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SECOND–ORDER CONDITIONS IN EXTREMAL PROBLEMS.
THE ABNORMAL POINTS

A. V. ARUTYUNOV

Abstract. In this paper we study a minimization problem with constraints
and obtain first- and second-order necessary conditions for a minimum. Those
conditions – as opposed to the known ones – are also informative in the ab-
normal case. We have introduced the class of 2-normal constraints and shown
that for them the “gap” between the sufficient and the necessary conditions is
as minimal as possible. It is proved that a 2-normal mapping is generic.

1. Introduction

1. In this paper we study the following minimization problem with constraints:{
f(x) → min, x ∈ X,
F (x) ∈ C.

(1.1)

Here X is a vector space, C a closed convex cone with a finite number of faces
(defined by a finite number of equalities and inequalities) in the k-dimensional
arithmetic space Y = Rk, and

f : X → R1, F : X → Y = Rk

smooth mappings (in the sense explained below). Note that (1.1) includes problems
of mathematical programming with both equality– and inequality–type constraints.
The principal burdensome assumption in the problem (1.1) is that of the finite di-
mensionality of Y , which is the image of the mapping F that represents constraints.

2. Let x0 be the solution of the problem (1.1). Then the Lagrange multipliers
rule holds for that point [3, 6]. That means that there exists a collection of Lagrange
multipliers λ = (λ0, y) such that

∂L
∂x

(x0, λ) = 0, λ0 ≥ 0, y ∈ NC(F (x0)), λ 6= 0.(1.2)

Here
L(x, λ) = λ0f(x) + 〈y, F (x)〉

is the Lagrange function and NC(z) is the normal cone to the set C at a point z.
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As is known (see, for example, [1]), if one wants to obtain necessary extremal con-
ditions for finite– or infinite–dimensional problems, the most unpleasant difficulties
may appear in the case when the point x0 is abnormal1. That means

∃y0 ∈ NC(F (x0)) ∩ (−NC(F (x0))) : y0 6= 0, F ′(x0)∗y0 = 0.(1.3)

Here NC(y) ∩ (−NC(y)) is the largest subspace contained in the cone NC(y).
The fact is that abnormal points are singular for the manifold { x ∈ X : F (x) ∈

C } and the conditions (1.2) trivially hold for an abnormal point, that is, with
Lagrange multipliers λ = (λ0, y) such that λ0 = 0 and y = y0, where y0 is any
vector that satisfies the conditions (1.3). Thus (1.2) holding at an abnormal point
for an arbitrary objective functional f is only a trivial consequence of the abnor-
mality condition and does not provide us with any information. Moreover, the
classical second-order necessary condition, which requires the second derivative of
the Lagrange function to be nonnegative on the cone

{ h ∈ X : 〈f ′(x0), h〉 ≤ 0, F ′(x0)h ∈ TC(F (x0)) }
(where TC(y) = N0

C(y) is the tangent cone to the set C at a point y), generally
does not hold for an abnormal point. This may be substantiated by the following
example:

f(x) = −(x2
1 + x2

2) → min; x = (x1, x2) ∈ R2;

F (x) = (F1(x), F2(x)) = 0, F1(x) = x1x2,

F2(x) = x2
1 − x2

2; x0 = 0.

Let us cite a specialist in second–order conditions on the normality condition:
”It is natural to ask what means we have at our disposal if the normality hypothesis
is not satisfied. The corresponding generalization of the theory seems difficult or
even impossible” [2].

3. In this paper (§3) we have obtained second–order necessary conditions that
remain informative for abnormal points. If a point under consideration for an
extremum is normal (i.e. there is no vector y0 that would satisfy (1.3)), then the
conditions turn out to be well known. Our derivation of the necessary conditions
is based on an estimate from below of the upper topological limit of a sequence of
subspaces. The estimate is calculated in §2.

Further, in §4 we introduce the notion of 2-normal mapping at a point (with
respect to the cone C). We prove that if the mapping F is 2-normal at a point, then
the second-order necessary conditions become sufficient by means of an arbitrarily
small quadratic perturbation of the mappings f and F . Hence the “gap” between
the second-order sufficient and second-order necessary conditions is as minimal as
possible at the points where the constraint is 2-normal. The value of this “gap”
is a very important characteristic of extremal conditions. The fifth section deals
with the notion of 2-normality. We obtain effectively verifiable sufficient conditions
of 2-normality at a point. We prove that if X = Rn and n � k, then the set of
the mappings F that are 2-normal at every point with respect to any cone C is
everywhere dense in the space C3

s (Rn, Rk) with the Whitney topology.

1If C = 0, then the Lyusternic condition is said to be violated at the point x0.
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2. Notation and assumptions. Auxiliary tools

1. Let angular brackets 〈 , 〉 denote the scalar product and the action of a linear
functional. Furthemore, if ϕ is a set, then |ϕ| is the number of its elements. |x|
denotes the modulus of a vector x. Lin is the linear hull and conv the convex hull
of a set. M⊥ is the orthogonal complement or annihilator of a subspace M . The
set

NC(y) = {ξ ∈ Y : 〈ξ, z − y〉 ≤ 0 ∀z ∈ C}
is the normal cone to a convex set C at a point y ∈ C, and TC(y) = N0

C(y)
the tangent cone to C at a point y, where 0 is the cone polar. By ∗ we denote
the conjugate operator and the algebraically dual space. If {Πn} is a sequence of
topological space subsets, then Ls{Πn} denotes its upper topological limit, which,
as we know, consists of all possible limit points of the sequences {xn} with xn ∈
Πn ∀n. If A is a quadratic form or a quadratic mapping, we set A[x]2 = 〈Ax, x〉.
Let q be a quadratic form and Z a subspace of X . Then indZ q is the index of the
form q on Z (i.e. the maximal of the dimensions of the subspaces N ⊆ Z on which
the form q is negative–definite).

Let us introduce the so–called finite topology in the vector space X . In this
topology we regard as open only a set whose intersection with any finite–dimensional
subspace M is open in the linear (the only separable) topology of M . Denote the
finite topology by τ . It is the strongest topology among those which turn X into
a topological vector space. On the other hand, the minimum local with respect to
the finite topology is the weakest in comparison with any other kind of minimum
accepted for consideration.

Fix a point x0 ∈ X . The functions f and F = (F1, . . . , Fk) are assumed to be
twice continuously differentiable in a neighborhood of the point x0 with respect to
the finite topology τ . This means that for an arbitrary finite–dimensional linear
subspace M the restrictions of f and F to M are twice continuously differentiable in
a neighborhood of x0 (the neighborhood depends on M). Thus there exist a linear
functional a ∈ X∗, a linear operator A : X → Y , a quadratic form q : X → R1,
a quadratic mapping Q : X → Y and, in addition, mappings α0 : X → R1,
α : X → Rk such that

f(x) = f(x0) + 〈a, x− x0〉+ 1
2q(x − x0) + α0(x − x0),

F (x) = F (x0) + A(x − x0) + 1
2Q(x− x0) + α(x− x0)∀x ∈ X,

and for an arbitrary finite–dimensional subspace M

‖α(x− x0)‖M

‖x− x0‖2M
→ 0, x → x0, x ∈ M,

where ‖ ‖M is the finite–dimensional norm on M . The last condition is also true
for α0. The mappings a and q will be denoted by f ′(x0) (or ∂f

∂x (x0)) and f ′′(x0)
(or ∂2f

∂x2 (x0)) and called the first and second derivatives of f . We use analogous
notation in the case of the mapping F .

2. Let us obtain an estimate from below for the upper topological limit of a
sequence of subspaces. Let lk∞ be the Banach space of bounded sequences of k-
dimensional vectors {xn}∞n=1, xn ∈ Rk ∀n, with the usual sup-norm. We begin by
constructing a continuous linear operator that acts from lk∞ into Rk and possesses
all the properties that we need for further investigations. A. Ya. Dubovitskii was
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the first to prove the existence of such an operator for k = 1. He communicated
that fact to the author in a personal discussion.

Let N be the set of positive integers and ϕ0 an arbitrary infinite subset of
N . Then there exists a nontrivial ultrafilter Φ in N that contains ϕ0 [4] (the
nontriviality of Φ means that the intersection of all its elements is empty).

To prove |ϕ| = ∞∀ϕ ∈ Φ, let us assume the contrary. Then among subsets
ϕ ∈ Φ with a finite number of elements we can choose ϕ̃ with the smallest cardinal.
Let us consider an arbitrary ϕ ∈ Φ. We therefore have ϕ̃ ⊆ ϕ, because if ϕ̃ does
not belong to ϕ, then ϕ̃ ∩ ϕ ∈ Φ, |ϕ̃ ∩ ϕ| < |ϕ̃|, which contradicts the choice of ϕ̃.
Thus ϕ̃ ⊆ ϕ∀ϕ ∈ Φ and, consequently, the intersection of all the elements ϕ ∈ Φ is
not empty (because the nonempty set ϕ̃ belongs to it). This contradiction to the
nontriviality of Φ proves that |ϕ| = ∞∀ϕ ∈ Φ.

The ultrafilter Φ generates a premeasure (i.e. a finitely additive function) d on
2N by the formula

d(A) =
{

1, if A ∈ Φ,
0, if A 6∈ Φ; A ∈ 2N .

