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HAAR MEASURE AND THE ARTIN CONDUCTOR

BENEDICT H. GROSS AND WEE TECK GAN

Abstract. Let G be a connected reductive group, defined over a local, non-
archimedean field k. The group G(k) is locally compact and unimodular. In
On the motive of a reductive group, Invent. Math. 130 (1997), by B. H.
Gross, a Haar measure |ωG| was defined on G(k), using the theory of Bruhat
and Tits. In this note, we give another construction of the measure |ωG|, using
the Artin conductor of the motive M of G over k. The equivalence of the two
constructions is deduced from a result of G. Prasad.

1. The Root Datum and Motive of G

In this section, k is an arbitrary field and G is a connected reductive group over
k. We let k be an algebraic closure of k, ks the separable closure of k in k, and
Γ = Gal(ks/k).

Let T ⊂ B ⊂ G be a maximal torus, contained in a Borel subgroup, defined over
ks. Let Ψ = Ψ(G,B, T ) be the based root datum defined by this choice. We recall
(cf. [Sp], pg. 3-12) that:

Ψ = (X•(T ),∆•(T,B), X•(T ),∆•(T,B)) ,(1.1)

with X•(T ) and X•(T ) the character and cocharacter groups of T respectively,
and ∆• and ∆• the simple roots and coroots determined by B respectively. Let
W = NG(T )/T be the Weyl group of Ψ. The finite group W acts as automorphisms
of X•(T ), and is generated by the reflections:

sα(x) = x− 〈x, α∨〉α(1.2)

for α ∈ ∆•.
The Galois group Γ acts as automorphisms of Ψ, i.e. as automorphisms of the

group X•(T ) preserving the finite set ∆•, as follows. If σ ∈ Γ, then we can find
g ∈ G(ks) such that

Int(g)(σT ) = gσ(T )g−1 = T,

Int(g)(σB) = gσ(B)g−1 = B,

with g well-defined up to left multiplication by T (ks). Hence it induces a well-
defined automorphism

ψ(σ) : X•(T ) −→ X•(T )

preserving ∆•. Hence we get a group homomorphism ψ : Γ −→ Aut(Ψ). Via ψ, Γ
acts on Aut(Ψ) by inner automorphisms.
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Similarly, if f : G −→ G is any automorphism of G over ks, it induces an
automorphism ψ(f) of Ψ, which depends only on the image of f in the quotient
group Outks(G) of outer automorphisms. The resulting map Outks(G) −→ Aut(Ψ)
is an isomorphism which respects the respective Galois actions on the two groups
(cf. [Sp], pg. 10).

The Galois group Γ also acts on W , via the formula

σ(sα) = sσ(α)(1.3)

and the semi-direct product W o Γ acts on the rational vector space

E = X•(T )⊗Q.(1.4)

Let R = Sym•(E)W , which is a graded Q[Γ]-module. Let R+ be the ideal of
elements of positive degree in R, and define

V = R+/R
2
+ =

⊕
d≥1

Vd.(1.5)

This is a graded Q[Γ]-module, and Chevalley proved that dim(V ) = dim(E) (cf.
[Ch]). Steinberg extended the proof to show that E and V are isomorphic Γ-
modules (cf. [St], pg. 22). We sketch a proof of this result that does not involve the
classification of irreducible root systems.

Proposition 1.6. The Q[Γ]-modules E and V are isomorphic.

Proof. By the criterion in [Se, pg. 104], it suffices to show that for all σ ∈ Γ, the
fixed spaces Eσ and V σ have the same dimension.

For any graded Γ-module A =
⊕
Am, we define the Poincare series of σ by

P (A, σ)(t) =
∑

tr(σ|Am)tm.

Then P (A ⊗ B) = P (A)P (B). Steinberg showed that there is an isomorphism of
graded Γ-modules:

S•(E) ∼= S•(⊕Vd)⊗A.

Here A is finite dimensional, with basis {bw}w∈W , and Γ-action given by:

σ(bw) = bσ(w).

The degree of bw is the length l(w) of w, with respect to the generators sα furnished
by ∆•. This isomorphism yields the following identity of Poincare series:

det(1− σt|E)−1 =
∏
d≥1

det(1− σtd|Vd)−1 ·
∑

w∈W σ

tl(w).

