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Abstract. The secant variety of a projective variety X in P, denoted by
Sec X, is defined to be the closure of the union of lines in P passing through
at least two points of X, and the secant deficiency of X is defined by δ :=
2 dimX +1−dimSec X. We list the homogeneous projective varieties X with
δ > 0 under the assumption that X arise from irreducible representations of
complex simple algebraic groups. It turns out that there is no homogeneous,
non-degenerate, projective variety X with Sec X 6= P and δ > 8, and the
E6-variety is the only homogeneous projective variety with largest secant defi-
ciency δ = 8. This gives a negative answer to a problem posed by R. Lazarsfeld
and A. Van de Ven if we restrict ourselves to homogeneous projective varieties.

Introduction

The secant variety of a projective variety X in P, denoted by Sec X , is defined
to be the closure of the union of lines in P passing through at least two points of
X , and the secant deficiency of X is defined by

δ := 2 dimX + 1− dim Sec X.

In 1979, F. L. Zak proved a significant inequality,

3 dimX + 4 ≤ 2 dim P
for a smooth, non-degenerate X with SecX 6= P, which had been conjectured by
R. Hartshorne [Ht, Conjecture 4.2] (see also [FL], [LV], [Z]). From the viewpoint
of Zak’s inequality, projective varieties X which attain the equality, namely Severi
varieties, were studied actively, and Zak finally found that there are exactly four
Severi varieties (see [FR], [T], [LV], [Z]): It turns out that those varieties are all
homogeneous and have δ = 1, 2, 4, 8. For the extremal case of odd dimensional X ,
in which 3 dimX +5 = 2 dim P, T. Fujita [F] gave a classification for 3-dimensional
X and M. Ohno [O] recently gave classifications for 5-dimensional X and for 7-
dimensional X under a certain condition, where those X of dimension 3,5,7 have
δ = 1, 2, 3, respectively. Thus several authors have studied projective varieties X
with δ > 0.

The purpose of this article is to list the homogeneous projective varieties X
with δ > 0 under the assumption that X arise from irreducible representations of
complex simple algebraic groups. Zak already obtained a table of those X in case
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of 2 dimX ≥ dim P. But we work without any dimensional condition. Although
we as well as Zak need another step to investigate which X has Sec X 6= P, our
strategy to pick up the candidates of X with δ > 0 (not necessarily Sec X 6= P) is
different and quite simple, as we will see below.

Let G be a complex simple algebraic group with Lie algebra g, let R be the root
system of g, and fix a base ∆ of R. Let λ be a dominant weight of g with respect
to ∆, ρ : G → GL(V ) an irreducible, finite-dimensional representation of G with
highest weight λ, and vλ a maximal vector in V with weight λ. In this article we
discuss projective varieties X in P∗(V ) which is an orbit of the subspace spanned
by vλ under the action of G, where P∗(V ) denotes the 1-dimensional subspaces of
V . Denote by ωi the i-th fundamental weight as in [B].

The result is

Theorem. X in P∗(V ) has δ > 0 if and only if the type of g and λ is one of the
following:
(A1) ω1; 2ω1

(A2) ω1, ω2; 2ω1, 2ω2; ω1 + ω2

(A3) ω1, ω3; ω2; 2ω1, 2ω3; ω1 + ω3

(Al≥4) ω1, ωl; ω2, ωl−1; 2ω1, 2ωl; ω1 + ωl

(B2) ω1; ω2; 2ω2

(Bl=3,4) ω1; ω2; ωl

(Bl≥5) ω1; ω2

(Cl≥3) ω1; ω2; 2ω2

(Dl=4,5) ω1; ω2; ωl−1, ωl

(Dl≥6) ω1; ω2

(E6) ω1, ω6; ω2

(E7) ω1

(E8) ω8

(F4) ω1; ω4

(G2) ω1; ω2

From this result one obtains the following table of homogeneous projective vari-
eties with degenerate secants (see, for details, §3).

