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HAAR MEASURE AND THE ARTIN CONDUCTOR

BENEDICT H. GROSS AND WEE TECK GAN

ABSTRACT. Let G be a connected reductive group, defined over a local, non-
archimedean field k. The group G(k) is locally compact and unimodular. In
On the motive of a reductive group, Invent. Math. 130 (1997), by B. H.
Gross, a Haar measure |wg| was defined on G(k), using the theory of Bruhat
and Tits. In this note, we give another construction of the measure |wg|, using
the Artin conductor of the motive M of G over k. The equivalence of the two
constructions is deduced from a result of G. Prasad.

1. THE RooT DATUM AND MOTIVE OF (G

In this section, k is an arbitrary field and G is a connected reductive group over
k. We let k be an algebraic closure of k, ks the separable closure of k in k, and
I = Gal(ks/k).

Let T C B C G be a maximal torus, contained in a Borel subgroup, defined over
ks. Let ¥ = U(G, B, T) be the based root datum defined by this choice. We recall
(cf. [Sp], pg. 3-12) that:

(1.1) U= (X*T),A%(T,B), X.(T),As(T, B)),
with X*(T') and X,(T) the character and cocharacter groups of T respectively,
and A® and A, the simple roots and coroots determined by B respectively. Let

W = Ng(T)/T be the Weyl group of ¥. The finite group W acts as automorphisms
of X*(T), and is generated by the reflections:

(1.2) Sa(7) =2 — (2,0 )ax

for « € A°.

The Galois group I' acts as automorphisms of W, i.e. as automorphisms of the
group X*(T') preserving the finite set A®, as follows. If ¢ € T', then we can find
g € G(ks) such that

Int(g)(oT) = go(T)g~
Int(g)(cB) = go(B)g~

with g well-defined up to left multiplication by T'(ks). Hence it induces a well-
defined automorphism

1:2'!7
1:B

)

P(o) : X3(T) — X*(T)
preserving A®. Hence we get a group homomorphism ¢ : I' — Aut(¥). Via ¢, T
acts on Aut(¥) by inner automorphisms.
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Similarly, if f : G — G is any automorphism of G over kg, it induces an
automorphism ¥(f) of ¥, which depends only on the image of f in the quotient
group Outy_(G) of outer automorphisms. The resulting map Outy_ (G) — Aut(P)
is an isomorphism which respects the respective Galois actions on the two groups

(ct. [Sp], pg. 10).
The Galois group I' also acts on W, via the formula

(1.3) 0(5a) = So(a)
and the semi-direct product W x I acts on the rational vector space
(1.4) E=X*(T)®Q.

Let R = Sym®(E)", which is a graded Q[I']-module. Let R, be the ideal of
elements of positive degree in R, and define

(1.5) V=R, /R, =PV
d>1

This is a graded Q[I'-module, and Chevalley proved that dim(V) = dim(E) (cf.
[Ch]). Steinberg extended the proof to show that F and V are isomorphic I'-
modules (cf. [St], pg. 22). We sketch a proof of this result that does not involve the
classification of irreducible root systems.

Proposition 1.6. The Q[I']-modules E and V' are isomorphic.

Proof. By the criterion in [Se, pg. 104], it suffices to show that for all o € T, the
fixed spaces E? and V7 have the same dimension.
For any graded T-module A = @ A,,,, we define the Poincare series of o by

P(A,0)(t) = > tr(o|Am)t™.

Then P(A ® B) = P(A)P(B). Steinberg showed that there is an isomorphism of
graded I'-modules:

S*(E) = S*(aVy) ® A.

Here A is finite dimensional, with basis {b, }wew, and I'-action given by:

O'(bw) = bg(w).
The degree of b, is the length I(w) of w, with respect to the generators s, furnished
by A®. This isomorphism yields the following identity of Poincare series:

det(1 — ot|B)~! = ] det(1 — ot|Vg)~" - Y #(v),
a>1 weWe
In particular, the quotient
[I4s det(1 - at?|Vy)

det(1l — ot|E)
is a polynomial P(t), with P(1) # 0. Hence dim(V?) = 3_ -, dim(Vy) = dim(E?),
as required. O

As in [Gr], we define the motive M of G as the Artin-Tate motive

(1.7) M =D Va(1 - d)

d>1
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over k. This depends only on the isogeny class of the quasi-split inner form Gy, of G
over k. Indeed, if Tj is a maximal torus contained in a Borel subgroup By, C Gy
over k, then,

(1.8) E=X*(Ty)®Q

as a W x I'-module (cf. [Sp], pg. 12).
We also define the invariant

(1.9) d(G) € Hom(T',Z*) = HY(I",Z*)

as the character of T on AP X*(T), or equivalently as the representation det(E)
of . This is analogous to, but simpler than Kottwitz’s invariant e(G) € H?(T, u2)
(cf. [K]).