(2.1)

We will show that d is finitely additive. Indeed, let A, B ∈ 2N . One can prove
that

d(A ∪B) + d(A ∩B) = d(A) + d(B).(2.2)

If A ∈ Φ, B ∈ Φ, then A ∪ B ∈ Φ, A ∩ B ∈ Φ, and (2.2) is obvious. If A 6∈ Φ,
B 6∈ Φ, then, from the properties of the ultrafilter, we get A∪B 6∈ Φ ⇒ A∩B 6∈ Φ
and (2.2) is obvious. If A ∈ Φ, B 6∈ Φ, then A ∪ B ∈ Φ; A ∩ B 6∈ Φ and (2.2)
obviously holds again. Hence d is a premeasure. Let us observe that d(ϕ0) = 1, by
construction.

Lemma 2.1 (A. Ya. Dubovitskii). Let ϕ be an arbitrary infinite subset of N . Then
there exists a continuous linear operator Dk

ϕ : lk∞ → Rk such that if Dk
ϕx = 0, then

zero is a limit point of a sequence {xn}, n ∈ ϕ.

Proof. Let us consider a nontrivial ultrafilter Φ that contains ϕ, and define the
premeasure d according to the formula (2.1). Further, we define a linear continuous
operator Dk

ϕ : lk∞ → Rk with the help of the premeasure following the scheme
employed to build the integral on the base of a finitely additive measure on L∞.
Namely, let x ∈ lk∞ be a simple sequence, that is, there exists a partition of N into
mutually disjoint subsets A1, . . . , Ar such that xn = ai∀n ∈ Ai, i = 1, . . . , r where

ai are given vectors from Rk. Set Dk
ϕx =

r∑
n=1

d(Ai)ai. By the standard procedure it

can be verified that the value of Dk
ϕ on a simple sequence does not depend on the

way of partitioning N into Ai. Since the simple sequences subspace is everywhere
dense in lk∞, the operator Dk

ϕ can be extended over all lk∞ by continuity.
We assert that the operator Dk

ϕ is the required one. Indeed, if Dk
ϕx = 0,

then for an arbitrary ε > 0 there exist xε ∈ lk∞ (which depends on ε), r ∈
N , ai ∈ Rk and mutually disjoint subsets Ai ⊆ N, i = 1, . . . , r, such that

N =
⋃r

i=1 Ai; ‖x − xε‖lk∞ ≤ ε; xn
ε = ai ∀n ∈ Ai. Then Dk

ϕxε =
r∑

i=1

aid(Ai). From

the properties of the ultrafilter it follows [4] that there is only one set among the
Ai (for example Ai′) that belongs to Φ. That fact and (2.1) yield
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Dk
ϕxε = ai′ ⇒ |ai′ | = |Dk

ϕxε| = |Dk
ϕxε −Dk

ϕx| ≤ ‖Dk
ϕ‖ε = ε

⇒ |xn| ≤ 2ε ∀n ∈ Ai′ .

But by construction, ϕ ∈ Φ ⇒ ϕ ∩ Ai′ ∈ Φ and, as proved earlier, ϕ ∩Ai′ contains
an infinite number of indices n for which |xn| ≤ 2ε. Hence, the arbitrariness of
ε > 0 allows us to conclude that the statement is true.

Remark. In Lemma 2.1 we have not proved the existence of an operator but of the
whole family of different Dubovitskii operators Dk

ϕ, because every infinite subset
ϕ ⊆ N generates a nontrivial (in fact, not unique) ultrafilter employed in (2.1)
to define a premeasure, which is then used to build an operator. However, if the
sequence x = xn converges, then the value of any Dubovitskii operator at x is equal
to lim

i→∞
xi. Let us denote the operator Dk

N by Dk.

3. Let X be a Banach space, {An}∞n=1 a sequence of continuous linear operators
that act from X into Y = Rk. We assume that the sequence {An} converges in
norm to a linear operator A : X → Y . Set M = Ls{KerAn}. It is clear that M
is closed, nonempty (0 ∈ M) and M ⊆ KerA. If the operator A is surjective, then
by the theorem proved below M = KerA. If A is not surjective, then M 6= KerA
in general, and the set M may not even be convex.

Theorem 2.1. In the space X there exists a closed subspace Π such that codimΠ ≤
k; Π ⊆ LsKerAn and Π ⊆ KerA.

Proof. Let P1 : Y → Im A, P2 : Y → (Im A)⊥ denote the corresponding orthogonal
projection operators. Set

r = codim(Im A); Ln = P1 ◦An; L = P1 ◦A;

x∗i,n = y∗i ◦ P2 ◦An, i = 1, . . . , r.

Here {y∗i } is a basis of the space dual to (ImA)⊥. By the continuity of the pro-
jection operators, the linear operators Ln and the functionals x∗i,n are continuous.
Moreover, Ln → L, n → ∞ and L is surjective. We turn the topologically dual
spaces X ′ and Y ′ into Banach spaces in the usual way, using the same symbol ‖ ‖
to denote the norms in them and identifying Y with Y ′ (Y = Rk).

Using the definition of the number r, we assume without loss of generality that
for each number n the restrictions of linear functionals x∗i,n, i = 1, . . . , r, to the
subspace KerLn are linearly independent (otherwise we could consider a suitable
subsequence). Thus, taking into consideration the finite dimensionality of Y , we
easily find that for each number i = 1, . . . , r, n = 1, 2, . . . , the solution of the
problem

‖x∗i,n +
i−1∑
j=1

αjx
∗
j,n + L∗ny‖ → inf, αj ∈ R1, y ∈ Y,

is positive and reachable. Hence there exist yi,n ∈ Y and numbers αj,i,n such that

x̄∗i,n = x∗i,n +
i−1∑
j=1

αj,i,nx∗j,n + L∗nyi,n;(2.3)

x̄∗i,n 6= 0; ‖x̄∗i,n +
i−1∑
j=1

αjx
∗
j,n + L∗ny‖ ≥ 1

2
‖x̄∗i,n‖ ∀(αj , y).
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It follows from the last inequality that

‖x̃∗i,n +
i−1∑
j=1

αj x̃
∗
j,n + L∗ny‖ ≥ 1

2
∀(αj , y),(2.4)

where x̃∗i,n = x̄∗i,n‖x̄∗i,n‖−1, for, by construction,

x̃∗i,n ∈ Lin(x∗1,n, . . . , x∗i,n, Im L∗n).

We also see that
r⋂

i=1

Kerx∗i,n ∩KerLn =
r⋂

i=1

Ker x̃∗i,n ∩KerLn.(2.5)

Let us define a linear operator Φ : X → lr∞ by setting

Φx =


 〈x̃∗1,n, x〉

...
〈x̃∗r,n, x〉



∞

n=1

.

Let Dr be a Dubovitskii operator whose existence was proved in Lemma 2.1. We
set

Π̃ = {x ∈ X : Dr ◦ Φx = 0}, Π = Π̃ ∩KerA,

and show that the subspace Π is the required one.
Indeed, Π ⊆ KerA and

codim Π ≤ codim Π̃ + codim(KerA) ≤ r + dim(Im A) = k.

Therefore it is enough to prove that if x0 ∈ Π, then x0 is a limit point for a sequence
of points {xn} with xn ∈ KerAn.

Indeed, let Dr ◦ Φx0 = 0. Then, with the aid of Lemma 2.1 and considering a
suitable subsequence, we have

〈x̃∗i,n, x0〉 → 0, n →∞, i = 1, . . . , r.(2.6)

For each n we examine the problem:

Jn(x) = ‖x− x0‖2 → inf; Lnx = 0, 〈x̃∗i,n, x〉 = 0, i = 1, . . . , r.

Let Jn be the infinum. We choose x̃n ∈ X that complies with all the constraints of
that problem and for which

Jn(x̃n) ≤ Jn +
1
n2

.

Then according to the ε-sub-differential theorem (see, for example, [21]) we conclude
that for large numbers n there exist xn ∈ X, h∗n ∈ X∗ and Lagrange multipliers
λi,n ∈ R1, i = 1, . . . , r, and yn ∈ (Im A)∗ such that

r∑
i=1

λi,nx̃∗i,n + L∗nyn + h∗n ∈ ∂κ(xn − x0)(2.7)

and

‖xn − x̃n‖ ≤ 1/n, ‖h∗n‖ ≤ 1/n, Lnxn = 0, 〈x̃∗i,n, xn〉 = 0, i = 1, . . . , r.

Here ∂κ is the sub-differential of the convex function κ(x) = ‖x‖2. From [3],

‖x∗‖ = 2‖x‖; |〈x∗, x〉| = 2‖x‖2 ∀x∗ ∈ ∂κ(x).(2.8)
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It follows from (2.7) and the first formula of (2.8) that

2‖xn − x0‖ ≥ ‖
r∑

i=1

λi,nx̃∗i,n + L∗nyn‖ − 1/n,

which along with (2.4) implies

|λi,n| ≤ const(‖xn − x0‖+
1
n

), i = 1, . . . , r.