The only-if-part is the main contribution of this work, while the if-part follows
from well-known facts, results of Zak, and a recent result of M. Ohno, O. Yasukura
and the author (see §3). Denote by α̃ the highest root of g, by µ the lowest weight
of ρ, and by (∗, ∗) the inner product defined by the Killing form. The key to prove
the only-if-part is a simple

Criterion.

(λ− µ, λ− α̃) > 0 ⇒ δ = 0.

It turns out, after proving the Theorem, that the converse is also true.
Using a result of Zak [Z, III, Corollary 1.7], we obtain from our table the fol-

lowing results for arbitrary homogeneous projective varieties X such that G is not
necessarily simple. The first yields a partial answer to a problem posed by R.
Lazarsfeld and A. Van de Ven [LV, §1f, Problem]:

Corollary 1. There is no homogeneous, non-degenerate, projective variety X with
SecX 6= P and δ > 8. Furthermore, the E6-variety is the only homogeneous pro-
jective variety with largest secant deficiency δ = 8.
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Table of homogeneous projective varieties with degenerate secants

type weight λ representation δ X dim P + 1 Sec X ⊆ P −ε

A1 ω1 standard 2 P1 2 = 1/4

2ω1 2nd symm. 1 v2(P1) 3 = 0

A2 ω1, ω2 standard 3 P2 3 = 1/6

2ω1, 2ω2 2nd symm. 1 v2(P2) 6 6= 0

ω1 + ω2 adjoint 1 P(TP2 ) = P2 × P2 ∩ (1) 8 6= 0

A3 ω1, ω3 standard 4 P3 4 = 1/8
ω2 2nd ext. 4 G(2, 4) 6 = 0

2ω1, 2ω3 2nd symm. 1 v2(P3) 10 6= 0

ω1 + ω3 adjoint 1 P(TP3 ) = P3 × P3 ∩ (1) 15 6= 0

Al≥4 ω1, ωl standard l + 1 Pl l + 1 = 1/2(l + 1)
ω2, ωl−1 2nd ext. 4 G(2, l + 1) (l + 1)l/2 6= iff l ≥ 5 0

2ω1, 2ωl 2nd symm. 1 v2(Pl) (l + 2)(l + 1)/2 6= 0

ω1 + ωl adjoint 1 P(TPl ) = Pl × Pl ∩ (1) (l + 1)2 − 1 6= 0

B2 ω1 standard 3 Q3 5 = 0
ω2 spin 4 S2 = P3 4 = 1/6

2ω2 adjoint 1 F1(Q
3) = v2(P3) 10 6= 0

Bl=3,4 ω1 standard 2l − 1 Q2l−1 2l + 1 = 0

ωl spin 6 Sl 2l = 1/20, 0

ω2 adjoint 1 F1(Q
2l−1) 2l2 + l 6= 0

Bl≥5 ω1 standard 2l − 1 Q2l−1 2l + 1 = 0

ω2 adjoint 1 F1(Q
2l−1) 2l2 + l 6= 0

Cl≥3 ω1 standard 2l P2l−1 2l = 1/2(l + 1)

ω2 2nd ext. 3 G(2, 2l) ∩ (1) 2l2 − l− 1 6= 0

2ω1 adjoint 1 v2(P2l−1) 2l2 + l 6= 0

Dl=4,5 ω1 standard 2l − 2 Q2l−2 2l = 0

ωl−1, ωl half-spin 6 Sl−1 2l−1 = 0

ω2 adjoint 1 F1(Q
2l−2) 2l2 − l 6= 0

Dl≥6 ω1 standard 2l − 2 Q2l−2 2l = 0

ω2 adjoint 1 F1(Q
2l−2) 2l2 − l 6= 0

E6 ω1, ω6 8 X16 27 6= 0
ω2 adjoint 1 X20+1 78 6= 0

E7 ω1 adjoint 1 X32+1 133 6= 0

E8 ω8 adjoint 1 X56+1 248 6= 0

F4 ω4 7 X16 ∩ (1) 26 6= 0

ω1 adjoint 1 X14+1 52 6= 0

G2 ω1 “standard” 5 Q5 7 = 1/12

ω2 adjoint 1 X4+1 14 6= 0

NOTATION: v2 denotes the Veronese embedding, Qn a quadric hypersurface of dimension n, G(k, m)
the Grassmann variety of k-dimensional subspaces of an m-dimensional vector space, Fm(Qn) the Fano

variety of m-planes in Qn, Sk the spinor variety, that is, an irreducible component of Fk(Q2k) embedded
via a “square root” of the Plücker embedding, ∩(1) cutting by a general hyperplane, and ε := (λ−µ, λ−
α̃).