In particular, the quotient ∏
d≥1 det(1− σtd|Vd)
det(1− σt|E)

is a polynomial P (t), with P (1) 6= 0. Hence dim(V σ) =
∑

d≥1 dim(V σ
d ) = dim(Eσ),

as required.

As in [Gr], we define the motive M of G as the Artin-Tate motive

M =
⊕
d≥1

Vd(1− d)(1.7)
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over k. This depends only on the isogeny class of the quasi-split inner form Gqs of G
over k. Indeed, if Tqs is a maximal torus contained in a Borel subgroup Bqs ⊂ Gqs

over k, then,

E ∼= X•(Tqs)⊗Q(1.8)

as a W o Γ-module (cf. [Sp], pg. 12).
We also define the invariant

d(G) ∈ Hom(Γ,Z×) = H1(Γ,Z×)(1.9)

as the character of Γ on ∧topX•(T ), or equivalently as the representation det(E)
of Γ. This is analogous to, but simpler than Kottwitz’s invariant e(G) ∈ H2(Γ, µ2)
(cf. [K]).

The canonical ring homomorphism ch : Z −→ k induces a map Z× −→ µ2. We
let

δ(G) ∈ H1(Γ, µ2) = k×/k×2(1.10)

be the image of the invariant d(G). This is trivial when char(k) = 2, and can
be computed in general as follows. Let K be the étale k-algebra of dimension 2
corresponding to d(G). Write K = k + kα, and suppose α satisfies the non-zero
quadratic polynomial aα2 + bα+ c = 0 over k. Then δ(G) ≡ b2 − 4ac (mod k×2).

2. Automorphisms of G

Let f be an automorphism of G over ks. Let ψ(f) be the corresponding auto-
morphism of the based root datum Ψ, and let Lie(f) be the corresponding auto-
morphism of the Lie algebra g over ks. The former depends only on the image of f
in Outks(G); similarly we have the following:

Lemma 2.1. The automorphism ∧topLie(f) of ∧topg depends only on the image
of f in Outks(G).

Proof. The action of inner automorphisms on ∧topg gives a homomorphism Gad −→
Gm of algebraic groups over k. This is trivial as Gad is connected with trivial
center.
Proposition 2.2.

ch(det(ψ(f))) = det(Lie(f)) ∈ ch(Z×) = µ2(k).

Proof. Let {T,B,Xα : α ∈ ∆•} be a pinning of G over ks, where Xα is a basis of
the one-dimensional root space gα. By the previous lemma, we may assume that
the automorphism f preserves the pinning (cf. [Sp], pg. 10). Then Lie(f) preserves
a Chevalley basis of g over ks (cf. [B-T], pg. 53-54).

Let t be the Lie algebra of T , and n± the nilpotent Lie algebra spanned by the
positive and negative roots with respect to B. Then Lie(f) preserves the triangular
decomposition

g = t⊕ n+ ⊕ n−.
Furthermore,

det(Lie(f)|t) = ch(det(ψ(f)))
as t = X•(T )⊗k. Since the permutation induced by Lie(f) on the positive elements
of the Chevalley basis is the same as that on the negative elements, we have

det(Lie(f)|n+) · det(Lie(f)|n−) = 1.

This completes the proof.
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Recall that the invariant differential forms of top degree on G over an extension
L of k form a one-dimensional L-vector space, which is the dual of ∧topgL. We will
refer to an element of this space as an invariant differential on G.

Corollary 2.3. If ω is an invariant differential on G over ks, and f is any auto-
morphism of G over ks, then f∗(ω) = ch(det(ψ(f)))ω.

