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ERRATIC SOLUTIONS OF SIMPLE DELAY EQUATIONS

BERNHARD LANI-WAYDA

Abstract. We give an example of a smooth function g : R −→ R with only
one extremum, with sign g(x) = −sign g(−x) for x 6= 0, and the following
properties: The delay equation ẋ(t) = g(x(t − 1)) has an unstable periodic
solution and a solution with phase curve transversally homoclinic to the orbit
of the periodic solution.

The complicated motion arising from this structure, and its robustness un-
der perturbation of g, are described in terms of a Poincaré map. The example
is minimal in the sense that the condition g′ < 0 (under which there would be
no extremum) excludes complex solution behavior.

Based on numerical observations, we discuss the role of the erratic solutions
in the set of all solutions.

1. Introduction

In this work we try to find and describe complicated solution behavior in a func-
tional differential equation as simple as possible. Let us introduce the framework
for the class of equations that we consider. Let E,F be normed spaces, and M ⊂ E
be an open subset. For k ∈ N0, the space of bounded Ck−maps f : M → F with
bounded derivatives up to order k is denoted by BCk(M,F ). The norm on this
space is given by

|f |Ck = max
j=0,... ,k

sup
x∈M

|Djf(x)| ,

with the usual norm on Lc(E,F ). (The space BCk(M,F ) is a Banach space if F
is a Banach space.) For compact intervals I ⊂ R, the space Ck(I, F ) is defined
analogously. When convenient, we write(

BCk(M,F ), | |Ck

)
and

(
Ck(I, F ), | |Ck

)
.

Let C := C0([−1, 0],R). If I ⊂ R is an interval, t ∈ R, [t−1, t] ⊂ I and x : I −→
R is continuous, the segment xt ∈ C is defined by xt(s) := x(t+ s) (s ∈ [−1, 0]).

If G ∈ BC1(C,R) and ϕ ∈ C, the initial value problem{
ẋ(t) = G(xt)
x0 = ϕ

has a unique solution xϕ,G : [−1,∞) −→ R (see [HV-L] or [DvGV-LW]). The map
ΦG : R+

0 × C −→ C, (t, ϕ) 7→ xϕ,Gt is a continuous semiflow. The restriction
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ΦG∣∣(1,∞)× C
is C1, and D2ΦG exists on R+

0 × C. See [L-W1] for a proof of

smoothness properties, also with respect to G.
If g : R −→ R andG(ψ) = g(ψ(−1)) for all ψ ∈ C, then the functional differential

equation

ẋ(t) = G(xt)(G)

is equivalent to

ẋ(t) = g(x(t− 1)).(g)

We also write Φg for the semiflow ΦG in this case. It is easy to see that if g ∈
BC1(R,R), then G ∈ BC1(C,R), and DG(ψ)χ = g′(ψ(−1))χ(−1) for ψ, χ ∈ C.

Note that, if G(ψ) = −µψ(0) + g(ψ(−1)), then eq. (G) reads as

ẋ(t) = −µx(t) + g(x(t− 1)).(µ, g)

Functional differential equations of type (G) are used as models in engineering
and biology; see, e.g., [Dr, Chapter V].

Complicated motion. Numerical solutions that appear to be ‘chaotic’ have been
observed in a number of experiments; among the earliest are the works of Mackey
and Glass [MG], Lasota [La] and of Lasota and Wazewska–Czyzewska [LWCz] on
models of type (µ, g) for physiological control processes with delayed negative feed-
back.

See [GP] for a computation of dimension–like quantities from numerical trajec-
tories of the Mackey–Glass equation.

If ‘chaos’ is to be described in mathematical terms, the first question is how to
render an analytical notion of ‘chaotic’ behavior. One way of doing this is to demand
the existence of a subset of the state space on which the dynamics is equivalent to
the index shift on a space of symbol sequences indexed with Z. Since the work of
Morse and Hedlund [M], [MH], the symbol shift is a standard model for irregular,
quasi–random motion. Typically one extracts a Poincaré map Π from the semiflow
and proves that trajectories (xn)n∈Z of Π in some open set W can be described by
symbol sequences (an)n∈Z. The value of an indicates in which of several disjoint
subsets of W the point xn is contained. The existence of such a shift embedding
follows if Π has a hyperbolic fixed point and a trajectory transversally homoclinic
to that fixed point. For diffeomorphisms in finite dimension, this result is due to
Smale [S]. A shadowing lemma approach that yields a description of trajectories
in some neighborhood of the homoclinic orbit was presented by Palmer [P] and
by Kirchgraber and Stoffer [KS]. For noninvertible mappings in infinite dimension,
corresponding results which even give a complete symbolic coding of all trajectories
in some neighborhood were proved by Hale and Lin [HL1], and, using a generalized
shadowing lemma, by Steinlein and Walther [SW].

The ‘transversally homoclinic’ framework applies to all presently known exam-
ples of delay equations for which complicated motion is analytically proven. For
the smoothed step functions from the earliest examples by Walther [W1] and An
der Heiden and Walther [AdHW], complicated orbits were first constructed by em-
bedding an interval map into a Poincaré map for the semiflow; the interval map
had properties as in the paper by Li and Yorke [LY]. Later, Hale and Lin [HL2]
remarked that these examples fit into the setting of transversally homoclinic points
for a Poincaré map. A detailed proof of this statement and a robustness result
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were given in [L-W1]. In the more recent examples from [W2] and [L-WW2], the
approach was from the beginning to construct transversally homoclinic points.

Hale and Sternberg [HS] obtained numerical evidence for the occurrence of ho-
moclinic orbits in the Mackey–Glass equation.

Let us briefly comment on the scope and the limitations of shift embedding
results in the ‘transversally homoclinic’ setting. On the one hand, the trajectories
described by symbol sequences are robust under C1−perturbations of the equation
(see [L-W1] and [L-WW2]). In this sense, the presence of shift dynamics is an
essential feature of the dynamical system.

On the other hand, the points on the ‘chaotic’ trajectories comprise only a ‘thin’
(Cantor) set, and these trajectories are dynamically unstable. It may well be that
a typical solution does not spend much time in the vicinity of the special solutions
captured by the symbolic coding. In fact, the numerical observations reported
in Section 7 suggest that this may be the case for examples similar to the one
constructed in the present paper. Results that capture complicated behavior on
‘large’ subsets of phase space, for dynamical systems given by simple analytical
expressions, are not easy to obtain even in low finite dimensions. (Compare, e.g.,
[BC1], [BC2] and [Laz].) The observations from [DL-W] suggest that, numerically,
erratic motion can take place for every initial value. A corresponding analytical
result for delay equations is currently not available.

Monotone nonlinearities. If g(0) = 0, the monotonicity condition

g′ < 0(M)

excludes erratic solutions, according to the Poincaré–Bendixson theorem for delay
equations proved by Mallet–Paret and Sell [M-PS]. It was shown by Walther [W3]
that, under condition (M), equation (µ, g) with µ ≥ 0 has a global two–dimensional
attractor homeomorphic to a disc, and the planar dynamics on this attractor cannot
be complicated. Define the set S of data with at most one change of sign by

S =
{
ϕ ∈ C \ {0} : There exist a ∈ [−1, 0] and j ∈ {0, 1} with

0 ≤ (−1)jϕ(t) for t ≤ a

and (−1)jϕ(t) ≤ 0 for a ≤ t
}
.

Functions x defined on an interval unbounded to the right are called eventually
slowly oscillating if xt ∈ S holds for all sufficiently large t. Further, x : R −→ R is
called slowly oscillating if xt ∈ S for all t ∈ R. The set S is of dominant importance
for the semiflow induced by equation (g), if condition (M) holds: S is invariant,
and it is shown in [M-PW] that the domain of attraction into S is open and dense
in C.

Negative feedback. Consider now the negative feedback condition

x · g(x) < 0 for x 6= 0,(NF)

which is weaker than (M). The set S is also invariant if only condition (NF) holds,
and the domain of attraction into S is open. Density of this domain in C is not
yet proved, but likely. Condition (NF) still has a restrictive effect on the possible
complexity of the semiflow: It was shown by Mallet-Paret [M-P] that under (NF),
the set of all bounded solutions which are defined on all of R admits a Morse
decomposition. This is a partition into N invariant subsets S1, . . . , SN , and into
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solutions that are asymptotic to some Sj for t −→ −∞ and to some Sk with k < j
for t −→∞. The index i ∈ {1, . . . , N} describes the number of zeroes per time unit,
and the solutions in the ‘lowest’ Morse set S1 are the slowly oscillating solutions.
The Morse decomposition result means that, if the behavior of the solutions inside
each Sj is ignored, the orbit structure looks like the attractor of a gradient flow
– equilibria and connecting orbits. However, it was shown in [L-WW2] that (NF)
does not exclude complicated motion, and that erratic solutions of (g) can be found
within the slowly oscillating class. The example function g from [L-WW2] has a
rather complicated shape with at least two extrema.

A minimal example with erratic solutions. The purpose of the present paper
is to construct smooth functions g such that equation (g) admits a shift embedding
(and hence has a set of erratic solutions), and with an only ‘minimal’ violation of
condition (M): g satisfies (NF) and has only one extremum. We obtain a solution
transversally homoclinic to an unstable periodic solution. The homoclinic solution
has a simpler shape, compared to the previous example [L-WW2]. The main result
is formulated in Theorem 6.1.

Let us mention the related result of Gedeon [G] for ordinary differential equations
with a cyclic feedback structure: That example also has an only minimal violation
of monotonicity conditions that would exclude chaotic solutions, according to the
result of Mallet–Paret and Smith [M-PSm]. Transversality is not proved in [G], but
even without transversality, a semiconjugacy with a symbol shift can be proved.

The techniques of proof in the present paper are based on [L-WW2], with some
improvements. In particular, one important step is to achieve that a solution z
starting from an initial value ϕ in the unstable manifold of the periodic orbit is close
to a prescribed ‘target’ ψ at some time t∗; an estimate of the form |zt∗ − ψ| ≤ ε is
obtained. The idea of the construction enforces that ϕ is outside and ψ inside some
neighborhood of the periodic orbit O. Two technical improvements, compared to
[L-WW2], make the simpler shape of g and of the homoclinic solution possible:

1) The relation between the distances of ϕ and ψ to O is expressed in a more
precise, quantitative way.

2) The method of estimating |zt∗ − ψ| uses also second order terms of Taylor
expansions.

We obtain the homoclinic solution from a shooting–type argument. The transver-
sality proof is based on the criterion from Theorem 8.2 of [L-WW1]. The latter
result characterizes transversality by the condition that certain solutions of the
variational equation along the homoclinic solution are eventually slowly oscillat-
ing. That this condition can be verified is enforced by suitable modifications of the
nonlinearity.

Although the so far simplest example of delay equations with transversally ho-
moclinic solutions, our nonlinearity is still an ‘artificial’ construction, not given by
a simple expression. The erratic solutions, which are analytically described, will be
hard to observe in numerical experiments, as is discussed in Section 7.

2. Homoclinic solutions, Poincaré maps and transversality

In this section, we set up a framework for the analytic description of erratic
solutions of functional differential equations. Symbolic coding of the solutions,



ERRATIC SOLUTIONS OF SIMPLE DELAY EQUATIONS 905

and their robustness under perturbation of the equation, is expressed in terms of
associated Poincaré maps.

A sequence (χn)n∈Z of points from the domain of a map P is called a trajectory
of P if P (χn) = χn+1 (n ∈ Z).

Definition 2.1. Let X be a Banach space, H ⊂ X a closed hyperplane, and
Φ : R+

0 × X −→ X a semiflow. Let U ⊂ C and ϕ ∈ U . A map P : U −→ H is
called a Poincaré map for Φ if the following conditions hold.

(i) There exist an open interval I with inf I > 0 and a map τ : U −→ I with the
property

∀t ∈ I ∀ψ ∈ U : Φ(t, ψ) ∈ H ⇐⇒ t = τ(ψ).

(ii) P (ψ) = Φ(τ(ψ), ψ)) for all ψ ∈ U .

Definition 2.2. If n ∈ N and Hi ⊂ X are hyperplanes, and Ui ⊂ X are pairwise
disjoint, and Pi : Ui −→ Hi, ψ 7→ Φ(τi(ψ), ψ) are Poincaré maps as in Definition
2.1 (i = 1, . . . , n), then the map

Π :
n⋃
i=1

Ui −→
n⋃
i=1

Hi, Π(ψ) := Pi(ψ) if ψ ∈ Ui

is also called a Poincaré map.

Remark 2.3. If Π :
⋃n
i=1 Ui −→

⋃n
i=1Hi is a Poincaré map, then every trajectory

(χk)k∈Z of Π defines a function x : R −→ X with the properties
(i) x(t+ s) = Φ(s, x(t)) for t ∈ R, s ≥ 0;
(ii) there is a sequence (tk)k∈Z with x(tk) = χk (k ∈ Z).

Proof. For every k ∈ Z there exists a unique i(k) ∈ {1, . . . , n} with χk ∈ Ui(k)
and Π(χk) = Φ(τi(k)(χk), χk). Define t0 := 0, tk+1 := tk + τi(k)(χk) for k ≥ 0, and
tk−1 := tk − τi(k−1)(χk−1) for k ≤ 0. Since τi maps into an interval Ii with inf Ii >
0 (i = 1, . . . , n), we have

∑n
k=0 t±k −→ ±∞ for n −→ ∞. Define x : R −→ R by

x(t) := Φ(t− tk−1, χk−1) if t ∈ [tk−1, tk), k ∈ Z. Then property (ii) is satisfied. Let
t ∈ R, s ≥ 0. There exist uniquely determined k, l ∈ Z with k ≤ l, with t ∈ [tk−1, tk)
and t+ s ∈ [tl−1, tl). Then

x(t + s) = Φ(t+ s− tl−1, χl−1) = Φ(t+ s− tl−1,Πl−1−(k−1)χk−1)

= Φ(t+ s− tl−1,Φ(
l−2∑

j=k−1

τi(j)(χj), χk−1))

= Φ(t+ s− tl−1,Φ(
l−2∑

j=k−1

tj+1 − tj , χk−1))

(From the definition of the tj ;

in case k = l, the sum is to be read as zero.)

= Φ(t+ s− tl−1,Φ(tl−1 − tk−1, χk−1)) = Φ(s,Φ(t− tk−1, χk−1))

= Φ(s, x(t)).

Let now H ⊂ X be a hyperplane. There exists a continuous linear functional
h ∈ X∗ and c ∈ R such that H = h−1({c}). With H0 := kerh, one has H = ϕ+H0
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for every ϕ ∈ H . Note that so far we have not required any smoothness properties
of τ and P . If I ⊂ R+ is open and Φ is C1 on I × X , then smooth Poincaré
maps are typically obtained from the Implicit Function Theorem, if the conditions
Φ(t∗, ϕ) ∈ H and D1Φ(t∗, ϕ)1 6∈ H0 are satisfied (see, e.g., [L-W1], or Section XIV.3
of [DvGV-LW]).

Poincaré maps associated with functional differential equations of type (G) can
be described as functions not only of the initial value ϕ ∈ C but also of the
nonlinearity G. The following theorem is a slight variant of Theorem 1.7 from
[L-W1]. For F ∈ BC1(C,R), we denote by Φ(·, ·, F ) : R+

0 × C −→ C the semi-
flow generated by equation (F ). It follows from Lemma 1.5 of [L-W1] that the
map Φ : R+

0 × C × (BC1(C,R), | |C1) −→ C is continuous, and its restriction to
(1,∞)× C ×BC1(C,R) is C1.

Theorem 2.4. Let h ∈ C∗ be a continuous linear functional, c ∈ R, and set
H := h−1({c}) ⊂ C. Assume t0 > 1, that ϕ ∈ C, G ∈ BC1(C,R) and xϕ,Gt0 ∈
H, h(ẋϕ,Gt0 ) 6= 0. Let U ⊂ C be an open neighborhood of the set {xϕ,Gs : 0 ≤ s ≤
t0}.

Then there exist bounded open neighborhoods U ⊂ C of ϕ and B ⊂ BC1(C,R)
of G and a bounded C1 map τ : U × B −→ R with the following properties.

(i) For F ∈ B, the map PF : U −→ H ⊂ C, ψ 7→ Φ(τ(ψ, F ), ψ, F ) is a Poincaré
map for Φ(·, ·, F ), and PF ∈ BC1(U,C). Further, τ(ϕ,G) = t0, so that
PG(ϕ) = Φ(t0, ϕ,G).

(ii) For ψ ∈ U, F ∈ B and s ∈ [0, τ(ψ, F )] one has Φ(s, ψ, F ) ∈ U .
(iii) If G̃ ∈ B and DG̃∣∣U is uniformly continuous on U , then DPG̃ is uniformly

continuous, and the map B 3 F 7→ PF ∈ (BC1(U,C), | |C1) is continuous at
G̃.