The second is

Corollary 2 (Cf. [R]). Let X be a homogeneous, non-degenerate, projective vari-
ety in PN , and let vd be the d-uple embedding of PN . If d ≥ 2 and X 6= PN , then
vd(X) has non-degenerate secants.

(see Acknowledgements)
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1. A Proof of the Criterion

The criterion follows from two lemmas below.
Let h be a Cartan subalgebra of the Lie algebra g of G, denote by h∗R the real

vector space spanned by the roots R in the dual space h∗. By means of the Killing
form on g, one can consider h∗R as an Euclidean space with inner product (∗, ∗) such
that the action of the Weyl group on h∗R is orthogonal. Denote by R+ the set of
positive roots in h∗R. Let α̃ be the highest root of g, and let µ be the lowest weight
of the representation ρ.

Let W be the Weyl chamber, that is, W := {ω ∈ h∗R|α ∈ R+ ⇒ (ω, α) ≥ 0}, and
denote by w0 the involution on h∗R such that W maps to −W (see [B, VI, §1, n◦ 6,
Cor. 3]): We have −α̃ = w0(α̃).

For an element α and a subset S of h∗R, denote by α + S the set {α +β ∈ h∗R|β ∈
S}, and by (α, S) the set {(α, β) ∈ R|β ∈ S}. For example, max(α, S) means
max{(α, β) ∈ R|β ∈ S}.
Lemma 1.

(λ− µ, λ− α̃) > 0 ⇒ (λ + R) ∩ (µ + R) = ∅.
Proof. We have that w0 is orthogonal, w0(λ) = µ and w0(R) = R. So it follows
that (λ−µ, R) = −(λ− µ, R) and (λ−µ, µ) = −(λ−µ, λ), hence (λ− µ, µ + R) =
−(λ− µ, λ + R). Thus,

min(λ− µ, λ + R) > 0 ⇒ (µ + R) ∩ (λ + R) = ∅.
On the other hand, since −w0(W) = W and λ ∈ W , we have −µ = −w0(λ) ∈ W ,
hence λ − µ ∈ W . Therefore it follows from the definition of W that if α ∈ R+,
then (λ − µ, α) ≥ 0. Hence, max(λ − µ, R) is attained by the highest root α̃ (see,
for example, [B, VI, §1, n◦ 8, Proposition 25]), and

min(λ − µ, λ + R) = (λ− µ, λ− α̃).

Lemma 2.

δ ≤ #{(λ + R) ∩ (µ + R)}.
In particular,

(λ + R) ∩ (µ + R) = ∅ ⇒ δ = 0.

Proof. According to [LV, p. 14], the deficiency δ in characteristic zero is equal to
the dimension of the intersection g · vλ ∩ g · vµ in V :

δ = dim(g · vλ ∩ g · vµ),

where vλ, vµ are weight vectors corresponding to λ and µ, respectively, and · means
the action of g on V via the differential dρ.

On the other hand, for a root α of g we have dim gα · vλ ≤ 1 and gα · vλ ⊆ Vλ+α.
From the Cartan decomposition g = h⊕⊕α∈R gα we obtain g·vλ = C·vλ⊕

⊕
α∈R gα·

vλ in V since h · vλ = C · vλ. Hence, we see that if dim(gα · vλ ∩ gβ · vµ) = 1, then
λ + α = µ + β. Therefore we have

dim(g · vλ ∩ g · vµ) ≤ #{(λ + R) ∩ (µ + R)}.
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2. Candidates

Proposition. For a dominant weight λ of a complex simple Lie algebra g, (λ −
µ, λ − α̃) ≤ 0 if and only if the type of g and λ is one of the weights listed in
Theorem.