The canonical ring homomorphism ch : Z — k induces a map Z* — us. We
let

(1.10) §(G) € HNT, po) = k* /™2

be the image of the invariant d(G). This is trivial when char(k) = 2, and can
be computed in general as follows. Let K be the étale k-algebra of dimension 2
corresponding to d(G). Write K = k + ka, and suppose « satisfies the non-zero
quadratic polynomial aa? + ba + ¢ = 0 over k. Then §(G) = b? — 4ac (mod k*?).

2. AUTOMORPHISMS OF G

Let f be an automorphism of G over ks. Let ¢(f) be the corresponding auto-
morphism of the based root datum ¥, and let Lie(f) be the corresponding auto-
morphism of the Lie algebra g over ks. The former depends only on the image of f
in Outy, (G); similarly we have the following:

Lemma 2.1. The automorphism AP Lie(f) of A'°Pg depends only on the image
of f in Outy, (G).

Proof. The action of inner automorphisms on A!°Pg gives a homomorphism G*¢ —
G,» of algebraic groups over k. This is trivial as G is connected with trivial
center. O
Proposition 2.2.

ch(det(6(f))) = det(Lie(f)) € ch(Z*) = ia(k).

Proof. Let {T, B, X, : @« € A*} be a pinning of G over kg, where X,, is a basis of
the one-dimensional root space g,. By the previous lemma, we may assume that
the automorphism f preserves the pinning (cf. [Sp], pg. 10). Then Lie(f) preserves
a Chevalley basis of g over ks (cf. [B-T], pg. 53-54).

Let t be the Lie algebra of T, and n* the nilpotent Lie algebra spanned by the
positive and negative roots with respect to B. Then Lie(f) preserves the triangular
decomposition

g=tenT on.
Furthermore,
det(Lie(f)]) = ch(det(6(f)))
ast = X(T)®k. Since the permutation induced by Lie(f) on the positive elements
of the Chevalley basis is the same as that on the negative elements, we have

det(Lie(f)|n") - det(Lie(f)n™) = 1.
This completes the proof. O
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Recall that the invariant differential forms of top degree on G over an extension
L of k form a one-dimensional L-vector space, which is the dual of AtPg;. We will
refer to an element of this space as an invariant differential on G.

Corollary 2.3. If w is an invariant differential on G over ks, and f is any auto-
morphism of G over kg, then f*(w) = ch(det(¢¥(f)))w.

3. THE SpLIT GROUP

Let Gg be a split group over k, whose root datum is isomorphic to ¥. Such a
group exists by [B-T], and we may choose an isomorphism
(3.1) v:G— Gy

defined over k.
For each o € T', the element

(3-2) flo)=¢ " oa(yp)

defines an automorphism of G over ks. The map f : I' — Auty, (G) is a 1-
cocycle, whose class in H(T', Auty_(G)) is independent of the choice of ¢. The
map o — ¥(f(0)) is then a 1-cocycle with values in Aut(¥). Composing this with
(3.3) det : Aut(¥) — 7%,

we get a group homomorphism

(3.4) r— 7%,
o — det((f(0))).

Lemma 3.5.

det(yp(f(0))) = d(G)(o) € Z".

Proof. By (1.8) and Lemma 2.1, it suffices to prove this for G quasi-split over k.
Hence we can assume that T' and B are defined over k. Let Ty C By be a maximal
torus of Gy contained in a Borel subgroup, with Ty and By defined over k. Twisting
by an inner automorphism of Gy if necessary, we can suppose that the isomorphism
¢ in (3.1) maps T and B to Ty and By respectively. Then using ¢, we can identify
G(ks), T(ks) and B(ks) with Go(ks), To(ks) and Bo(ks) respectively. Now suppose
that G(k) is the fixed-point set of the I'-action g — o(g) on G(ks) = Go(ks). Then
Go(ks) is the fixed-point set of the T'-action g — f(0)(c(g)) = p(o)(g). Now the
action of ¥(p(0)) on X*(T) = X*(T}) is trivial, since Gy is split. Hence, for any
X € X*(T), we have

Y(f(0))x = v(o) " p(a)(f(o))x
= ¢(o) P (p(o))x
=¢(0)'x.