Proof. There exists T > t0 such that {xϕ,Gs : s ∈ [0, T ]} ⊂ U . The conditions of
Theorem 1.7 from [L-W1] are satisfied by ϕ, U and G∣∣U . From the latter theorem

and from Lemma 1.5 of the same reference, we obtain neighborhoods U of ϕ in C
and B̃ of G∣∣U in BC1(U ,R) and a local semiflow Φ̃ : [0, T ]×U×B̃ −→ U ⊂ C. The

set B := {F ∈ BC1(C,R) : F ∣∣U ∈ B̃} is an open neighborhood of G in BC1(C,R).

It is clear that Φ̃(·, ·, F ∣∣U) is a restriction of Φ(·, ·, F ) for F ∈ B (compare Remark

1.6 from [L-W1]). The assertions now follow from Theorem 1.7 of [L-W1].

We want to describe erratic solutions of delay equations by ‘chaotic’ trajectories
of a Poincaré map Π. Such trajectories exist in a neighborhood of a transversally
homoclinic orbit of Π. We recall this notion, and we assume the reader to be
familiar with local invariant manifolds at a hyperbolic fixed point.

Definition 2.5. Let U be an open subset of the Banach spaceX , and let Π : U −→
X be a C1 map. Let z ∈ U be a hyperbolic fixed point of Π and let Wu,W s be
local unstable and stable manifolds of Π at z, respectively. A trajectory (xn)n∈Z of
Π is called a transversally homoclinic trajectory (or orbit) if the following condition
is satisfied:

There exists n0 ∈ N such that for m,n ∈ Z, n ≥ n0,m ≤ −n0, one has xm ∈
Wu, xn ∈W s, and Dfn−m(xm) maps the tangent space TxmW

u isomorphically to
a direct summand of the tangent space TxnW

s.
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For J,M ∈ N, define ΣJM as the set of sequences (an)n∈Z ∈ {0, . . . , J}Z com-
posed of blocks 12 . . . J and of blocks of at least M zeroes. ΣJM is a metric space
with the metric d((an), (bn)) = supn∈Z 2−|n||an − bn|. Define the shift operator
σJM : ΣJM −→ ΣJM , (an) 7→ (an+1).

If a C1 map Π has a transversally homoclinic orbit, all trajectories in a neighbor-
hood of this orbit can be described by the symbol sequences from some space ΣJM
([SW]). The first result of this type for noninvertible maps in infinite dimension is
due to Hale and Lin [HL1].

Our next aim is to establish a link between solutions of a delay equation ho-
moclinic to a periodic solution and homoclinic orbits of associated Poincaré maps.
We do this for general equations of type (G) first, and then specialize to equations
where the transversality criterion from [L-WW1] applies. Assume G ∈ BC1(C,R).
Let y : R −→ R be a periodic solution of eq. (G) with minimal period η > 0 and
H = h−1({c}) ⊂ C a hyperplane as in Theorem 2.4. Assume y0 ∈ H, h(ẏη) 6= 0.
Let U ⊂ C be an open bounded neighborhood of the set {ys : s ∈ R}. Then
there exist bounded open neighborhoods U ⊂ C of y0 and B ⊂ BC1(C,R) of G and
Poincaré maps PF : U −→ H (F ∈ B) with the properties described in Theorem
2.4.

Define UH := U ∩ H and set π := PG∣∣UH : UH −→ H . Set H0 := kerh. The

hyperplane H = y0 +H0 is, in general, not a vector space, but we can identify H
with the Banach space H0 via the map H0 3 v 7→ y0 +v. Thus π is a C1 map on an
open subset of a Banach space, and Dπ(ψ) ∈ Lc(H0, H0) for ψ ∈ UH . Obviously
π(y0) = y0.

Lemma 2.6. Assume that the fixed point y0 of π is hyperbolic and unstable; let
Wu,W s ⊂ UH denote local unstable and stable manifolds of π at y0. Then there
exists an open neighborhood Λ ⊂ UH of y0 such that π maps Λ ∩Wu diffeomor-
phically onto Wu. Assume that z : R −→ R is a solution of eq. (G) different
from y and that (tn)n∈Z is a strictly increasing sequence in R with the subsequent
properties:

(i) ztn = π(ztn−1) ∈ Wu ∩ Λ for n < 0;
(ii) zt0 = π(zt−1) ∈ Wu;
(iii) zt1 ∈W s, żt1 6∈ H0;
(iv) ztn+1 = π(ztn) ∈W s for n ≥ 1.

Then there exist a bounded set V ⊂ C, open bounded neighborhoods U0 ⊂ UH of y0
in H, U1 of zt0 in H and G of G in BC1(C,R), and C1 Poincaré maps

ΠF : U0 ∪ U1 −→ H ⊂ C (F ∈ G)

with the following properties:
a) dist(U0, U1) > 0;
b) {ztn : n 6= 0} ⊂ U0;
c) ΠG

∣∣U0
= π∣∣U0

;

d) ΠG(zt0) = zt1 ;
e) if G̃ ∈ G and DG̃∣∣V is uniformly continuous, then DΠG̃ is uniformly con-

tinuous, and the map G 3 F 7→ ΠF ∈ BC1(U0 ∪ U1, H) is continuous at
G̃;

f) with χn := ztn (n ∈ Z), the sequence (χn) is a homoclinic orbit of ΠG.
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Proof. Choose a bounded open neighborhood U1 of {zt : t ∈ R} in C. With
U from the passage preceding the lemma, we set V := U ∪ U1. Note that, since
eq. (G) is autonomous, we have with ϕ := zt0 that xϕ,G(t) = z(t0 + t) for t ≥ 0.
The conditions żt1 6∈ H0, zt1 ∈ W s ⊂ H imply the existence of bounded open
neighborhoods U ′1 ⊂ C of zt0 and B1 of G in BC1(C,R) and of C1 Poincaré maps
P

(1)
F : U ′1 −→ H ⊂ C as in Theorem 2.4. In particular, the analogous statement of

Theorem 2.4 (iii) holds for G̃ ∈ B1, if DG̃∣∣U
1

is uniformly continuous.

With U from the passage before the statement of the lemma, we have ztn ∈ U
for all n ∈ Z. Since Wu and W s are local unstable and stable manifolds of π,
properties (i) and (iv) imply that ztn −→ y0 for n −→ ±∞, so the set Z :=
{y0} ∪ {ztn : n ∈ Z \ {0}} is compact. Note that zt0 6∈ Z, since the ztn (n ≤ 0)
are pairwise different and different from y0, and since Wu ∩W s = {y0}. We can
choose disjoint bounded open neighborhoods U0 and U1 of Z resp. zt0 in H such
that Z ⊂ U0 ⊂ UH , U1 ⊂ U ′1 ∩ UH , and dist(U0, U1) > 0. Assertions a) and b) are
then true. Recall B from the passage preceding the lemma; set

G := B1 ∩ B.
For F ∈ G, we define ΠF by

ΠF (ψ) :=

{
P

(1)
F (ψ), ψ ∈ U1,

PF (ψ), ψ ∈ U0.

The maps ΠF are Poincaré maps. Assertion c) follows from PG∣∣UH = π, and

assertion d) follows from zt0 ∈ U1 and the construction of P (1)
G .

Proof of assertion e): If G̃ ∈ G andDG̃∣∣V is uniformly continuous, then obviously

DG̃∣∣U and DG̃∣∣U
1

are uniformly continuous. The construction of the maps P (1)
G

and PG̃ according to Theorem 2.4 implies that DP (1)

G̃
is uniformly continuous on

U1 and that DPG̃ is uniformly continuous on U0. Since dist(U0, U1) > 0, it follows
that DΠG̃ is uniformly continuous. Further, the maps B 3 F 7→ PF ∈ BC1(U,C)
and B1 3 F 7→ P

(1)
F ∈ BC1(U ′1, C) are continuous at G̃. It follows trivially from

U0 ⊂ U,U1 ⊂ U ′1, and from the definition of the maps ΠF that the map G 3 F 7→
ΠF ∈ BC1(U0 ∪ U1, C) is continuous at G̃.

Proof of assertion f): We have χn = ztn −→ y0 for n −→ ±∞. For n < 0 and
n ≥ 1 we have χn ∈ U0, and the definition of ΠG together with properties (i), (ii)
and (iv) shows that

ΠG(χn) = PG(χn) = π(ztn) = ztn+1 = χn+1.

For n = 0, we have χ0 = zt0 ∈ U1, and

ΠG(χ0) = P
(1)
G (zt0) = zt1 = χ1.

It follows from z 6= y that (χn) is nonconstant.

We obtain robust ‘chaotic’ trajectories of Poincaré maps if the homoclinic orbit
(χn) from Lemma 2.6 has the transversality property. For arbitrary sets A ⊂ B
and maps f : A −→ B, we write traj(f,A) for the set of all trajectories of f in A.
We denote the maximal invariant subset of f in A by Ω(f,A); then

x ∈ Ω(f,A) ⇐⇒ ∃(xn) ∈ traj(f,A), x0 = x.
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If A is a bounded subset of a normed space with norm | |, we give traj(f,A) the
topology induced by the metric d((xn), (yn)) = supn∈Z 2−|n||xn − yn|. f induces a
shift operator f̂ : traj(f,A) −→ traj(f,A), (xn) 7→ (xn+1) = (f(xn)).

We do not repeat the definition of the term ‘hyperbolic set’ for noninvertible
mappings, which is used in the theorem below. (See [SW], and, for equivalent
properties, [L-WW2].) We just mention that the main difference in comparison to
diffeomorphisms is that one gives up the invariance of the unstable directions under
the derivative of the map.

Theorem 2.7. In the situation of Lemma 2.6, assume in addition that
a) the homoclinic orbit (χn) of ΠG is transversal in the sense of Definition 2.5;
b) DG∣∣V is uniformly continuous.

Then there exists ε̄0 > 0 such that for ε0 ∈ (0, ε̄0] there exist J,M ∈ N open subsets
V0, . . . , VJ of U0 ⊂ U1 and a neighborhood F ⊂ G of G in BC1(C,R) such that the
following properties hold:

(i) dist(Vi, Vj) > 0 if i, j ∈ {0, . . . , J}, i 6= j;
(ii) diam(Vi) ≤ ε0, i ∈ {0, . . . , J}.
(iii) Set W := V0 ∪ . . . ∪ VJ and define the ‘position’ map p : W −→ {0, . . . , J},

p(x) := i if x ∈ Vi. For every F ∈ F , the map

traj(ΠF ,W ) −→ {0, . . . , J}, (xn) 7→ (p(xn))

maps into ΣJM and induces a homeomorphism p̂ : traj(ΠF ,W ) −→ ΣJM ,
with

p̂ ◦ Π̂F = σJM ◦ p̂;
(iv) for every F ∈ F , Ω(ΠF ,W ) is a hyperbolic set for ΠF .

Proof. Condition b) and part e) of Lemma 2.6 imply that DΠG is uniformly con-
tinuous. This fact, together with condition a), allows us to apply Theorems 6.4,
6.5 and 6.6 from [L-W2]. We obtain ε̄0 > 0 such that for ε0 ∈ (0, ε̄0] there ex-
ist J,M ∈ N and open subsets V0, . . . , VJ of U0 ∪ U1 with properties (i) and (ii);
further, setting W := V0 ∪ ... ∪ VJ , the position map p induces a homeomorphism

p̃ : traj(ΠG,W ) −→ ΣJM

(see Theorem 6.4 from [L-W2]). Let ε0 ∈ (0, ε̄0]. From Theorem 6.6 [L-W2], we
obtain ε̃ > 0 such that the ε̃−neighborhood of Ω(ΠG,W ) is contained in W, and
with the following property: For every ε ∈ (0, ε̃] there is a neighborhood Γε of ΠG

in BC1(U0 ∪ U1, H) such that the following two statements hold for φ ∈ Γε:
1) For every trajectory (xn) ∈ traj(ΠG,W ) there exists a unique trajectory

(yn) ∈ traj(φ,W ) with |yn − xn| ≤ ε (n ∈ Z), and the corresponding map h :
traj(ΠG,W ) −→ traj(φ,W ) is a homeomorphism.

2) The set Ω(φ,W ) is a hyperbolic set for φ.

Choose now ε ∈ (0, ε̃] such that ε < mini6=j,i,j∈{1,... ,n} dist(Vi, Vj). Then, for
x ∈ Ω(ΠG,W ), one has x ∈ Vj for some j ∈ {0, . . . , J}, and for y ∈ W with
|x− y| ≤ ε, one also has y ∈ Vj , so that p(x) = p(y).

For φ ∈ Γε, the map p̃ ◦ h−1 : traj(φ,W ) −→ ΣJM is a homeomorphism. If
(yn) = h((xn)) ∈ traj(φ,W ), we have |xn − yn| ≤ ε (n ∈ Z), and

(p̃ ◦ h−1)((yn)n∈Z) = p̃((xn)n∈Z) = (p(xn)n∈Z) = (p(yn))n∈Z.
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Thus p induces the homeomorphism p̂ := p̃ ◦ h−1. For (yn) ∈ traj(φ,W ), one has

(p̂ ◦ φ̂)((yn)) = p̂(φ(yn)) = p̂((yn+1)) = (p(yn+1))

= σJM [(p(yn))] = (σJM ◦ p̂)((yn)).

Condition b) and Part e) of Lemma 2.6 show that there exists a neighborhood
F ⊂ G of G in BC1(C,R) such that for all F ∈ F , one has ΠF ∈ Γε. It is now
obvious that properties (iii) and (iv) hold for F ∈ F .

In the above theorem, we had assumed the transversality property of the ho-
moclinic orbit (χn). It has to be verified when we construct our example, and we
employ the criterion from [L-WW1] that describes transversality in terms of oscil-
lation properties. We now specialize to the case G(ψ) = g(ψ(−1)), that is, to delay
equations of type (g). If x is a solution of (g), the variational equation along x is

v̇(t) = g′(x(t − 1))v(t− 1).(g, x)

Lemma 2.8. Let g ∈ BC1(R,R). Assume that y : R −→ R is a periodic solution
of (g) with minimal period η > 0. Assume further that the following conditions
hold:

(i) y is slowly oscillating;
(ii) g satisfies (NF);
(iii) g′ < 0 on the range y(R) of y.
(iv) The spectrum of the monodromy operator D2Φg(η, y0) contains a point

λu ∈ (1,∞).

As in Lemma 2.6, let π be a Poincaré map associated with y and ω. Then y0 is
a hyperbolic fixed point of π with one-dimensional unstable space. If Wu,W s are
local unstable and stable manifolds of π at y0 then dimWu = 1 = codim W s.

Proof. The assertions are proved in Section 6 of [L-WW1]. In that reference, it was
assumed that g′ < 0 on a neighborhood of y(R), which follows from compactness of
y(R) and condition (iii). Further, the symmetry properties y(t−2) = −y(t) (t ∈ R)
and g(ξ) = −g(−ξ)) were assumed, but these properties are irrelevant for the proof
of the above assertions; compare Remark 6.1 from [L-WW1].

Theorem 2.9. In the situation of Lemma 2.6 (with the homoclinic solution z),
let the underlying equation be eq. (g) with g ∈ BC1(C,R), and set G(ψ) :=
g(ψ(−1)) (ψ ∈ C).

a) Then, with V from Lemma 2.6, DG∣∣V is uniformly continuous.

b) Assume in addition that y and g satisfy the conditions of Lemma 2.8. Set
ϕ := zt0 ∈ Wu and let ω ∈ H be a vector that spans the one-dimensional tangent
space TϕWu. Consider the solution w : [t0−1,∞) −→ R of the variational equation
(g, z) with wt0 = ω. Assume that the following condition is satisfied:

(T) For all (a, b) ∈ R2 \ {(0, 0)}, the function a · ż + b · w is eventually slowly
oscillating.

Then the homoclinic orbit (χn) of ΠG from Lemma 2.6,f) is transversal, and the
conclusions of Theorem 2.7 hold.

c) Under the conditions of b), the domain U0 ∪ U1 of ΠG can be chosen such
that, for all trajectories of ΠG, the corresponding solutions of eq. (g) are slowly
oscillating.
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Proof. Ad a): Since V is bounded, the set V := {ψ(−1) : ψ ∈ V } ⊂ R is bounded,
and g′ is uniformly continuous on V ; in particular, g′∣∣V is uniformly continuous.

For ψ, ψ̃ ∈ V , χ ∈ C we have

|DG(ψ)χ−DG(ψ̃)χ| ≤ |g′(ψ(−1))− g′(ψ̃(−1))||χ|,
and hence uniform continuity of DG∣∣V follows from uniform continuity of g′∣∣V .

Ad b): We have to show that the transversality property from Definition 2.5
holds. Set n0 := 1. From Lemma 2.6(i), we have

χn = ztn ∈Wu ∩ Λ for n ≤ −1 and χn ∈W s for n ≥ 1.