To show this proposition, realize h∗R in a real vector space as in [B]. Then for a
given λ =

∑l
i=1 biωi with non-negative integers bi, one can compute the coordinates

of λ and the corresponding lowest µ in h∗R by virtue of w0(λ) = µ, hence those of
λ−µ explicitly, where ω1, . . . , ωl are the fundamental weights. One can also compute
those of the highest root α̃. Thus for a weight λ =

∑l
i=1 biωi, setting

ε := (λ − µ, λ− α̃),

one can write down the value ε in terms of the integers bi. We compute below the
set of non-trivial solutions (bi) of non-negative integers bi for an inequality,

ε ≤ 0

in each type of g.
We denote by ei the i-th canonical basis of Rm with 1 ≤ i ≤ m, and consider∑b
i=a void unless a ≤ b.

Lemma A. For any λ in case of type Al with l ≥ 1, (λ−µ, λ−α̃) ≤ 0 if and only if
λ is one of the following: ω1, 2ω1 in case of l = 1; ω1, ω2, 2ω1, 2ω2, ω1+ω2 in case of
l = 2; ω1, ω2, ω3, 2ω1, 2ω3, ω1 +ω3 in case of l = 3; ω1, ω2, ωl−1, ωl, 2ω1, 2ωl, ω1 +ωl

in case of l ≥ 4.

Proof . In this case, h∗R = {(xi) ∈ Rl+1|∑l+1
i=1 xi = 0} ⊆ Rl+1 and α̃ = ω1 + ωl =

e1 − el+1. We have

λ =
l∑

i=1

bi

 i∑
k=1

ek − i

l + 1

l+1∑
j=1

ej

 .

Let W0 be a linear transformation on Rl+1 such that ei maps to el+2−i with 1 ≤
i ≤ l + 1. We see from [B] that the restriction to h∗R of W0 gives the involution w0,
and we have

λ− µ =
l+1∑
k=1

 l∑
i=k

bi −
l∑

j=l+2−k

bj

 ek.

It follows that

2(l + 1)(λ− µ, λ) =
[ l+1

2 ]∑
k=1

(
l−k+1∑

i=k

bi

)2

,

2(l + 1)(λ− µ, α̃) = 2
l∑

k=1

bk,

and

2(l + 1)ε =

(
l∑

i=1

bi − 1

)2

+
[ l+1

2 ]∑
k=2

(
l−k+1∑

i=k

bi

)2

− 1.
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Thus the set of non-trivial solutions (bi) for ε ≤ 0 is: {(1), (2)} if l = 1; {(10),
(01), (20), (02), (11)} if l = 2; {(100), (001), (010), (200), (002), (101)} if l = 3;
{(10 · · ·0), (0 · · · 01), (010 · · ·0), (0 · · · 010), (20 · · · 0), (0 · · · 02), (10 · · · 01)} if l ≥
4.

Lemma B. For any λ in case of type Bl with l ≥ 2, (λ − µ, λ − α̃) ≤ 0 if and
only if λ is one of the following: ω1, ω2, 2ω2 in case of l = 2; ω1, ω2, ωl in case of
l = 3, 4; ω1, ω2 in case of l ≥ 5.

Proof. In this case, h∗R = Rl, α̃ = e1 + e2 and w0 = −1. We have

λ− µ = 2λ =
l∑

k=1

(
2

l∑
i=k

bi − bl

)
ek.

It follows that

2(2l− 1)(λ− µ, λ) =
1
2

l∑
k=1

(
2

l∑
i=k

bi − bl

)2

,

and

2(2l− 1)(λ− µ, α̃) =
2∑

k=1

(
2

l∑
i=1

bi − bl

)
.

For the case l = 2, we have

12ε = (2b1 + b2 − 1)2 + (b2 − 1)2 − 2.

For any l ≥ 3, we have

4(2l− 1)ε =

(
2

l−1∑
i=1

bi + bl − 1

)2

+

(
2

l−1∑
i=2

bi + bl − 1

)2

+
l−1∑
k=3

(
2

l−1∑
i=k

bi + bl

)
+ b2

l − 2.