Hence the action of 1(f(0)) on X*(T) is the same as that of ¢)(c)~!. This implies
the result. O

Proposition 3.6. Let wy be an invariant differential on Gy over k, and let w =
©*(wo) on G over ks. Then for all o €T,

o(w) =6(G)(0) -w
where 6(G) is the character of T with values in us(k) defined by (1.10).
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Proof. We have o(w) = ch(det(¥(f(0))))w by Corollary 2.3. By the previous
lemma,

det((f(0))) = d(G)(o) € Z*
So we have
ch(det(y(f(0))) = 8(G)(0) € K /k*2.
O

Corollary 3.7. Let D € k> /k*? represent the class of 6(G). Then w/\/D is an
imwvariant differential on G over k.

Proof. Indeed, o(v/D) = §(G)(0)V/D, so the differential w/+/D is fixed by I'. Note
that when char(k) = 2, D is in k%% and so VD € k*. O

4. THE ARTIN CONDUCTOR OF M

We now assume that k is a local, non-archimedean field, with ring of integers A
and uniformizer 7. We let ¢ = #(A/mA), and normalize the valuation on k* so that
v(m) = 1, and the absolute value so that |a| = ¢~¥(®). We adopt the convention
that |0 = 0.

Let V be a continuous finite dimensional complex representation of I'. We define
the Artin conductor a(V) > 0 in Z as follows. Let L be the fixed field of the
kernel of the map I' — GL(V); let A = Gal(L/k), which is a finite group, and let

ADAyDA; D ..

be the decreasing ramification filtration of A. Then Ay = I is the inertia subgroup
and A; the wild inertia subgroup. Let g; = #A;. Then [Se3, pg. 99-101],

(4.1) a(V) =" Laim(v/va.

i>0
We have a(V) = dim(V/V1)+b(V), where b(V) is a measure of the wild ramification
of V.

If V is a quadratic character x : I' — Z*, we can refine the integer a(V) slightly,
as follows. Let K be the étale k-algebra of dimension 2 corresponding to x, and let
Ag C K be the subring of elements integral over A. Then A is a free A-module
of rank 2. Writing Ax = A + A, we may define D = D(a) = Tr(a)? — 4N(a) in
A. Then D is non-zero, and [M-H]

(4.2) a(V) = a(x) = v(D).

If Ak = A+ Ad/, then D' = D (mod A*?). Hence we get a class Dy in A/A*? of
valuation a(V); this is the desired refinement.
We define the conductor of the motive M = P, Va(1—d) of G by the formula:

(4.3) a(M) = "(2d — 1)a(Va).
d>1
Then a(M) > 0, with equality if M = M7 is unramified.

Proposition 4.4. The conductor a(M) of M and the conductor a(detE) of the
quadratic character det(E) = d(G) : T — Z* satisfy

a(M) = a(detE) (mod 2).
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Proof. Clearly,
a(M) = "a(Va) = a(V) (mod 2).

d>1

By Proposition 1.6, V = E as Q[I'-modules, so a(V) = a(E). Finally, since E is
defined over R, a result of Serre [Se2, pg. 698] gives the congruence

a(E) = a(detE) (mod 2).
O

This result allows us to refine the conductor a(M) as in (4.2). Since detE is a
quadratic character, there is a class D in A/A*? with

v(D) = a(detE).
Moreover, we have
o(VD) =48(G)(o) - VD
for all o € ', where §(G) : I' — pua(k). We define the refinement:
(4.5) Dy = DrpoM)—aldetE) ¢ g /42,
Corollary 4.6. The class Dy in AJA*? satisfies
v(Dyr) = a(M), the Artin conductor of M, and

o(v/Dar) = 8(G)(0) - v/Dar

forallo el.

5. THE HAAR MEASURE |wgl|

We continue to assume that k is local and non-archimedean. Let Gy be the split
form of G over k, and let G, be a Chevalley model for Gy over A. Let wy be an
invariant differential on G, over A with non-zero reduction (mod 7). Then wy is
determined up to multiplication by an element of A*.