Let now m ≤ −1, n ≥ 1. Let ωm be a vector that spans TχmW
u. From the fact

that π induces a diffeomorphism on Wu ∩ Λ we see that there exists λ 6= 0 such
that Dπ|m|(χm)ωm = λω. It follows from assertions b) and c) of Lemma 2.6 that
also

DΠ|m|
G (χm)ωm = λω.(2.1)

For j ≥ 1, let prj ∈ Lc(H0, H0) denote the projection onto H0 parallel to żtj . Recall
that the derivative DΠG is given by the derivative of the semiflow, D2ΦG, followed
by projection onto H0 (see [DvGV-LW, p. 370, Proposition 3.2]), and that D2ΦG

is given by solutions of the variational equation (g, z). In formulas, we have

DΠG(zt0)ω = pr1(D2ΦG(t1 − t0, zt0)ω) = pr1(wt1 ).

There exists α ∈ R with

DΠG(zt0)ω = wt1 − αżt1 .(2.2)

Next, we have

DΠn−1
G (zt1)(wt1 − αżt1) = [prn ◦D2ΦG(tn − t1, zt1)](wt1 − αżt1)

= prnD2ΦG(tn − t1, zt1)wt1 − α · prnżtn︸ ︷︷ ︸
=0

= prnwtn ,

and there exists β ∈ R with

DΠn−1
G (zt1)(wt1 − αżt1) = wtn − βżtn .(2.3)

Formulas (2.1), (2.2) and (2.3) together give

DΠn−m
G (χm)ωm = DΠn−1

G (zt1)DΠG(zt0)DΠ|m|
G (χm)

= λwtn − λβżtn .

Set ωn := DΠn−m
G (χm)ωm. Since codim TχnW

s = 1, we have to show ωn 6∈ TχnW
s.

Let ζ denote the solution of eq. (g) with initial value ζ0 = χn, and let ν denote the
solution of the variational eq. (g, ζ) with ν0 = ωn. We then have

ζ(·) = z(tn + ·), ν(·) = λw(tn + ·)− λβż(tn + ·).(2.4)

The transversality criterion from Theorem 8.2 of [L-WW1] shows that ωn 6∈ TχnW
s

if, for all (a, b) ∈ R2 \ {(0, 0)}, the function aζ̇ + bν is eventually slowly oscillating.
(Here we use that g′ < 0 on y(R).) In view of (2.4), the latter condition is equivalent
to the property that for all (a, b) ∈ R2 \ {(0, 0)} the function aż + bw is eventually
slowly oscillating, which is just condition (T). Consequently, the homoclinic orbit
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(χn) is transversal. In view of assertion a), we see that the hypotheses of Theorem
2.7 are satisfied.

Ad c): Recall from Lemma 2.6 that U0 and U1 are neighborhoods of y0 and
zt0 , respectively. Since y is slowly oscillating, there exists T > 0 with yT > 0 (see
Proposition 4.6 from [L-WW1]). Hence there exists a neighborhood U0,+ of y0 in
C such that xψT > 0 for all ψ ∈ U0,+. As a first consequence, it follows from this
property and from convergence of zt to the orbit of y for t −→ −∞ that there exist
arbitrarily large t > 0 with z−t > 0. Hence, since the set S is invariant under the
semiflow induced by the negative feedback equation (g), the solution z is slowly
oscillating. Repeating the above argument for zt0 instead of y0, we see that there
exists a neighborhood U1,+ of zt0 in C and a T1 > 0 such that xψT1

> 0 for all
ψ ∈ U1,+. Assertion c) now follows if we choose U0 and U1 as subsets of U0,+

and U1,+, respectively. The proof is analogous to the proof of Corollary 5.4 from
[L-WW2].

3. Providing a starting value and ‘targets’

An unstable slowly oscillating periodic solution. As in [L-WW2], we start
with a function g ∈ BC1(R,R) with the following properties:
g′ < 0, g′ is decreasing on an interval [0, A] (A > 0). Further, g(−x) =

−g(x) (x ∈ R), eq. (g) has a slowly oscillating unstable periodic solution y :
R −→ R with y(R) ⊂ [−A,A]. y has the symmetry

y(t− 2) = −y(t) (t ∈ R)

and is called a Kaplan-Yorke solution, since such symmetric solutions were first
obtained by Kaplan and Yorke [KY]. The phase of y is chosen such that

y(−1) = 0, y > 0 on (−1, 1).

In the notation [L-WW2], we have (y, g) ∈ Y G. On the space C = C0([−1, 0],R),
we write | | for | |C0 , unless the more explicit notation seems favourable. For a
normed space (E, | |) and r > 0, we use the notation E(r) for the open ball with
radius r in E.

Set H := {ψ ∈ C : ψ(−1) = 0} and let O := {yt : t ∈ R} denote the
orbit of y in C. We have y0 = y4 ∈ H, ẏ4 6∈ H . Let us recall some facts from
[L-WW2]: There exists an open neighborhood UP of y0 in H and a Poincaré map
P : UP −→ H ⊂ C. We have P ∈ BC1(UP , H), P (y0) = y0, and DP (y0) is
hyperbolic with unstable space U ⊂ H , stable space Z ⊂ H , and dimU = 1.

There exists a norm || || on H equivalent to | |C0 such that DP (y0) is expanding
on U and contracting on Z w.r. to || ||, and such that ||v + w|| = max{||v||, ||w||}
for v ∈ Z, w ∈ U . For δ > 0 and a subspace W ⊂ H , we set

W|| ||(δ) := {ψ ∈W : ||ψ|| < δ} and W (δ) := {ψ ∈ W : |ψ|C0 < δ}.
Set

Nδ := {ψ ∈ H : ||ψ − y0|| < δ} = y0 + Z|| ||(δ) + U|| ||(δ).

For ψ ∈ C, let xψ : [−1,∞) −→ R denote the solution of eq. (g) with x0 = ψ.
We can choose δ̄ ∈ (0, 1/4] with the following properties: For δ ∈ (0, δ̄], the local

unstable and stable sets Wu(y0, P,Nδ), W s(y0, P,Nδ) coincide with the graphs

y0 + {ψ + wu(ψ) : ψ ∈ U|| ||(δ)}, y0 + {ψ + ws(ψ) : ψ ∈ Z|| ||(δ)}
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of C1−maps wu : U|| ||(δ) −→ Z|| ||(δ) ⊂ Z, ws : Z|| ||(δ) −→ U|| ||(δ) ⊂ U ,
respectively. One has wu(0) = 0, ws(0) = 0, Dwu(0) = 0, Dws(0) = 0.

For f : R −→ R and M ⊂ R, by a modification of f on R\M we mean a function
f̃ : R −→ R with f̃(x) = f(x) for x ∈ M . We will construct modifications of g
outside the range of y. The aim is that solutions of the modified equation which start
in some unstable set Wu(y0, P,Nδ) have their segments at a time approximately
equal to 3 in a small neighborhood of y0.

We first prove some preparatory statements that hold for all sufficiently small
δ > 0, where δ is essentially a measure for the distance of the starting value in
Wu(y0, P,Nδ) to y0. Later on, we pick an appropriate fixed δ > 0. This is an
important technical detail of our construction.

Proposition 3.1. There exist k1 ∈ (0, 1], k2 > 0, k3 ∈ (0, 1] such that the subse-
quent properties hold for all δ ∈ (0, δ̄].

a) ψ ∈ Nk1δ =⇒ |ψ − y0| < δ;
b) ∀ψ ∈W s(y0, P,Nk1δ) ∀t ≥ 0 : xψt ∈ O + C(δ);
c) ψ ∈ H, |ψ − y0| ≤ k3δ =⇒ xψ(1− δ) ≥ k2δ.

Proof. There exist K > 0 and λ > 0 with the property

∀ψ ∈W s(y0, P,Nδ̄) : ∀t ≥ 0 : dist(xψt ,O) ≤ K exp(−λt)|ψ − y0|.

(Here, ‘dist’ refers to | | = | |C0 .) Choose T > 1 such that K exp(−λT ) < 1. There
exists c > 0 such that

∀ψ, χ ∈ C ∀t ∈ [0, T ] : |xψ(t)− xχ(t)| ≤ c|χ− ψ|.

There exist constants c1, c2 > 0 such that the estimates || || ≤ c1| | and | | ≤ c2|| ||
hold. Set k1 :=

1
2(cc2 + c2 + 1)

. For ψ ∈ Nk1δ, one has |ψ− y0| ≤ c2k1δ < δ, hence

property a) holds.
If ψ ∈W s(y0, P,Nk1δ) then |xψ(t)−y(t)| ≤ cc2k1δ for t ∈ [0, T ], so dist(xψt ,O) ≤

max{c2k1δ; cc2k1δ} < δ for t ∈ [0, T ]. For t ≥ T , we have

dist(xψt ,O) ≤ K exp(−λT )|ψ − y0| ≤ 1 · c2k1δ < δ,

and property b) is proved.
Note that |xψ(1)− y(1)| = |xψ(1)| ≤ c|ψ− y0| for ψ ∈ C. For t ∈ (1/2, 1], ψ ∈ C

with |ψ − y0| ≤ 1, one has

|ẋψ(t)− ẏ(t)| = |g(xψ(t− 1))− g(y(t− 1))| ≤ |g|C1|ψ − y0|.

Set

µ := min{|g(y(s))| : s ∈ [−1/2, 0]}, k3 := min{ µ

2(c+ |g|C1)
, 1}.
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On [1/2, 1] we have |ẏ(t)| = |g(y(t− 1))| ≥ µ > 0, which implies y(1− δ) ≥ µ · δ for
δ ∈ [0, 1/2]. For δ ∈ (0, δ̄] and ψ ∈ H with |ψ − y0| ≤ k3δ, one has

xψ(1− δ) = xψ(1) +

1−δ∫
1

ẋψ(s)ds

≥ y(1)︸︷︷︸
=0

+

1−δ∫
1

ẏ(s)ds− |xψ(1)− y(1)| −
1−δ∫
1

|ẏ(s)− ẋψ(s)|ds

≥ y(1− δ)− ck3δ − δ|g|C1k3δ

≥ (µ− (c+ |g|C1)k3)δ ≥ µ

2
δ.

Property c) now follows if we put k2 := µ/2.

It was shown in Section 3 of [L-WW2] that there exists an eigenvector χu ∈ H
of DP (y0) with U = R · χu, χu(0) > 0, χ̇u > 0 on [−1, 0). We can choose χu

such that ||χu|| = 1. Let πu, πs denote the projections onto U , respectively Z,
according to H = U ⊕ Z. Recall the set S ⊂ C of segments with at most one sign
change. It is known that S ∩ Z = ∅ (see, e.g., Corollary 5.4 from [L-WW1]). Since
y0 ∈ S, we have πuy0 6= 0, and so there exists a unique real number η0 > 0 with
πuy0 = η0 · χu. Define i : R −→ U, r 7→ r · η0 · χu. The map i is an isomorphism,
and i−1(πu(y0)) = 1. Set

H : Nδ̄ −→ R, H(ψ) := i−1[πu(ψ − y0)− ws(πs(ψ − y0))].

Then, for all δ ∈ (0, δ̄] and ψ ∈ Nδ, we have the equivalence

ψ ∈W s(y0, P,Nδ) ⇐⇒ H(ψ) = 0.(3.1)

We provide a Lipschitz estimate for H: For χ ∈ U, χ = λ · χu, we have ||χu|| = λ
and

|i−1χ| = |i−1(
λ

η0
· η0χu)| = |λ|

η0
=

1
η0
||χ||.

Since ws is C1 and Dws(0) = 0, there exists δ̃ ∈ (0, δ̄] such that ws has Lipschitz
constant 1 on Z|| ||(δ̃). Since the operator norms ||πu|| and ||πs|| are equal to one,
we obtain for χ, ψ ∈ Nδ̃ :

|H(ψ)−H(χ)| ≤ 1
η0

[||πu|| · ||ψ − y0||+ ||πs|| · ||ψ − y0||] =
2
η0
||ψ − y0||.

We now provide ‘target’ segments. Later, we want to steer the phase curves of
solutions starting in some unstable manifold of y0 into a neighborhood of these
targets.

Proposition 3.2. Set ϕλ := (1 + λ)y0 for λ ∈ R. There exists λ0 ∈ (0, 1) such
that, for λ ∈ [−λ0, λ0], one has

H(ϕλ) ≥ 1
2
λ if λ > 0, H(ϕλ) ≤ 1

2
λ if λ < 0.

Proof. Since ws(0) = 0, Dws(0) = 0, there exists r ∈ (0, 1) such that for χ ∈ Z
with ||χ|| ≤ r,

||ws(χ)|| ≤ η0
2(||πsy0||+ 1)

||χ||.
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Set λ0 :=
r

(||πsy0||+ 1)
. For λ ∈ [−λ0, λ0], we have

||πs(ϕλ − y0)|| = |λ| · ||πsy0|| ≤ λ0||πsy0|| ≤ r,

and

ws(πs(ϕλ − y0))|| ≤ η0
2(||πsy0||+ 1)

|λ| · ||πsy0|| ≤ η0
2
|λ|.

It follows that, for λ ∈ [−λ0, λ0], one has

|i−1(ws(ϕλ − y0))| ≤ 1
η0

η0
2
|λ| = |λ|

2
.

We obtain
H(ϕλ) = i−1[πu(λy0)− ws(πs(ϕλ − y0))]

= λ i−1(πuy0)︸ ︷︷ ︸
=1

−i−1ws(πs(ϕλ − y0))

∈ [λ− |λ|
2
, λ+

|λ|
2

],

and the assertion follows.

Proposition 3.3. There exist δ′ ∈ (0, δ̃] and constants M2 > 0, k4 ∈ (0, 1], d2 > 0
such that for all ι ∈ (0, δ′] there exist functions ψ+, ψ− ∈ Nι with the following
properties:

(i) ψ+, ψ− are C2, ψ̇± > 0 on [−1, 0), ψ̇±(0) = 0, and ψ̈± < 0 on [−1, 0], and
ψ̈±(t) ≤ −d2 < 0 for t ∈ [−1/2, 0].

(ii) |ψ±|C2 ≤M2.

(iii) For all ψ ∈ ψ+ +H(k4ι) and for all χ ∈ ψ−+H(k4ι), one has ψ, χ ∈ Nι, and

H(ψ) > 0 > H(χ).

Proof. Choose λ0 as in Proposition 3.2, and choose δ′ ∈ (0, δ̃] such that δ′ <

2||y0|| ·λ0. Set M2 := (λ0 +1)|y0|C2 +2 and k4 := min{ η0
32(||y0||+ 1)

,
1
5
}. It follows

from eq. (g) that there exists D2 > 0 such that y′′0 (t) ≤ −D2 < 0 for t ∈ [−1/2, 0].
Set d2 := (1 − λ0)D2. Let now ι ∈ (0, δ′] be given. Set λ :=

ι

2(||y0||+ 1)
; then

λ ≤ λ0. With ϕλ as in Proposition 3.2, we have

||ϕλ − y0|| = ||λy0|| ≤ ι

2
< δ̃, and H(ϕλ) ≥ λ

2
.

If ψ ∈ ϕλ +H|| ||(2k4ι) then

||ψ − y0|| ≤ 2k4ι+ ||ϕλ − y0|| = (2k4 + 1/2)ι < ι ≤ δ̃,

so we have ψ, ϕλ ∈ Nδ̃. Using the Lipschitz estimate for H, we obtain for all
ψ ∈ ϕλ +H|| ||(2k4ι):

H(ψ) ≥ H(ϕλ)− 2
η0
· 2k4ι ≥ λ

2
− ι

8(||y0||+ 1)
=

ι

8(||y0||+ 1)
.(3.3)

Set p(x) := (x− 1)(x+ 1) for x ∈ [−1, 0]. Then

p′(x) = 2x < 0 for x ∈ [−1, 0), p′(0) = 0, p′′(x) = 2 for x ∈ [−1, 0],

and |p|C2 = max{|p|C0 , |p′|C0 , |p′′|C0} ≤ max{1, 2, 2} = 2.
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Consider now the functions ϕλ,ε := ϕλ − ε · p for ε ∈ (0, 1). These functions are
C2 and have the following properties:

ϕ′λ,ε = (1 + λ)y′0︸ ︷︷ ︸
≥0

−εp′ > 0 on [−1, 0), ϕ′λ,ε(0) = 0,

ϕ′′λ,ε = (1 + λ)y′′0︸ ︷︷ ︸
≤0

−2ε < 0 on [−1, 0],

and

ϕ′′λ,ε(x) ≤ ϕ′′λ(x) = (1 + λ)y′′0 (x) ≤ −(1− λ0)D2 = −d2 < 0

for x ∈ [−1/2, 0]. Further, we have

|ϕλ,ε|C2 ≤ |ϕλ|C2 + ε|p|C2 ≤ (λ0 + 1)|y0|C2 + 2 = M2.