3. The Split Group

Let G0 be a split group over k, whose root datum is isomorphic to Ψ. Such a
group exists by [B-T], and we may choose an isomorphism

ϕ : G −→ G0(3.1)

defined over ks.
For each σ ∈ Γ, the element

f(σ) = ϕ−1 ◦ σ(ϕ)(3.2)

defines an automorphism of G over ks. The map f : Γ −→ Autks(G) is a 1-
cocycle, whose class in H1(Γ, Autks(G)) is independent of the choice of ϕ. The
map σ 7→ ψ(f(σ)) is then a 1-cocycle with values in Aut(Ψ). Composing this with

det : Aut(Ψ) −→ Z×,(3.3)

we get a group homomorphism

Γ −→ Z×,(3.4)

σ 7→ det(ψ(f(σ))).
Lemma 3.5.

det(ψ(f(σ))) = d(G)(σ) ∈ Z×.
Proof. By (1.8) and Lemma 2.1, it suffices to prove this for G quasi-split over k.
Hence we can assume that T and B are defined over k. Let T0 ⊂ B0 be a maximal
torus of G0 contained in a Borel subgroup, with T0 and B0 defined over k. Twisting
by an inner automorphism of G0 if necessary, we can suppose that the isomorphism
ϕ in (3.1) maps T and B to T0 and B0 respectively. Then using ϕ, we can identify
G(ks), T (ks) and B(ks) with G0(ks), T0(ks) and B0(ks) respectively. Now suppose
that G(k) is the fixed-point set of the Γ-action g 7→ σ(g) on G(ks) = G0(ks). Then
G0(ks) is the fixed-point set of the Γ-action g 7→ f(σ)(σ(g)) = ρ(σ)(g). Now the
action of ψ(ρ(σ)) on X•(T ) = X•(T0) is trivial, since G0 is split. Hence, for any
χ ∈ X•(T ), we have

ψ(f(σ))χ = ψ(σ)−1ψ(σ)ψ(f(σ))χ

= ψ(σ)−1ψ(ρ(σ))χ

= ψ(σ)−1χ.

Hence the action of ψ(f(σ)) on X•(T ) is the same as that of ψ(σ)−1. This implies
the result.

Proposition 3.6. Let ω0 be an invariant differential on G0 over k, and let ω =
ϕ∗(ω0) on G over ks. Then for all σ ∈ Γ,

σ(ω) = δ(G)(σ) · ω
where δ(G) is the character of Γ with values in µ2(k) defined by (1.10).
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Proof. We have σ(ω) = ch(det(ψ(f(σ))))ω by Corollary 2.3. By the previous
lemma,

det(ψ(f(σ))) = d(G)(σ) ∈ Z×

So we have
ch(det(ψ(f(σ))) = δ(G)(σ) ∈ k×/k×2.

Corollary 3.7. Let D ∈ k×/k×2 represent the class of δ(G). Then ω/
√
D is an

invariant differential on G over k.

Proof. Indeed, σ(
√
D) = δ(G)(σ)

√
D, so the differential ω/

√
D is fixed by Γ. Note

that when char(k) = 2, D is in k×2 and so
√
D ∈ k×.

4. The Artin Conductor of M

We now assume that k is a local, non-archimedean field, with ring of integers A
and uniformizer π. We let q = #(A/πA), and normalize the valuation on k× so that
v(π) = 1, and the absolute value so that |α| = q−v(α). We adopt the convention
that |0| = 0.

Let V be a continuous finite dimensional complex representation of Γ. We define
the Artin conductor a(V ) ≥ 0 in Z as follows. Let L be the fixed field of the
kernel of the map Γ −→ GL(V ); let ∆ = Gal(L/k), which is a finite group, and let

∆ ⊃ ∆0 ⊃ ∆1 ⊃ ...

be the decreasing ramification filtration of ∆. Then ∆0 = I is the inertia subgroup
and ∆1 the wild inertia subgroup. Let gi = #∆i. Then [Se3, pg. 99-101],

a(V ) =
∑
i≥0

gi

g0
dim(V/V ∆i).(4.1)

We have a(V ) = dim(V/V I)+b(V ), where b(V ) is a measure of the wild ramification
of V .

If V is a quadratic character χ : Γ −→ Z×, we can refine the integer a(V ) slightly,
as follows. Let K be the étale k-algebra of dimension 2 corresponding to χ, and let
AK ⊂ K be the subring of elements integral over A. Then AK is a free A-module
of rank 2. Writing AK = A+ Aα, we may define D = D(α) = Tr(α)2 − 4N(α) in
A. Then D is non-zero, and [M-H]

a(V ) = a(χ) = v(D).(4.2)

If AK = A+ Aα′, then D′ ≡ D (modA×2). Hence we get a class DV in A/A×2 of
valuation a(V ); this is the desired refinement.

