for all x± ∈ γ±n ∩Bδ(p̃±(t0)). In view of Assumption
2.2(a), we have

F (x0, Q
−
n (x−), Q+

n (x+)) ≤ ζ(n)(7.17)

for sufficiently large n ∈ N, and for all x± ∈ γ±n ∩Bδ(p̃±(t0)). Clearly, (7.17) con-
tradicts (7.16) for sufficiently large n ∈ N. This contradiction proves the assertion.

8. A property of boundary derivatives of weak solutions

8.1. Theorem. Let S̃ ∈ X denote a weak solution of Problem 2.1, where Assump-
tions 2.2(a)–(d) hold. Let F±(t) : [C0,C1] → R+ denote positive C2-functions such
that dF±(t)/dt > 0 and d2F−(t)/dt2 ≥ 0 (where C0,C1 appear in Lemma 6.2(a)).
Then, for any given point x0 ∈ S̃ and for any given value η > 0, we have

±(1/|s̃n|)
∫

s̃n

(F±(Q̃±(x)) − F±(Q̃±(x0))) dσ < η(8.1)

for all sufficiently large n ∈ N, where s̃n = {x ∈ S̃ : ν̃(x) · ν̃(x0) > 0 and d(x,L) <
2−n}, L = L(x0) = {x0 + ν̃(x0)t : t ∈ R}, |s̃n| denotes the (N − 1)-dimensional
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surface area of s̃n, and dσ denotes the differential area of an (N − 1)-dimensional
surface.

8.2. Proposition. Let S̃ ∈ X denote a weak solution of Problem 2.1, where As-
sumptions 2.2(a)–(d) hold. Let G±(t) : R+ → R+ denote C2-functions such that
dG±(t)/dt > 0, d2G+(t)/dt2 ≥ 0, and d(tdG−(t)/dt)/dt ≤ 0, all relative to the
t-interval [C0,C1]. Then, for any given point x0 ∈ S̃ and for any given value η > 0,
we have

±(1/|s̃n|)
∫

s̃n

(G±(Q̃±(x))−G±(Q̃±(x0)))Q̃±(x) dσ < η(8.2)

(in the notation of Theorem 8.1) for all sufficiently large n ∈ N.

8.3. Definition. Given a weak solution S̃ of Problem 2.1 and a point x0 ∈ S̃,
we define the blow-up functions Ũ±n (x) := 2nŨ±(x0 + 2−n(x − x0)), n ∈ N, in
the blow-up domains Ω̃±n := {x0 + 2n(x − x0) : x ∈ Ω̃±}, with common boundary
S̃n := {x0 + 2n(x− x0) : x ∈ S̃} (see [15], §4). Observe that the differentiability of
the functions Ũ±(x) at the point x0 ∈ S̃ (see Theorem 6.2(c)) is equivalent to the
property that

Ũ±n (x) = ±λ±(x0)ν̃(x0) · (x − x0) + 2no(2−n|x− x0|)(8.3)

relative to the set Cl(Ω̃±n ).

8.4. Proof of Proposition 8.2. This proof of Proposition 8.2 is closely related
to the proof of [9], Lemma 5.4, which is perhaps the most important special case.
We will prove the assertion in the “+” case in detail and then remark briefly on the
proof of the “−” case. The proof is expressed in the blow-up notation of Definition
8.3. Since the entire proof concerns a specified point x0 in a fixed weak solution S̃
of Problem 2.1, and is also restricted to the “+” case, we simplify the notation by
deleting the tilde and the plus sign, so that Ũ+

n (x), Ω̃+
n , S̃n, G

+(Q+
n ), and λ+(x0)

become Un(x),Ωn, Sn, G(Qn), and λ0. We also choose Cartesian coordinates such
that x0 = 0, ν̃0 = ν0 := (0, . . . , 0, 1), and x = (y, z) = (y1, . . . , yN−1, z), and let
D = {y ∈ RN−1 : |y| ≤ 1}. Let W (y) : D → R denote a convex, radially symmetric,
C2-function of y such that W (0) = −2λ0,∇yW (0) = 0, |∇yW (y)| ≥ 3C1 for
(1− (λ0/3C1)) ≤ |y| ≤ 1, and W (y) = 0 for |y| = 1. Our proof is based on Green’s
second identity, in the form∫