Choose ε ∈ (0, 1] such that ||ϕλ,ε − ϕλ|| < k4ι and set ψ+ := ϕλ,ε. Then ψ+

has the properties asserted in (i) and (ii). Let now ψ ∈ ψ+ + H|| ||(k4ι); then
ψ ∈ ϕλ + H|| ||(2k4ι), so (3.3) shows that H(ψ) > 0. Further, since ||ϕλ − y0|| =
||λy0|| ≤ ι/2, and ι/2 + 2k4ι < (1/2 + 2/5)ι < ι, we have ψ± ∈ Nι. Consequently,
ψ+ also has the properties stated in item (iii). The construction of ψ− satisfying
conditions (i)–(iii) is analogous, setting λ := − ι

2(||y0||+ 1)
.

The next proposition is the main step towards the choice of an initial segment
through which there is a backward solution of eq. (g), the phase curve of which
converges to the periodic orbit O. Later, we will find a modified equation such that
the backward phase curve is preserved and the forward phase curve also converges
to O. In the proof of Proposition 3.4 below, we refer to the proof of Proposition
3.1 from [L-WW2], which is partially analogous.

Proposition 3.4. For every δ̂ ∈ (0, δ̄], there exist ϕ ∈ Wu(y0, P,Nδ̄) and δ1 ∈
(0, A − y(0)) with the subsequent properties. (With k3 from Proposition 3.1, set

δ :=
2|ϕ− y0|

k3
, so that |ϕ− y0| = k3δ/2.)

a) δ ≤ δ̂, ϕ(0) < A, ϕ(0)− y(0) > δ1 ≥ k3δ/8, δ1 ≤ δ̄. Further,

ϕ(−1/2) ≥ y(−1/2)/2.

b) There exists a solution X : R −→ R of eq. (g) with X0 = ϕ.
c) Ẋ > 0 on [−1, 0), Ẋ < 0 on (0, 1], X(−1) = 0.
d) There exist θ−, θ+ ∈ (0, 1/4) such that

X(t) > y(0) + δ1 for t ∈ (−θ−, θ+);

X(−θ−) = X(θ+) = y(0) + δ1;

−y(0)− 1/2 < X(t) < y(0) + δ1 for t ∈ (−∞,−θ−);

−y(0)− 1/2 ≤ X(t) for t ∈ (−∞, 1].

e) θ− ≤ δ, θ+ ≤ δ.
f) |g(y(t))− g(X(t))| ≤ y(0)/4 for t ∈ [0, 1].
g) The tangent space TϕW

u(y0, P,Nδ̄) is spanned by a segment ω ∈ H with
ω(0) > 0.

h) The solution w : [−1,∞) −→ R of the variational equation (g,X) with w0 = ω
satisfies w(t) > 0 for t ∈ [−θ−, θ+].
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Proof. 1. Assume that properties b), c) and d) hold for some ϕ with ϕ(0) > y(0)
and some δ1 ∈ (0, ϕ(0) − y(0)), and for corresponding numbers θ−, θ+. Then the
analogous properties hold for every δ̃1 ∈ [δ1, ϕ(0) − y(0)), with the corresponding
numbers θ̃−, θ̃+. These θ̃± are uniquely determined, in view of c), and we have
limδ̃1−→ϕ(0)−y(0) θ̃± = 0.

2. It was shown in Proposition 3.1 of [L-WW2] that there exists ϕ ∈Wu(y0, P,Nδ̄)
such that properties b),c),d), f) and g) hold. (Concerning property f), note that
the number L from part b) of that proposition is a Lipschitz constant for g.) It is
clear from the construction that these properties can be achieved with ϕ arbitrarily
close to y0.

3. All ϕ ∈ Wu(y0, P,Nδ̄) with ϕ(0) > y(0) and sufficiently close to y0 are of the
form ϕ = ϕr = y0 + r · χu +wu(r · χu) for some uniquely determined r > 0. If r is
so small that

|wu(rχu)| ≤ 1
3
r|χu|,(3.4)

then, using |χu| = χu(0), we obtain

|ϕr(0)− y(0)| ≥ rχu(0)− 1
3
rχu(0) =

2
3
r · χu(0)

=
1
2
· 4
3
r|χu|

≥ 1
2
|rχu + wu(r · χu)|

=
1
2
|ϕr − y0|.

(3.5)

4. Let now δ̂ ∈ (0, δ̄]. In view of steps 2 and 3, we can choose r > 0 so small that
ϕ := ϕr satisfies

ϕ(0) < A, |ϕ− y0| ≤ k3δ̂

2
, ϕ(0)− y(0) ≤ δ̄, ϕ(−1/2) ≥ y(−1/2)/2,(3.6)

and that properties b), c), d), f) and g) hold with some δ̃1 ∈ (0, ϕ(0) − y(0)) and
corresponding numbers θ̃±. Then, setting δ := 2|ϕ− y0|/k3, we have δ ≤ δ̂. Using
step 1), we can choose δ1 ∈ [δ̃1, ϕ(0)− y(0)) so close to ϕ(0)− y(0) that properties
b), c), d), f) and g) also hold with δ1 and the corresponding numbers θ± instead of
δ̃1 and θ̃±, and that, in addition, the following conditions are satisfied:

(i) θ−, θ+ ≤ δ, so that property e) holds;
(ii) property h) holds (here we use the continuity of w);

(iii) δ1 ≥ ϕ(0)− y(0)
2

.

It remains now to check that a) holds. In view of (3.6) and the choice of δ1
and δ, we only have to prove the inequalities δ1 ≤ δ̄ and δ1 ≥ k3δ/8. First,
δ1 ≤ ϕ(0)− y(0) ≤ δ̄. Second, from (ii) above and from (3.5), we get

δ1 ≥ ϕ(0)− y(0)
2

≥ 1
4
|ϕ− y0| = k3δ/8.
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We are now ready to choose an initial value and targets. Set

γ2 := |g′(0)||g(y0(−1/2)/2)| > 0 and cg :=

√
|g|C0

γ2
.

Recall that δ′ ≤ δ̃ ≤ δ̄ ≤ 1/4. Choose δ̂ ∈ (0, δ′] such that the following inequalities
hold for all δ ∈ (0, δ̂]:

(3.7)
(i) y(2− δ)− y(1 + δ) ≤ −y(0)/2;
(ii) 2δ|g|C0 ≤ y(0)/8;
(iii) 12δ|g|C1 ≤ 1/2;
(iv) 2cg

√
δ ≤ 1/2− δ, δ ≤ cg ·

√
δ;

(v) 10M2cgδ
3/2 ≤ k4k1k3δ

64
;

(vi)
9M2

2
δ2 ≤ k4k1k3δ

32
.

We now apply Proposition 3.4 with this number δ̂. From now on, let ϕ, δ ∈
(0, δ̂], X, θ±, δ1 ∈ [k3δ/4, k3δ/2], and ω be as in Proposition 3.4. We set

ι := k1δ1.

Then ι ≤ δ1 < δ ≤ δ̂ ≤ δ′, since k1, k3 ≤ 1. Applying Proposition 3.3 with this
number ι, we obtain ψ+, ψ− ∈ Nι with the properties listed in items (i)–(iii) of
Proposition 3.3. Set

ψs := (1− s)ψ− + sψ+ ∈ Nι for s ∈ [0, 1];

these functions ψs will be the targets.

4. Successive modifications of g

We obtain our example by successive deformations of the original nonlinearity
g, which satisfies g′ < 0. The modifications are such that the unstable periodic
solution y of eq. (g), together with local unstable and stable manifolds, is preserved.
The initial value ϕ from the unstable manifold leads to a homoclinic solution for
the finally obtained equation.

The methods are partially similar to the ones used in the previous example from
[L-WW2]. However, obtaining the simpler shapes of both the nonlinearity and the
homoclinic solution requires finer techniques for estimates on solution behavior,
compared to [L-WW2]. In addition, the necessity to avoid zeroes of the derivative
of the nonlinearity (except for one) leads to some technical complications. We have
already encountered one of these technicalities – the addition of the term −εp to
ϕλ in the proof of Proposition 3.3, which had the purpose to achieve ψ̈± < 0 on
the whole interval [−1, 0].

If h : R −→ R is a continuous modification of g on R \ [−y(0)− 1, y(0)+ δ1] then
X satisfies eq. (h) on (−∞, 1 − θ−]. It follows that there exists a unique solution
of (h) defined on R which coincides with X on (−∞, 1 − θ−]. We denote this
solution by z(·, h). Obviously, dist(z(·, h)t,O) −→ 0 as t −→ −∞, and z(·, h)0 = ϕ.
Similarly, if h is C1, we use the notation w(·, h) : [−1,∞) −→ R for the solution
of the variational equation (h, z(·, h)) with initial value w(·, h)0 = ω, and we have
w(·, h) = w(·, g) on [−1, 1 − θ−]. (Here, ω is as in parts g) and h) of Proposition
3.4.)
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We want to find a modification g∗ of g such that the phase curve of z(·, g∗) is
homoclinic to O. Further, we want to achieve that the solutions ż(·, g∗) and w(·, g∗)
of the variational equation (g∗, z(·, g∗)) satisfy the assumptions of Theorem 2.9.

Remark 4.1. Let g̃ ∈ C1(R,R) be a modification of g on R\ [−y(0)−1, y(0)+ δ1].
If there exists t∗ > 0 with z(·, g̃)t∗ ∈ W s(y0, P,Nι) then the solution z(·, g̃) of eq.
(g̃) has a phase curve homoclinic to the orbit of y.

Proof. Set

ψ := z(·, g̃)t∗ ∈W s(y0, P,Nι) = W s(y0, P,Nk1δ1).

From Proposition 3.1,b), we know that the solution xψ : [−1,∞) −→ R of eq. (g)
with xψ0 = ψ satisfies xψt ∈ O + C(δ1) for t ≥ 0, so xψ is also a solution of (g̃). It
follows that z(t∗ + t, g̃) = xψ(t) for t ≥ 0, so dist(z(·, g̃)t,O) −→ 0 for t −→∞.

The next statement is an improved version of Proposition 2.2 from [L-WW2]
which helps to avoid zeroes of the derivative in the construction of nonlinearities.

Proposition 4.2. Let a, b ∈ R, a < b, and ζ ∈ C0([a, b],R). Set m := min ζ, and
M := max ζ. Assume m < M and that

µ({s ∈ [a, b] : ζ(s) ∈ {m,M}}) = 0,(4.1)

where µ denotes the Lebesgue measure. Let K > 0, B > 0, M0 ∈ (0, B), α0 >
0, α1 > 0, M1 < 0 and η > 0 be given such that

M0(b− a) < K < B(b− a) and α0(b− a) < K.(4.2)

Then there exists r ∈ (0, M−m
2 ) and a continuous map

(0, α0]× (0, α1] −→ (C0([m,M ],R), | |∞),

(m0,m1) 7→ h(·,m0,m1)

such that, for every (m0,m1) ∈ (0, α0]× (0, α1], the function h = h(·,m0,m1) has
the following properties:

(i) h ∈ C1([m,M ],R);
(ii) h(m) = m0, h

′(m) = m1, h(M) = M0, h
′(M) = M1;

(iii) 0 < h(x) < B for x ∈ [m,M ], h′((m+M)/2) = 0, and

h′(x) > 0 for x ∈ [m, (m+M)/2), h′(x) < 0 for x ∈ ((m+M)/2,M ].

(iv)
b∫
a

h(ζ(s))ds = K;

(v) h(x) ≥ K

2(b− a)
for x ∈ [m+ r,M − r];

(vi)
∫

s∈[a,b]
ζ(s)∈[m,m+r]

h(ζ(s))ds ≤ η,

∫
s∈[a,b]

ζ(s)∈[M−r,M ]

h(ζ(s))ds ≤ η.

Proof. Take a function χ ∈ BC1(R,R) with χ(x) = 0 for x ≤ 0, χ̇ > 0 on (0, 1)
and χ(x) = 1 for x ≥ 1. It follows from (4.2) that there exist λ1, λ2 > 0 with

max{α0,M0} < λ1 < λ2 < B, and
K

2
< λ1(b− a) < K < λ2(b− a).

(4.3)
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Choose a function β ∈ C1([m,M ],R) with β(m) = β′(m) = β′(M) = β(M) = 0
and with β′(x) > 0 for x ∈ (m, (m + M)/2), β′(x) < 0 for x ∈ ((m + M)/2,M).
Choose ρ0 ∈ (0, (M −m)/2] such that

λ2 + ρ0|β|C0 < B.(4.4)

For m0 ∈ (0, α0], m1 ∈ (0, α1], ρ ∈ (0, ρ0] and λ ∈ R, we define a function
fρ,λ = fρ,λ,m0,m1 : [m,M ] −→ R,

fρ,λ(x) :=



[m0 +m1(x−m)](1− χ((x −m)/ρ) ) + λ · χ((x−m)/ρ)
for x ∈ [m,m+ ρ],

λ for x ∈ (m+ ρ,M − ρ),
[M0 +M1(x−M)](1− χ((M − x)/ρ) ) + λ · χ((M − x)/ρ)

for x ∈ [M − ρ,M ].

Set gρ,λ := gρ,λ,m0,m1 := fρ,λ,m0,m1 + ρβ for ρ, λ,m0,m1 as above. Note that both
fρ,λ and gρ,λ are in C1([m,M ],R) and satisfy the boundary conditions that are
imposed on the function h in assertion (ii).

(4.5) Claim: For λ > 0 and ρ ∈ (0, ρ0] with

m0 +m1ρ < λ and M0 + |M1|ρ < λ,(4.6)

the function g := fρ,λ,m0,m1 satisfies

g′(x) > 0 for x ∈ [m, (m+M)/2), g′(x) < 0 for x ∈ ((m+M)/2),M ].

Proof. Let λ > 0 and ρ ∈ (0, ρ0] satisfy the assumptions of the claim. First,
g′(m) = f ′ρ,λ(m) = m1 > 0. For x ∈ (m,m+ ρ), one has with ξ := (x−m)/ρ that

g′(x) = m0(−χ′(ξ)/ρ) +m1(1− χ(ξ))︸ ︷︷ ︸
≥0

+m1(x−m)(−χ′(ξ)/ρ) + λχ′(ξ)/ρ+ ρβ′(x)

≥ (λ−m0)χ′(ξ)/ρ−m1(x −m)χ′(ξ)/ρ+ ρβ′(x)

≥ λ−m0 −m1ρ

ρ
χ′(ξ) (note that β′ > 0 on (m,m+ ρ) ⊂ (m, (m+M)/2))

> 0 (from (4.6) and the choice of χ).

For x ∈ [m+ ρ, (m+M)/2) respectively x ∈ ((m+M)/2,M − ρ], we have g′(x) =
ρβ′(x) > 0 respectively ... < 0

For x ∈ (M − ρ,M) and ξ := (M − x)/ρ,

g′(x) = M0χ
′(ξ)/ρ+M1(1− χ(ξ))︸ ︷︷ ︸

≤0

+M1(x−M)χ′(ξ)/ρ− λχ′(ξ)/ρ+ ρβ′(x)︸ ︷︷ ︸
≤0

≤ M0 + |M1|ρ− λ

ρ
χ′(ξ) < 0.

Finally, g′(M) = M1 < 0. The claim is proved.
According to (4.3), we can choose ρ1 ∈ (0, ρ0] such that max{α0 + α1ρ1,M0 +

|M1|ρ1} < λ1. Then, for m0 ∈ (0, α0], m1 ∈ (0, α1], λ ∈ [λ1, λ2] and ρ ∈ (0, ρ1],
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condition (4.6) is satisfied. Claim (4.5), the definition of gρ,λ, and inequality (4.4)
show that we have

|gρ,λ,m0,m1 |C0 ≤ gρ,λ,m0,m1((m+M)/2) ≤ λ+ ρ|β|C0 ≤ λ2 + ρ0|β|C0 < B.(4.7)

Set ε1 := K − λ1(b − a), ε2 := λ2(b − a) −K. For ρ ∈ (0, ρ1], we set Eρ := {s ∈
[a, b] : ζ(s) ∈ [m,m + ρ] ∪ [M − ρ,M ]}. It follows from condition (4.1) and the
σ−continuity of the Lebesgue measure that there exists ρ2 ∈ (0, ρ1] such that for
ρ ∈ (0, ρ2] one has

µ(Eρ) < min
{
η/B,

min{ε1, ε2}
3(B + λ2(b− a) + λ2)

}
.(4.8)

Choose ρ3 ∈ (0, ρ2] such that

ρ3(b− a)|β|C0 <
min{ε1, ε2}

3
.