We define the conductor of the motiveM =
⊕

d≥1 Vd(1−d) of G by the formula:

a(M) =
∑
d≥1

(2d− 1)a(Vd).(4.3)

Then a(M) ≥ 0, with equality if M = M I is unramified.

Proposition 4.4. The conductor a(M) of M and the conductor a(detE) of the
quadratic character det(E) = d(G) : Γ −→ Z× satisfy

a(M) ≡ a(detE) (mod 2).
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Proof. Clearly,

a(M) ≡
∑
d≥1

a(Vd) = a(V ) (mod 2).

By Proposition 1.6, V ∼= E as Q[Γ]-modules, so a(V ) = a(E). Finally, since E is
defined over R, a result of Serre [Se2, pg. 698] gives the congruence

a(E) ≡ a(detE) (mod 2).

This result allows us to refine the conductor a(M) as in (4.2). Since detE is a
quadratic character, there is a class D in A/A×2 with

v(D) = a(detE).

Moreover, we have

σ(
√
D) = δ(G)(σ) ·

√
D

for all σ ∈ Γ, where δ(G) : Γ −→ µ2(k). We define the refinement:

DM = Dπa(M)−a(detE) ∈ A/A×2.(4.5)

Corollary 4.6. The class DM in A/A×2 satisfies

v(DM ) = a(M), the Artin conductor of M , and

σ(
√
DM ) = δ(G)(σ) ·

√
DM

for all σ ∈ Γ.

5. The Haar Measure |ωG|
We continue to assume that k is local and non-archimedean. Let G0 be the split

form of G over k, and let G0 be a Chevalley model for G0 over A. Let ω0 be an
invariant differential on G0 over A with non-zero reduction (mod π). Then ω0 is
determined up to multiplication by an element of A×.

Let ϕ : G −→ G0 be an isomorphism over ks, and define

ω = ϕ∗(ω0)(5.1)

on G over ks. By the above remarks, and Corollary 2.3, ω is determined up to
multiplication by A×, independent of the choice of ϕ.

Let DM in A/A×2 be defined by (4.5). By Proposition 3.6, and Corollaries 3.7
and 4.6, the invariant differential

ωG = ω/
√
DM = ϕ∗(ω0)/

√
DM(5.2)

on G is defined over k, and is well-determined up to multiplication by an element
of A×.

Since |α| = 1 for all α ∈ A×, the Haar measure

|ωG| on G(k)(5.3)

is well-defined, independent of the choices of ω0 and ϕ. This completes the definition
of |ωG|.
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6. Properties of |ωG|
We have the following properties of the Haar measure |ωG| on G(k), when we

vary the group G or the local field k.

Proposition 6.1. 1) If G = G1 × G2, then |ωG| = |ωG1 | ⊗ |ωG2 | on G(k) =
G1(k)×G2(k).

2) If ϕ : G −→ G′ is an inner twisting, defined over ks, then ϕ∗|ωG′ | = |ωG| on
G(k).

3) If f : G −→ G′ is a central isogeny, defined over k, and Nf is the rank of the
finite flat group scheme kerf , then

f∗|ωG′ | = |Nf | · |ωG| on G(k).

4) If K is a finite separable extension of k, GK is a connected reductive group
over K, and G = ResK/k(GK) is the restriction of scalars to k, then |ωGK |K = |ωG|
on GK(K) = G(k).

Remarks. In part (2), the pull-back ϕ∗ on Haar measures is defined in [L, pg. 69]. In
part (3), the groups G(k) and G(k′) are locally isomorphic provided Nf is invertible
in k. If Nf = 0 in k, we define f∗|ωG′ | to be zero, so that (3) holds trivially.

Proof. Parts (1) and (2) are simple consequences of the definitions, asMG = MG1⊕
MG2 in (1) and MG = MG′ in (2).