Ωδ,ε,n

(ψn∆φn − φn∆ψn) dx =
∫

∂Ωδ,ε,n

(
ψn

∂

∂ν
φn − φn

∂

∂ν
ψn

)
dσ,(8.4)

where we define φn(x) := G(Qn(x))−G(λ0), ψn := (Un +W ), and

Ωδ,ε,n := {x ∈ Ωn : Un > δ, z < ε, Un +W < 0}
for all small δ, ε > 0 and large n ∈ N (and where ν denotes the exterior normal
direction on ∂Ωδ,ε,n). For (δ/ε) sufficiently small, a partition of ∂Ωδ,ε,n into disjoint
surfaces is given by ∂Ωδ,ε,n = Sδ,n ∪Lε,n ∪Σδ,ε,n, where Sδ,n = {Un = δ, Un +W ≤
0}, Lε,n = {z = ε, Un +W ≤ 0}, and Σδ,ε,n = {Un > δ, z < ε, Un +W = 0}. Now
∆φn = G′(Qn)∆Qn +G′′(Qn)|∇Qn|2 ≥ 0 and ψn < 0 in Ωδ,ε,n (see Lemma 3.4(e)).
Therefore ψn∆φn ≤ 0 in Ωδ,ε,n. Also, sup{|φn(x)∆ψn| : x ∈ Ωδ,ε,n} ≤ M (= a
constant), uniformly for all small δ, ε > 0 and large n ∈ N, because ∆ψn = ∆W ≥ 0
and because φn(x) := G(Qn(x)) − G(λ0) is uniformly bounded, due to Theorem
6.2(a) and the fact that Qn(x) = Q(2−nx). Finally, we have |Ωδ,ε,n| ≤ O(ε) + ζ(n)
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(independent of δ > 0) because S̃ is a uniformly C1-surface, where | · | denotes
Euclidean volume. Thus∫

Ωδ,ε,n

(ψn∆φn − φn∆ψn) dx ≤ O(ε) + ζ(n)(8.5)

as δ, ε → 0+, (δ/ε) → 0+, and n → ∞. Now max{|ψn|, |∇ψn| : x ∈ Lε,n} is
uniformly bounded for fixed ε > 0 as n → ∞, due to Theorem 6.2(a) and the fact
that ∇Un(x) = ∇U(2−nx). Now by eq. (8.3), we have that (Un(x)− λ0ν0 · x) → 0
as n → ∞, uniformly in compact subsets of {z > 0}. Therefore ∇Un(x) → λ0ν0
and ∇(∂Un(x)/∂ν0) → 0, both uniformly in compact subsets of {z > 0}. Since

∂φn(x)/∂ν0 = (G′(Qn)/Qn)(∇Un · ∇(∂Un/∂ν0)),

it follows that max{|φn(x)|, |∂φn(x)/∂ν0| : x ∈ Lε,n} → 0 as n → ∞ for any fixed
ε > 0. Thus, ∫

Lε,n

(
ψn

∂

∂ν
φn − φn

∂

∂ν
ψn

)
dσ = ζε(n),(8.6)

where for each ε > 0, ζε(n) denotes a function such that ζε(n) → 0 as n→∞. Due
to the fact that |∇Un| ≤ C1 and |∇W | ≥ 3C1 for (1− (λ0/3C1)) ≤ |y| ≤ 1, we have
that ν · νr ≥ 1/2 for (1− (λ0/3C1)) ≤ |y| ≤ 1, where ν = ∇(Un +W )/|∇(Un +W )|
and νr = ∇W/|∇W | = y/|y|. Since ν is the outer normal to the surface Σδ,ε,n

at each of its points, it follows that the area of Σδ,ε,n is bounded by O(ε) + ζ(n)
(independent of δ > 0) as ε → 0+. Also, ψn = 0 on Σδ,ε,n, and the functions
φn := G(Qn) −G(λ) and ∇ψn := ∇(Un +W ) both remain uniformly bounded in
a uniform neighborhood of Sn as n→∞. In view of these facts, we have∫

Σδ,ε,n

(
ψn

∂

∂ν
φn − ϕn

∂

∂ν
ψn

)
dσ = −

∫
Σδ,ε,n

φn
∂

∂ν
ψn dσ = O(ε) + ζ(n)(8.7)

as δ, ε → 0+, independent of n ∈ N. By substituting (8.5), (8.6), and (8.7) into
(8.4), one obtains∫

Sδ,n

(
φn

∂

∂νn
ψn − ψn

∂

∂νn
φn

)
dσ ≤ O(ε) + ζε(n)

(with νn = ∇Un/Qn on Sδ,n). This is equivalent (using the definitions of φn and
ψn) to ∫

Sδ,n

φn(x)(Qn + (∂W (y)/∂νn)) dσ

≤
∫

Sδ,n

|δ +W |G′(Qn)|(∂Qn/∂νn)| dσ +O(ε) + ζε(n).
(8.8)

Now |δ + W | ≤ M and C0 ≤ Qn ≤ C1 on Sδ,n, both uniformly as n → ∞ and
δ, ε→ 0+. Also, it follows from Lemmas 6.4 and 6.5 that

max{|νn(x) − ν0| : x ∈ Sδ,n} ≤ ζ(n) + z(δ)(8.9)

as n→∞ and δ → 0+. Therefore max{|∇W (y) ·νn(x)| : x ∈ Sδ,n} ≤ ζ(n)+z(δ) as
n→∞ and δ → 0+, since ∇W (y) has no component in the ν0-direction. Therefore,
(8.8) implies∫