According to the Banach open mapping theorem and the surjectivity of L, we have

‖L∗y‖ ≥ const ‖y‖ ∀y ∈ Im A ⇒ ‖L∗ny‖ ≥ const ‖y‖ ∀y ∈ Im A

for sufficiently large n. Consequently, by (2.7) and the first formula of (2.8),

‖yn‖ ≤ const(‖xn − x0‖+
1
n

).

Applying the left part of (2.7) to the vector (xn−x0) and using (2.8), we obtain

2‖xn − x0‖2 ≤ const(‖xn − x0‖
r∑

i=1

|〈x̃∗i,n, x0〉|+ 1
n

),

for 〈x̃∗i,n, x〉 = 0, i = 1, . . . , r. From this and (2.6) it follows that xn → x0 as
n →∞. Since

〈x̃∗i,n, xn〉 = 0, i = 1, . . . , r,

and Lnxn = 0, by (2.5),

〈x∗i,n, xn〉 = 0, i = 1, . . . , r ⇒ xn ∈ KerAn.

The theorem is proved.

Theorem 2.2. Let {Πn} be a sequence of closed subspaces from X with codim Πn ≤
k ∀n. Then there exists a closed subspace Π ⊆ X such that codim Π ≤ k and
Π ⊆ Ls{Πn}.
Proof. Let us choose continuous linear operators Ãn : X → Y such that Ker Ãn =
Πn ∀n. Set An = Ãn(n‖Ãn‖)−1. It is clear that An → 0 as n →∞. We prove the
statement by applying Theorem 2.1 to {An}.
Remark. In [5] the author obtained estimates from below for Ls{x : Anx ∈ K}
where K is a cone with a finite number of faces in a Banach space.

3. Second–order necessary conditions

1. We return to the problem (1.1). Throughout this section we assume that the
point x0 is a local minimum with respect to the finite topology τ , while f and F
are continuously differentiable functions in a neighborhood of x0 with respect to
the finite topology.

Consider the Lagrange function

L(x, λ) = λ0f(x) + 〈y, F (x)〉; λ = (λ0, y), λ0 ∈ R1, y ∈ Y.

By the Lagrange multipliers rule (which gives first–order necessary conditions),
for the local minimum point x0 there exist Lagrange multipliers λ such that

∂L
∂x

(x0, λ) = 0, λ0 ≥ 0, y ∈ NC(F (x0)), λ 6= 0.(3.1)
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The set of all the Lagrange multipliers that correspond to the point x0 forms a
nonempty (nonclosed) cone Λ = Λ(x0) such that Λ ∪ {0} is convex.

Let us consider a subset of Λ. λ belongs to that subset if, and only if, there
exists a subspace Π ⊆ X such that

codim Π ≤ k; Π ⊆ KerF ′(x0);
∂2L
∂x2

(x0, λ)[x]2 ≥ 0 ∀x ∈ Π.(3.2)

We shall denote that subset of Lagrange multipliers by Λa = Λa(x0). It is clear
that Λa ⊆ Λ and Λa is a cone (but in a lot of interesting cases the cone Λa ∪ {0} is
not convex).

Notice that the existence of a space Π that satisfies (3.2) is equivalent to the
condition

indZ
∂2L
∂x2

(x0, λ) ≤ codim(Im F ′(x0)), Z = KerF ′(x0).

We consider the cone

K = K(x0) = {h ∈ X : 〈f ′(x0), h〉 ≤ 0, F ′(x0)h ∈ TC(F (x0))}.
Theorem 3.1. The set Λa(x0) is not empty. Moreover,

max
λ∈Λa,|λ|=1

∂2L
∂x2

(x0, λ)[h]2 ≥ 0 ∀h ∈ K(x0).(3.3)

We prove the theorem in three steps. First of all, assuming that X is finite-
dimensional, we consider an auxiliary problem for which we obtain necessary con-
ditions for a minimum. At the second step, using results obtained earlier, we prove
the theorem in the case when X is finite-dimensional. Finally, the proof of the the-
orem will be completed with the third step, at which we get rid of the assumption
dim X < ∞.

Step 1. Assume that X is finite-dimensional. Let ϕ be a given smooth scalar
function on X such that

∂ϕ

∂x
(x) 6= 0 ∀x : ϕ(x) = 0.

We consider the auxiliary problem

f(x) → min, x ∈ X, F (x) ∈ C, ϕ(x) ≤ 0.(3.4)

We suppose that x0 is the solution. Let us prove that there exist Lagrange multi-
pliers λ̃ = (λ0, y, β) 6= 0 and a subspace Π ⊂ X such that

∂L̃
∂x

(x0, λ̃) = 0, βϕ(x0) = 0, λ0 ≥ 0, β ≥ 0, y ∈ NC(F (x0));(3.5)

codim Π = k + 1; Π ⊆ KerF ′(x0) ∩Ker(ϕ′(x0)(1 + sgnϕ(x0)); 2

∂2L̃
∂x2

(x0, λ̃)[x]2 ≥ 0 ∀x ∈ Π.(3.6)

Here L̃(x, λ̃) = λ0f(x) + 〈F (x), y〉+ βϕ(x).
Let us get rid of the constraints F (x) ∈ C in the problem (3.4) with the help of

the penalty method. We denote the distance from a point y to the set D by ρ(y).

2sgn ξ = −1∀ξ < 0; sgn 0 = 0.
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The function ρ is convex. Smoothing it, we can obtain the sequence of smooth
functions {ρi}:

ρi(y) = 0 ∀y ∈ C; ρi ⇒ ρ, i →∞; ρ′i(y) → ∂ρ(y), i →∞ ∀y.

Here ∂ρ is the sub-differential of ρ and the converging of the sequence of sets means
that for any neighbourhood O of the set ∂ρ(y) there exists a number i0 such that
all the points ρ′i(y) with the numbers i ≥ i0 belong to O. For each positive integer
i we set fi(x) = f(x) + iρi(F (x)) + |x − x0|4. We shall consider the family of
minimization problems

fi(x) → min, ϕ(x) ≤ 0, |x− x0| ≤ δ,

called i-problems. Here δ > 0 was chosen so that x0 would realise the minimum for
problem (1.1) in the δ-neighborhood of the point x0. The solution of the i-problem
is denoted by xi.

Let us prove that xi → x0, i →∞. Taking into account the finite dimensionality
of X , we choose a subsequence of {xi} converging to a point x̄. We shall show that
x̄ = x0.

Indeed,

fi(xi) ≤ fi(x0) = f(x0) ∀i ⇒ ρi(F (xi)) → 0, i →∞
⇒ F (x̄) ∈ C ⇒ f(x̄) ≥ f(x0).

Besides, from the first inequality we have

f(xi) + |xi − x0|4 ≤ f(x0)∀i ⇒ f(x̄) + |x̄− x0|4 ≤ f(x0) ≤ f(x̄) ⇒ x̄ = x0.

Thus xi → x0, i → ∞. For large numbers i, which are the only numbers we are
going to consider, |xi−x0| < δ. Hence the known first- and second–order necessary
conditions for the i-problem are as follows [6]: there exist Lagrange multipliers
β̃i ≥ 0 such that{

f ′i(xi) + β̃iϕ
′(xi) = 0; β̃iϕ(xi) = 0;

(f ′′i (xi) + β̃iϕ
′′(xi))[h]2 ≥ 0 ∀h ∈ X : σi〈h, ϕ′(xi)〉 = 0,

(3.7)

where σi = 1 + sgn ϕ(xi).
Let us explain those conditions, setting

λ◦i = (1 + |β̃i|2 + |iρ′i(F (xi))|2)−1/2, βi = β̃iλ
◦
i ; yi = iρ′i(F (xi))λ◦i .

According to (3.7), we obtain

λ◦i f
′(xi) + βiϕ

′(xi) + F ′(xi)∗yi + λ◦i × o(|xi − x0|) = 0;(3.8)

(λ◦i f
′′(xi) + βiϕ

′′(xi) + F ′′(xi)yi)[h]2

+ iλ◦i ρ
′′
i (F (xi))[F ′(xi)h]2 + λ◦i × 1(i)[h]2 ≥ 0(3.9)

∀h ∈ X : σi〈h, ϕ′(xi)〉 = 0.

Here 1(i) is a sequence converging to zero as i → ∞. Set λ̃i = (λ◦i , βi, yi). It is
clear that |λ̃i| = 1. Then, passing to a suitable subsequence, we get λ̃i → λ̃ =
(λ◦, β, y), i → ∞, where λ̃ 6= 0, λ◦ ≥ 0, β ≥ 0, βϕ(x0) = 0 and y ∈ NC(F (x0)),
for yi = iρ′i(F (xi))λ◦i → ∂ρ(F (x0)), i → ∞, by construction. As is known, for
y ∈ C the cone stretched over ∂ρ(y) coincides exactly with NC(y) [7, p. 90]. Taking
account of it and passing to the limit as i →∞ in (3.8), we obtain (3.5).

Let us prove the existence of a subspace Π satisfying (3.6). For this we shall
consider the sequence of the linear operators Ai : X → Rk+1 defined by the formula
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Aix = (F ′(xi)x, σi〈ϕ′(xi), x〉) ∀x ∈ X . On account of Theorem 2.1, there exists a
subspace Π in X such that Π ⊆ KerF ′(x0) ∩ Ker(σ0ϕ

′(x0)); Π ⊆ LsKerAi with
codim Π ≤ k+1. Consider an arbitrary h ∈ Π. Then, by the definition of the upper
topological limit, there exist hi ∈ KerF ′(xi) ∩ Ker(σiϕ

′(xi)) such that, passing to
a suitable subsequence, we obtain hi → h, i → ∞. Substituting the vectors hi for
h in (3.9) and taking the limit as i →∞, we get (3.6).