Let now ρ ∈ (0, ρ3], λ ∈ [λ1, λ2], m0 ∈ (0, α0], m1 ∈ (0, α1]. Using (4.7) and (4.8),
we obtain

|
b∫
a

gρ,λ,m0,m1(ζ(s))ds − λ(b− a)|

≤ µ(Eρ)(B + λ(b− a))

+ |
∫

s∈[a,b]\Eρ

gρ,λ,m0,m1(ζ(s))ds − λ(b− a)|

≤ min{ε1, ε2}
3

+ |
∫

s∈[a,b]\Eρ

[λ+ ρβ(ζ(s))]ds − λ(b− a)|

(use (4.8) and the definition of gρ,λ,m0,m1)

=
min{ε1, ε2}

3
+ |λ(−µ(Eρ)) +

∫
s∈[a,b]\Eρ

ρβ(ζ(s))ds|

≤ min{ε1, ε2}
3

+ λ2µ(Eρ) + ρ(b− a)|β|C0

<
min{ε1, ε2}

3
+

min{ε1, ε2}
3

+
min{ε1, ε2}

3
= min{ε1, ε2}.

Consequently, we have for m0 ∈ (0, α0], m1 ∈ (0, α1] that
b∫
a

gρ3,λ1,m0,m1(ζ(s))ds < K <

b∫
a

gρ3,λ2,m0,m1(ζ(s))ds.(4.9)

The definition of the functions gρ3,λ,m0,m1 shows that the map

γ : [λ1, λ2]× [0, α0]× [0, α1] 3 (λ,m0,m1) 7→ gρ3,λ,m0,m1 ∈ (C0([m,M ],R), | |C0)

is continuous. It follows that the map

j : [λ1, λ2]× [0, α0]× [0, α1] −→ R, (λ,m0,m1) 7→
b∫
a

gρ3,λ,m0,m1(ζ(s))ds
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is continuous. j is differentiable w.r. to the first argument, and one has

∂1j(λ,m0,m1) =
∫

s∈[a,b],ζ(s)∈[m,m+ρ3]

χ((ζ(s) −m)/ρ3)ds

+
∫

s∈[a,b],ζ(s)∈[M−ρ3,M ]

χ((M − ζ(s))/ρ3)ds+
∫

s∈[a,b]\Eρ

1 ds

≥ µ([a, b] \ Eρ) > 0.

(4.10)

It follows from (4.9) and (4.10) that for all (m0,m1) ∈ (0, α0]×(0, α1] there exists a
unique λ(m0,m1) with j(λ(m0,m1),m0,m1) = K. Further, (4.10) and the Implicit
Function Theorem imply that the map λ : (m0,m1) 7→ λ(m0,m1) is continuous.
Set now

h(·,m0,m1) := gρ3,λ(m0,m1),m0,m1 for (m0,m1) ∈ (0, α0]× (0, α1],

and set r := ρ3. Continuity of λ(·, ·) and of the map γ above imply that the map
(m0,m1) 7→ h(·,m0,m1) ∈ (C0([m,M ],R), | |C0) is continuous.

We check the asserted properties (i)–(vi) now: Properties (i) and (ii) are clear
from the definition of the functions gρ,λ. Property (iii) follows from (4.7) and from
Claim (4.5). Property (iv) holds, since

b∫
a

h(ζ(s),m0,m1)ds = j(λ(m0,m1),m0,m1) = K.

Property (v) follows from the definition of the gρ,λ and from the first estimate in
the second line of (4.3). Property (vi) follows from property (iii) together with the
estimate Bµ(Eρ) ≤ η (see (4.8)).

We now construct the first modification g1 of g, which will steer the solution
z(·, g1) to negative values away from the range of the periodic solution y. Parallel
to controlling the behavior of z(·, g1), we have to keep track of properties of w(·, g1),
which will finally make the proof of transversality possible. From now on, Figure 1
should be helpful in following the construction. (See figures at end of paper.)

Proposition 4.3. There exists a modification g1 of g on [y(0) + δ1,∞) with the
following properties:

a) g1 ∈ BC1(R,R), and g1 satisfies (NF);
b) g′1 < 0 on [0,∞);
c) z(1, g1) < 0, and z(·, g1) has a unique zero t0 in (1− δ, 1).

Setting tmin := t0 + 1, we have
d) ż(t, g1) < 0 for t ∈ (0, tmin) and ż(t, g1) > 0 for t ∈ (tmin, 2 + θ+];
e) z(1 + θ+, g1) ≤ −y(0)− 1;
f) w(tmin, g1) < 0.

Proof. Choose η ∈ BC1(R,R) with η(r) = 0 for r ≤ y(0) + δ1 and with η̇(r) < 0
for r > y(0) + δ1. Set gλ := g + λ · η for λ > 0. The functions gλ satisfy (NF),
and g′λ < 0 on [0,∞). The solutions z(·, gλ) and w(·, gλ) are defined for λ > 0, and
z(t, gλ) = X(t) for t ∈ (−∞, 1− θ−], w(t, gλ) = w(t, g) for t ∈ [−1, 1− θ−]. Since
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θ− ≤ δ, we have z(1− δ, gλ) = X(1− δ). Since |ϕ− y0| = k3δ/2 and δ ≤ δ̂ ≤ δ̄, we
see from part c) of Proposition 3.1 that X(1− δ) ≥ k2δ > 0. Hence we have

z(1− δ, gλ) > 0.(4.11)

Now

z(1, gλ) = z(1− δ, gλ) +

0∫
−δ

(g + λη)(X(s))ds

≤ X(1− δ) +

0∫
−δ

g(X(s))ds+ λ

0∫
−θ−

η(X(s))ds

= X(1) + λ

0∫
−θ−

η(X(s))ds.

The last integral is strictly negative, because the interval X([−θ−, 0]) = [y(0) +
δ1, ϕ(0)] does not consist of one point only. Hence we obtain

lim
λ−→∞

z(1, gλ) = −∞.

For t ∈ (1, 1 + θ+), we have

ż(t, gλ) ∈ (g + λη)(X [(0, θ+)]) = (g + λη)[ ((y(0) + δ1, ϕ(0)) ] ⊂ (−∞, 0],

so that also

lim
λ−→∞

z(1 + θ+, gλ) = −∞.

There exists λ0 > 0 such that for λ > λ0 one has

z(1, gλ) < 0, z(1 + θ+, gλ) < −y(0)− 1.(4.12)

Similarly, using property h) from Proposition 3.4, we obtain ẇ(t, gλ) < 0 on [1 −
θ−, 1 + θ+], and

lim
λ−→∞

w(1, gλ) = −∞, lim
λ−→∞

w(1 + θ+, gλ) = −∞.

Note that with W := sup{|w(s, g)| : −1 ≤ s ≤ 1 − θ−}, we have W ≥ ω(0) > 0,
and

sup{|w(s, gλ)| : −1 ≤ s ≤ 1− θ−} = W for all λ > 0.

Choose λ1 ≥ λ0 such that, for all λ ≥ λ1,

|w(1 + θ+, gλ)| = max{|w(s, gλ)| : −1 ≤ s ≤ 1 + θ+}, and

w(1 + θ+, gλ) ≤ −3|g|C1W.
(4.13)

For λ > 0, property (NF) shows that z(·, gλ) is strictly decreasing on [0, 1], and
therefore z(t, gλ) ≤ z(θ+, gλ) = y(0) + δ1 for t ∈ [θ+, 1]. It follows that

gλ(z(t− 1, gλ)) = g(z(t− 1, gλ)) for t ∈ [1 + θ+, 2].

For t ∈ [1 + θ+, 2− θ−], we obtain the following estimate from the definition of W :

|ẇ(t, gλ)| = |g′(z(t− 1, gλ))w(t − 1, gλ)| ≤ |g|C1W.(4.14)
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For t ∈ [2− θ−, 2] and λ ≥ λ1 we have, using (4.13), the estimate

|ẇ(t, gλ)| = |g′(z(t− 1, gλ))w(t − 1, gλ)|
≤ |g|C1 sup{|w(s, gλ)| : s ∈ [1− θ−, 1]}
= |g|C1 |w(1 + θ+, gλ)|.

(4.15)

Set now g1 := gλ1 . Properties a) and b) follow from η̇ ≤ 0 and from g′ < 0. The
inequality in c) follows from (4.12). We see from (4.11) and (4.12) that z(·, g1) has
a zero t0 ∈ (1 − δ, 1). This zero is unique since ż(·, g1) < 0 on (0, 1]. It follows
now from (NF) that, with tmin := t0 + 1, ż(t, g1) < 0 for t ∈ (0, tmin). Since
t0 ∈ (1 − δ, 1), we have z(t, g1) < 0 for t ∈ (t0, tmin) ⊃ (t0, 2 − δ) ⊃ (t0, 1 + θ+],
and therefore ż(t, g1) > 0 for t ∈ (tmin, 2 + θ+]. Assertion d) is proved. Assertion
e) follows from (4.12).

Proof of assertion f): For t ∈ [2 − δ, 2 − θ−], we have from the second line of
(4.13), from (4.14) and eq. (g1, z(·, g1)) that

w(t, g1) ≤ w(1 + θ+, g1) + |g|C1W (2− θ− − (1 + θ+))

≤ w(1 + θ+, g1) + |g|C1W

≤ 2
3
w(1 + θ+, g1) = −2

3
|w(1 + θ+, g1)| < 0.

For t ∈ [2−θ−, 2], we obtain from (4.15) and from θ− ≤ δ ≤ 1/3|g|C1 (see (3.7)(iii))
that

w(t, g1) ≤ w(2 − θ−, g1) + θ−|g|C1 |w(1 + θ+, g1)|
≤ −2

3
|w(1 + θ+, g1)|+ 1

3
|w(1 + θ+, g1)| = −1

3
|w(1 + θ+, g1)| < 0.

Hence w(t, g1) < 0 for t ∈ [2−δ, 2]. Recalling that t0 ∈ (1−δ, 1), we obtain assertion
f).

We set z0 := z(1 + θ+, g1) (then z0 ≤ −y(0)− 1), and z4 := z(2− δ, g1). (We define
numbers z1, z2, z3 later.)

Corollary 4.4. For t ∈ [2− δ, 2 + θ+], one has

z(t, g1) ≤ z4 + 2δ|g|C0 ≤ z0 − y(0)/8 < 0.

Proof. For t ∈ [1+ θ+, 2− δ], we have t−1 ∈ [θ+, 1− δ] ⊂ [θ+, 1− θ−], so we obtain
from Proposition 3.4,c) and d) that z(t − 1, g1) = X(t − 1) ≤ y(0) + δ1. Using
Proposition 3.4,f) one gets

|ż(t, g1)− ẏ(t)| = |g(X(t− 1))− g(y(t− 1))| ≤ y(0)/4 for t ∈ [1 + θ+, 2− δ].

Recalling that ẏ < 0 on [1, 2), that θ+ ≤ δ, and using inequality (3.7)(i), we get

z4 = z(2− δ, g1) ≤ z(1 + θ+, g1) + y(2− δ)− y(1 + θ+) + y(0)/4

≤ z0 + y(2− δ)− y(1 + δ) + y(0)/4

≤ z0 − y(0)/4.
(4.16)

Proposition 4.3,d) shows that

z(t, g1) ≤ z(2− δ, g1) = z4 for t ∈ [2− δ, tmin].(4.17)
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For t ∈ [tmin, 2+θ+], we have z(t−1, g1) ∈ [z(1+θ+, g1), 0] = [z0, 0] and |ż(t, g1)| =
|g(z(t− 1, g1))| ≤ |g|C0 . For these t, it follows from the above estimate that

z(t, g1) ≤ z(tmin, g1) + (2 + θ+ − tmin)|g|C0

≤ z4 + ((2 + δ)− (2− δ))|g|C0

= z4 + 2δ|g|C0.

(4.18)

Combining (4.17) and (4.18), we obtain the first estimate of the assertion. The
second estimate follows from (4.16) together with the choice of δ, namely, from
(3.7),(ii). The property z0 − y(0)/8 < 0 is clear.

Recall the functions ψs (s ∈ [0, 1]) from the end of Section 3. Our aim is to find
a family {gs}s∈[0,1] of modifications of g such that, for an appropriate time t∗,
the segment z(·, gs)t∗ is close to ψs, for all s ∈ [0, 1]. The construction of such
nonlinearities in the next lemma includes an application of Proposition 4.2. To
prepare this application, we need some notation. We know from Proposition 4.3
that ż(t, g1) < 0 for t ∈ (0, t0 + 1), and (0, t0 + 1) ⊃ [1 + θ+, 2− δ]. Consequently,
z(·, g1)∣∣[1 + θ+, 2− δ] has a C1 inverse function

τ : [1 + θ+, 2− δ] −→ [z(2− δ, g1), z(1 + θ+, g1)] = [z4, z0] ⊂ R.

Recall that, for all s ∈ [0, 1], we have ψ̇s(t) > 0 for t ∈ [−1, 0), ψ̈s(t) < 0 for
t ∈ [−1, 0]. Set

α0 := max
s∈[0,1]

ψ̇s(−1) > 0; α1 := max
s∈[0,1],t∈[0,1/4]

ψ̈s(−1)
ż(1 + θ+ + t, g1)

> 0;

M0 := g(z(1 + θ+, g1)) = g(z0) > 0; M1 := g′(z0) < 0;

η := y(0)/16, K := −z(2 + θ+, g1).

(From Corollary 4.4, we have K > 0.) Choose now θ̃ ∈ (0, 1/4) such that the
following inequalities hold:

θ̃ ≤ δ;(4.19)

z(1 + θ+ + θ̃, g1) ≥ z(1 + θ+, g1)− y(0)/16 = z0 − y(0)/16;(4.20)

θ̃[M2 +
2(K + 1)

K
|g|C0 + max{|g|C0 ,M2}+ |g|C0 ] ≤ k4k1k3δ

64
;(4.21)

M0θ̃ < K, α0θ̃ < K.(4.22)

Set B := (K + 1)/θ̃. Finally, define z3 := z(1 + θ+ + θ̃, g1). Note that the choice of
α1 and the inequality θ̃ < 1/4 imply that, for all s ∈ [0, 1],

0 <
ψ̈s(−1)

ż(1 + θ+ + θ̃, g1)
≤ α1.(4.23)

Lemma 4.5. There exist a continuous map

[0, 1] 3 s 7→ gs ∈ (BC0(R,R), | |C0)

and numbers τ1, τ2 ∈ (1+θ+, 1+θ++θ̃) and zmax ∈ (z3, z0) satisfying the subsequent
properties for all s ∈ [0, 1]. (We set zi := z(τi, g1) (i = 1, 2).)
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a) gs ∈ BC1(R,R), and gs satisfies (NF). gs = g1 on [z0,∞) ⊃ [−y(0)− 1,∞),
and

g′s > 0 on (−∞, zmax), g′s < 0 on (zmax,∞).

b) gs(zmax) ≤ K + 1
θ̃

, gs ≥ K

2θ̃
on [z2, z1].

c)

τ1∫
1+θ+

gs(z(t, g1))dt ≤ y(0)/16,

1+θ++θ̃∫
τ2

gs(z(t, g1))dt ≤ y(0)/16, and

1+θ++θ̃∫
1+θ+

gs(z(t, g1))dt = −z(2 + θ+, g1).

d) gs(z(t, g1)) = ψ̇s(t− (2 + θ+ + θ̃)) for t ∈ [1 + θ+ + θ̃, 2− δ].
e) gs(x) ≤M2 for x ≤ z3.

Proof. We set a := 1+θ+, b := 1+θ++ θ̃, and ζ := z(·, g1)∣∣[a, b]. We want to apply

Proposition 4.2 to the function ζ and with the numbers K,B,M0, α0, α1,M1 and η
from above. Condition (4.1) is satisfied, since ζ is strictly decreasing, and we have
m = min ζ = z3, M = max ζ = z0. The inequalities in (4.2) are satisfied, in view
of (4.22) and the choice of B. Applying Proposition 4.2, we obtain a number r ∈
(0, (z0− z3)/2) and a continuous map h : (0, α0]× (0, α1] −→ (C0([z3, z0],R), | |C0)
with the properties (i)–(vi) listed in Proposition 4.2. We now define gs for s ∈ [0, 1].
(See Figure 2.) Note that the second inequality of Corollary 4.4 and (4.20) imply
z4 < z3.

gs(x) :=



g1(x) for x ≥ z0;

h(x, ψ̇s(−1),
ψ̈s(−1)

ż(1 + θ+ + θ̃, g1)
) for x ∈ [z3, z0];

ψ̇s(τ(x) − (2 + θ+ + θ̃)) for x ∈ (z4, z3);

ψ̇s(−δ − θ+ − θ̃) · exp[(x− z4)· ψ̈s(−δ − θ+ − θ̃)
ψ̇s(−δ − θ+ − θ̃) · ż(2− δ, g1)

]

for x ∈ (−∞, z4].