Sδ,n

φn(x)Qn(x) dσ ≤M

∫
Sδ,n

(|∂2Un/∂ν
2
n|/Qn) dσ + z(δ) +O(ε) + ζε(n)(8.10)
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for a uniform constant M . For sufficiently large n ∈ N and sufficiently small
δ > 0, Sδ,n is the graph of a smooth function z = Sδ,n(y) : Dδ,n → R. For this
representation, we have

(∂2Un(x)/∂ν2
n)/Qn(x) = ∇y · (∇ySδ,n(y)/[1 + |∇ySδ,n(y)|2]1/2),(8.11)

where both sides represent (N − 1) times the mean curvature of the surface Sδ,n

at x = (y, z) = (y, Sδ,n(y)) ∈ Sδ,n. By substituting (8.11) into the second integral
of (8.10), estimating dσ/dy = (1 + |∇Sδ,n(y)|2)1/2 by a constant, and applying the
divergence theorem, one obtains∫

Sδ,n

φn(x)Qn(x) dσ ≤M

∫
∂Dδ,n

|∇Sδ,n(y)| dσ + z(δ) +O(ε) + ζε(n),(8.12)

where the integrand of the second integral is uniformly bounded by ζ(n)+z(δ), due
to (8.9), and where dσ in the second integral refers to (N − 2)-dimensional surface
area. In the limit as δ → 0+, we obtain∫

Cn

φn(x)Qn(x) dσ ≤ O(ε) + ζε(n),

where Cn = Sn∩{x = (y, z) : |y| < 1, |z| < 1}. This implies the assertion in the “+”
case. Finally, for the corresponding proof in the “−” case, one again simplifies the
notation so that Ũ−n (x), Ω̃−n , S̃n, G

−(Q−n ) and λ−(x0) become Un(x),Ωn, Sn, G(Qn),
and λ0. The proof again is again based on Green’s second identity (8.4), where
φn(x) := G(Qn(x)) − G(λ0), ψn := (Un + W ),Ωδ,ε,n = {x ∈ Ωn : Un(x) > δ, z >
−ε, Un(x) + W (y) < 0}, and W (y) has the same properties assumed in the “+”
case. Under the assumption that d(tdG(t)/dt)/dt ≤ 0, it follows from the convexity
of the level surfaces of Un that ∆φn(x) ≤ 0 throughout Ωn (see Lemma 3.4(e)).
Continuing as in the “+” case, one can show (in the “−” case) that∫

Sδ,n

(G(Qn(x)) −G(λ0))Qn(x) dσ

≥ −M
∫

Sδ,n

(|∂2Un/∂ν
2
n|/Qn) dσ − z(δ)−O(ε)− ζε(n),

where Sδ,n = {x ∈ Ωn : Un(x) = δ, Un(x) +W (y) < 0}. Then the assertion follows
by the steps given above.

8.5. Corollary. Let S̃ ∈ X denote a weak solution of Problem 2.1, where As-
sumptions 2.2(a)–(d) hold. Let the function F+(t) : [C0,C1] → R be defined such
that F+(t) = H+(G+(t)), where the C2-function G+(t) : [C0,C1] → R is chosen
such that dG+(t)/dt > 0, and d2G+(t)/dt2 ≥ 0 for t ∈ [C0,C1], and where the
C2-function H+(τ) : G+([C0,C1]) → R is chosen such that dH+(τ)/dτ > 0 and
d2H+(τ)/dτ2 ≤ 0. Then, for any given point x0 ∈ S̃ and value η > 0, we have

(1/|s̃n|)
∫

s̃n

(F+(Q̃+(x)) − F+(Q̃+(x0))) dσ < η(8.13)

(in terms of notation from Theorem 8.1) for all sufficiently large n ∈ N.
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Proof. Since (t−t0)(G+(t)−G+(t0)) ≥ 0 for all t0, t > 0, it follows from Proposition
8.2 (eq. (8.2) that for any η > 0, we have

∫
s̃n

(G+(Q̃+(x)) −G+(Q̃+(x0))) dσ

≤
∫

s̃n

(G+(Q̃+(x)) −G+(Q̃+(x0)))[Q̃+(x)/Q̃+(x0)] dσ < (|s̃n|η/Q̃+(x0))

(8.14)

for sufficiently large n ∈ N. It follows from the assumed properties of H+(τ) that
for any τ0 ∈ G+([C0,C1]), we have

(H+(τ)−H+(τ0)) ≤ (dH+(τ0)/dτ)(τ − τ0)

for all τ ∈ G+([C0,C1]). It follows that for any t0 ∈ [C0,C1], one has

(F+(t)− F+(t0)) ≤ (dH+(G+(t0))/dτ)(G+(t)−G+(t0))

for all t ∈ [C0,C1], where dH+(G+(t0))/dτ > 0. In view of this inequality, the
assertion follows from eq. (8.14).

8.6. Proof of Theorem 8.1 in the “+” case. It suffices to express the functions
F+(t) : [C0,C1] → R+ in the form required by Corollary 8.5. A straightforward
calculation shows that this is accomplished by defining G+(t) = (F+(t))α and
H+(τ) = τ (1/α), where α > 0 is sufficiently large.