Let ¢ : G — Gy be an isomorphism over kg, and define

(5.1) w = ¢"(wo)

on G over ks. By the above remarks, and Corollary 2.3, w is determined up to
multiplication by A*, independent of the choice of ¢.

Let Dy in A/A*? be defined by (4.5). By Proposition 3.6, and Corollaries 3.7
and 4.6, the invariant differential

(5.2) we =w// Dy = ¢"(wo)/vV/Dum

on G is defined over k, and is well-determined up to multiplication by an element
of A*.
Since |a| =1 for all @ € A*, the Haar measure

(5.3) lwe| on G(k)

is well-defined, independent of the choices of wy and . This completes the definition
of |wg|.
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6. PROPERTIES OF |wg|

We have the following properties of the Haar measure |wg| on G(k), when we
vary the group G or the local field k.

Proposition 6.1. 1) If G = Gy x Ga, then |wg| = |wa,| ® |wa,| on G(k) =
Gl(k) X Gg(k)

2) If o : G — G’ is an inner twisting, defined over ks, then ¢*lwa/| = |wa| on
G(k).
3)If f: G — G is a central isogeny, defined over k, and Ny is the rank of the
finite flat group scheme kerf, then

fflwar| = [Ny| - |wg| on G(k).

4) If K is a finite separable extension of k, Gk is a connected reductive group
over K, and G = Resk (G ) is the restriction of scalars to k, then |wg |k = |wgl
on G (K) =G(k).

Remarks. In part (2), the pull-back ¢* on Haar measures is defined in [L, pg. 69]. In
part (3), the groups G(k) and G (k') are locally isomorphic provided Ny is invertible
in k. If Ny =01in k, we define f*|we/| to be zero, so that (3) holds trivially.

Proof. Parts (1) and (2) are simple consequences of the definitions, as Mg = Mg, ®
Mg, in (1) and Mg = Mg in (2).

For part (3), the equality of motives allows one to reduce to the case when G
and G’ are split over k. Let T C B C G be chosen over k, and let 77 = f(T) C
B’ = f(B) in G'. The central isogeny f then induces an injection:

Xo(T) — Xo(T")

which maps A, to A, and has cokernel of order Ny.

By [Sp, pg. 7], we can define the groups G and G’, as well as the central
isogeny f over Z: fz : Gz — G, from the isogeny of the root data. Then
Lie(fz) is an isomorphism on the non-zero root spaces, and induces an injection
Lie(Tz) — Lie(Ty) with kernel of order Ny. If wg and wgr are bases for the
invariant differential over Z, we then have

f;(wG/) = :|:Nf en
The result then follows by specializing to k.
For part (4), we have
Mg = Indy, (Mg,)
where I'c is the subgroup of I' fixing K. Let g/, be the sign character of the
permutation representation of I' on I'/T'x = Hom(K, k;); let Dy, € AJAXZ be
associated to the quadratic character € /i, and let f /) be the degree of the residue

class extension in K/k.
If wi is an invariant differential on G over K, then the exterior product

g
/\UEF/FK Wi

(/D)@

is an invariant differential on G defined over k. Note that G(ks) = [[,er /1 G% (Ks)-
Now, suppose {Xi,...,X,,} is a basis of gk, the Lie algebra of Gk, such that
wr (X1 AN AX,) =1. Let {01,...,0,} be a basis of the free A-module Ak, the ring

(6.2) w=
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of integers of K. Then {0;X; : 1 <i<r,1<j <n} is a basis of g, the Lie algebra
of G, and by a direct computation, one sees that:

dim(Gg)

N wk(\ 6:X;) =Dy
o .7

Hence, |wi |k = |w| as Haar measures on G (K) = G(k). This is compatible with
scaling wi by B € K*, as |8k = [Ng/x(3)|.

Now write Mg = @ Uy(1 —d) and M = @ Vy(1 — d), with V; = Ind(Uy). By
[Se3, pg. 101],

(6.3) a(Vy) = fK/k ~a(Ug) + dimUyg - a(aK/k).
Since Y (2d — 1)dimUy = dim(G ), we have
(6.4) a(M) = fK/k ca(Mg) + dim(Gg) - a(EK/k).