Remark. If ϕ(x0) < 0, then one can choose a subspace Π satisfying (3.6) so that
codim Π = k. Indeed, if ϕ(x0) < 0, then σi = σ0 = 0. Setting Ai = F ′(xi), we get
the required subspace Π with the help of Theorem 2.1.

Step 2. Let us assume, as before, that X is finite-dimensional. From the reason-
ing in the first step it follows that Λa 6= 0 (because x0 is the solution of the problem
(3.4), where ϕ is such that ϕ(x0) < 0 ⇒ β = 0).

Let us prove (3.3). We shall use the method proposed by A. A. Agrachev in [8,
p. 93]. It is convenient to suppose that x0 = 0, f(x0) = 0, and F (x0) = 0. Fix an
arbitrary h ∈ K with |h| = 1.

For each ε = i−1, i = 1, 2, . . . , we shall consider the minimization problem{
fε(x, χ) → min, 0 ≤ χ ≤ 1,
F (x)− χF (εh) ∈ C, |x|2 ≤ δ2,

(3.10)

over X ×R1. Here δ > 0 was defined at the first step, and

fε(x, χ) = f̃(x) + |x− εh|4 − χf̃(εh); f̃(x) = f(x) + |x|4.
The solution of the problem (3.10) exists because the point x = εh, χ = 1

satisfies all the constraints and the ball {x : |x| ≤ δ} is compact. Let us denote the
solution of (3.10) by (xi, χi).

We shall show that χi > 0 ∀i. Indeed, fε(εh, 1) = 0 ⇒ fε(xi, χi) ≤ 0. On the
other hand, in the case χ = 0 for x such that |x| ≤ δ and F (x) ∈ C we have

fε(x, 0) = f(x) + |x|4 + |x− εh|4 ≥ |x|4 + |x− εh|4 > 0.

Consequently, the point (x, 0) is not the solution of (3.10). Therefore χi > 0 ∀i.
Besides,

fε(xi, χi) ≤ 0 ⇒ f̃(xi) + |xi − εh|4 ≤ |f̃(εh)|, ε = i−1 ∀i;
then for any limit point x̂ of the sequence {xi} the conditions f̃(x̂) ≤ 0 and F (x̂) ∈ C
hold. Hence, x̂ = 0 ⇒ xi → 0, i →∞.

Provided i is sufficiently large, we apply the necessary minimum conditions ob-
tained in the first step for the auxiliary problem (3.4) to the solution (xi, χi) of the
problem (3.10). We write them out, setting ϕ(x, χ) ≡ χ− 1. We shall begin with
the case when χi = 1 for every large i.

Determine the Lagrange function

L̃ε(λ0, β, y, x, χ) = λ0fε(x, χ) + β(χ − 1) + 〈y, F (x)− χF (εh)〉.
The results of the first step show that there exist

λ0
i ≥ 0, βi ≥ 0, yi ∈ NC(F (xi)),

which are not all equal to zero, and a subspace Π̃i ⊆ X ×R1 such that

λ0
i f̃(εh) + 〈yi, F (εh)〉 = βi ≥ 0;(3.11)

λ0
i (f

′(xi) + 1(i)) + F ′(xi)∗yi = 0;(3.12)



SECOND–ORDER CONDITIONS IN EXTREMAL PROBLEMS 4351

F ′(xi)x− F (εh)χ = 0, χ = 0 ∀ξ = (x, χ) ∈ Π̃i;(3.13)

∂2L̃ε

∂(x, χ)2
[ξ]2 ≥ 0 ∀ξ ∈ Π̃i; codim Π̃i ≤ k + 1.(3.14)

Note that the equality (3.11) is equivalent to the condition ∂L̃ε

∂χ = 0, (3.12) to

the condition ∂L̃ε

∂x = 0 and (3.13) is a consequence of the fact that

Π̃i ⊆ Ker
∂

∂(x, χ)
(F (x) − χF (εh))|x=xi,χ=χi ∩Kerϕ′,

(we recall that ϕ ≡ χ− 1).
We now analyze the formulas obtained. Set Πi = {x ∈ X : (x, 0) ∈ Π̃i}. Then,

by (3.13),

Πi ⊆ KerF ′(xi) ∀i,(3.15)

and also codim Πi ≤ k. Moreover, by construction, the function L̃ε is linear with
respect to the variable χ. Therefore the quadratic form ∂2L̃ε/∂x2 is nonnegative
on Πi. Furthermore, by Theorem 2.2 there exists a subspace Π ⊆ X such that
codim Π ≤ k and Π ⊆ Ls{Πi}.

Let us pass to the limit as i →∞ in our formulas. Set λi = (λ0
i , yi). From (3.13)

it follows that λi 6= 0. Hence, after normalizing λi, we may assume |λi| = 1 ∀i.
Passing to a suitable subsequence, we obtain λi → λ = (λ0, y), i →∞ ⇒ λ0 ≥
0, λ 6= 0. Besides, y ∈ NC(F (x0)), for the normal cone NC(y) is semi-continuous
from above with respect to y ∈ C. Thus we get (3.1) by passing to the limit as
i →∞ in (3.12).

Let us prove that λ ∈ Λa. Indeed, consider an arbitrary z ∈ Π. Then there exists
a sequence {zi} such that, after passing to a suitable subsequence, we have zi ∈
Πi ∀i : zi → z, i → ∞. Therefore, by (3.15), zi ∈ KerF ′(xi)∀i ⇒ z ∈ KerF ′(x0).
Consequently, Π ⊆ KerF ′(x0). By analogy, from (3.14) we get

∂2L
∂x2

(x0, λ)[z]2 ≥ 0 ∀z ∈ Π ⇒ λ ∈ Λa.

Return again to the inequalities (3.11). By assumption, C is a convex cone with
a finite number of faces. Hence NC(y) ⊆ NC(F (x0)) for all y ∈ C close to F (x0).
Consequently, yi ∈ NC(F (x0)) for large i. Also, h ∈ K ⇒ 〈yi, F

′(x0)h〉 ≤ 0 and
λ0

i 〈f ′(x0), h〉 ≤ 0. Using those inequalities and expanding the left part of (3.11)
up to the members of the second order with respect to ε, passing to the limit as
i → ∞, we obtain ∂2L

∂x2 (x0, λ)[h]2 ≥ 0. Hence, due to the arbitrariness of h, we get
(3.3).

Let us note that if χi < 1 for an infinite number of i, the problem is considered
in the same way. We have to use the remark given at the end of the first step.

Step 3. Let us prove the theorem in complete generality (i.e. in the case when
dim X = ∞). We shall use the transition proposed in [9]. Let x0 = 0. We consider
an arbitrary h ∈ K. Let M denote the set of the finite-dimensional subspaces
M ⊂ X that each contain h and satisfy the condition F ′(x0)(M) = ImF ′(x0).
Let us consider an arbitrary M ∈ M and examine the problem we get from (1.1)
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after replacing X with M . The results of the second step show that for this finite-
dimensional problem there exist Lagrange multipliers λM = (λ0

M , yM ) such that

λ0
M ≥ 0, yM ∈ NC(F (x0)), |λM | = 1;

∂L
∂x

(x0, λM ) ∈ M⊥;
∂2L
∂x2

(x0, λM )[h]2 ≥ 0,

and the index of the quadratic form ∂2L
∂x2 (x0, λM ) on the subspace M ∩KerF ′(x0)

does not exceed codim(ImF ′(x0)). The set of such vectors λM is denoted by
Λa(M, h). It is easy to see that the set Λa(M, h) is closed and nonempty for any
M ∈ M. Moreover, it is obvious that

n⋂
i=1

Λa(Mi, h) ⊇ Λa(M1 + . . . + Mn, h) 6= ∅

for an arbitrary M1, . . . , Mn ∈ M. This is, the system of sets Λa(M, h), M ∈ M,
has the finite intersection property. Consequently, since the unit sphere in Rk+1 is
compact, the intersection

⋂
M∈M Λa(M, h) is not empty. It is evident that for an

arbitrary vector λ ∈ ⋂M∈M Λa(M, h)

λ ∈ Λa;
∂2L
∂x2

(x0, λ)[h]2 ≥ 0.

From this and the arbitrariness of h ∈ K we get (3.3). The theorem is established.

Remark. The theorem stay true even if the condition that the cone C has a finite
number of faces is replaced by the following assumption:

∃ε > 0 : NC(F (x)) ⊆ NC(F (x0)) ∀x : F (x) ∈ C, |F (x)− F (x0)| < ε.
(3.16)

That can be easily shown by analysing the proof of the theorem, for in it we did not
use the fact that the cone C has a finite number of faces, but only its consequence
(3.16).