8.7. Proof of Theorem 8.1 in the “−” case. Given t0 ∈ [C0,C1] and the
function F−(t) : [C0,C1] → R, it suffices (in view of Proposition 8.2), to choose an
increasing C2-function G−(t) : [C0,C1] → R such that d(tdG−(t)/dt)/dt ≤ 0 and

φ(t) := (F−(t)− F−(t0))− C0t(G−(t)−G−(t0)) ≥ 0

for all t ∈ [C0,C1], where C0 := ((dF−(t0)/dt)/t0(dG−(t0)/dt)) > 0. Since φ(t0) =
φ′(t0) = 0, it suffices to have φ′′(t) := (d2(F−(t) − C0tG

−(t))/dt2) ≥ 0 for all
t ∈ [C0,C1]. For the case where d2F−(t)/dt2 ≥ 0, the requirements are all satisfied
by making the choice G−(t) = −tα, where α ≤ −1.

Remark. The factor “2n” in the statement of [9], Lemma 5.4 should be “2(m−1)n”,
where m denotes dimension. In the briefly outlined proof of the “−” case (on p.
221, line 6), one should define φn(x) = ((1/λ)−(1/|∇Un|)), so that the first integral
in the equation on line 11 becomes

∫
Γδ,n

((|∇Un| − λ)/λ) ds.

9. Proof that F−(x0, Q̃
−(x0)) ≤ F+(x0, Q̃

+(x0)) for all x0 ∈ S̃
9.1. Theorem. Let S̃ ∈ X denote a weak solution of Problem 2.1, where Assump-
tions 2.2(a)–(e) all apply. Then, in the notation of §6.1, we have

F−(x0, Q̃
−(x0)) ≤ F+(x0, Q̃

+(x0))(9.1)

for all x0 ∈ S̃.

9.2. Lemma. Under Assumptions 2.2(a)–(e), let S̃ ∈ X denote a weak solution of
Problem 2.1 such that F+(x0, Q̃

+(x0)) < F−(x0, Q̃
−(x0)) at a point x0 ∈ S̃. Then∫

s̃n

F+(x, Q̃+(x)) dσ <
∫

s̃n

F−(x, Q̃−(x)) dσ − 2|s̃n|η0(9.2)
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for all sufficiently large n ∈ N (i.e. n ≥ n0), where

η0 = (1/6)(F−(x0, Q̃
−(x0))− F+(x0, Q̃

+(x0))) > 0,

s̃n = {x ∈ S̃ : ν̃(x) · ν̃(x0) > 0 and d(x,L) < 2−n}, L = L(x0) = {x0 + ν̃(x0)t :
t ∈ R}, |s̃n| denotes the corresponding (N − 1)-dimensional surface area, and dσ

denotes the (N −1)-dimensional differential area of S̃. Moreover, if x±β denotes the
projection of x ∈ S̃ onto the surface S̃±β := {Ũ±(x) = β} along a curve of steepest
ascent of Ũ±, then for each fixed n ≥ n0, we have∫

s̃+
n,β

F+(x, Q̃+(x+
β )) dσ+

β <

∫
s̃−n,β

F−(x, Q̃−(x−β )) dσ−β − |s̃n|η0(9.3)

for all β ∈ (0, β0(n)), where s̃±n,β = {x±β : x ∈ s̃n} ⊂ S̃±β , β0(n) ∈ (0, 1) is
sufficiently small, and dσ±β denotes (N −1)-dimensional differential surface area of
S̃±β .

Proof. We remark that the differential areas of the surfaces S̃ and S̃±β at points
x ∈ S̃ and x±β ∈ S̃±β on the same curve of steepest ascent of the function Ũ± are
related by the equation Q̃±(x) dσ = Q̃±(x±β ) dσ±β (see [9], Lemma 4.4). For any
fixed x0 ∈ S̃, it follows by combining the ± cases of Theorem 8.1 (with η = η0)
that ∫

s̃n

F+(x0, Q̃
+(x)) dσ <

∫
s̃n

F−(x0, Q̃
−(x)) dσ − 4|s̃n|η0(9.4)

for sufficiently large n ∈ N. In view of Theorem 6.2(a), it follows from the assumed
smoothness of the functions F±(x, t) that there exists a constant L such that

|F±(x, Q̃±(x)) − F±(x0, Q̃
±(x))| ≤ L|x− x0|,(9.5)

uniformly for all x ∈ S̃. In view of (9.4) and (9.5), the inequality (9.2) follows from
the obvious fact that (1/|s̃n|)

∫
s̃n
|x− x0| dσ → 0 as n→∞. Also,

±[F±(x, Q̃±(x±β ))− F±(x, Q̃±(x))] ≤ 0,

as follows from the assumed monotonicity (in t) of the functions F±(x, t), and
the monotonicity of Q̃±(x) on curves of steepest ascent of Ũ± (Lemma 3.4(d)).
Therefore,

±
∫

s̃±n,β

F±(x, Q̃±(x±β ))dσ±β ≤ ±
∫

s̃n

F±(x, Q̃±(x))(Q̃±(x)/Q̃±(x±β )) dσ.(9.6)

On the other hand, since (Q̃±(x)/Q̃±(x±β )) → 1 for each x ∈ S̃ as β ↓ 0 (by
Theorem 6.2(f)), the Lebesgue dominated convergence theorem implies that∫

s̃n

F±(x, Q̃±(x))(Q̃±(x)/Q̃±(x±β )) dσ →
∫

s̃n

F±(x, Q̃±(x)) dσ(9.7)

as β ↓ 0. Now the assertion (9.3) follows from (9.2), (9.6), and (9.7).