For part (3), the equality of motives allows one to reduce to the case when G
and G′ are split over k. Let T ⊂ B ⊂ G be chosen over k, and let T ′ = f(T ) ⊂
B′ = f(B) in G′. The central isogeny f then induces an injection:

X•(T ) −→ X•(T ′)

which maps ∆• to ∆′• and has cokernel of order Nf .
By [Sp, pg. 7], we can define the groups G and G′, as well as the central

isogeny f over Z: fZ : GZ −→ G′Z from the isogeny of the root data. Then
Lie(fZ) is an isomorphism on the non-zero root spaces, and induces an injection
Lie(TZ) −→ Lie(T ′Z) with kernel of order Nf . If ωG and ωG′ are bases for the
invariant differential over Z, we then have

f∗Z(ωG′) = ±Nf · ωG.

The result then follows by specializing to k.
For part (4), we have

MG = IndΓ
ΓK

(MGK )

where ΓK is the subgroup of Γ fixing K. Let εK/k be the sign character of the
permutation representation of Γ on Γ/ΓK = Hom(K, ks); let DK/k ∈ A/A×2 be
associated to the quadratic character εK/k, and let fK/k be the degree of the residue
class extension in K/k.

If ωK is an invariant differential on GK over K, then the exterior product

ω =

∧
σ∈Γ/ΓK

ωσ
K

(
√
DK/k)dim(GK)

(6.2)

is an invariant differential onG defined over k. Note thatG(ks) =
∏

σ∈Γ/ΓK
Gσ

K(ks).
Now, suppose {X1, ..., Xn} is a basis of gK , the Lie algebra of GK , such that
ωK(X1 ∧ ...∧Xn) = 1. Let {θ1, ..., θr} be a basis of the free A-module AK , the ring
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of integers of K. Then {θiXj : 1 ≤ i ≤ r, 1 ≤ j ≤ n} is a basis of g, the Lie algebra
of G, and by a direct computation, one sees that:∧

σ

ωσ
K(

∧
i,j

θiXj) = D
dim(GK )

2
K/k .

Hence, |ωK |K = |ω| as Haar measures on GK(K) = G(k). This is compatible with
scaling ωK by β ∈ K×, as |β|K = |NK/k(β)|.

Now write MK =
⊕
Ud(1 − d) and M =

⊕
Vd(1 − d), with Vd = Ind(Ud). By

[Se3, pg. 101],

a(Vd) = fK/k · a(Ud) + dimUd · a(εK/k).(6.3)

Since
∑

(2d− 1)dimUd = dim(GK), we have

a(M) = fK/k · a(MK) + dim(GK) · a(εK/k).(6.4)

The corresponding result for the refinements DMK of a(MK) in AK/A
×2
K and

DM of a(M) in A/A×2 is then

DM ≡ NK/k(DMK ) ·Ddim(GK)
K/k .(6.5)

Now if G0,K is a split form of GK , ϕK : GK −→ G0,K an isomorphism over ks,
and ω0,K an invariant differential on G0,K with good reduction, then by definition

ωGK =
ϕ∗K(ω0,K)√

DMK

.

As observed above, the form on G over k which gives the same Haar measure on
G(k) = GK(K) as ωGK is given by

ω =
∧
ϕ∗K(ω0,K)σ√

NK/k(DMK ) ·Ddim(GK)
K/k

=
ϕ∗(ω0)√
DM

= ωG.

This completes the proof.

7. Comparison with Bruhat-Tits Theory

First, we assume that G is quasi-split over k. In [Gr, §4], a Haar measure |ω′G|
was defined on G(k). The definition used the theory of special points in the building
of G, and models over A. If G is split, then |ω′G| = |ωG| by definition. It seems
likely that this is true in general. The key case, when G is absolutely quasi-simple
and simply connected, was treated by Prasad [P]. We deduce what we can from
his results here.

Since the Haar measure |ω′G| is also defined using an invariant differential ω′G on
G over k, we have

|ω′G| = λG|ωG|(7.1)

with λG in the subgroup qZ of R×
+.

Proposition 7.2. We have λG = 1 if G is unramified over k. Furthermore,
1) λG1×G2 = λG1λG2 .
2) λG = λG′ if G and G′ are separably isogeneous over k.
3) λGK = λG if G = ResK/k(GK).
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Proof. If G is unramified, a(M) = 0, and DM is in A×/A×2. Also, ω′G is defined
using a hyperspecial point in the building of G, which is a special vertex in the
building over the maximal unramified extension in ks. Hence ωG = ϕ∗(ω0)/

√
DM

is a unit multiple of ω′G, and λG = 1.
Properties (1) − (4) of Proposition 6.1 hold for |ω′G|, which implies properties

(1)− (3) in the proposition.