Set τ1 := τ(z0− r) and τ2 := τ(z3 + r), so that 1+ θ+ < τ1 < τ2 < 1+ θ+ + θ̃. Note

that gs is well-defined on [z3, z0] since ψ̇s(−1) ∈ (0, α0] and
ψ̈s(−1)

ż(1 + θ+ + θ̃, g1)
∈

(0, α1]. Note also that for x ∈ (z4, z3), we have τ(x) ∈ (1 + θ+ + θ̃, 2 − δ), so
τ(x) − (2 + θ+ + θ̃) ∈ (−1,−δ − θ+ − θ̃), which shows that gs is well-defined on
(z4, z3). We now prove the asserted properties of the functions gs. For s ∈ [0, 1],
let gs,1, gs,2, gs,3 and gs,4 denote the restrictions of gs to I1 := [z0,∞), I2 :=
[z3, z0], I3 := (z4, z3), I4 := (−∞, z4], respectively. It is clear from the definitions,
from assertion (i) of Proposition 4.2, from the fact that ψs ∈ C2([−1, 0],R), and
from C1−smoothness of τ that gs,i ∈ BC1(Ii,R), i = 1, ..., 4. The map [0, 1] 3
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s 7→ ψs ∈ (C2([−1, 0],R), | |C2) is continuous, and the map

E : R+ × R− −→ (BC0((−∞, z4],R), | |C0),

E(α, β)(x) := exp((x − z4)
β

αż(2− δ, g1)
)

is continuous. In view of continuity of the map h, it is now obvious that the maps
[0, 1] 3 s 7→ gs,i ∈ (BC0(Ii,R), | |C0) are continuous for i = 1, ..., 4.

Claim: gs ∈ BC1(R,R) for s ∈ [0, 1], and the map

[0, 1] 3 s 7→ gs ∈ (BC0(R,R), | |C0)

is continuous.

Proof. It suffices to show that the functions gs are continuously differentiable at the
points z0, z3, z4; the continuity assertion then follows from the statement preceding
the claim. Using g1 = g on (−∞, y(0)+ δ1), and property (ii) from Proposition 4.2,
and recalling M = z0, we see that

lim
x−→z0+

gs(x) = g(z0) = M0 = lim
x−→z0−

h(x, ...) = lim
x−→z0−

gs(x), and

lim
x−→z0+

g′s(x) = g′1(z0) = g′(z0) = M1 = lim
x−→z0−

∂1h(x, ...) = lim
x−→z0−

g′s(x).

Similarly,

lim
x−→z3+

gs,2(x) = h(z3, ...) = h(m, ...) = ψ̇s(−1)

= ψ̇s(τ(z3)− (2 + θ+ + θ̃)) = lim
x−→z3−

gs,3(x),

and

lim
x−→z3+

g′s,2(x) = ∂1h(z3, ...) =
ψ̈s(−1)

ż(1 + θ+ + θ̃, g1)

= ψ̈s(−1) · τ ′(z3) = lim
x−→z3−

g′s,3(x),

where the last equality comes from the chain rule. Finally,

lim
x−→z4+

gs,3(x) = ψ̇s(τ(z4)− (2 + θ+ + θ̃)) = ψ̇s(−δ − θ+ − θ̃)

= lim
x−→z4−

gs,4(x),

and

lim
x−→z4+

g′s,3(x) = ψ̈s(−δ − θ+ − θ̃)τ ′(z4)

=
ψ̈s(−δ − θ+ − θ̃)
ż(2− δ, g1)

= lim
x−→z4−

g′s,4(x).

(The claim is proved.)
It follows from 0 < h (see part (iii) of Proposition 4.2) and from ψ̇s > 0 on

[−1, 0) that gs(x) > 0 for x ≤ z0. Since g1 satisfies (NF), it follows that gs also
satisfies (NF).

Proof of the remaining assertions of a): gs(x) = gs,1(x) = g1(x) for x ≥ z0,
and g′s,4(x) > 0 for x ≤ z4, g

′
s,3(x) = ψ̈s(...)τ ′(x) > 0 for x ∈ (z4, z3). Setting

zmax := (z0 + z3)/2, it follows from part (iii) of Proposition 4.2 that g′s,2 > 0 on
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[z3, zmax), g′s,2 < 0 on (zmax, z0]. Since g′1 < 0, we have g′s < 0 on [z0,∞). Together,
we obtain the asserted properties of g′s.

Proof of b): From Proposition 4.2,(iii), we have gs(zmax) = h(zmax, ...) < B =
K + 1
θ̃

. For x ∈ [z2, z1] = [z3 + r, z0 − r] = [m + r,M − r], property (v) from

Proposition 4.2 shows gs(x) = h(x, ...) ≥ K/2θ̃.
Proof of c): ζ̇ < 0 implies that {s ∈ [a, b] : ζ(s) ∈ [m,m+ r]} = [τ2, 1 + θ+ + θ̃]

and {s ∈ [a, b] : ζ(s) ∈ [M − r,M ]} = [1 + θ+, τ1]. The first two estimates
of assertion c) now follow from part (vi) of Proposition 4.2, the definition of τ1
and τ2, and the choice of η. The equality in assertion c) follows from part (iv) of
Proposition 4.2.

Proof of d): For t ∈ [1 + θ+ + θ̃, 2− δ], one has z(t, g1) ∈ [z4, z3], and

gs(z(t, g1)) = gs,3(z(t, g1)) = ψ̇s(t− (2 + θ+ + θ̃)).

Proof of e): Recall the definition of ψs, and Proposition 3.3. For x ≤ z3, we have

gs(x) ≤ gs(z3) = ψ̇s(−1) = sψ̇+(−1) + (1− s)ψ̇−(−1)

≤ max{|ψ+|C2 , |ψ−|C2} ≤M2.

Together with the estimate on the solutions z(·, g1) from Corollary 4.4, the re-
mark below is a preparation for estimating the error in the approximation of the
targets ψs.

Remark 4.6. For s ∈ [0, 1] and x ∈ [z4, z4 + 2δ|g|C0], one has

0 < gs(x) ≤ 5M2cg
√
δ.

Proof. Set z+
4 := z4 + 2δ|g|C0 . Let t ∈ [3/2, 2 − δ]. Since θ− ≤ δ, we have

z(·, g1) = X(·) on (−∞, t− 1]. Using Proposition 3.4,c), and Proposition 3.1,c), we
see that

X(t− 1) ∈ [X(1− δ), X(1/2)] ⊂ [0, X(θ+)] = [0, y(0) + δ1],

and g = g1 on this interval. Hence

|g′1(z(t− 1, g1))| = |g′(X(t− 1))| ≥ |g′(0)|,
since y(0)+ δ1 < A and g′ is decreasing on [0, A]. Using Proposition 3.4,c), the fact
that g is decreasing on [0,∞), and the last inequality from Proposition 3.4,a), we
get

|g1(z(t− 2, g1))| = |g(X(t− 2))| ≥ |g(X(−1/2))| = |g(ϕ(−1/2))|
≥ |g(y(−1/2)/2)|.

Recall the definitions of γ2 and cg which were given before (3.7). From eq. (g1),
we now obtain

z̈(t, g1) ≥ |g′(0)||g(y(−1/2)/2)| = γ2 for t ∈ [3/2, 2− δ].(4.24)

Taylor expansion of z(·, g1) at 2− δ gives, for r ∈ [0, 1/2− δ],

z(2− δ − r, g1) = z(2− δ, g1) + ż(2− δ, g1)(−r) + z̈(2 − δ − σ) · r2/2,
for some σ ∈ [0, r]. Since ż(2− δ, g1) < 0, we see from (4.24) that

z(2− δ − r, g1) ≥ z(2− δ, g1) +
γ2

2
r2 = z4 +

γ2

2
r2.
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From the choice of δ (see (3.7),(iv)), we have that

r+ := 2cg
√
δ ∈ [0, 1/2− δ],

and hence we have

z(2− δ − r+, g1) ≥ z4 +
γ2

2
4c2gδ = z4 + 2|g|C0δ.(4.25)

Recall the inverse function τ of z(·, g1)∣∣[1 + θ+, 2− δ]. Let now x ∈ [z4, z4+2δ|g|C0].

Then Corollary 4.4 and the choice of θ̃ (see (4.20)) show that

x ∈ [z4, z0 − y(0)/8] ⊂ [z4, z0 − y(0)/16] ⊂ [z4, z3].

Moreover, we see from (4.25) that τ(x) ≥ 2− δ− r+. It follows from property (NF)
of gs and Lemma 4.5,d), that, for s ∈ [0, 1], we have

0 < gs(x) = gs(z(τ(x), g1)) = ψ̇s(τ(x) − (2 + θ+ + θ̃))

≤ ψ̇s(0) + |ψ̈s|C0 · (2 + θ+ + θ̃ − τ(x)).

From Proposition 3.3,(i), we have ψ̇s(0) = 0. With Proposition 3.3,(ii), Proposition
3.4,e), estimate (4.19) and the choice of δ (see (3.7),(iv)), one obtains

gs(x) ≤M2(2 + θ+ + θ̃ − (2− δ − r+)) = M2(θ+ + θ̃ + δ + r+)

≤M2(3δ + 2cg
√
δ) ≤ 5M2cg

√
δ.

We now show that the nonlinearities gs already lead to solutions that closely ap-
proximate the targets ψs. This would be sufficient in order to obtain a homoclinic
solution from a shooting argument, but we still have to arrange the transversality.

Lemma 4.7. Set t∗ := 3 + θ+ + θ̃. For s ∈ [0, 1], we have the following properties.
a) z(t, gs) = z(t, g1) for t ∈ (−∞, 2 + θ+];
b) ż(t, gs) > 0 for t ∈ (tmin, 3 + θ+ + θ̃);

c) With χs := z(·, gs)t∗ ∈ C, we have χs ∈ H and |χs − ψs| ≤ k4ι

2
.

Proof. Let s ∈ [0, 1]. Proof of a): From Proposition 4.3,e), we have z0 =
z(1 + θ+, g1) ≤ −y(0) − 1, and we know from Lemma 4.5,a) that gs = g1 on
[z0,∞).

Claim: z(t, g1) ≥ z0 for t ∈ (−∞, 1 + θ+].

Proof. For t ∈ (−∞, 1− θ−], we have from Proposition 3.4,d) that

z(t, g1) = X(t) ≥ −y(0)− 1/2 > z0.

For t ∈ [1 − θ−, 1 + θ+] ⊂ [0, t0 + 1], Proposition 4.3,d) shows that z(t, g1) ≥
z(1 + θ+, g1) = z0. (The claim is proved.)

It follows from the above claim, from eq. (gs) and from gs = g1 on [z0,∞) that
z(·, gs) = z(·, g1) on (−∞, 2 + θ+].

Proof of b): Using assertion a), Proposition 4.3,d), the property z(·, g1) < 0 on
[1 + θ+, 1 + θ+ + θ̃], and property (NF) of gs, we conclude

ż(t, gs) > 0 on (tmin, 2 + θ+ + θ̃].(4.26)
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It follows from the equality in Lemma 4.5,c), from eq. (gs) and from assertion a)
that

z(2 + θ+ + θ̃, gs) = z(2 + θ+, g1) +

1+θ++θ̃∫
1+θ+

gs(z(t, g1))dt = 0.(4.27)

Combining assertion a), Proposition 4.3,d), (4.26) and (4.27),we get that z(·, gs) < 0
on (t0, 2 + θ+ + θ̃). Assertion b) now follows from (NF).

Proof of c): From (4.27), we have χs(−1) = 0, which means that χs ∈ H . For
t ∈ [2 + θ+ + θ̃, 3 − δ] = [t∗ − 1, t∗ − (δ + θ+ + θ̃)], we have from assertion a) and
Lemma 4.5,d) that

ż(t, gs) = gs(z(t− 1, g1)) = ψ̇s(t− (3 + θ+ + θ̃)).(4.28)

It follows from (4.27) and (4.28) that

z(t∗ + t, gs) = ψs(t) for t ∈ [−1,−δ − θ+ − θ̃].(4.29)

In order to prove c), it therefore suffices to prove

|z(t, gs)− ψs(t− t∗)| ≤ k4ι

2
for t ∈ [3− δ, 3 + θ+ + θ̃].(4.30)

Proof of (4.30): For t ∈ [3− δ, 3 + θ+ + θ̃], we have, using (4.29), that

|z(t, gs)− ψs(t− t∗)| ≤ |z(t, gs)− z(3− δ, gs)|+ |z(3− δ, gs)− ψs(t− t∗)|
= |z(t, gs)− z(3− δ, gs)|+ |ψs(−δ − θ+ − θ̃)− ψs(t− t∗)|.

(4.31)

For t ∈ [2− δ, 2+ θ+ + θ̃], one has z(t, gs) ∈ [z(tmin, g1), 0] and therefore ż(t, gs) ≥ 0
for t ∈ [3 − δ, 3 + θ+ + θ̃]. Since also ψ̇s ≥ 0, we can estimate the last two terms
in (4.31) by |z(3 + θ+ + θ̃, gs) − z(3 − δ, gs)| and by |ψs(0) − ψs(−δ − θ+ − θ̃)|,
respectively. In order to prove (4.30), it therefore suffices to prove the following
two estimates:

|z(3 + θ+ + θ̃, gs)− z(3− δ, gs)| ≤ k4ι

4
,(4.32)

|ψs(0)− ψs(−δ − θ+ − θ̃)| ≤ k4ι

4
.(4.33)

Proof of (4.32): For t ∈ [3 − δ, 3 + θ+], we have t − 1 ∈ [2 − δ, 2 + θ+] and
z(t − 1, gs) = z(t − 1, g1). Combining the first inequality from Corollary 4.4 with
Remark 4.6, one obtains

0 < ż(t, gs) = gs(z(t− 1, g1)) ≤ 5M2cg
√
δ.

With the choice of δ (see (3.7)(v)), the estimate on δ1 from Proposition 3.4,a), and
the definition of ι = k1δ1 (see the end of Section 3), we obtain

|z(3 + θ+, gs)− z(3− δ, gs)| ≤ 5M2cg
√
δ(θ+ + δ)

≤ 10M2cgδ
3/2 ( use θ+ ≤ δ)

≤ k4k3k1δ

64
≤ k4k1δ1

8
=
k4ι

8
.

(4.34)
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Recall the numbers τ1 and τ2 from Lemma 4.5. For t ∈ [2 + θ+, τ1 + 1], one has
t− 1 ≤ τ1 < 2 + θ+, and in view of assertion a) and the definition of z1 and z0 one
obtains

z(t− 1, gs) = z(t− 1, g1) ∈ [z1, z0] ⊂ (−∞, 0).

Hence, gs(z(t− 1, gs)) > 0, and Lemma 4.5,c) shows that

z(t, gs) = z(2 + θ+, gs) +

t−1∫
1+θ+

gs(z(τ, g1))dτ

≤ z(2 + θ+, gs) +

τ1∫
1+θ+

gs(z(τ, g1))dτ

≤ z(2 + θ+, gs) + y(0)/16

= z(2 + θ+, g1) + y(0)/16.

Combining this estimate with Corollary 4.4 and the choice of θ̃ (see (4.20)), we see
that

z(t, gs) ≤ z0 − y(0)/16 ≤ z(1 + θ+ + θ̃, g1) = z3.

Now Lemma 4.5,e) shows

gs(z(t, gs)) ≤M2 for t ∈ [2 + θ+, τ1 + 1].(4.35)

For t ∈ [τ2 + 1, 2 + θ+ + θ̃] ⊂ [2 + θ+, 2 + θ+ + θ̃] ⊂ (tmin, 3 + θ+ + θ̃), we have from
assertion b) and from (4.27) that

0 = z(2 + θ+ + θ̃, gs) ≥ z(t, gs) ≥ z(τ2 + 1, gs);

with Lemma 4.5,c), one gets

z(τ2 + 1, gs) = −
1+θ++θ̃∫
τ2

gs(z(t, g1))ds ≥ −y(0)/16 > −y(0).

Hence, we have

|gs(z(t, gs))| = |g(z(t, gs))| ≤ |g|C0(4.36)

for t ∈ [τ2+1, 2+θ++ θ̃]. For x ∈ (−∞, 0]\ [z3, z0], Lemma 4.5,a) and Lemma 4.5,e)
together with the definition of g1 show that |gs(x)| ≤ max{|g|C0 ,M2}. Further,

z0 − z3 ≤
θ++θ̃∫
θ+

|g(X(t))|dt ≤ |g|C0 θ̃.

For t ∈ [τ1 + 1, τ2 + 1], we have ż(t, gs) ∈ gs([z2, z1]), so the second estimate of

Lemma 4.5,b) shows that ż(t, gs) ≥ K

2θ̃
. Using also the first inequality of Lemma
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4.5,b), we obtain the following estimate.