9.3. Lemma. Under Assumptions 2.2(a)–(e), let S̃ denote a weak solution of
Problem 2.1, and let (S−∗,n, Sn, S

+
∗,n)∞n=1 be an approximating sequence (correspond-

ing to a positive null sequence (εn)∞n=1). For fixed x0 ∈ S̃, define L(x) := {y =
x + tν̃(x0) : t ∈ R} for all x ∈ S̃. Also define s̃ := {x ∈ S̃ : ν̃(x) · ν̃(x0) >
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0, d(x,L(x0)) < δ} for a fixed, sufficiently small value δ > 0 (chosen such that
ν̃(x) · ν̃(x0) > (1/2) for all x ∈ s̃). For each α ∈ (0, 1) and n ∈ N, define
S±n,α := {U±n (x) = αεn} (on which the differential surface area is denoted by dσ±n,α).
Also define s±n,α := φ±n,α(s̃) = {φ±n,α(x) : x ∈ s̃} for sufficiently large n ∈ N, where
the (invertible) mapping x±n,α = φ±n,α(x) : s̃ → S±n,α is defined such that φ±n,α(x) is
the point in S±n,α ∩ L(x) which is closest to x. Then, for any η > 0, there exists a
value α(δ, η) ∈ (0, 1) such that∫

s−n,α

F−(x,Q−n (x−n,α)) dσ−n,α <

∫
s+

n,α

F+(x,Q+
n (x+

n,α)) dσ+
n,α + η(9.8)

whenever α ∈ (0, α(δ, η)] and n ∈ N is sufficiently large (depending on α).

Proof. Choose local coordinates near the given point x0 ∈ S̃ such that x0 = 0
and ν̃(x0) = eN := (0, . . . , 0, 1). In the notation of Lemmas 6.11 and 6.12, let
z = S̃(y) : Dδ → R and z = S±n,α(y) : Dδ → R be local coordinate representations of
the surfaces S̃∩Eδ and S±n,α∩Eδ (where we write x = (y, z) = (y1, y2, . . . , yN−1, z)).
We can define the functions F±n,α(y) = F±(y, S̃(y), Q±n (y, S±n,α(y))) : Dδ → R for
small α > 0 and large n ∈ N. Given η > 0, we have

F−n,α(y) ≤ F+
n,α(y) + (η/2|s̃|)(9.9)

uniformly in Dδ for sufficiently small α > 0 and for sufficiently large n ∈ N
(depending on α), as follows by interpreting Lemma 6.12(a) in the case where
F (x, p, q) = F+(x, q)− F−(x, p). We have that∫

s±n,α

F±(x,Q±n (x±n,α)) dσ±n,α =
∫

Dδ

F±n,α(y)(|∇S±n,α(y))|2 + 1)1/2 dy(9.10)

for small α > 0 and large n ∈ N. The assertion now follows from (9.9) and
(9.10), in view of the fact that, for fixed sufficiently small α > 0, the functions
Q±n (y, S±n,α(y)) : Dδ → R are uniformly bounded and uniformly positive as n→∞
(by Lemmas 4.8 and 6.12(b)), and the fact that |∇S±n,α(y)−∇S̃(y)| → 0 uniformly
in Dδ as n→∞ (see Lemmas 6.5 and 6.11).

9.4. Lemma. In the context of Lemma 9.3, let the values δ, η, α > 0 be given such
that δ is sufficiently small and α ∈ (0, α(δ, η)] (so that (9.8) holds for sufficiently
large n ∈ N). For any β ∈ (0, 1), and for sufficiently large n ∈ N, let each point
x ∈ s̃ correspond to the points x±n,α = φ±n,α(x) ∈ S±n,α and x̂±n,α,β = ψ̂±n,α,β(x±n,α) =
ψ̂±n,α,β(φ±n,α(x)) ∈ Ŝ±n,β := {U±n (x) = β}, where the (invertible) function ψ̂±n,α,β(y) :
S±n,α → Ŝ±n,β is uniquely defined such that y ∈ S±n,α and ψ̂±n,α,β(y) ∈ Ŝ±n,β are located
on the same curve of steepest ascent of the function U±n (·). Let ŝ±n,α,β = {ψ̂±n,α,β(y) :
y ∈ s±n,α} ⊂ Ŝ±n,β for any β ∈ (0, 1) and sufficiently large n ∈ N. Then∫