2. Now we consider the problem (1.1) assuming not that x0 is simply abnormal
but that “complete degeneracy” occurs at that point, i.e.

f ′(x0) = 0; F ′(x0) = 0.(3.17)

Although the “complete degeneracy” seems unnatural, there are problems that can
be reduced to the case (3.17), for example, the problem of the fixed-sign property
of a quadratic form on the intersection of a finite number of quadrics [10]. It turns
out to be possible to complement the necessary conditions of Theorem 3.1 in the
case of “complete degeneracy”.

Theorem 3.2. Assume that dim X < ∞, C = 0 and (3.17) holds. Then there
exist Lagrange multipliers λ = (λ0, y) ∈ Λa and a vector l ∈ X such that

∂2L
∂x2

(x0, λ)l = 0; y =
∂2F

∂x2
(x0)[l]2,(3.18)

∂2f

∂x2
(x0)[l]2 ≤ 0;

∂2L
∂x2

(x0, λ)[x]2 + 2|∂
2F

∂x2
(x0)[l, x]|2 ≥ 0 ∀x ∈ X ; λ0 + |l| 6= 0.

(3.19)

Proof. We shall use the reasoning from the first step of Theorem 3.1. It is convenient
to suppose that x0 = 0, f(0) = 0. We consider the auxiliary problem (3.4) for
C = 0, ϕ ≡ −1. Construct the family of i-problems, setting ρi(y) ≡ ρ(y) ≡ |y|2.
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If for an infinite number of i the solutions xi of i-problems are zero, then the
assertion of the theorem with λ0 = 1, y = 0, l = 0 follows from (3.9). Therefore
we are left to consider the case xi 6= 0 ∀i.

Let us set
γi = (1 + i2|xi|4) 1

2 , li = γ
− 1

2
i i

1
2 xi.

It is evident that
fi(xi) ≤ 0 ⇒ f(xi) ≤ 0 ∀i.

From this and (3.17), f ′′(x0)[li]2 ≤ 1(i).
According to (3.17), we get

f ′(xi) = f ′′(0)xi + o(|xi|), F (x) =
1
2
F ′′(0)[x]2 + o(|x|2),

F ′(xi) = F ′′(0)xi + o(|xi|).
After substituting those representations in (3.8) and (3.9) we divide the former

by λ0
i γiγ

1
2
i i−

1
2 and the latter by λ0

i γi. Taking into consideration that ρ′(y) = 2y,
ρ′′(y) = 2I (I is a unit matrix) and passing to the limit as i → ∞, we obtain the
required λ and l. The theorem is proved.

Remark. It follows from the example given below that the assumption on the finite-
dimensionality of X is fundamental in Theorem 3.2—it cannot be omitted without
being replaced by another one (for example, by the assumption that the form is of
the Legendre type, as was done in [5, 11]).

Example. Let X be a Hilbert space, A : X → X a positive symmetric compact
operator and I : X → X an identity operator. Then zero is the solution of the
problem

f(x) = −|x|2 → min; F (x) = 〈Ax, x〉 = 0,

for A[x]2 6= 0 ∀x 6= 0. Let us assume that λ0 ≥ 0, y ∈ R1, l ∈ X satisfy the
conditions of Theorem 3.2. Then the index of the form (−λ0I + yA) does not
exceed unity. Hence λ0 = 0, for A is compact. Therefore y 6= 0 ⇒ l = 0, because
yAl = 0, but KerA = 0. Thus, we have a contradiction.

Definition ([12]). The mapping F is called 2–regular at a point x0 if

Im(F ′(x0) + PF ′′(x0)x) = Y(3.20)

∀x : F ′(x0)x = 0, F ′′(x0)[x, x] ∈ Im F ′(x0).
Here P is the operator of orthogonal projection from Y onto (Im F ′(x0))⊥.

Theorem 3.3. Assume that dim X < ∞ and at least one of the following assump-
tions holds: either F ′(x0) = 0 and the mapping F is 2–regular at the point x0, or
x0 = 0 and F is a quadratic mapping. Let f ′(x0) = 0 and

f(x) ≥ f(x0) + ε|x− x0|2 ∀x : F (x) = 0, |x− x0| < ε

for ε > 0. Then there exist λ ∈ Λa, l ∈ X satisfying (3.18) and (3.19) such that
λ0 > 0.

The validity of this statement follows easily from Theorem 3.2 and Theorem 2
of [12, p. 1095].

3. For the first time second-order necessary conditions that require the set Λa(x0)
to be nonempty were obtained for the time optimality problem in [13]. Further,
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those conditions were generalized to a broad class of extremal and optimal control
problems [5, 9, 11].

A. A. Agrachev [14] was the first to obtain necessary conditions under the as-
sumption that the combined mapping ϕ = (f, F ) satisfies a condition similar to
2–regularity at x0 and ϕ′(x0) = 0. Those conditions can be easily derived from
(3.3). For this we should first replace the number k in (3.2) with k + 1 to obtain
the set Λ̃ of the corresponding Lagrange multipliers (therefore Λa ⊂ Λ̃) and then
replace the set Λa in (3.3) by the set Λ̃. In the same paper it was proved that those
conditions (under the same assumptions) are also sufficient.

Second-order necessary conditions with supremum taken over a subset of the
cone Λ of the Lagrange multipliers were obtained by A. A. Milyutin in [15, 16].
Namely, he proved that

Λ+ 6= 0; sup
λ∈Λ+,|λ|=1

∂2L
∂x2

(x0, λ)[x]2 ≥ 0 ∀x ∈ K(x0).(3.21)

Here Λ+ is the set of those λ ∈ Λ for which the index of the quadratic form
∂2L
∂x2 (x0, λ) is finite. It is clear that the necessary conditions (3.21) are weaker than
those obtained in Theorem 3.1 (a problem for which (3.21) holds, but Λa(x0) = ∅
and the assertion of Theorem 3.1 is therefore not true, and consequently x0 is not
a local minimum, can be found in [5, p. 190]). Moreover, if X is finite-dimensional,
then Λ+ = Λ and it is easy to see that the conditions (3.21) hold automatically at
an abnormal point (see (1.3)), i.e. do not depend on the objective function f .

New and significant necessary optimality conditions for extremal problems in
the abnormal case were obtained by E. R. Avakov in [17, 23]. To deduce them he
introduced a modified Lagrange function and proved that it satisfies the Lagrange
equation and its second-order derivative was nonnegative for each x satisfying (3.20)
and belonging to the cone

x : F ′(x0)x = 0, F ′′(x0)[x, x] ∈ Im F ′(x0).

We compare Theorem 3.1 with Avakov’s results below (see the end of §4).

4. The notion of 2-normality

and second-order sufficient conditions

As mentioned earlier, one of the most important characteristics of second-order
extremum conditions is the value of the gap between their property of being nec-
essary and that of being sufficient. It seems natural to regard this gap as minimal
as possible with respect to certain second-order necessary conditions if they turn
into sufficient ones after sufficiently small (in the C2 metric) perturbations of the
objective function and the mapping representing constraints. “Sufficiently small
perturbations” means perturbations which would not change the values of f , F
and their first derivatives at the point under consideration. Our aim is to make
clear when this gap is as minimal as possible with respect to the second-order
necessary conditions obtained earlier (§3). In order to do this, let us first deduce
sufficient conditions.

Assume that x0 ∈ X , and f and F are twice continuously differentiable in a
neighborhood of x0 with respect to the finite topology.

Theorem 4.1. Let the following conditions hold for the point x0:
(i) Λa = Λa(x0) 6= ∅,
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(ii) maxλ∈Λa,|λ|=1
∂2L
∂x2 (x0, λ)[x]2 > 0 ∀x ∈ K(x0) : x 6= 0.

Then x0 is a strict local minimum (with respect to the finite topology τ) for the
problem (1.1).

Proof. Let us consider a τ–neighbourhood V of the point x0 where f and F are
twice continuously differentiable. By Õ we denote the set of those points x ∈ V for
which either F (x) 6∈ C, or F (x) ∈ C, f(x) > f(x0). Set O = Õ ∪ {x0}. Obviously,
it is enough to prove that O is a τ–neighbourhood of the point x0. Indeed, let
M ⊂ X be an arbitrary finite-dimensional subspace that contains x0. We shall
prove that M ∩O is open in M .

To begin with, let us show that M ∩ Õ is open in M . Let x̄ ∈ M ∩ Õ. Then
either F (x̄) 6∈ C, or f(x̄) > f(x0). Since the restrictions of F and f to V ∩M are
continuous and C is closed, the point x̄ possesses a neighbourhood W in M such
that either F (W ) ∩ C = ∅, or f(x) > f(x0)∀x ∈ W . This proves that M ∩ Õ is
open in M .

Let us examine the finite-dimensional problem

f(x) → min, x ∈ M, F (x) ∈ C.

From the assumptions of the theorem and the finite-dimensionality of M it follows
that for this problem the sufficient conditions [15] for a strict local minimum holds
for the point x0. Hence there exists a neighbourhood of x0 in M such that for every
x 6= x0 of this neighbourhood with F (x) ∈ C the inequality f(x) > f(x0) is true.
From this and the fact that M ∩ Õ is open in M , it follows that M ∩O is open in
M . By the arbitrariness of the subspace M , the set O is a τ–neighbourhood of the
point x0. And by construction, we have

x ∈ O, F (x) ∈ C, x 6= x0 ⇒ f(x) > f(x0).