Corollary 7.3. If char(k) = 0, then |ωG| = |ω′G|.
If char(k) = p, then |ωG| = |ω′G| if G is a torus with Galois splitting field of

degree prime to p, or if G is semi-simple with fundamental group of order prime to
p.

Proof. If the characteristic of k is zero, any central isogeny is separable. By Propo-
sition 7.2, it suffices to prove the equality |ωG| = |ω′G| for G semi-simple, simply-
connected, and for G a torus. Indeed, G is isogeneous to the product of the simply-
connected cover of its derived group, and its connected center.

If G is semi-simple and simply-connected, then G is isomorphic to a product∏
ResKi/k(Gi), with each Gi absolutely quasi-simple over Ki. Again by Proposi-

tion 7.2, it suffices to prove the equality for G absolutely quasi-simple. This is the
content of Theorem 1.6 of Prasad [P].

If G is a torus, there is an integer n such that Gn ×∏
ResKi/kGm is isogeneous

to
∏
ResKj/kGm by a Theorem of Ono [O, Thm 1.5.1, pg. 114]. Since the result is

true for Gm, it is true for Gn. So λn
G = 1; since λ is positive, we also have: λG = 1.

If the characteristic of k is p, and G is a torus with Galois splitting field of degree
prime to p, then the same Theorem of Ono alluded to above says that the isogeny
from Gn ×∏

ResKi/kGm to
∏
ResKj/kGm can be chosen to be separable. Hence

the same argument as above works to give the result.
If G is semi-simple with fundamental group of order prime to p, the isogeny

G̃ −→ G from the simply-connected cover is separable. So it suffices to check the
result for G̃. By the above argument, we may assume that G = G̃ is absolutely
quasi-simple, where the result follows from Prasad [P].

Now if G is not necessarily quasi-split, choose an inner twisting ϕ : G −→ Gqs,
where Gqs is the quasi-split inner form of G. In [Gr], the measure |ω′G| on G(k)
was defined to be ϕ∗|ω′Gqs

|. Then we have

Corollary 7.4. If char(k) = 0, then |ωG| = |ω′G|. Furthermore, let J ⊂ G(k) be
an Iwahori subgroup. Then,∫

J

|ωG| = q−N · det(1− FwG|E(1)I)

with N =
∑

(d − 1)dimV I
d , F the geometric Frobenius in Γ/I with eigenvalue q−1

on Q(1), and wG the element of the Weyl group W I associated to the inner twisting
ϕ : G −→ Gqs over the maximal unramified extension of k.

Proof. This was established for |ω′G| in [Gr, §4]. Note that if G = Gqs is quasi-split,
then wG = 1.

8. The Space of Haar Measures

Let PG be the one-dimensional real vector space of invariant measures on G(k),
and let P+

G be the cone of positive Haar measures in PG. We define, from |ωG|, the
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following element of P+
G :

µG = |ωG| · q−a(M)/2.(8.1)

Let ϕ : G −→ G′ be an isomorphism over ks. We define an R-linear map

ϕ∗ : PG′ −→ PG(8.2)

as follows. Let µ′ be an element of PG′ , and write µ′ = c|ω′|, for some invariant
differential ω′ on G′ over k, and c ∈ R. Let d ∈ k×/k×2 be the class of the map:

δ(G) · δ(G′) : Γ −→ µ2(k).

It follows from Proposition 3.6 that the differential

ω = ϕ∗(ω′)/
√
d

on G is defined over k. We then define

ϕ∗(µ′) = c|ω| · |d| 12 ∈ PG.(8.3)

This is independent of the choice of ω′ and d, and we have the following result.

Proposition 8.4. The map ϕ∗ : PG′ −→ PG is an R-linear isomorphism, which
maps P+

G′ to P+
G . Furthermore, ϕ∗(µG′) = µG.

The isomorphism PG′ ∼= PG is independent of the choice of the isomorphism
ϕ : G −→ G′ over ks.

