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REPRESENTATION THEORY OF
REDUCTIVE NORMAL ALGEBRAIC MONOIDS

STEPHEN DOTY

Abstract. New results in the representation theory of “semisimple” alge-
braic monoids are obtained, based on Renner’s monoid version of Chevalley’s
big cell. (The semisimple algebraic monoids have been classified by Renner.)
The rational representations of such a monoid are the same thing as “polyno-
mial” representations of the associated reductive group of units in the monoid,
and this representation category splits into a direct sum of subcategories by
“homogeneous” degree. We show that each of these homogeneous subcate-
gories is a highest weight category, in the sense of Cline, Parshall, and Scott,
and so equivalent with the module category of a certain finite-dimensional
quasihereditary algebra, which we show is a generalized Schur algebra in S.
Donkin’s sense.

1. Introduction

Let M be an affine algebraic monoid over an algebraically closed field K. As-
suming M is reductive, i.e. its group G of units is a reductive group, what can
one say about the representation theory of M over K? This is the main question
considered here. But as it stands it is still too general; here we confine our attention
to just those M which are (irreducible) normal varieties.

There are two good reasons for assuming our monoid M is normal. First, recall
that any affine algebraic group is smooth and hence normal. The normality of the
algebraic group plays a significant role in its representation theory, for instance in
the proof of Chevalley’s theorem classifying the irreducible representations. Thus it
seems reasonable in trying to extend representation theory from reductive groups to
reductive monoids to look first at the case when M is normal. Second, L. Renner
[14] has obtained a classification theorem for such monoids under the additional
assumptions that the center Z(M) is 1-dimensional and that M has a zero element.
Renner calls such algebraic monoids semisimple and proves that they are classified
by data of the form (X(T ), Φ, X(T )), where (X(T ), Φ) is the usual root data which
classifies the reductive group G and X(T ) is the character group of the closure (in
M) of the maximal torus T .

Renner’s classification theorem depends on an algebraic monoid version of
Chevalley’s big cell, which holds for any reductive affine algebraic monoid (with
no assumptions about its center or a zero). As a corollary of its construction, Ren-
ner derives a very useful “extension principle” [14, (4.5) Corollary] which is the
main technical tool for the present work.
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It is worth noting that it is very easy to construct reductive algebraic monoids.
Just take a matrix representation ρ : G→ GLn(K) of some reductive affine algebraic
group G and set M = M(ρ) = ρ(G), the closure in Mn(K). Then M will be a
reductive algebraic monoid. If instead we begin with a semisimple G and then set
M equal to the closure of K×ρ(G) then dim Z(M) will be 1 and M will still be
reductive. In either case we can then pass to the normalization of M ; the resulting
monoid will be a reductive normal algebraic monoid.

Our interest in representations of algebraic monoids is an outgrowth of our in-
terest in polynomial representations of algebraic groups. As pointed out in [8],
whenever we represent an affine algebraic group G by matrices then we can formu-
late the notion of a polynomial representation (one that depends polynomially on
the matrix coordinates) of G and then the polynomial representation theory of G is
precisely the same as the rational representation theory of the associated algebraic
monoid M = G. If (the representation of) G contains the scalar matrices, then
the polynomial representations split into homogeneous components and the rep-
resentation theory in a given homogeneous degree d is completely equivalent with
that of a certain associated finite-dimensional algebra Sd(G) [8]. Of course, this is
dependent on the choice of matrix representation.

Let us enumerate the main results of the paper. First, we show that the re-
striction functor from an algebraic monoid to a closed submonoid admits a right
adjoint, which we call induction. All the usual elementary properties of the in-
duction functor hold in this setting, excepting the tensor identity. We then prove
the following generalization of a recent result of Friedlander-Suslin [9]: if V is a
rational G-module all the weights of which are polynomial, then V lifts uniquely
to a rational M -module. From this we obtain a classification of the simple ratio-
nal M -modules by highest weight. We then study truncation functors following S.
Donkin [4] and show that the coordinate algebra K[M ] has a good filtration. From
this it follows that the category of rational M -modules is a highest weight category
in the sense of Cline-Parshall-Scott [2]. We then consider the case where M has a
(faithful) matrix representation with the property that its restriction to its group of
units G admits a graded polynomial representation theory in the sense of [8]. Our
final result is that in such a case the “Schur” algebras Sd(G) defined in [8] are gen-
eralized Schur algebras in Donkin’s sense [4] and so they must be quasihereditary.
In particular, they have finite global dimension.

I would like to thank S. Donkin for pointing out an error in an earlier version of
this paper.

2. Induced Modules

If G is an affine algebraic group and H a closed subgroup of G then, we have
the restriction functor resG

H from rational G-modules to rational H-modules. This
functor admits a right adjoint indG

H , induction from H to G. Since adjoint functors,
if they exist, are unique up to natural isomorphism, this property determines the
induction functor.

Now suppose M is an affine algebraic monoid and N a closed submonoid. Then
the restriction functor resM

N still admits a right adjoint and we continue to denote
it by indM

N . While this is basically trivial, still one needs to check which properties
will carry over from groups to monoids. It turns out that Frobenius reciprocity
carries over but the tensor identity does not.
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Given two varieties X, Y we denote by Mor(X, Y ) the space of all morphisms
X → Y . Let V be a vector space over K. Given any m in M and any f in
Mor(M, V ), there exist maps Lmf and Rmf in Mor(M, V ) (resp., left and right
translation) defined by the rules

Lmf(x) = f(mx), Rmf(x) = f(xm), all x in M.(1)

The action (f, m) 7→ Lmf is a right action and (m, f) 7→ Rmf a left one. Obviously
these actions of M on Mor(M, V ) commute: Rm(Lm′f) = Lm′(Rmf) for m, m′

in M . Taking V = K in the above we obtain corresponding actions of M on
K[M ] = Mor(M, K).