ŝ−n,α,β

F−(x,Q−n (x̂−n,α,β)) dσ̂−n,β <

∫
ŝ+

n,α,β

F+(x,Q+
n (x̂+

n,α,β)) dσ̂+
n,β + 2η(9.11)

provided that β is sufficiently small and n ∈ N is sufficiently large (depending on
δ, η, α, β), where σ̂±n,β denotes the differential area of Ŝ±n,β.
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Proof. We remark that the differential areas of the surfaces S±n,α and Ŝ±n,β are related
by Q±n (x±n,α) dσ±n,α = Q±n (x̂±n,α,β) dσ̂±n,β . For fixed α ∈ (0, α(δ, η)] and β ∈ (0, 1), it
follows from Lemma 4.8 and Lemma 6.12(b) that

0 < C0 < Q+
n (x̂+

n,α,β) ≤ Q+
n (x+

n,α) ≤ C+(α),(9.12)

0 < C−(α) ≤ Q−n (x−n,α) ≤ Q−n (x̂−n,α,β) ≤ C1,(9.13)

provided that n ∈ N is sufficiently large (so that S+
n,α < Ŝ+

β and S−n,α > Ŝ−β ). It
directly follows from (9.12) and (9.13) that

±
(∫

ŝ±n,α,β

F±(x,Q±n (x̂±n,α,β)) dσ̂±n,β −
∫

s±n,α

F±(x,Q±n (x±n,α)) dσ±n,α

)

= ±
∫

s±n,α

(F±(x,Q±n (x̂±n,α,β))(Q±n (x±n,α)/Q±n (x̂±n,α,β))− F±(x,Q±(x±n,α))) dσ±n,α

≥ ±
∫

s±n,α

(F±(x,Q±n (x̂±n,α,β))− F±(x,Q±n (x±n,α))) dσ±n,α

≥ ±L
∫

s±n,α

(Q±n (x̂±n,α,β)−Q±n (x±n,α)) dσ±n,α

≥ ±LC±(α)
∫

s±n,α

([Q±n (x̂±n,α,β)−Q±n (x±n,α)]/Q±n (x̂±n,α,β)) dσ±n,α,

(9.14)

where L is a constant such that ∂F+(x, t)/∂t ≤ L for t ∈ [C0,C
+(α)] and

∂F−(x, t)/∂t ≤ L for t ∈ [C−(α),C1] (both for all x ∈ Ω∗). On the other hand,∫
s±n,α

((Q±n (x±n,α)/Q±n (x̂±n,α,β))− 1) dσ±n,α = (|ŝ±n,α,β | − |s±n,α|) → 0(9.15)

as β ↓ 0 and n → ∞, due to the fact that |s±n,α| → |s̃| and |ŝ±n,α,β | → |s̃|, both
as β ↓ 0 and n → ∞ (by Proposition 7.2, where | · | denotes (N − 1)-dimensional
surface area). The assertion follows from (9.14), (9.15), and Lemma 9.3 (eq. (9.8)).

9.5. Lemma. Under Assumptions 2.2(a)–(e), let S̃ denote a weak solution of
Problem 2.1, and let (S−∗,n, Sn, S

+
∗,n)∞n=1 be a corresponding approximating sequence.

For fixed x0 ∈ S̃, let s̃ := {x ∈ S̃ : ν̃(x) · ν̃(x0) > 0, d(x,L(x0)) < δ} (where
L(x0) = {x0 + ν̃(x0)t : t ∈ R}) for a fixed, sufficiently small value δ > 0. For any
β ∈ (0, 1), let S̃±β := {Ũ±(x) = β}, and let the function x±β = ψ̃±β (x) : S̃ → S̃±β be
defined such that x and x±β always lie on the same curve of steepest ascent of the
function Ũ±(·). For any α, β ∈ (0, 1), x ∈ s̃, and sufficiently large n ∈ N, let the
corresponding point x̂±n,α,β := ψ̂±n,α,β(φ±n,α(x)) ∈ Ŝ±n,β := {U±n (x) = β} be as defined
in Lemmas 9.3 and 9.4. Finally, define the subsurfaces s̃±β = {x±β : x ∈ s̃} ⊂ S̃±β
and ŝ±n,α,β = {x̂±n,α,β : x ∈ s̃} ⊂ Ŝ±n,β (with (N − 1)-dimensional differential surface
areas denoted respectively by dσ±β and dσ̂±n,β). Then for any fixed α, β ∈ (0, 1):

lim
n→∞

∫
ŝ±n,α,β

F±(x,Q±n (x̂±n,α,β)) dσ̂±n,β =
∫

s̃±β

F±(x, Q̃±(x±β )) dσ±β .(9.16)
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Proof. Define the mapping g±β (x) : S̃±β → S̃ such that x ∈ S̃±β and g±β (x) ∈ S̃ always
lie on the same curve of steepest ascent of the function Ũ± (thus ψ̃±β (g±β (x)) = x

in S̃±β ). For each sufficiently large n ∈ N (so that ν̃(x) · νn(x) ≥ 1/2 throughout
K \ Sn, where K is a fixed, sufficiently large subset of Ω∗), we define the mapping
E±n,β(x) : S̃±β → Ŝ±n,β such that x ∈ S̃±β and E±n,β(x) ∈ Ŝ±n,β always lie on the same
curve of steepest ascent of the function U±n . Let g±n,α,β(x) : ŝ±n,α,β → s̃ denote the
inverse of the composite mapping ψ̂±n,α,β(φ±n,α(x)) : s̃ → ŝ±n,α,β defined in Lemmas
9.3 and 9.4. By a change of variables, we have∫

s̃±β

F±(x, Q̃±(x±β )) dσ±β =
∫

s̃±β

F±(g±β (x), Q̃±(x)) dσ±β ,(9.17)