Proof. All the statements will follow once we show that ϕ∗(µG′) = µG. This identity
follows from a comparison of G and G′ with the split group G0 over ks. Indeed,
µG0 = |ω0|, and for ϕ : G −→ G0, we have

µG = |ωG|q−a(M)/2

= |ϕ∗(ω0)/
√
DMG | · |DMG |

1
2

= ϕ∗(µG0).

9. Global Measure

In this section, we assume that k is a global field. Let ω be a non-zero invariant
differential on G over k, and let |ω|v be the associated Haar measure on G(kv), for
each place v. We define the global conductor f(M) of the motive M of G by the
formula:

f(M) =
∏

v finite

qa(M/kv)
v .(9.1)

This product is finite because for almost all v, G is unramified over kv and
a(M/kv) = 0. The conductor f(M) is an integer ≥ 1. If G is an inner form of a
split group over k, then f(M) = 1.

If v is finite, let |ωGv | be the Haar measure on G(kv) defined in §5. If v is
archimedean, let |ωGv | be the measure on G(kv) defined in [Gr, §11]. In the
archimedean case, we can also define |ωGv | as follows. Let G0 be the split form
of G over kv, and G0,Z the Chevalley model for G0 over Z. Let ω0 be an invariant
differential on G0 which generates the free Z-module Hom(∧topLie(G0,Z),Z). Then
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ω0 is determined up to sign. If ϕ : G −→ G0 is an isomorphism over ks, and K
(respectively K0) is the maximal compact subgroup of G (respectively G0), then,

ωGv =
ϕ∗(ω0)

idim(G/K)−dim(G0/K0)
(9.2)

is defined on G over kv, and is determined up to sign. The Haar measure |ωGv | is
thus well-defined.

Proposition 9.3. We have |ω|v = |ωGv | for almost all v, and the following product
formula holds: ∏

v

|ωGv |
|ω|v = f(M)

1
2 in R×

+.

Proof. For almost all v, G is unramified over kv, and ω generates the Av-module
of invariant differentials on the reductive model G over Av. At these places, |ω|v =
|ωGv |.

For v finite, let µGv = |ωGv |q−a(M/kv)/2 as in (8.1). For v archimedean, let
µGv = |ωGv |. Then the product formula is equivalent to the statement∏

v

µGv

|ω|v = 1.(9.4)

This is independent of the choice of ω 6= 0, by the usual product formula:
∏

v |α|v =
1, for α ∈ k×.

We first prove (9.4) for G = G0 split over k. In this case, we take ω0 to generate
the Chevalley differentials over Z; then ω0 is determined up to sign, and |ω0|v =
|ωGv | = µGv for all v. Hence (9.4) holds, because all the terms are 1.

Now let G be arbitrary, and choose an isomorphism ϕ : G −→ G0 with the split
form over ks. Let d ∈ k×/k×2 be in the class of δ(G), let ω0 be as above, and let
ω = ϕ∗(ω0)/

√
d over k. Then we have, for all v

µGv

|ω|v = |d| 12v · µ(G0)v

|ω0|v = |d| 12v .

Since
∏

v |d|
1
2
v = 1, the proposition is proved.

Remarks. This gives a proof of Theorem 11.5 in [Gr, §11], when k is a number
field. Indeed, we have shown in §7 that |ωG| = |ω′G|, where |ω′G| is the Haar
measure defined in [Gr]. Also the constant ε(M) in the functional equation of the
L-function of M is given by the formula:

ε(M) = |dk|
dim(G)

2 f(M)
1
2(9.5)

where dk is the discriminant of k over Q. It also gives a proof of Theorem 11.5
when k is a function field, assuming that G has finite fundamental group of order
prime to char(k), and putting |dk| = q2g−2 as in [P].