The corresponding result for the refinements Dy, of a(My) in Ax/A%? and
Dy of a(M) in A/A*? is then

dim(G

Now if G k is a split form of Gk, ¢x : Gx — Go K an isomorphism over ki,
and wy x an invariant differential on Gy g with good reduction, then by definition

_ Pi(wo k)

wag .
Dy

K

As observed above, the form on G over k which gives the same Haar measure on
G(k) = Gg(K) as wg is given by

e Akl )
\/NK/k(DMK) : D?;;TILC(GK) Dt
This completes the proof. O

7. COMPARISON WITH BRUHAT-TITS THEORY

First, we assume that G is quasi-split over k. In [Gr, §4], a Haar measure |w|
was defined on G(k). The definition used the theory of special points in the building
of G, and models over A. If G is split, then |w};| = |wg| by definition. It seems
likely that this is true in general. The key case, when G is absolutely quasi-simple
and simply connected, was treated by Prasad [P]. We deduce what we can from
his results here.

Since the Haar measure |wg;| is also defined using an invariant differential wg; on
G over k, we have

(7.1) lwal = Aclwal
with Ag in the subgroup ¢” of RX.

Proposition 7.2. We have A\g = 1 if G is unramified over k. Furthermore,
1) AGy1xGy = AG1AG, -
2) A\¢ = Aa if G and G’ are separably isogeneous over k.
3) Ak = Ac if G = Resg(Gr).
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Proof. If G is unramified, a(M) = 0, and Dy is in A*/A*%. Also, w, is defined
using a hyperspecial point in the building of G, which is a special vertex in the
building over the maximal unramified extension in ks. Hence wg = ¢*(wo)/vDu
is a unit multiple of wy;, and Ag = 1.

Properties (1) — (4) of Proposition 6.1 hold for |wg,|, which implies properties
(1) — (3) in the proposition. |

Corollary 7.3. If char(k) =0, then |wg| = |wg|.

If char(k) = p, then |wg| = |wg| if G is a torus with Galois splitting field of
degree prime to p, or if G is semi-simple with fundamental group of order prime to
.

Proof. If the characteristic of k is zero, any central isogeny is separable. By Propo-
sition 7.2, it suffices to prove the equality |wg| = |wg| for G semi-simple, simply-
connected, and for G a torus. Indeed, G is isogeneous to the product of the simply-
connected cover of its derived group, and its connected center.

If G is semi-simple and simply-connected, then G is isomorphic to a product
[I Resg,/1(Gi), with each G; absolutely quasi-simple over K;. Again by Proposi-
tion 7.2, it suffices to prove the equality for G absolutely quasi-simple. This is the
content of Theorem 1.6 of Prasad [P].

If G is a torus, there is an integer n such that G™ x [] Resg, 1 G,, is isogeneous
to [[ Resk, /G by a Theorem of Ono [O, Thm 1.5.1, pg. 114]. Since the result is
true for G,,, it is true for G™. So A¢, = 1; since A is positive, we also have: A\g = 1.

If the characteristic of k is p, and G is a torus with Galois splitting field of degree
prime to p, then the same Theorem of Ono alluded to above says that the isogeny
from G™ x [] Resg,/kGm to [] Resg, /Gm can be chosen to be separable. Hence
the same argument as above works to give the result.

If G is semi-simple with fundamental group of order prime to p, the isogeny
G — G from the simply-connected cover is separable. So it suffices to check the
result for G. By the above argument, we may assume that G = G is absolutely
quasi-simple, where the result follows from Prasad [P]. O

Now if G is not necessarily quasi-split, choose an inner twisting ¢ : G — Ggs,
where Gy, is the quasi-split inner form of G. In [Gr], the measure |wg| on G(k)
was defined to be ¢*|wg, [ Then we have

Corollary 7.4. If char(k) = 0, then |wg| = |wg|. Furthermore, let J C G(k) be
an Twahori subgroup. Then,

/ we| = N - det(1 — Fug|E(1))
J

with N = >"(d — 1)dimV}, F the geometric Frobenius in T'/I with eigenvalue q~!
on Q(1), and wg the element of the Weyl group W' associated to the inner twisting
¢ : G — Ggs over the mazimal unramified extension of k.