Thus the set of non-trivial solutions (bi) for ε ≤ 0 is: {(10), (01), (02)} if l = 2;
{(10 · · ·0), (010 · · · 0), (0 · · · 01)} if l = 3, 4; {(10 · · ·0), (010 · · ·0)} if l ≥ 5.

Lemma C. For any λ in case of type Cl with l ≥ 3, (λ− µ, λ− α̃) ≤ 0 if and only
if λ = ω1, ω2 or 2ω1.

Proof. In this case, h∗R = Rl, α̃ = 2e1 and w0 = −1. We have

λ− µ = 2λ = 2
l∑

k=1

(
l∑

i=k

bi

)
ek.

It follows that

4(l + 1)(λ− µ, λ) = 2
l∑

k=1

(
l∑

i=k

bi

)2

,

4(l + 1)(λ− µ, α̃) = 4
l∑

i=1

bi,
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and

2(l + 1)ε =

(
l∑

i=1

bi − 1

)2

+
l∑

k=2

(
l∑

i=k

bi

)2

− 1.

Thus the set of non-trivial solutions (bi) for ε ≤ 0 is {(10 · · ·0), (010 · · · 0),
(20 · · ·0)}.
Lemma D. For any λ in case of type Dl with l ≥ 4, (λ − µ, λ − α̃) ≤ 0 if and
only if λ is one of the following: ω1, ω2, ωl−1, ωl in case of l = 4, 5; ω1, ω2 in case
of l ≥ 6.

Proof. In this case, h∗R = Rl and α̃ = e1 + e2. We have

λ =
l∑

k=1

(
l∑

i=k

bi − bl−1 + bl

2

)
ek.

In case of even l with l ≥ 4, we have w0 = −1 and

λ− µ = 2λ =
l∑

k=1

(
2

l∑
i=k

bi − bl−1 − bl

)
ek.

In case of odd l with l ≥ 5, we see from [B] that w0 is equal to a linear transformation
of Rl such that ei maps to −ei with 1 ≤ i ≤ l − 1 and el maps to el, and we have

λ− µ =
l−1∑
k=1

(
2

l∑
i=k

bi − bl−1 − bl

)
ek.

For any l ≥ 4 we have

4(l − 1)(λ− µ, λ) =
1
2

2[ l
2 ]∑

k=1

(
2

l∑
i=k

bi − bl−1 − bl

)2

,

and

4(l− 1)(λ− µ, α̃) =
2∑

k=1

(
2

l∑
i=k

bi − bl−1 − bl

)
.

Therefore, for even l we have

8(l − 1)ε =

(
2

l−2∑
i=1

bi + bl−1 + bl − 1

)2

+

(
2

l−2∑
i=2

bi + bl−1 + bl − 1

)2

+
l−2∑
k=3

(
2

l−2∑
i=k

bi + bl−1 + bl

)2

+ 2b2
l−1 + 2b2

l − 2,

and for odd l we have

8(l− 1)ε =

(
2

l−2∑
i=1

bi + bl−1 + bl − 1

)2

+

(
2

l−2∑
i=2

bi + bl−1 + bl − 1

)2

+
l−2∑
k=3

(
2

l−2∑
i=k

bi + bl−1 + bl

)2

+ (bl−1 + bl)2 − 2.
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Thus the set of non-trivial solutions (bi) for ε ≤ 0 is: {(10 · · ·0), (010 · · · 0),
(0 · · · 010), (0 · · · 01)} if l = 4, 5; {(10 · · · 0), (010 · · ·0)} if l ≥ 6.

Lemma E6. For any λ in case of type E6, (λ − µ, λ − α̃) ≤ 0 if and only if
λ = ω1, ω2 or ω6.

Proof. In this case,

h∗R = {(xi) ∈ R8|x6 = x7 = −x8} ⊆ R8

and

α̃ =
1
2

(
5∑

i=1

ei − e6 − e7 + e8

)
.