∣∣∣ τ2+1∫
τ1+1

gs(z(t, gs))dt
∣∣∣ ≤ ∣∣∣ ∫

{t ∈ [τ1 + 1, τ2 + 1] :
z(t, gs) ∈ [z3, z0]}

...
∣∣ +

∣∣∣ ∫
{t ∈ [τ1 + 1, τ2 + 1] :
z(t, gs) 6∈ [z3, z0]}

...
∣∣∣

≤
∫

{t ∈ [τ1 + 1, τ2 + 1] :
z(t, gs) ∈ [z3, z0]}

|gs(z(t, gs))| ż(t, gs)
K/2θ̃

dt+ (τ2 − τ1)max{|g|C0,M2}

≤ 2θ̃
K
gs(zmax)

∫
{t ∈ [τ1 + 1, τ2 + 1] :
z(t, gs) ∈ [z3, z0]}

ż(t, gs)dt+ θ̃ ·max{...}

(recall 1 + θ+ < τ1 < τ2 < 1 + θ+ + θ̃)

≤ 2θ̃
K

K + 1
θ̃

(z0 − z3) + θ̃ ·max{...}

≤ [
2(K + 1)

K
|g|C0 + max{|g|C0,M2}]θ̃.

(4.37)

Putting together the estimates (4.35), (4.36) and (4.37), we get

|z(3 + θ+ + θ̃, gs)− z(3 + θ+, gs)|

≤ |
τ1+1∫

2+θ+

gs(z(t, gs))|+ |
τ2+1∫
τ1+1

...|+ |
2+θ++θ̃∫
τ2+1

...|

≤ θ̃M2 + θ̃[
2(K + 1)

K
|g|C0 + max{|g|C0 ,M2}] + θ̃|g|C0 .

Using (4.21), Proposition 3.4,a), and the definition of ι, we can estimate the last
term by

k4k1k3δ

64
≤ k4k1δ1

8
=
k4ι

8
.

Together with (4.34), we obtain (4.32).
Proof of (4.33): Using Taylor expansion of ψs at 0, and the properties θ+ ≤

δ, θ̃ ≤ δ, one gets

|ψs(0)− ψs(−θ+ − θ̃ − δ)| ≤ | ψ̇s(0)︸ ︷︷ ︸
=0

|+M2
(θ+ + θ̃ + δ)2

2
≤ 9M2

2
δ2.

With (3.7)(vi) and, as before, the relation between δ and δ1 from Proposition 3.4,a),
we can estimate the last term by

k4k1k3δ

32
≤ k4k1δ1

4
=
k4ι

4
.

Estimate (4.33) is proved. Estimate (4.30) now follows from (4.32) and (4.33).
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Comments on the proof of Lemma 4.7.
1) Recall that, from Proposition 3.4, the number δ is essentially a measure for the

distance between the segments ϕ and y0. Recall also that δ1 and ι are essentially
proportional to δ. The error estimate (4.30) with ι on the right hand side is the
key point of the above proof. It was obtained by estimating the left hand sides of
(4.32) and (4.33) in terms of powers of δ which are larger than one–see (4.34) and
the proof of (4.33). In comparison with the paper [L-WW2], this technical detail is
new. It allows us to solve the problems which had been discussed in the comment
following Proposition 3.4 of [L-WW2] by use of relatively simple nonlinearities. In
the latter paper, a solution was found at the expense of a more complicated shape
of the nonlinearities and the homoclinic solution.

2) Note that the values of gs in the vicinity of zmax have a ‘large’ effect on the
solution z(·, gs) when these solutions ‘feel’ the maximum of gs for the first time
(namely, an increase from z(2 + θ+, g1) to 0). The same values of gs have only a
‘small’ effect when the solution crosses zmax for the second time, as is expressed in
the estimate (4.37). The main point of that estimate is that when z(·, gs) passes
the interval [z3, z0] (where gs has large values) for the second time, it passes at high
‘speed’ (ż(t, gs) ≥ K/2θ̃). To establish this property was the purpose of the two
estimates from Lemma 4.5,c), and of the corresponding estimates in Proposition
4.2,(vi). A similar technique was used in [L-WW2].

5. Providing transversality

We see from Lemma 4.7 that the solutions z(·, gs) reach the targets ψs (s ∈ [0, 1]),
up to an error of at most k4ι/2. We could already use these nonlinearities to obtain
a homoclinic solution, but we need to add a perturbation that makes sure that
the homoclinic solution will be transversal. The perturbation must be such that
it essentially keeps the accuracy by which the targets ψs are approximated. The
method to achieve this is as in [L-WW2]; we add a perturbation to the gs which
has small C0− norm, but ‘large’ C1−norm, so that it has significant influence on
the solutions of the variational equations (gs, z(·, gs)), but little influence on the
solutions z(·, gs).

Recall condition (T) from Theorem 2.9. We will actually prove a stronger prop-
erty, namely, that segments of solutions a · ż + b · w ((a, b) ∈ R2 \ {(0, 0)}) are
all contained in the set S at a fixed time which is independent of a and b. (In fact,
at time t∗ + 1.) Proving this stronger property requires a perturbation that acts,
so to speak, violently on the solutions of the variational equations (gs, z(·, gs)). At
present, however, we have no other method available.

Set zmin := z(tmin, g1). We want to apply Propositions 2.3 and Propositions
2.4 from [L-WW2] (in the corresponding version for a minimum) to z(·, g1) and
w(·, g1) at tmin. We cite these results as ‘Proposition 2.3*’ and ‘Proposition 2.4*’
in the sequel. First, z(·, g1) is C2, since it is a solution of eq. (g1) on all of R. For
s ∈ [0, 1], we have

ż(tmin, gs) = ż(tmin, g1) = 0,

z̈(tmin, gs) = z̈(tmin, g1) = g′(0)ż(t0, g1) > 0.

In the notation of Proposition 2.3*, we set a := 2 − δ, b := 2, z := z(·, g1)∣∣[a, b].
Application of Proposition 2.3*,a) yields numbers s1, s2 ∈ [2− δ, 2] and d > 0 such
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that for every ρ ∈ (0, d] there exist unique numbers σ1(ρ), σ2(ρ) with the properties

s1 ≤ σ1(ρ) < tmin < σ2(ρ) ≤ s2;

z(t) ≤ zmin + ρ for t ∈ [σ1(ρ), σ2(ρ)],

z(t) > zmin + ρ for t ∈ [s1, σ1(ρ)) ∪ (σ2(ρ), s2].

It is clear that these properties hold also for every d̃ ∈ (0, d]. We can therefore
choose d such that, in addition,

zmin + d ≤ z4.

We prepare an application of Proposition 2.3*,b). In the notation of that proposi-
tion, we set

γ :=
1
2

min{gs(zmin − 1) : s ∈ [0, 1]} > 0;

∆ := k4ι/2;

W0 := sup{|w(t, gs)| : t ∈ [t∗ − 1, t∗], s ∈ [0, 1]};
ζ0 := −max{g′(x) : x ∈ [−y(0)− δ1, y(0) + δ1]} · γ > 0.

Further, we choose a number W1 > W0 such that

|g|C1W0 ≤W1/2 and
(|g|C1)2W0

ζ0
≤W1/2,

and we set

W := −3W1 < 0.

We know from Proposition 4.3,f) that w(tmin, g1) < 0. We apply Proposition 2.3*,b)
with W,γ,∆ and d, s1, s2 from above, and with w(·, g1). We obtain a number
ρ ∈ (0, d] with

γ(σ2(ρ)− σ1(ρ)) ≤ δ

and a function h ∈ BC1(R,R) with the following properties.
(5.1)

(i) h(x) = 0 for x ≥ zmin + ρ;
(ii) h(x) = h(zmin) for x ≤ zmin;
(iii) |h(x)| ≤ γ for x ∈ R;
(iv) sign h(x) = −sign(w(tmin), g1) · sign(−3W1) = −1 for x ∈ (−∞, zmin + ρ);
(v) sign h′(z(t, g1))w(t, g1) = sign(−3W1) = −1 for t ∈ (σ1(ρ), σ2(ρ)) \ {tmin},

so h′(z(t, g1)) > 0 and w(t, g1) < 0 for these t;

(vi)
∫ σ2(ρ)

σ1(ρ)

h′(z(t, g1))w(t, g1)dt = −3W1.

Note that the minus sign in property (iv) is part of the analogous reformulation
of Proposition 2.3*,b) for the case of a minimum, since, in this case, sign h(x) =
−sign h′(x) for x ∈ (zmin, zmin + ρ).

Next, we apply the analogue of Proposition 2.4* for the case of a minimum to
the functions gs and to z(·, gs), for all s ∈ [0, 1]. Let s ∈ [0, 1]. In the notation of
Proposition 2.4*, we set t0 := 0, z := z(·, gs)∣∣[−1,∞), w := w(·, gs), and we take

γ, W and ∆ as above. The assumptions of Proposition 2.4* are satisfied.
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Note that z(·, gs) = z(·, g1), w(·, gs) = w(·, g1) on [2 − δ, 2], and that the
function h from above does not depend on s. Note also that gs and gs+h are both
modifications of g1 on (−∞, z(1 + θ+, g1)] ⊂ (−∞,−y(0)− 1], and that z(t, g1) ≥
z(1 + θ+, g1) for t ∈ (−∞, 1 + θ+] (see Proposition 3.4,d), and Proposition 4.3,d)).
It follows that

z(·, gs) = z(·, gs + h) = z(·, g1) on (−∞, 2 + θ+], and

w(·, gs) = w(·, gs + h) = w(·, g1) on [−1, 2 + θ+].
(5.2)

From Proposition 2.4*, together with 5.2, we obtain the following properties for the
nonlinearities gs + h and the solutions z(·, gs + h), respectively w(·, gs + h).
(5.3)

(i)

z(t, gs + h) = z(t, gs) for t ∈ (−∞, σ1(ρ) + 1), and

w(t, gs + h) = w(t, gs) for t ∈ [−1, σ1(ρ) + 1];

(ii) |z(t, gs + h)− z(t, gs)| ≤ ∆ for t ∈ [σ1(ρ) + 1, σ2(ρ) + 1];
(iii) w(σ2(ρ) + 1, gs + h) = w(σ2(ρ) + 1, gs)− 3W1;
(iv) ż(t, gs + h) = ż(t, gs) and ẇ(t, gs + h) = ẇ(t, gs) for t ∈ [σ2(ρ) + 1, σ1(ρ) + 2].

It follows from (5.3),(ii) and (5.3),(iv) that we have

|z(t, gs + h)− z(t, gs)| ≤ ∆ for t ∈ [σ1(ρ) + 1, σ1(ρ) + 2].(5.4)

The functions gs+h do not satisfy (NF), and their derivatives may have more than
one zero. We modify these functions to new nonlinearities fs such that the above
properties are preserved, and that fs satisfies (NF) and f ′s has only one zero. Note
that (5.1),(iii) and the choice of γ imply (gs + h)(zmin − 1) > 0 for s ∈ [0, 1].

For s ∈ [0, 1], set λs :=
(gs + h)′(zmin − 1)
(gs + h)(zmin − 1)

, and define fs by

fs(x) :=


(gs + h)(x) for x > zmin − 1,

(gs + h)(zmin − 1) · eλs(x−(zmin−1))

1 + [x− (zmin − 1)]2
for x ≤ zmin − 1.

Proposition 5.1. For s ∈ [0, 1], the function fs is in BC1(R,R), satisfies (NF),
and f ′s > 0 on (−∞, zmax), f ′s < 0 on (zmax,∞).

The map [0, 1] 3 s 7→ fs ∈ (BC0(R,R), | |C0) is continuous. Further,

z(t, fs) = z(t, gs + h) for t ∈ (−∞, t∗ + 1],

w(t, fs) = w(t, gs + h) for t ∈ [−1, t∗ + 1].
(5.5)

Proof. Let s ∈ [0, 1]. First, lim
x−→zmin−1−

fs(x) = (gs + h)(zmin − 1) and

lim
x−→zmin−1−

f ′s(x) = λsfs(zmin − 1) = (gs + h)′(zmin − 1)

= lim
x−→zmin−1+

f ′s(x).

The property fs ∈ BC1(R,R) now follows from gs + h ∈ BC1(R,R) and the
definition of fs. Note that f ′s(x) > 0 for x ≤ zmin − 1. From 5.1(i),(ii) and (v),
we have h′ ≥ 0. Since g′s > 0 on (−∞, zmax), we have f ′s > 0 on (−∞, zmax).
We have fs(x) = gs(x) for x ≥ zmin + d since h(x) = 0 for these x. Hence,
f ′s = g′s < 0 on (zmax,∞). In order to prove (NF) for fs, it suffices to show that
fs > 0 on (−∞, zmin + d]. It is obvious that fs(x) > 0 for x ∈ (−∞, zmin − 1]. For



936 BERNHARD LANI-WAYDA

x ∈ (zmin − 1, zmin + d], we have gs(x) > gs(zmin − 1), and, recalling the definition
of γ,

fs(x) = (gs + h)(x) > gs(zmin − 1) + h(x)
≥ 2γ − γ = γ > 0.

(5.6)

It follows from Lemma 4.5 that the map [0, 1] 3 s 7→ gs + h ∈ (BC0(R,R), | |C0)
is continuous. The definition of the functions gs on (−∞, z4], together with the
property zmin + d ≤ z4 and with continuity of the map

[0, 1] 3 s 7→ ψs ∈ (C2([−1, 0],R), | |C2)

implies that the maps [0, 1] 3 s 7→ λs ∈ R and

[0, 1] 3 s 7→ fs∣∣(−∞, zmin − 1] ∈ BC
0((−∞, zmin − 1],R), | |C0)

are continuous. With the definition of fs, the continuity assertion of Proposition
5.1 follows.

Proof of (5.5): Using 5.3,(i) and σ1(ρ) > 2− δ, we see that z(t, gs + h) = z(t, gs)
for t ∈ (−∞, 3− δ]. With Lemma 4.7,b) and Proposition 4.3,d), and with the last
property from Proposition 3.4,d), we obtain

z(t, gs + h) = z(t, gs) ≥ zmin for t ∈ (−∞, 3− δ], and

z(t, gs + h) = z(t, gs) < 0 for t ∈ [2− δ, 2 + θ+ + θ̃).

It follows from (5.6) that (gs+h)(x) > 0 for x ∈ (zmin, 0) (although gs+h does not
satisfy (NF) for all x). Hence we get that ż(t, gs+ h) > 0 for t ∈ [3− δ, 3 + θ+ + θ̃],
so that together we obtain z(t, gs + h) ≥ zmin for t ∈ (−∞, t∗]. Property (5.5) is
now a consequence of fs = gs + h on [zmin,∞).

In the next lemma, we prove that the segments z(·, fs)t∗ still approximate the
targets ψs (s ∈ [0, 1]), and that, in addition, a transversality property holds uni-
formly with respect to s ∈ [0, 1]. This uniformity is necessary for our method of
proof: We will find an s∗ ∈ (0, 1) with the property that the orbit of z(·, fs∗) is
homoclinic to O by an intermediate value argument – therefore we have no infor-
mation about where in [0, 1] this s∗ lies.

Recall the set S of segments with at most one sign change.

Lemma 5.2. Let s ∈ [0, 1]. The functions z(·, fs) and w(·, fs) have the following
properties:

a) z(·, fs)t∗ ∈ H, |z(·, fs)t∗ − ψs| ≤ k4ι.
b) If the condition

|z(t, fs)| < y(0) + δ1 for all t ∈ [t∗ − 1, t∗ + 1](5.7)

holds, then we have

∀(a, b) ∈ R2 \ {(0, 0)} : [aż(·, fs) + b · w(·, fs)]t∗+1 ∈ S.
Proof. Let s ∈ [0, 1].

Proof of a): Recall property (5.5). Together with (5.3),(i), we obtain

z(t, fs) = z(t, gs) for t ∈ (−∞, σ1(ρ) + 1].(5.8)

In particular, Lemma 4.7, c) shows that z(t∗ − 1, fs) = 0, so z(·, fs)t∗ ∈ H .
Combining (5.5) and (5.4), and observing σ1(ρ) + 2 ≤ 2 + 2 ≤ t∗ + 1, we get

|z(t, fs)− z(t, gs)| ≤ ∆ for t ∈ [σ1(ρ) + 1, σ1(ρ) + 2].(5.9)
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Since σ1(ρ) + 2 > 2 − δ + 2 > 3 + θ+ + θ̃ = t∗, we conclude from Lemma 4.7,c),
from (5.8) and (5.9), and from the choice of ∆ that

|z(·, fs)t∗ − ψs| ≤ |z(·, fs)t∗ − z(·, gs)t∗ |+ |z(·, gs)t∗ − ψs|
≤ ∆ + k4ι/2 = k4ι.