Consequently, x0 is a strict local minimum for the problem (1.1). The theorem is
established.

It is natural that a minimum stronger that the one in the finite topology requires
stronger assumptions.

Let X be a Banach space. We shall assume that f and F are twice continuously
differentiable in a neighbourhood of x0 and there exists a functional γ strictly
differentiable at x0 such that γ(0) = 0 and γ(x) > 0 ∀x 6= 0. γ is called a strict
highest order [15] and satisfies the following conditions:

‖f(x)− (f(x0) + 〈f ′(x0), x − x0〉+
1
2
f ′′(x0)[x − x0]2)‖ = o(γ(x − x0)),

(4.1)

‖F (x)− (F (x0) + F ′(x0)(x− x0) +
1
2
F ′′(x0)[x− x0]2)‖ = o(γ(x − x0)).

(4.2)

Theorem 4.2 ([15]). Let Λa 6= ∅ and

max
λ∈Λa,|λ|=1

∂2L
∂x2

(x0, λ)[x]2 ≥ γ(x) ∀x ∈ K(x0).

Then x0 is a strict local minimum for the problem (1.1).
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This theorem is a trivial consequence of the results of [15, §8] for Λa ⊆ Λ(x0).
Let us note that in [15] the authors build a general theory of sufficient conditions.

Now we can make clear when the gap between the second-order necessary (§3)
and sufficient conditions is as minimal as possible. It turns out that everything
depends on whether the cone conv Λa(x0) is pointed3 or not. The fact is that the
maximum over the set {λ ∈ Λa : |λ| = 1} in (3.3) coincides with the maximum over
the convex hull conv Λa. Thus, if the cone conv Λa is not pointed (and, consequently,
contains λ = (λ0, y) such that (−λ) ∈ conv Λa), then it is obvious that the condition
(3.3) holds. In that case (3.3) holds for any objective function f , and therefore it
does not provide us with any information useful for the minimization problem (1.1).
Thus, if the cone conv Λa is not pointed, one should not hope, generally speaking,
that after sufficiently small (in the C2 metric) perturbations of F and f the point
x0 or any point close to it would realise a local minimum in the perturbed problem.
Here “sufficiently small perturbations” means those that do not change the values
of f(x0), F (x0), f ′(x0), F ′(x0). It is substantiated by the following example:

X = Rn, Y = R1, C = 0, f(x) = −|x|2 → min;

F (x) = x1x2 = 0, x = (x1, . . . , xn).

The cone Λa = Λa(0) at the point x0 = 0 is not empty, and conv Λa is not pointed.
Hence, the conditions (3.3) hold for zero. Nevertheless, it follows from Theorem 3.2
that x0 cannot be a local minimum for any perturbed problem obtained from the
original by means of arbitrarily small (in the C2 metric) smooth perturbations of
f and F such that F (0) = F ′(0) = 0.

If the cone conv Λa is pointed, the situation is completely different.
For x ∈ X let F2(x) denote the cone consisting of y ∈ Y , y 6= 0 such that

y ∈ NC(F (x)) and (F ′(x))∗y = 0. There exists a closed subspace Π ⊆ KerF ′(x)
in X such that codimΠ ≤ k; ∂2

∂x2 〈F (x), y〉[h]2 ≥ 0 ∀h ∈ Π.

Definition. The mapping F is called 2-normal with respect to the cone C at a
point x if the cone convF2(x) is pointed (we do not exclude the case F2(x) = ∅,
because the empty cone is pointed by definition).

That definition is geometric and not useful for checking the 2-normality property.
Hence, we give in §5 a criterion for 2-normality and study the properties of 2-normal
mappings. Here we only remark that for a smooth function f the mapping F being
2-normal with respect to C at a point x is equivalent to the cone conv Λa(x) being
pointed.

Let us assume that X is a Banach space and there exists a function Γ such
that Γ is twice continuously differentiable in a neighbourhood of a point x0 and
Γ(x0) = 0, Γ′(x0) = 0. Let the functional γ(x) = Γ′′(x0)[x]2 be a highest order
(i.e. γ is strictly differentiable and γ(x) > 0 ∀x 6= 0). Besides, the mappings f
and F are assumed to be twice continuously differentiable in a neighbourhood of
x0 and to satisfy the equalities (4.1), (4.2).

Theorem 4.3. Assume that the mapping F is 2-normal with respect to the cone
C at the point x0 and the following second-order necessary conditions hold for this

3A convex cone is called pointed if it does not contain nontrivial subspaces. We will also agree
to regard the empty set as a pointed cone.
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point:

Λa = Λa(x0) 6= ∅; max
λ∈Λa,|λ|=1

∂2L
∂x2

(x0, λ)[x]2 ≥ 0 ∀x ∈ K(x0).(4.3)

Then there exists a vector ȳ ∈ Y such that for any ε > 0 the point x0 is a strict
local minimum for the perturbed problem{

fε(x) = f(x) + εΓ(x) → min,
Fε(x) = F (x) + εΓ(x)ȳ ∈ C.

Proof. Since the mapping F is 2-normal, the cone conv Λa is pointed, and so its
conjugate cone has nonempty interior (because dim Y < ∞). Let us choose an
arbitrary vector z = (α, ȳ) ∈ int(conv Λa)∗ with |α| < 1. Therefore 0 < ε〈(1, ȳ), λ〉
∀λ ∈ Λa. From this and (4.3) we see that all the assumptions of Theorem 4.2
hold for the perturbed problem. Consequently, x0 is a strict local minimum for the
perturbed problem. The theorem is proved.

Remark. If the order γ is a quadratic form in the statement of Theorem 4.2, then
it can be taken for the function Γ.

We return to Avakov’s results [17, 23] to compare them with Theorem 3.1. Sup-
pose that the mapping F is 2-normal at a point x0 with respect to the cone C.
Then the results of [17, 23] follow from (3.3). That could be shown with the aid of
Theorem 3.1 and 4.3. Moreover, Avakov’s results do not give any useful information
for the problem of the fixed-sign property of a quadratic form on the intersection
of a finite number of quadrics [10], but Theorem 3.1 does. On the other hand, from
Avakov’s conditions [17, 23] it follows that the point x0 = 0 is not a local minimum
for the example mentioned above. In addition, in [17, 23] the case dim Y = ∞ there
was examined.

5. Properties of 2-normal mappings

1. Let us consider a point x0 ∈ X and set

d = dim(Im F ′(x0))⊥ ∩NC(F (x0)) ∩ (−NC(F (x0))).(5.1)

Lemma 5.1. The mapping F is 2-normal with respect to C at a point x0 if and
only if for any integer s, 1 ≤ s ≤ d, there do not exist linearly independent vectors
yi ∈ Y , i = 1, . . . , s, such that

yi ∈ Ker(F ′(x0)∗) ∩NC(F (x0)) ∩ (−NC(F (x0)); i = 1, . . . , s,(5.2)

indZ
∂2

∂x2
〈yi, F (x0)〉 ≤ d, i = 1, . . . , s; indZ(−

s∑
i=1

∂2

∂x2
〈yi, F (x0)〉) ≤ d.

(5.3)

Here Z = KerF ′(x0).

Proof. 0 6∈ F2(x0) by definition. Hence, the cone convF2(x0) is not pointed if,
and only if, it contains zero. Let 0 ∈ convF2(x0). Then by the Carathéodory
theorem, there exist yi ∈ F2(x0), i = 1, . . . , k + 1, which are not all zero, such

that
k+1∑
i=1

yi = 0. Hence the yi, i = 1, . . . , k + 1, satisfy (5.2). Thus, applying the

consequence of the Carathéodory theorem [18] to the system of vectors {yi}, we
reduce (after renumbering) the number of vectors to s+1 for a positive integer s ≤ d
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so that the vectors y1, . . . , ys+1 are affinally independent and
s+1∑
i=1

yi = 0. Having

renumbered this system, we obtain one with linearly independent vectors in the

first s places. Using the fact that ys+1 = −
s∑

i=1

yi, yi ∈ F2(x0)∀i, we get (5.3). If

we reverse the reasoning, from the conditions (5.2), (5.3) we get 0 ∈ convF2(x0).
The lemma is proved.

By Lemma 5.1, if x is normal then the mapping F is 2-normal at that point, but
not vice versa. It was proved in [8, p. 92] that if X = Rn and n � k, then a typical
quadratic mapping is 2-normal at zero.

2. Let us bring up sufficient conditions for 2-normality of the mapping with
respect to the cone C. The first one requires the interior of C not to be empty (i.e.
there are only inequality-type constraints in the minimization problem). Then,
evidently, F is 2–normal at every point. The other sufficient conditions for 2-
normality are not so obvious. We shall formulate them.

Consider the symmetric bilinear mapping ∂2F
∂x2 (x0) defined on the subspace

KerF ′(x0). For every y ∈ Y it generates a symmetric bilinear form Q = y ∂2F
∂x2 (x0)

by the formula

Q(x1, x2) =
∂2

∂x2
(〈y, F (x0)〉)[x1, x2] ∀x1, x2 ∈ KerF ′(x0).