We have

λ =
1
2
(b2 − b3)e1 +

1
2
(b2 + b3)e2 +

(
1
2
(b2 + b3) + b4

)
e3

+
(

1
2
(b2 + b3) + b4 + b5

)
e4

+
(

1
2
(b2 + b3) + b4 + b5 + b6

)
e5

+
(

2
3
b1 +

1
2
b2 +

5
6
b3 + b4 +

2
3
b5 +

1
3
b6

)
(−e6 − e7 + e8).

Let W0 be a linear transformation on R8 defined by a matrix

−1
2

[
W 0
0 −W

]
,

where we set

W :=


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

 .

We see from [B] that the restriction to h∗R of W0 gives the involution w0 (To obtain
this form of matrix W0 representing w0, impose an extra condition that the linear
transformation leaves e5 + e7 and e6 + e8 invariant). Using W0, we have

λ− µ =
(

b2 − 1
2
(b3 + b5)

)
e1 +

(
b2 +

1
2
(b3 + b5)

)
e2

+
(

b2 + 2b4 +
1
2
(b3 + b5)

)
e3 +

(
b2 + 2b4 +

3
2
(b3 + b5)

)
e4

+
(

b2 + (b1 + b6) + 2b4 +
3
2
(b3 + b5)

)
(e5 − e6 − e7 + e8).
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It follows that

24(λ− µ, λ) =
(

b2 − 1
2
(b3 + b5)

)(
1
2
(b2 − b3)

)
+
(

b2 +
1
2
(b3 + b5)

)(
1
2
(b2 + b3)

)
+
(

b2 + 2b4 +
1
2
(b3 + b5)

)(
1
2
(b2 + b3) + b4

)
+
(

b2 + 2b4 +
3
2
(b3 + b5)

)(
1
2
(b2 + b3) + b4 + b5

)
+
(

b2 + (b1 + b6) + 2b4 +
3
2
(b3 + b5)

)
×
(

1
2
(b2 + b3) + b4 + b5 + b6

)
+ 3

(
b2 + (b1 + b6) + 2b4 +

3
2
(b3 + b5)

)
×
(

2
3
b1 +

1
2
b2 +

5
6
b3 + b4 +

2
3
b5 +

1
3
b6

)
= b2

2 +
1
2
(b3 + b5)2 + (b2 + b3 + 2b4 + b5)2

+
1
2
(2b1 + 2b2 + 3b3 + 4b4 + 3b5 + 2b6)2,

24(λ− µ, α̃) =
1
2

{(
b2 − 1

2
(b3 + b5)

)
+
(

b2 +
1
2
(b3 + b5)

)
+
(

b2 + 2b4 +
1
2
(b3 + b5)

)
+
(

b2 + 2b4 +
3
2
(b3 + b5)

)
+4
(

b2 + (b1 + b6) + 2b4 +
3
2
(b3 + b5)

)}
= b2 + (b2 + b3 + 2b4 + b5) + (2b1 + 2b2 + 3b3 + 4b4 + 3b5 + 2b6),

and

24ε =
(

b2 − 1
2

)2

+
1
2
(b3 + b5)2 +

(
b2 + b3 + 2b4 + b5 − 1

2

)2

+
1
2
(2b1 + 2b2 + 3b3 + 4b4 + 3b5 + 2b6 − 1)2 − 1.

Thus the set of non-trivial solutions (bi) for ε ≤ 0 is {(100000), (010000),
(000001)}.

Lemma E7. For any λ in case of type E7, (λ−µ, λ− α̃) ≤ 0 if and only if λ = ω1.



542 HAJIME KAJI

Proof. In this case, h∗R = {(xi) ∈ R8|x7 +x8 = 0} ⊆ R8, α̃ = −e7+e8 and w0 = −1.
We have

λ− µ = 2λ =(b2 − b3)e1 + (b2 + b3)e2

+ (b2 + b3 + 2b4)e3 + (b2 + b3 + 2b4 + 2b5)e4

+ (b2 + b3 + 2b4 + 2b5 + 2b6)e5

+ (b2 + b3 + 2b4 + 2b5 + 2b6 + 2b7)e6

+ (2b1 + 2b2 + 3b3 + 4b4 + 3b5 + 2b6 + b7)(−e7 + e8).