Proof of b): Assume condition (5.7). It follows from (5.3),(iii), from σ2(ρ) + 1 ∈
(3− δ, 3) ⊂ [t∗− 1, t∗], from the definition of W0 and the choice of W1 that we have
w(σ2(ρ) + 1, gs + h) ≤W0 − 3W1 ≤ −2W1. We set

t̄(s) := min{t ∈ [σ1(ρ) + 1, σ2(ρ) + 1] : w(t, gs + h) ≤ 0};
then t̄(s) < σ2(ρ) + 1. Note also that

3− δ < σ1(ρ) + 1 ≤ t̄(s) < σ2(ρ) + 1 < 3.(5.10)

(5.11) Claim: w(·, fs) has the following properties:

(i) ẇ(t, fs) < 0 for t ∈ [σ1(ρ) + 1, σ2(ρ) + 1];
(ii) |w(t, fs)| ≤W0 for t ∈ [t∗ − 1, t̄(s)];
(iii) |ẇ(t, fs)| ≤ |g|C1W0 for t ∈ [t∗, t̄(s) + 1];
(iv)

|w(t, fs)| ≤ 4W1 for t ∈ [σ1(ρ) + 1, t∗], and

w(t, fs) ≤ −2W1 for t ∈ [σ2(ρ) + 1, t∗];

(v) |ẇ(t, fs)| ≤ 4|g|C1W1 for t ∈ [t̄(s) + 1, t∗ + 1].
(vi) w(t, fs) ≤ −W1 for t ∈ [t∗, t∗ + 1];
(vii) ẇ(t, fs) > 0 for t ∈ (t̄(s) + 1, t∗ + 1].

Proof. In view of (5.5), it suffices to prove the corresponding assertions for the
function w(·, gs + h).

Ad (i): For t ∈ [σ1(ρ)+ 1, σ2(ρ)+ 1], we have z(t− 1, g1) ≤ zmin + d ≤ z4 < z3 <
zmax. Hence we obtain from (5.2), from (5.1),(v), and from g′s > 0 on (−∞, zmax)
that

ẇ(t, gs + h) = (gs + h)′(z(t− 1, gs + h))w(t − 1, gs + h)

= (gs + h)′(z(t− 1, g1))w(t − 1, g1) < 0.

Ad (ii): For t ∈ [t∗ − 1, σ1(ρ) + 1], we have from the definition of W0 and from
(5.3),(i) that

|w(t, gs + h)| = |w(t, gs)| ≤W0.

Let t ∈ [σ1(ρ) + 1, t̄(s)]. If t̄(s) = σ1(ρ) + 1 then

|w(t, gs + h)| = |w(σ1(ρ) + 1, gs)| ≤W0,

and otherwise one has

w(t, gs + h) ∈ [0, w(σ1(ρ) + 1, gs)] ⊂ [0,W0].

Ad (iii): We have gs + h = g on [−y(0) − δ1, y(0) + δ1]. From condition (5.7)
and the estimate (5.11),(ii), we obtain that for t ∈ [t∗, t̄(s) + 1]

|ẇ(t, gs + h)| = |g′(z(t− 1, fs))w(t − 1, gs + h)| ≤ |g|C1W0.
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Ad (iv): For t ∈ [σ1(ρ)+1, σ2(ρ)+1], properties (5.3),(i), (5.11),(i) and (5.3),(iii)
show that

w(t, gs + h) ∈ [w(σ2(ρ) + 1, gs + h), w(σ1(ρ) + 1, gs + h)]

= [w(σ2(ρ) + 1, gs)− 3W1, w(σ1(ρ) + 1, gs)].

Using the definition of W0 and W1, one sees that

w(t, gs + h) ∈ [−W0 − 3W1,W0] ⊂ [−4W1, 4W1].(5.12)

For t ∈ [σ2(ρ) + 1, t∗] we obtain from (5.3),(iv) and from σ1(ρ) + 2 > 4 − δ > t∗

that
w(t, gs + h) = w(t, gs)− 3W1 ∈ [−W0 − 3W1,W0 − 3W1]

⊂ [−4W1,−2W1].
(5.13)

Combining (5.12) and (5.13) yields property (iv).
Ad (v): From (5.10), we have [t̄(s) + 1, t∗ + 1] ⊂ [σ1(ρ) + 2, t∗ + 1]. Using

condition (5.7) together with (5.5) and the first estimate in (5.11),(iv), one gets
that for t ∈ [t̄(s) + 1, t∗ + 1],

|ẇ(t, gs + h)| = |g′(z(t− 1, fs))w(t − 1, gs + h)| ≤ |g|C14W1.

Ad (vi): For t ∈ [t∗, t∗ + 1], we obtain from properties (iv), (iii) and (v) that

w(t, gs + h) ≤ −2W1 + (t̄(s) + 1− t∗)|g|C1W0 + (t∗ + 1− (t̄(s) + 1))4|g|C1W1.

Using (5.10), we see that

w(t, gs + h) ≤ −2W1 + |g|C1W0 + (θ+ + θ̃ + δ)4|g|C1W1.

With the choice of θ+, θ̃, δ (see (3.7),(iii)) and of W1, it follows that

w(t, gs + h) ≤ −2W1 +
1
2
W1 + 12δ|g|C1W1

≤ −2W1 +
1
2
W1 +

1
2
W1 = −W1.

Ad (vii): Combining (5.10), the definition of t̄(s), and (i) with the second property
from (iv), we get that w(t, gs + h) < 0 for t ∈ (t̄(s), t∗]. For these t, condition
(5.7) together with (5.5) shows that (gs + h)′(z(t, gs + h)) = g′(z(t, fs)) < 0. The
assertion now follows from the variational equation (gs + h, z(·, gs + h)).

(Claim (5.11) is proved.)

(5.14) Claim:
(i) z(·, fs) is C2 on [t∗, t∗ + 1];
(ii) ż(t∗, fs) = 0, ż(t, fs) ∈ [−|g|C1, 0) for t ∈ (t∗, t∗ + 1];
(iii) z̈(t, fs) ≤ 0 for t ∈ [t∗, t∗ + 1];
(iv) z̈(t, fs) ≤ −ζ0 for t ∈ [t∗, t̄(s) + 1].

Proof. Property (i) is a consequence of eq. (fs) and of t∗ > 1.
Ad (ii): From assertion a) of the lemma, we know z(t∗−1, fs) = 0, so ż(t∗, fs) =

0. One sees from (5.5), (5.3),(i), Lemma 4.7,a) and Proposition 4.3,d) that

z(t, fs) = z(t, gs + h) = z(t, gs) < 0 for t ∈ (t0, t∗ − 1),

and this interval contains [t∗ − 2, t∗ − 1). Now (NF) implies that

ż(·, fs) > 0 on [t∗ − 1, t∗), and z(·, fs) > 0 on (t∗ − 1, t∗].(5.15)
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Using (NF) again, we infer ż(·, fs) < 0 on (t∗, t∗ + 1]. Condition (5.7) and the
property fs = g on [−y(0) − δ1, y(0) + δ1] imply that ż(t, fs) ≥ −|g|C1 on this
interval.

Ad (iii): For t ∈ [t∗, t∗ + 1], (5.15) and (5.7) imply

z̈(t, fs) = g′(z(t− 1, fs))︸ ︷︷ ︸
<0

· ż(t− 1, fs)︸ ︷︷ ︸
≥0

≤ 0.(5.16)

Ad (iv): Let t ∈ [t∗, t̄(s) + 1] ⊂ [t∗, 4] ⊂ [t∗, t∗ + 1]. From (5.7), we have

g′(z(t− 1, fs)) ≤ max{g′(x) : x ∈ [−y(0)− δ1, y(0) + δ1]} < 0.

Further, t−2 ∈ [t∗−2, t̄(s)−1] ⊂ [t∗−2, 2] = [1+θ++θ̃, 2]. From (5.5), (5.3),(i), and
Lemma 4.7,a), we have z(t− 2, fs) = z(t− 2, g1) ∈ [zmin, z3]. Using the definition
of fs, the monotonicity properties of fs from Proposition 5.1, and (5.6), one gets

ż(t− 1, fs) = fs(z(t− 2, fs)) ≥ fs(zmin) ≥ γ > 0.

Now (5.16) shows that

z̈(t, fs) ≤ max{g′(x) : x ∈ [−y(0)− δ1, y(0) + δ1]} · γ = −ζ0.
(Claim (5.14) is proved.)

We are now ready for the proof of assertion b) of Lemma 5.2. Let (a, b) ∈
R2 \ {(0, 0)}, and note that the set S ⊂ C is invariant under multiplication with
nonzero reals.

In case b = 0, we have a 6= 0, and assertion b) is equivalent to [ż(·, fs)]t∗+1 ∈ S,
which follows from (5.14)(ii).

In case b 6= 0, we set c := a/b, and the assertion is equivalent to

[cż(·, fs) + w(·, fs)]t∗+1 ∈ S.(5.17)

First case: c ≥ −|g|C1W0

ζ0
. Then we have from (5.11),(vi), from (5.14),(ii), and

from the choice of W1 that for t ∈ [t∗, t∗ + 1],

cż(t, fs) + w(t, fs) ≤ |g|C1W0

ζ0
|g|C1 −W1 ≤ −W1/2 < 0,

from which (5.17) follows.

Second case: c <
−|g|C1W0

ζ0
. Then, for t ∈ [t∗, t̄(s) + 1], properties (5.11),(iii)

and (5.14),(iv) show that

cz̈(t, fs) + ẇ(t, fs) >
−|g|C1W0

ζ0
(−ζ0)− |g|C1W0 = 0.

Further, for t ∈ (t̄(s) + 1, t∗ + 1], properties (5.11),(vii) and (5.14),(iii) show

cz̈(t, fs) + ẇ(t, fs) ≥ ẇ(t, fs) > 0.

Together, we obtain that the segment [cż(·, fs) +w(·, fs)]t∗+1 is strictly increasing,
and therefore (5.17) holds. Lemma 5.2 is proved.

Remark 5.3. The proof of Lemma 5.2 is similar to the proof of Lemma 3.8 from
[L-WW2]. See the comment preceding that proof for an explanation of the basic
principle.
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6. Transversally homoclinic solutions

We are now ready to conclude our construction of a nonlinearity with only one
extremum that generates a semiflow with transversally homoclinic orbits. The
missing step is an intermediate value argument.

Theorem 6.1. a) There exists s∗ ∈ [0, 1] such that the solution z(·, fs∗) has a
phase curve homoclinic to the orbit O of the periodic solution y of eq. (fs∗).

b) The nonlinearity fs∗ satisfies (NF), and

f ′s∗ > 0 on (−∞, zmax), f ′s∗ < 0 on (zmax,∞).

c) The assumptions of Theorem 2.9 are satisfied by eq. (fs∗), the periodic so-
lution y, by ϕ = z(·, fs∗)0 and by w(·, fs∗). From Theorems 2.9 and 2.7, we
therefore obtain a Poincaré map with the property that the maximal invari-
ant set of P is hyperbolic. The action of P on the trajectories in this set is
conjugate to a symbol shift. The solutions of eq. (fs∗) corresponding to these
trajectories are slowly oscillating.

Proof. Set Ωs := [z(·, fs)]t∗ for s ∈ [0, 1]. Recall that ψ0 = ψ−, ψ1 = ψ+. From
Lemma 5.2, a), and Proposition 3.3,(iii), we have Ωs ∈ Nι ⊂ H , and H(Ω1) >
0 > H(Ω0). Continuous dependence on initial data, together with continuity of
the map [0, 1] 3 s 7→ fs ∈ (BC0(R,R), | |C0) and continuity of H implies that the
map [0, 1] 3 s 7→ H(Ωs) ∈ C is continuous. It follows from the Intermediate Value
Theorem that there exists s∗ ∈ [0, 1] with H(Ωs∗) = 0. Now property (3.1), applied
to ι ∈ (0, δ̄], shows that Ωs∗ ∈ W s(y0, P,Nι). Remark 4.1 now yields that z(·, fs∗)
is a solution of eq. (fs∗) with phase curve homoclinic to the orbit of y. Assertion
a) is proved, and assertion b) is clear from Proposition 5.1.

Proof of assertion c): Set Ω∗ := Ωs∗ ∈ W s(y0, P,Nι). Recall that ι = k1δ1
and, from Proposition 3.4,a), that δ1 ≤ δ̄. We see from Proposition 3.1,b) that the
solution xΩ∗ of the unmodified eq. (g) with xΩ∗

0 = Ω∗ satisfies ∀t ≥ 0 : xΩ∗
t ∈

O + C(δ1), so that we have

xΩ∗(t) ∈ (−y(0)− δ1, y(0) + δ1) for all t ∈ [−1,∞).

Since f∗s = g on (−y(0)− δ1, y(0) + δ1), we obtain

z(t∗ + t, fs∗) = xΩ∗(t) ∈ (−y(0)− δ1, y(0) + δ1) for all t ∈ [−1,∞).

In particular, condition (5.7) of Lemma 5.2 is satisfied. Moreover,

f ′s∗(z(t, fs∗)) = g′(z(t, fs∗)) < 0 for t ≥ t∗ − 1,

so that the variational equation (fs∗ , z(·, fs∗)) has a negative coefficient for t ≥
t∗ − 1. It follows from this property, together with Lemma 5.2,b) and Proposition
4.6 of [L-WW1] that the function a · ż(·, fs∗) + b · w(·, fs∗) is eventually slowly
oscillating for all (a, b) ∈ R2 \ {(0, 0)}. Hence condition (T) of Theorem 2.9 holds,
and the conclusions follow.

7. Report on numerical experiments

The relatively simple shape of the nonlinearity obtained in the last section makes
it tempting to try computer experiments with similar equations. We started with
g = −α sinh (α > 0). For α < π/2 and sufficiently close to π/2, this equation has
an unstable slowly oscillating periodic solution yα of Kaplan–Yorke (KY) type; see,
e.g., [ILW]. (Note that − sinh 6∈ BC1(R,R), but the values of the feedback function
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far away from the range of the periodic solution are irrelevant.) These solutions
form a branch that bifurcates backwards from the zero solution at α = π/2.

Initial segments yα0 of periodic solutions can be calculated from an associated
system of ordinary differential equations in the plane, compare, e.g., [DL-W]. We
used the parameter value α ≈ 1.38, where the amplitude of the KY-solution is
approximately 1.

We approximated segments in the unstable manifold of yα simply by starting
with a slight perturbation of yα0 and computing the forward solution. As long as
this solution remains close to the orbit of yα, one expects that its segments will
approach the unstable manifold exponentially, since yα is hyperbolic.

Then we tried to modify the function −α sinh along the lines of the construction
from the previous sections, with the aim to obtain (approximately) homoclinic
behavior for solutions starting (approximately) in the unstable manifold of yα. It
turned out that one does not need the type of modification which was denoted g1
in this paper, because −α sinh(x) is already decreasing steeply enough for positive
values of x.

We therefore only changed −α sinh for negative values of x such that the new
function has one single maximum at some negative x. In fact, we found approx-
imately homoclinic behavior for the following nonlinearity, which is C∞ and has
precisely one maximum (as can be seen from elementary curve discussion).

g(x) := −α sinh(x) · Φ(x), where α ≈ 1.38, and

Φ(x) :=


1, x ≥ −1.3,

1
1 + 10e−x · e1/(x+1.3)

, x < −1.3.

Due to the backward bifurcation, the zero solution is stable for our g. The main
numerical observation that we want to report is the following:

It seems that for arbitrary initial segments, the forward numerical solution con-
verges to zero. Typical numerical solutions spend little time, if any, in the vicinity
of the unstable KY-solution yα and of the numerically homoclinic solution.

We should mention that, contrary to the previous work [DL-W], we have not
put much emphasis on numerical accuracy in these experiments. In fact, an Euler
method was used to compute solutions. Based on numerical experience, we believe
that, in this case, higher numerical precision would qualitatively give the same
results.

The conclusion from the computations is that the ‘chaos’, the existence of which
we have analytically proved, may be hard to observe in experiments with similar
nonlinearities.
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tions (with application to structural stability of complicated behavior), J. Dyn. Diff.
Equs. 7 No. 1 (1995), 1–71. MR 96e:34118

[L-W2] B. Lani–Wayda, Hyperbolic Sets, Shadowing and Persistence for Noninvertible Map-
pings in Banach spaces, Research Notes in Mathematics No. 334, Longman Group
Ltd., Harlow, Essex, 1995. CMP 98:01

[L-WW1] B. Lani–Wayda and H.-O. Walther, Chaotic motion generated by delayed negative
feedback, Part I: A transversality criterion, Diff. Int. Equs. 8 No. 6 (1995), 1407–52.
MR 96c:58115

[L-WW2] B. Lani–Wayda, and H.-O. Walther, Chaotic motion generated by delayed negative
feedback, Part II: Construction of nonlinearities, Math. Nachr. 180 (1996), 141–211.
MR 97g:58147

[La] A. Lasota, Ergodic problems in biology, Asterisque 50 (1977), 239–250. MR 58:9378
[Laz] V.A. Lazutkin, Positive Entropy for the Standard Map I, Preprint 94-47, Université
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