This bilinear form generates a linear operator Q̄ : KerF ′(x0) → X∗ by the formula
〈Q̄x, ξ〉 = Q(x, ξ)∀x ∈ KerF ′(x0), ξ ∈ X . Let us denote the bilinear form y ∂2F

∂x2 (x0)
and the operator generated by it alike. Together with this we have

Ker(y
∂2F

∂x2
(x0)) = {z ∈ KerF ′(x0) : 〈y,

∂2F

∂x2
(x0)[z, ξ]〉 = 0 ∀ξ ∈ KerF ′(x0)}

by definition.

Theorem 5.1. Assume that for every positive integer s ≤ d and any linearly in-
dependent vectors yi, i = 1, . . . , s, satisfying (5.2) the condition

codim(
s⋂

i=1

Ker(yi
∂2F

∂x2
(x0))) > d(s + 1)(5.4)

holds. Here codim is codimension in the subspace KerF ′(x0). Then the mapping
F is 2–normal with respect to the cone C at the point x0.

3. Let us preface the proof of Theorem 5.1 with an algebraic result related to
the study of the family of n × n-symmetric matrices Qi, i = 1, . . . , s, of a special
kind (s, n are positive integers).

Let n1, n2 be positive integers and n1 +n2 = n. The matrices Qi are of the form

Qi =
(

Bi A∗i
Ai O

)
, i = 1, . . . , s.(5.5)

Here Bi are n1 × n1-symmetric matrices, Ai are n2 × n1 rectangular matrices and
O is the n2 × n2 trivial matrix.

Lemma 5.2. Let Πi, i = 0, . . . , s, be given subspaces from Rn1 , and Π =
⋂s

i=0 Πi.
Assume that

Πi ⊆ KerAi, i = 1, . . . , s; Π0 ⊆ Ker(
s∑

i=1

Ai),(5.6)
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〈Biξ̄, ξ〉 = 0 ∀ξ ∈ Π, ξ̄ ∈ Πi, i = 1, . . . , s;(5.7)

〈
s∑

i=1

Biξ̄, ξ〉 = 0 ∀ξ ∈ Π, ξ̄ ∈ Π0.(5.8)

Then

codim(
s⋂

i=1

KerQi) ≤
s∑

i=0

codim Πi.

Proof. It follows from (5.5) that
s⋂

i=1

KerQi = {x = (x1, x2) ∈ Rn : Aix1 = 0; Bix1 + A∗i x2 = 0, i = 1, . . . , s;

x2 ∈ (
s⋂

i=1

KerA∗i )
⊥} ⊕ {0} ×

s⋂
i=1

KerA∗i .

Here x1 ∈ Rn1 are the first n1 coordinates of the vector x and x2 ∈ Rn2 its last n2

coordinates. From this and (5.6), we obtain

dim(
s⋂

i=1

KerQi) ≥ dim(
s⋂

i=1

KerA∗i )

+ dim{x1 ∈ Π : ∃x2 ∈ Rn2 , Bix1 + A∗i x2 = 0, i = 1, . . . , s}.(5.9)

Let us consider the system of equations

−A∗i x2 = Bix1, i = 1, . . . , s,(5.10)

with respect to x2. From the Fredholm theorem it follows [22, chapter 10, §85] that
the system has a solution for any vector x1 ∈ Π such that

s∑
i=1

〈Biξi, x1〉 = 0 ∀ξ̃ = (ξ1, . . . , ξs) : ξi ∈ Rn1 ,
s∑

i=1

Aiξi = 0.

But by (5.6) and (5.7), it is enough to verify the theorem only for ξ̃ with ξi ∈ Π⊥i .
Therefore those equations can be replaced by the following ones:

s∑
i=1

〈Biξi, x1〉 = 0 ∀ξ̃ : ξi ∈ Π⊥i , i = 1, . . . , s;
s∑

i=1

Aiξi = 0.(5.11)

We shall consider (5.11) as a linear system with respect to x1 ∈ Rn1 in order
to determine the subspace R that contains any vector x1 for which (5.10) has a
solution.

Let us count the number of equations in (5.11). It is easy to see that this number
is equal to χ(s), where

χ(i) = dim{ξ̃ = (ξ1, . . . , ξs) : ξl ∈ Π⊥l , l = 1, . . . , i;
i∑

l=1

Alξl = 0}, i = 1, . . . , s.

We shall calculate χ(s). Let us show that

χ(s) =
s∑

i=1

codim(Ker Ai)− codim(
s⋂

i=1

KerA∗i ).(5.12)
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Indeed, we have

χ(s) = dim{ImAs ∩
s−1∑
i=1

Im Ai}+ χ(s− 1)

(1)
= dim(Im As)− dim(

s∑
i=1

Im Ai) + dim(
s−1∑
i=1

Im Ai) + χ(s− 1)

(2)
= dim(Im As)− dim(

s∑
i=1

Im Ai) + dim(
s−1∑
i=1

Im Ai)

+ dim(ImAs−1) + dim(
s−2∑
i=1

Im Ai)− dim(
s−1∑
i=1

Im Ai) + χ(s− 2)

= . . . =
s∑

i=1

dim(Im Ai)− dim(
s∑

i=1

Im Ai) + χ(1)

(3)
=

s∑
i=1

dim(Im Ai)− codim

(
s⋂

i=1

KerA∗i

)
.

That proves (5.12). Here the equalities
(1)
= and

(2)
= follow from the formula

dim(R1 ∩R2) = dimR1 + dim R2 − dim(R1 + R2),

which is true for any two subspaces R1 and R2. The equality
(3)
= is a consequence

of the fact that χ(1) = 0 and the known formulas

R1 + R2 = (R⊥1 ∩R⊥2 )⊥; (Im Ai) = KerA∗i ; dim(Im Ai) = codim(KerAi).

The equations in (5.11) are not all independent. By (5.6) and (5.8), some of
them hold for an arbitrary x1 ∈ Π. The number of such equations is not less than
dim Π0 − dim Π.

Consequently, by (5.12), the number of the independent equations which define
the subspace R does not exceed the number

χ =
s∑

i=1

codim(KerAi) + dim Π− codim(
s⋂

i=1

KerA∗i )− dim Π0.

Therefore, from (5.9), we get

dim(
s⋂

i=1

KerQi) ≥ dim(
s⋂

i=1

KerA∗i ) + dim Π− χ

= n2 −
s∑

i=1

codim(KerAi) + dim Π0 ≥ n−
s∑

i=0

codim Πi.

That proves the required inequality.
Here the last inequality holds because, by (5.6), codim Πi ≥ codim(KerAi),

i = 1, . . . , s. The lemma is established.
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4. Let us prove Theorem 5.1 by contradiction. Suppose that F is not 2-normal
at the point x0.

By Lemma 5.1, there exist a number s ≤ d and linearly independent vectors
y1, . . . , ys satisfying (5.2), (5.3). Then without loss of generality we will consider
yi = (0, . . . , 1, 0, . . . , 0) with unity in the ith place. Let Qi denote the restriction
of the bilinear form yi

∂2F
∂x2 (x0) = ∂2Fi

∂x2 (x0) to KerF ′(x0) and qi the corresponding
quadratic form, i = 1, . . . , s. On account of the first s inequalities of (5.3), there
exist subspaces Π̃i ⊆ KerF ′(x0) such that the codimension of Π̃i in X does not
exceed d and qi(x) ≥ 0 ∀x ∈ Π̃i, i = 1, . . . , s. In the same way, from the last
inequality of (5.3) we see that there exists a subspace Π̃0 ⊆ KerF ′(x0) such that

the codimension of Π̃0 does not exceed d and
s∑

i=1

qi(x) ≤ 0 ∀x ∈ Π̃0. Let us set

Π̃ =
⋂s

i=0 Π̃i. Then it is clear that every form qi vanishes on Π̃, and the codimension
of KerF ′(x0) does not exceed d(s + 1). It follows that the corresponding bilinear
forms Qi, i = 1, . . . , s, vanish on Π̃, and therefore Q̃[x̄, x̂] = 0 ∀x̄, x̂ ∈ Π̃. Here
Q̃ : KerF ′(x0)× KerF ′(x0) → Rs is a bilinear mapping with coordinates Q1, . . . ,

Qs. It follows easily that dim(N Π̃) ≤ d and hence the codimension of KerN is finite.
Here N is the linear operator generated by the bilinear mapping Q̃. Cosequently,
while proving the theorem, one can assume without loss of generality that the space
X itself is finite-dimensional and the space Ker F ′(x0) is equal to the n-dimensional
arithmetic space Rn for a positive integer n.

Let n1 denote the codimension of Π̃ in Rn, and set n2 = n − n1. Every form
qi vanishes on Π̃. Hence, we use a linear nondegenerate transformation of Rn such
that after it every matrice Qi defining the bilinear form Qi (they are denoted by
the same symbol) will have the block form (5.5). Then the quadratic form qi can
be represented in the following way:

qi(x) = Bi[x1]2 + 2〈Aix1, x2〉 ∀x = (x1, x2) ∈ Rn.(5.13)

Here x1 are the first n1 coordinates of the vector x, x2 the other coordinates, and
Rn = Rn1 ×Rn2 .