Proof. This was established for |wg;| in [Gr, §4]. Note that if G = G is quasi-split,
then wg = 1. O
8. THE SPACE OF HAAR MEASURES

Let Pg be the one-dimensional real vector space of invariant measures on G(k),
and let Pg be the cone of positive Haar measures in Pg. We define, from |wg|, the
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following element of Pér :

(8.1) je = |wal - g eMD/2,

Let ¢ : G — G’ be an isomorphism over k;. We define an R-linear map
(8.2) ¢*: Por — Pg

as follows. Let y/ be an element of Pg/, and write p/ = ¢|w’|, for some invariant
differential w’ on G’ over k, and ¢ € R. Let d € k*/k*? be the class of the map:

0(G) - 8(G") : T — pa(k).
It follows from Proposition 3.6 that the differential
w=p"(W)/Vd
on G is defined over k. We then define
(8.3) () = clo] - 1d¥ € Po.
This is independent of the choice of w’ and d, and we have the following result.

Proposition 8.4. The map ¢* : Py — Pg is an R-linear tsomorphism, which
maps Pg, to PZ. Furthermore, ¢*(uc') = pa-

The isomorphism Pg = Pg is independent of the choice of the isomorphism
0: G — G over ks.

Proof. All the statements will follow once we show that ¢*(ug’) = pe. This identity
follows from a comparison of G and G’ with the split group Gg over ks. Indeed,
He, = |wol, and for ¢ : G — Gy, we have

pi = |welg~ /2

= |¢*(wo)/v/Dumgl - [Dmg|?

= " (ay)-

9. GLOBAL MEASURE

In this section, we assume that k is a global field. Let w be a non-zero invariant
differential on G over k, and let |w|, be the associated Haar measure on G(k,), for
each place v. We define the global conductor f(M) of the motive M of G by the
formula:

(9.1) fan = T g,
v finite

This product is finite because for almost all v, G is unramified over k, and
a(M/k,) = 0. The conductor f(M) is an integer > 1. If G is an inner form of a
split group over k, then f(M) = 1.

If v is finite, let |wg,| be the Haar measure on G(k,) defined in §5. If v is
archimedean, let |wg,| be the measure on G(k,) defined in [Gr, §11]. In the
archimedean case, we can also define |wg,| as follows. Let Gy be the split form
of G over k,, and Go 7 the Chevalley model for Gy over Z. Let wg be an invariant
differential on G which generates the free Z-module Hom (AP Lie(Go z),Z). Then
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wp is determined up to sign. If ¢ : G — Gq is an isomorphism over k,, and K
(respectively Kj) is the maximal compact subgroup of G (respectively Gy), then,

_ ©* (wo)
(9.2) WGy = L Gim(G/R)—dim(Go/ Ko)

is defined on G over k,, and is determined up to sign. The Haar measure |wg, | is
thus well-defined.

Proposition 9.3. We have |wl|, = |wg,| for almost all v, and the following product
formula holds:
|wG | 1. X
H ol M)z in RY.

Proof. For almost all v, G is unramified over k,, and w generates the A,-module
of invariant differentials on the reductive model G over A,. At these places, |wl|, =

|va|'

For v finite, let ug, = |wg,|q*M/*)/2 as in (8.1). For v archimedean, let
te, = lwa,|. Then the product formula is equivalent to the statement
(9.4) EG. 1.

|wlo

This is independent of the choice of w # 0, by the usual product formula: [], ||, =
1, for a € k*.

We first prove (9.4) for G = Gy split over k. In this case, we take wp to generate
the Chevalley differentials over Z; then wy is determined up to sign, and |wgl, =
lwe, | = pe, for all v. Hence (9.4) holds, because all the terms are 1.

Now let G be arbitrary, and choose an isomorphism ¢ : G — Gy with the split
form over ks. Let d € k*/k*? be in the class of §(G), let wy be as above, and let
w = ¢*(wp)/Vd over k. Then we have, for all v

KG, 05 HMGo)w _ | 413
= |d|s - = |d|3-
|w|U |w0|v
1
Since [[, |d|3 =1, the proposition is proved. |

Remarks. This gives a proof of Theorem 11.5 in [Gr, §11], when k is a number
field. Indeed, we have shown in §7 that |wg| = |wg|, where |wy| is the Haar
measure defined in [Gr]. Also the constant e(M) in the functional equation of the
L-function of M is given by the formula:

1

9.5) (M) = Ik

where dj is the discriminant of k over Q. It also gives a proof of Theorem 11.5
when k is a function field, assuming that G has finite fundamental group of order
prime to char(k), and putting |dx| = ¢?9~2 as in [P].