∫
ŝ±n,α,β

F±(x,Q±n (x̂±n,α,β)) dσ̂±n,β

=
∫

s̃±n,α,β

F±(g±n,α,β(E±n,β(x)), Q±n (E±n,β(x)))R±n,β(x) dσ±β ,
(9.18)

where the subsurface s̃±n,α,β ⊂ S̃±β is chosen such that E±n,β(s̃±n,α,β) = ŝ±n,α,β, and
where we define

R±n,β(x) = (∇U±n (x) · ∇Ũ±(x)/Q̃±(x)Q±n (E±n,β(x)))

for all x ∈ S̃±β . Here, the left-hand sides of (9.17) and (9.18) are based on the
notation introduced in the statement of Lemma 9.5, whereas we assume that x ∈ S̃±β
in the right-hand sides of these equations. Now E±n,β(x) → x as n→∞, uniformly
over x ∈ S±β , due to Lemma 6.5 (or Lemma 7.3). Since ∇U±n (x) → ∇Ũ(x) as
n→∞, uniformly in compact subsets of Ω̃±, it is clear that Q±n (E±n,β(x)) → Q̃±(x)
and R±n,β(x) → 1 (both uniformly relative to x ∈ S̃±β ) as n→∞. Moreover, Lemma
7.3 implies that g±n,α,β(yn) → g±β (x) as n→∞ for any sequence (yn)∞n=1 such that
yn ∈ ŝ±n,α,β for each n ∈ N, and such that yn → x ∈ s̃±β as n → ∞, and it follows
from this that g±n,α,β(E±n,β(x)) → g±β (x) as n → ∞ for any fixed x ∈ s̃±β . Finally,
it follows from Proposition 7.2 that |s̃±n,α,β \ s̃±β | → 0 and |s̃±β \ s̃±n,α,β| → 0 both
as n → ∞. In view of the assumed continuity of the functions F±(x, t), it easily
follows that the right-hand side of (9.18) converges to the right-hand side of (9.17)
as n→∞.

9.6. Proof of Theorem 9.1. Let S̃ be a weak solution, and (S−∗,n, Sn, S
+
∗,n)∞n=1

be an approximating sequence. Suppose that F−(x0, Q̃
−(x0)) > F+(x0, Q̃

+(x0))
at a point x0 ∈ S̃. Then, by Lemma 9.2 (eq. (9.3)), there exist values η0 > 0, δ > 0,
and β0 ∈ (0, 1) such that ν̃(x) · ν̃(x0) > (1/2) for all x ∈ s̃, and such that∫

s̃+
β

F+(x, Q̃+(x+
β )) dσ+

β <

∫
s̃−β

F−(x, Q̃−(x−β )) dσ−β − η0

for all β ∈ (0, β0], where s̃ := {x ∈ S̃ : ν̃(x) · ν̃(x0) > 0, d(x,L(x0)) < δ}, L(x0) =
{x0 + ν̃(x0)t : t ∈ R}, and s̃±β denotes the projection of s̃ on S̃±β along the curves of
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steepest ascent of Ũ±(x). However, for the same fixed value δ > 0, it follows from
Lemma 9.4 (in the notation given there) that

∫
ŝ+

n,α,β

F+(x,Q+
n (x̂+

n,α,β)) dσ̂+
n,β ≥

∫
ŝ−n,α,β

F−(x,Q−n (x̂−n,α,β)) dσ̂−n,β − (η0/2)

(9.19)

for any sufficiently small α, β ∈ (0, 1), provided the n ∈ N is sufficiently large
(depending on α, β, η0). Due to Lemma 9.5, it follows from (9.19) in the limit as
n→∞ that∫

s̃+
β

F+(x, Q̃+(x+
β )) dσ+

β ≥
∫

s̃−β

F−(x, Q̃−(x−β )) dσ−β − (η0/2)

for any sufficiently small value β ∈ (0, 1). This contradiction proves the assertion.

10. Proof of Theorem 2.3(b)

10.1. Theorem. Let S̃ denote a (convex ) weak solution of Problem 2.1, where
Assumptions 2.2(a)–(e) apply. Then: (a) The functions ∇Ũ±(x) : Ω̃± → R have
continuous, nonvanishing continuations to Ω̃± ∪ S̃. (b) We have

F−(x0, Q̃
−(x0)) = F+(x0, Q̃

+(x0))(10.1)

at all points x0 ∈ S̃, where Q̃±(x) := |∇Ũ±(x)| throughout Ω̃± ∪ S̃.