10. Mass Formulae

We can use Proposition 9.3 to derive a number of explicit mass formulae. Let k
be a totally real number field, and let G be a connected, reductive group over k,
with G(k ⊗ R) =

∏
v|∞G(kv) compact. Recall that M =

⊕
d≥1 Vd(1− d), and let

Λ(M, s) =
∏
v

Lv(M, s) =
∏
d≥1

Λ(Vd, s+ 1− d)
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be the global L-function of the motive M , so that

Λ(M, s) = L∞(M, s)L(M, s)(10.1)

where L(M, s) is the usual Artin L-function of M . We have Artin’s functional
equation [T, pg. 18-19]

Λ(M, s) = ε(M, s)Λ(M∨, 1− s)(10.2)

with

ε(M, s) =
(
|dk|dim(G)f(M)

) 1
2−s

.(10.3)

In particular, taking Λ(M) = Λ(M, 0), we find that

Λ(M) = |dk|
dim(G)

2 f(M)
1
2 Λ(M∨(1)).(10.4)

Now let A be the ring of adeles of k, and let K = G(k ⊗R)×∏
v finiteKv be an

open compact subgroup of G(A). The double coset space

Σ = G(k)\G(A)/K

is then finite. If σ ∈ Σ, and g ∈ G(A) represents the class of σ, then

Γσ = G(k) ∩ gKg−1

is a finite arithmetic subgroup of G(k), of order wσ. We define

MassK =
∑

σ

1
wσ

(10.5)

where the sum is taken over all σ in the double coset space Σ.
If µK is the unique Haar measure on the locally compact group G(A) giving the

open compact subgroup K volume 1, then we also have

MassK =
∫

G(k)\G(A)

µK .(10.6)

Proposition 10.7. Assume that G is quasi-split over kv for all finite places v, and
that Kv = G0(Av) ⊂ G(kv) is the special open compact subgroup defined in [Gr,
§4]. Then,

MassK = τ(G) · 1
2n

· L(M)

where τ(G) is the Tamagawa number of G, n is the rank of the complex Lie group
G(k ⊗ C), and L(M) = L(M, 0).

Remarks. Note that if l is the rank of G over ks and d is the degree of k over Q,
then n = ld.

Proof. Let ω 6= 0 be an invariant differential on G over k, and |ω|v the associated
Haar measure on G(kv). For v finite, if G is unramified over kv, with reductive
model G over Av, and ω has good reduction (mod πv), then,∫

G(Av)

Lv(M∨(1))|ω|v = 1.

Hence the product ⊗
v

Lv(M∨(1))|ω|v
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defines a measure on G(A). By definition, the Tamagawa measure |ω|A is given by

|ω|A =
⊗

v Lv(M∨(1))|ω|v
|dk| dim(G)

2 Λ(M∨(1))
.(10.8)

Note that this is well-defined since the fact that G(k ⊗ R) is compact implies that
Λ(M∨(1)) is finite. Also, it is independent of the choice of ω 6= 0. The Tamagawa
number τ(G) is then defined by

τ(G) =
∫

G(k)\G(A)

|ω|A.(10.9)

On the other hand, the Haar measure µK on G(A) is the product

µK = µG(k⊗R) ⊗
∏

v finite

|ωGv |Lv(M∨(1))(10.10)

where µG(k⊗R) is the measure giving G(k⊗R) volume 1. Indeed, by Corollary 7.3,
we have |ωGv | = |ω′Gv

|, and the latter measure is constructed such that∫
Kv

|ω′Gv
|Lv(M∨(1)) = 1.

By [Gr, §7], we have

µG(k⊗R) · 2n
∏
v|∞

Lv(M)ev(G) =
∏
v|∞

|ωGv |Lv(M∨(1)).(10.11)

In fact,
∏

v|∞ ev(G) = 1 as G is quasi-split at all finite places of k (cf. [K]).
Hence,

µK = 2−n
∏
v|∞

Lv(M)−1
∏
v

|ωGv |Lv(M∨(1)).(10.12)

By Proposition 9.3, we also have the formula∏
v

|ωGv |Lv(M∨(1))
|ω|vLv(M∨(1))

= f(M)
1
2 .

Hence, we have

µK = 2−n
∏
v|∞

Lv(M)−1 · Λ(M∨(1))|dk|
dim(G)

2 f(M)
1
2 |ω|A

= 2−n
∏
v|∞

Lv(M)−1 · Λ(M)|ω|A

= 2−nL(M)|ω|A
and the mass formula follows from (10.9).

Even if G is not quasi-split at all finite places v, one can obtain an explicit mass
formula, by replacing Kv at the bad primes by an Iwahori subgroup Jv ⊂ G(kv),
and using Corollary 7.4. We leave the details to the reader.
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