It follows that

36(λ− µ, λ) =
1
2
{(b2 − b3)2 + (b2 + b3)2

+ (b2 + b3 + 2b4)2 + (b2 + b3 + 2b4 + 2b5)2

+ (b2 + b3 + 2b4 + 2b5 + 2b6)2

+ (b2 + b3 + 2b4 + 2b5 + 2b6 + 2b7)2

+ 2(2b1 + 2b2 + 3b3 + 4b4 + 3b5 + 2b6 + b7)2},
36(λ− µ, α̃) = 2(2b1 + 2b2 + 3b3 + 4b4 + 3b5 + 2b6 + b7),

and

72ε = (b2 − b3)2 + (b2 + b3)2

+ (b2 + b3 + 2b4)2 + (b2 + b3 + 2b4 + 2b5)2

+ (b2 + b3 + 2b4 + 2b5 + 2b6)2 + (b2 + b3 + 2b4 + 2b5 + 2b6 + 2b7)2

+ 2(2b1 + 2b2 + 3b3 + 4b4 + 3b5 + 2b6 + b7 − 1)2 − 2.

Thus the set of non-trivial solutions (bi) for ε ≤ 0 is {(1000000)}.

Lemma E8. For any λ in case of type E8, (λ−µ, λ− α̃) ≤ 0 if and only if λ = ω8.

Proof. In this case, h∗R = R8, α̃ = e7 + e8 and w0 = −1. We have

λ− µ = 2λ =(b2 − b3)e1 + (b2 + b3)e2

+ (b2 + b3 + 2b4)e3 + (b2 + b3 + 2b4 + 2b5)e4

+ (b2 + b3 + 2b4 + 2b5 + 2b6)e5

+ (b2 + b3 + 2b4 + 2b5 + 2b6 + 2b7)e6

+ (b2 + b3 + 2b4 + 2b5 + 2b6 + 2b7 + 2b8)e7

+ (4b1 + 5b2 + 7b3 + 10b4 + 8b5 + 6b6 + 4b7 + 2b8)e8.
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It follows that

60(λ− µ, λ) =
1
2
{(b2 − b3)2 + (b2 + b3)2

+ (b2 + b3 + 2b4)2 + (b2 + b3 + 2b4 + 2b5)2

+ (b2 + b3 + 2b4 + 2b5 + 2b6)2

+ (b2 + b3 + 2b4 + 2b5 + 2b6 + 2b7)2

+ (b2 + b3 + 2b4 + 2b5 + 2b6 + 2b7 + 2b8)2

+ (4b1 + 5b2 + 7b3 + 10b4 + 8b5 + 6b6 + 4b7 + 2b8)2},
60(λ− µ, α̃) = (b2 + b3 + 2b4 + 2b5 + 2b6 + 2b7 + 2b8)

+ (4b1 + 5b2 + 7b3 + 10b4 + 8b5 + 6b6 + 4b7 + 2b8),

and

120ε = (b2 − b3)2 + (b2 + b3)2

+ (b2 + b3 + 2b4)2 + (b2 + b3 + 2b4 + 2b5)2

+ (b2 + b3 + 2b4 + 2b5 + 2b6)2 + (b2 + b3 + 2b4 + 2b5 + 2b6 + 2b7)2

+ (b2 + b3 + 2b4 + 2b5 + 2b6 + 2b7 + 2b8 − 1)2

+ (4b1 + 5b2 + 7b3 + 10b4 + 8b5 + 6b6 + 4b7 + 2b8 − 1)2 − 2.

Thus the set of non-trivial solutions (bi) for ε ≤ 0 is {(00000001)}.
Lemma F4. For any λ in case of type F4, (λ−µ, λ− α̃) ≤ 0 if and only if λ = ω1

or ω4.

Proof. In this case, h∗R = R4, α̃ = e1 + e2 and w0 = −1. We have

λ− µ = 2λ = (2b1 + 4b2 + 3b3 + 2b4)e1 + (2b1 + 2b2 + b3)e2 + (2b2 + b3)e3 + b3e4.