10. MASS FORMULAE

We can use Proposition 9.3 to derive a number of explicit mass formulae. Let k
be a totally real number field, and let G be a connected, reductive group over k,
with G(k ® R) =[], G(ky) compact. Recall that M = P>, Va(1 — d), and let

=[[Z.(,5) = [ A(Va, s+ 1 - d)

d>1
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be the global L-function of the motive M, so that
(10.1) A(M,s) = Loo(M, s)L(M, s)

where L(M, s) is the usual Artin L-function of M. We have Artin’s functional
equation [T, pg. 18-19]

(10.2) A(M,s) =e(M,s)A(MY,1—s)
with
(10'3) E(M,S) _ (ldk|dim(G)f(M))§—s

In particular, taking A(M) = A(M,0), we find that

dim(G)

(10.4) AM) = |di| =5 f(M)ZA(MY(1)).

Now let A be the ring of adeles of k, and let K = G(k @ R) x []
open compact subgroup of G(A). The double coset space

S = GUN\G(A)/K
is then finite. If o € 3, and g € G(A) represents the class of o, then
I, =G(k)NgKg™*

K, be an

v finite

is a finite arithmetic subgroup of G(k), of order w,. We define
1
10.5 M = —
(10.5) assk ; o

where the sum is taken over all o in the double coset space X.
If uk is the unique Haar measure on the locally compact group G(A) giving the
open compact subgroup K volume 1, then we also have

(10.6) Massg z/ JE -
G(k)\G(A)

Proposition 10.7. Assume that G is quasi-split over k,, for all finite places v, and
that K, = G°(A,) C G(k,) is the special open compact subgroup defined in [Gr,
§4]. Then,
1
Masskg = 7(G) - o0 L(M)
where 7(G) is the Tamagawa number of G, n is the rank of the complex Lie group
G(k®C), and L(M) = L(M,0).

Remarks. Note that if [ is the rank of G over ks and d is the degree of k over Q,
then n = Id.

Proof. Let w # 0 be an invariant differential on G over k, and |w|, the associated
Haar measure on G(k,). For v finite, if G is unramified over k,,, with reductive
model G over A,, and w has good reduction (mod 7,), then,

/ L,(MY(1))|wl, = 1.
G(Aq)

Hence the product

® L,(MY(1))|w|o
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defines a measure on G(A). By definition, the Tamagawa measure |w|, is given by

(10.8) |w|a = ®v LU(Mv(l))|w|v '
|| A(M Y (1))

Note that this is well-defined since the fact that G(k ® R) is compact implies that
A(MVY(1)) is finite. Also, it is independent of the choice of w # 0. The Tamagawa
number 7(G) is then defined by

(10.9) @) = / wla
G(k)\G(A)

On the other hand, the Haar measure px on G(A) is the product
(10.10) pr = poger) @ [ lwe,|Lo(MY (1))
v finite

where LG (rgr) is the measure giving G(k ® R) volume 1. Indeed, by Corollary 7.3,
we have |wg,| = |wg, |, and the latter measure is constructed such that

/ Wl [Lo(MY (1)) = 1.
Ky
By [Gr, §7], we have

(1011) HG(k®R) * 2" H LU(M)ev(G) = H |wGu|Lv(Mv(1))'
v|oo v|oo

In fact, J[,j €0(G) = 1 as G is quasi-split at all finite places of k (cf. [K]).
Hence,

(10.12) pr = 27" [ Lo(M) 7 [ lwa, [Lo(MY(1)).
v|oo v

By Proposition 9.3, we also have the formula

11 we, [Lo (MY (1))

Wl Loy S0

v

Hence, we have

e =27 T Lo(M) ™" - QMY (1) e =5 £(M) 3 ]
v|oo
=27 [T Lo ()™ - Aol
v|oco

=2""L(M)|wl|a
and the mass formula follows from (10.9). |

Even if G is not quasi-split at all finite places v, one can obtain an explicit mass
formula, by replacing K, at the bad primes by an Iwahori subgroup J, C G(k,),
and using Corollary 7.4. We leave the details to the reader.
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