Proof. By Theorems 7.1 and 9.1, eq. (10.1) holds at all points x0 ∈ S̃, where Q̃±(x0)
is defined on S̃ by Theorem 6.2(c). Since the functions ±Q̃±(x0) : S̃ → R are both
lower semicontinuous (by Theorem 6.2(d)), it follows from the assumed properties
of the functions F±(x, t) that the functions ±F±(x0, Q̃

±(x0)) : S̃ → R are also both
lower semicontinuous. In view of (10.1), it follows that both functions are actually
continuous on S̃. Since the mappings τ = F±(x, t) have continuous inverses of
the form t = G±(x, τ), it follows that the functions Q̃±(x0) : S̃ → R are also
continuous. For ε ∈ (0, 1), let π±ε : S̃ → Φ±ε (S̃, S±∗ ) denote the continuous mapping
such that x0 ∈ S̃ and π±ε (x0) always lie on the same curve of steepest ascent of
Ũ±(·) (see Lemma 7.3 and [9], Lemma 4.4). For each x0 ∈ S̃ and ε ∈ (0, 1),
define φ±ε (x0) = Q̃±(π±ε (x0)). Then the continuous functions φ±ε (x0) : S̃ → R
are such that φ+

ε (x0) ↑ Q̃+(x0) and φ−ε (x0) ↓ Q̃−(x0) pointwise as ε ↓ 0, by
Theorem 6.2(f). Therefore, the convergence is uniform, due to the continuity of
the functions Q̃±(x0) : S̃ → R. Therefore, there exists a null function z(·) such
that |Q̃±(x) − Q̃±(p(x))| ≤ z(d(x, S̃)) for all x ∈ Ω̃±, where p(x) ∈ S̃ denotes the
endpoint of the arc of steepest descent of Ũ± joining x to S̃. Also, there exists a
null function z(·) such that for any points x0 ∈ S̃ and x ∈ Ω̃±, we have

|x− p(x)| ≤ (Ũ±(x)/C0) ≤ z(d(x, S̃)) ≤ z(|x− x0|)
and therefore

|p(x)− x0| ≤ |x− x0|+ |p(x)− x| ≤ (|x− x0|+ z(|x− x0|)).
In view of these facts, it follows directly from the triangle inequality, in the form:

|Q̃±(x)− Q̃±(x0)| ≤ |Q̃±(x)− Q̃±(p(x))| + |Q̃±(p(x)) − Q̃±(x0)|



MULTILAYER FREE BOUNDARY PROBLEMS 3019

that Q̃±(x) → Q̃±(x0) as x→ x0 ∈ S̃ (for x ∈ Ω̃±). The continuity of the functions
∇Ũ±(x) : S̃ ∪ Ω̃± → R (defined on S̃ by Theorem 6.2(c)) now follows from Lemma
6.4.

11. Appendix: Remarks on Example 2.9

The purpose of this appendix is to outline the demonstration that, under the
stated assumptions, the function F (x, p, q) introduced in Example 2.9 satisfies As-
sumption 2.2(d). As in Remarks 2.5, we define the function h(x, q) =
(A + Bq−β)−(1/α). Rather than introduce a linear function φ(λ) : [0, 1] → RN

as suggested there, we simply assume that x ∈ R. The condition hqq ≤ 0 reduces
to

((α + 1)β/α(β + 1))B ≤ Aqβ +B,

which is satisfied if

β < α.(A1)

By grouping the coefficients of distinct functions of q, the condition hxx ≤ 0 is seen
to be satisfied if

((α+ 1)/α)A2
x ≤ AAxx; ((α+ 1)/α)B2

x ≤ BBxx;

2((α+ 1)/α)AxBx ≤ ABxx +BAxx.
(A2a,b,c)

We assume (A2a,b), and observe that (A2c) follows from them in view of the
inequality

((α + 1)/α)|Ax| |Bx| ≤ (ABxxBAxx)1/2 ≤ (1/2)(ABxx +BAxx).

Finally, by again grouping the coefficients of distinct functions of q (and still assum-
ing (A1) and (A2a,b)), one sees that the requirement h2

xq ≤ hxxhqq will be satisfied
if

(1 + (1/(α− β)))B2
x ≤ BBxx,(A3)

2(α+ 1)BAxBx + αβAB2
x ≤ α(β + 1)ABBxx + (α− β)B2Axx.(A4)

We assume (A3) (which implies (A2b)). In view of (A3), the requirement (A4) will
be satisfied if

2AxBx ≤ (α/(α+ 1− β))ABxx + ((α − β)/(α+ 1))BAxx.(A5)

However, it follows from (A2a) and (A3) that

2|Ax| |Bx| ≤ 2(λABxxµBAxx)1/2 ≤ λABxx + µBAxx

where we set λ = (α/(α + 1 − β)) and µ = ((α − β)/(α + 1)). This completes the
proof.
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