Let us fix i and consider the quadratic form q(x1) = Bi[x1]2 on the space KerAi.
We shall prove that its index does not exceed the number ρ = d− codim(KerAi).
Indeed, assume the opposite. Then there exists a subspace Z in KerAi such that
q is negative definite on it and dimZ = ρ + 1. Set

κ1 = max{q(x1) : x1 ∈ Z, |x1| = 1};
κ2 = min{|Aix1|2 : x1 ∈ (KerAi)⊥, |x1| = 1}.

It is evident that κ1 < 0, κ2 > 0. We will choose an arbitrary δ > 0 and consider
the quadratic form qi on the subspace

Pδ = Z × {0} ⊕ {(x1, x2) : x1 ∈ (KerAi)⊥, x2 = −δAix1}.
We shall show that if δ is sufficiently large, then qi is negative definite on Pδ.

Indeed, x = (x1, x2) ∈ Pδ ⇒ x1 = x̄1 + x̂1. Here x̄1 ∈ Z, x̂1 ∈ (KerAi)⊥, and
x2 = −δAix̂1. According to (5.13), we get

qi(x) = Bi[x1]2 − 2δ|Aix̂1|2
≤ κ1|x̄1|2 + (κ1 − 2δκ2)|x̂1|2 + const |x̄1||x̂1|

(const is a positive constant). But the quadratic polynomial in the variables |x̄1|
and |x̂1| taking up the right part of that inequality turns out to be negative definite
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for large δ > 0 because κ1 < 0, κ2 > 0. Hence, we choose a large δ > 0 such that
the form qi is negative on the subspace Pδ, whose dimension is obviously equal to
(d + 1) by definition. Therefore, ind qi ≥ d + 1, which is impossible by (5.3). This
contradiction proves that the index of the form q on KerAi does not exceed ρ. That
implies the existence of a subspace Πi ⊆ Rn1 such that for i ∈ {1, . . . , s}

Πi ⊆ KerAi; codim Πi ≤ d; qi(x) ≥ 0 ∀x ∈ Πi ×Rn2 .(5.14)

(Now codim is codimension in Rn1). In a similar way one can prove the existence
of a subspace Π0 ⊆ Rn1 such that

Π0 ⊆ Ker(
s∑

i=1

Ai); codim Π0 ≤ d;
s∑

i=1

qi(x) ≤ 0 ∀x ∈ Π0 ×Rn2 .(5.15)

Set Π =
⋂s

i=0 Πi. Then the form Bi[x1]2 is nonnegative on Πi, i = 1, . . . , s, and
vanishes on Π. From this and (5.13)–(5.15) we see that the conditions (5.7) and
(5.8) are satisfied. Hence, the matrices Qi, i = 1, . . . , s, satisfy all the assumptions
of Lemma 5.2. Consequently,

codim(
s⋂

i=1

KerQi) ≤ d(s + 1),

for, as we proved earlier, codim Πi ≤ d ∀i. But this contradicts the assumption (5.4)
of the theorem. Hence, the mapping F is 2-normal at the point x0. The theorem
is established.

5. Definition. The mapping F is called 2-normal if it is 2-normal with respect
to an arbitrary cone C at every point x ∈ X .

Let X = Rn and F be a three times continuously differentiable mapping. We
shall show that if the dimension n is significantly greater than the number of con-
straints k (see (5.16) below), then a 2-normal mapping F is generic.

Consider the linear topological space C3
s (Rn, Rk) of three times continuously

differentiable mappings F : Rn → Rk provided with the Whitney topology [19,
chapter 2, §1]. Recall that the basis of the Whitney topology consists of sets W of
the following type:

W = W ({Ki}, {Ui}, {εi})
= {g ∈ C3

s (Rn, Rk) : |DjF (x)−Djg(x)| < εi ∀x ∈ Ki, j = 0, 1, 2, 3}.
Here Ki are compact sets contained in Ui, {Ui} is a locally finite open covering of
Rn and {εi} a family of positive numbers.

Theorem 5.2. Let

n > 2(k − 2); (n− k − 1)(n− k) > 2(k − 1).(5.16)

Then the set of 2-normal mappings is residual (i.e. it contains the intersection
of countable everywhere dense open sets) and it is therefore everywhere dense in
C3

s (Rn, Rk).

Proof. We will use the techniques and terminology of differential topology (see [19,
chapters 2,3]). We first remark that C3

s (Rn, Rk) is a Baire space [19, theorem 4.4].
Therefore it is sufficient to prove that the set of 2-normal mappings is residual.

Let J2(n, k) denote the space of 2-jets from Rn to Rk. Elements of J2(n, k) may
be identified with collections γ = (x, y, A, B). Here x ∈ Rn, y ∈ Rk, A is an n × k
matrix, B = (B1, . . . , Bk), and Bi are n× n symmetric matrices.
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Consider an arbitrary positive integer r ≤ k − 2, and let Tr denote the set of
those elements γ ∈ J2(n, k) for which rankA = r. Furthermore, for l ∈ {0, 1, 2}
every Tk−1,l denotes a subset of γ ∈ J2(n, k) such that

rankA = k − 1, ∃z ∈ Rk : Az = 0, z 6= 0, codim(KerBz) = rankBz = l.

(5.17)

Here Bz =
k∑

i=1

Biz
i.

As it is known [19], each set Tr, r = 0, . . . , k − 2, is a smooth submanifold of
J2(n, k) with codimension equal to (n− r)(k − r). Therefore

codimTr ≥ 2(n− k + 2), r = 0, . . . , k − 2.(5.18)

We will prove that Tk−1,l, l = 0, 1, 2, are also smooth submanifolds of J2(n, k)
and calculate their codimensions. LetA denote the set of n×k matrices of rank k−1.
It is a smooth submanifold in the space of n×k matrices, and codimA = n−k +1.
Furthermore, without loss of generality, we suppose that the vector z of (5.17) is
an element of the projective space RP k−1. Consequently, taking into account that
rankA = k − 1 in (5.17), we conclude that a vector z ∈ RP k−1 with Az = 0 is
unique and smoothly depends on A as on a point of the smooth submanifold A.
Let us denote that vector z by z(A).

Thus, γ ∈ Tk−1,l ⇔ A ∈ A, Bz(A) ∈ Bl. Here Bl is the set of n × n symmetric
matrices of rank l. But in the space of n × n symmetric matrices Bl is a smooth
submanifold and codimBl = 1

2 (n− l)(n− l +1) (this follows, for example, from the
reasoning of [20, p.24]). Employing the implicit function theorem to find B such
that Bz(A) ∈ Bl and using the smoothness of the function z(·), we deduce that
the set Tk−1,l is a smooth submanifold of J2(n, k) and codim Tk−1,l = codimA +
codimBl ⇒

codimTk−1,l ≥ (n− k + 1) +
1
2
(n− k)(n− k − 1)∀l.(5.19)

Let T̃ denote the set of the submanifolds Tr, r = 0, . . . , k − 2, and Tk−1,l,

l = 0, 1, . . . , k + 1. Therefore we proved that every set T ∈ T̃ is a smooth subman-
ifold of J2(n, k). Moreover, from (5.16), (5.18), (5.19) we see that the codimension
of each submanifold is greater than n. From this it follows immedeately that if for a
mapping F ∈ C3

s (Rn, Rk) its jet extension j2F is transversal to a manifold T ∈ T̃ ,
then its 2-jet j2F (x) at an arbitrary point x ∈ Rn does not belong to that manifold.
But T̃ consists of a finite number of submanifolds. Thus, according to the jet theo-
rem on transversality [19], we see that the set of mappings F ∈ C3

s (Rn, Rk) whose
jet extensions are transversal to each manifold T ∈ T̃ is residual. Consequently, the
set of the mappings F whose 2-jet j2F (x) at any point does not belong to any set
T ∈ T̃ is residual and everywhere dense in C3

s (Rn, Rk). From the definition of the
manifolds Tr and Tk−1,l and Theorem 5.1 it follows that the mapping F is 2-normal
at a point x with respect to any cone C if the 2-jet j2F (x) of the mapping F at
the point x does not belong to any set T ∈ T̃ . The theorem is proved.

Theorem 5.2 shows the main distinction of the condition of 2-normality from
the conditions of normality (the Lyusternik condition) and of 2-regularity. For F
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being 2-normal – as opposed to the above-mentioned and analogous nondegeneracy
conditions – means being generic in the space of functions C3

s (Rn, Rk).
Finally, the author would like to thank the anonymous referee for helpful sug-

gestions.
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86f:58018



SECOND–ORDER CONDITIONS IN EXTREMAL PROBLEMS 4365

21. A.V. Finkelshtein, “Application of the Ekeland theorem for the derivation of necessary and
sufficient conditions of optimality for sequences” in: Optimizatsiia, 31(48) [in Russian], Novosi-
birsk, 33-47 (1983). MR 86c:49040

22. V.V.Voevodin, Linear Algebra, Nauka, Moscow [in Russian] (1974). MR 50:9894
23. A.R. Avakov, Necessary Extremum Conditions for Smooth Abnormal Problem with Equality

and Inequality-type Constraints, Mat. Zametki, 45, No 6, 3-11, (1989); English transl., Math.
Notes 45 (1989), 431–437. MR 90k:49024

Department of Differentional Equations and Functional Analysis, Peoples Friend-

ship University of Russia, Moscow 117198, Mikluka-Maklai, 6, Russia

E-mail address: arutunov@sa640.cs.msu.su