It follows that

18(λ− µ, λ) =
1
2
{(2b1 + 4b2 + 3b3 + 2b4)2 + (2b1 + 2b2 + b3)2 + (2b2 + b3)2 + b2

3},
18(λ− µ, α̃) = (2b1 + 4b2 + 3b3 + 2b4) + (2b1 + 2b2 + b3),

and
36ε = (2b1 + 4b2 + 3b3 + 2b4 − 1)2 + (2b1 + 2b2 + b3 − 1)2 + (2b2 + b3)2 + b2

3 − 2.

Thus the set of non-trivial solutions (bi) for ε ≤ 0 is {(1000), (0001)}.
Lemma G2. For any λ in case of type G2, (λ−µ, λ− α̃) ≤ 0 if and only if λ = ω1

or ω2.

Proof. In this case, h∗R = {(xi) ∈ R3|∑3
i=1 xi = 0} ⊆ R3, α̃ = −e1 − e2 + 2e3 and

w0 = −1. We have

λ− µ = 2λ = 2{−b2e1 − (b1 + b2)e2 + (b1 + 2b2)e3}.
It follows that

24(λ− µ, λ) = 2{(−b2)2 + (−(b1 + b2))2 + (b1 + 2b2)2},
24(λ− µ, α̃) = 2{b2 + (b1 + b2) + 2(b1 + 2b2)},
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and

12ε =
(

b2 − 1
2

)2

+
(

b1 + b2 − 1
2

)2

+ (b1 + 2b2 − 1)2 − 3
2
.

Thus the set of non-trivial solutions (bi) for ε ≤ 0 is {(10), (01)}.

3. Proofs of main results

Proof of Theorem. If X corresponding to λ has δ > 0, then it follows from the Cri-
terion and Proposition that λ is one of the dominant weights listed in the statement
of the Theorem.

We show the converse. For the adjoint representation, the required results follow
from one of the main theorems in [KOY], which with the same notations as in the
Introduction asserts that if G is simple and of rank ≥ 2, and if ρ is the adjoint
representation, then the corresponding variety X has δ = 1. For the other cases,
using well-known facts [FH] and results of Zak [LV, Appendix], [Z], one can show
that each X has δ > 0: for ω1, ω6 in case of E6, the corresponding variety X is well-
known as the Severi variety of the largest dimension, and X for ω4 in case of F4 is its
hyperplane section; for the remaining dominant weights, the corresponding variety
X is either a projective space, its Veronese embedding, a quadric hypersurface, a
Grassmann variety of lines in a projective space, its hyperplane section, or a spinor
variety.

Moreover, using results in [FH], [KOY], [LV], [Z], one can verify that a projective
variety X obtained from each weight listed in the Theorem enjoys the properties
stated in our table.

Finally we prove two results for arbitrary homogeneous projective varieties men-
tioned in the Introduction. Without loss of generality, we may assume for any
homogeneous projective variety X that X is obtained from an irreducible represen-
tation of a semi-simple algebraic group G (see [Z, III, §1], [FH, Prop. 9.17]).

Proof of Corollary 1. Suppose that Sec X 6= P and δ > 8 for some X . According
to a result of Zak [Z, III, Corollary 1.7], if G were not simple, and if δ > 0, then
δ = 2; this is a contradiction. Hence G must be simple. But we see from our table
that there is no such X .

Proof of Corollary 2. Suppose that vd(X) has δ > 0 for some X and d ≥ 2.
According to a result of Zak [Z, III, Corollary 1.7], if G were not simple, and
if δ > 0, then X would be isomorphic to some Segre product Pa × Pb, hence
OX(d) = Ovd(X)(1) = OPa(1) � OPb(1): This is a contradiction since the last line
bundle is indivisible by d ≥ 2. Hence G is simple.

If X is corresponding to λ, then its d-uple embedding vd(X) is corresponding to
dλ. In our table, dominant weights of the form dλ for some d ≥ 2 and for some
dominant weight λ, are 2ω1, 2ωl in case of Al, 2ω2 in case of Bl, and 2ωl in case of
Cl, and all X in those cases are projective spaces.
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