Suppose now that V is a rational N -module. We define the corresponding in-
duced module indM

N V by

{f ∈ Mor(M, V ) : f(nx) = n f(x), all x ∈M , n ∈ N}.(2)

This becomes a rational M -module via the action (m, f) 7→ Rmf , since (Rmf)(nx)
= f(nxm) = n f(xm) = n(Rmf)(x).

Given any homomorphism ϕ : V → V ′ between two rational N -modules V ,
V ′ we have a corresponding induced homomorphism indM

N ϕ : indM
N V → indM

N V ′

given by composition with ϕ: (indM
N ϕ)(f) = ϕ ◦ f .

Let εV : Mor(M, V ) → V denote the evaluation map, given by f 7→ f(1). By
restriction this gives a map, also denoted by εV , from indM

N V to V . It is trivial to
check that evaluation εV : indM

N V → V is a homomorphism of rational N -modules.
We now list some basic properties of induction.

2.1. Universal mapping. Given any rational M -module U and a homomorphism
of rational N -modules ϕ : U → V there exists a unique homomorphism ϕ̃ : U →
indM

N V of rational M -modules such that ϕ = εV ◦ ϕ̃.
Indeed, given u ∈ U , let ϕ̃(u) be the element of Mor(M, V ) such that ϕ̃(u)(x) =

ϕ(xu) for all x ∈M . It is easy to check that ϕ̃(u) lies in indM
N V and that ϕ = εV ◦ϕ̃.

The uniqueness statement is left to the reader.

2.2. Frobenius reciprocity. HomM (U, indM
N V ) ' HomN (resM

N U, V ).
In fact, the correspondence is given by ϕ̃↔ ϕ. The next fact is now obvious.

2.3. Adjointness. The functor indM
N is right adjoint to the functor resM

N .

2.4. Exactness. The functor indM
N is left exact.

This follows from the adjointness property, as does the next property.

2.5. Transistivity. If N < L < M is a chain of closed monoid inclusions we have
an isomorphism of functors between indM

N and indM
L ◦ indL

N .
However, the tensor identity fails to hold for induction in this generality; see [7,

5.10(b)] for a counterexample.
Suppose now that M, N both have an algebraic group structure. Then the

induced module indM
N V as defined in (2) is isomorphic with

{f ∈ Mor(M, V ) : f(xn) = n−1f(x), all x ∈M , n ∈ N}(3)

which is made into a rational M -module by the action (m, f) 7→ Lm−1f .
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Recall that V ⊗K[M ] is isomorphic with Mor(M, V ); the isomorphism takes v⊗f
to the morphism x 7→ f(x)v. Now V ⊗ K[M ] can be made into a left N -module
via (n, v ⊗ f) 7→ (nv)⊗ (Rnf). Then the set of N -invariants

(V ⊗K[M ])N(4)

becomes a right M -module with M acting by (v ⊗ f, m) 7→ v ⊗ Lmf . If M is only
a monoid that is in general the best we can do, but if M has a group structure we
can make (4) a left M -module by composing with the anti-involution m 7→ m−1.
Specifically, the left action is given by (m, v ⊗ f) 7→ v ⊗ Lm−1f . If N also has a
group structure then the M -modules in (2), (3), and (4) are all isomorphic.

Thus we see that the tensor description (4) of the induced module, the usual
definition in the group situation, is not appropriate to the monoid case. This is
responsible for the failure of the tensor identity to generalize.

3. Representation Theory

To reiterate, K is always an algebraically closed field. It is well-known (see [3])
that any affine algebraic monoid M over K is isomorphic with a closed submonoid
of the monoid Mn = Mn(K) of n×n matrices over K; i.e., M has a faithful matrix
representation. One can refer to Putcha [13] and Solomon [16] for basic properties
of algebraic monoids. We will always assume M is irreducible as a variety. Let G
be the group of units of M . Then G is a connected linear algebraic group defined
over K and G is dense in M .

Assume from now on that M is reductive. Choose a maximal torus T in G and
let T denote the Zariski closure of T in M . Let

X(T ) = Hom(T, K×)

denote the group of characters (i.e., algebraic group morphisms from T to the
multiplicative group K×) on T and

X(T ) = Hom(T , K)

the monoid of characters (i.e., algebraic monoid morphisms from T to the multi-
plicative monoid K) on T . The restriction λ|T of a character λ ∈ X(T ) is a monoid
character mapping T to K. Since T is a group it is automatic that λ|T is a group
character and that its image is contained in K×, so λ|T ∈ X(T ). Note that only
the identity character on T restricts to the identity character on T . Thus, the
restriction map X(T )→ X(T ) is injective. In all that follows, it will be convenient
to identify X(T ) with its image in X(T ). We will refer to elements of X(T ) as
rational weights and to elements of X(T ) as polynomial weights.

Now suppose V is a rational T -module. For λ ∈ X(T ) we have the weight space

Vλ = {v ∈ V : tv = λ(t) v, all t ∈ T }.(5)

By the usual argument V is the direct sum of its weight spaces: V =
⊕

λ∈X(T ) Vλ.
Note that the T -weight spaces of V are the same as the T -weight spaces of V .
When we speak of the weight spaces of a rational M -module V we mean its weight
spaces relative to its restriction to T .

If V is a rational M -module then the weights of its restriction to G are all
polynomial weights. If we assume M is normal then the converse holds.
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3.1. Theorem. Suppose M is a normal reductive affine algebraic monoid. Let V be
a rational G-module all the T -weights of which are polynomial. Then the G-module
structure on V extends uniquely to a rational M -module structure.

Proof. Choose a basis (vi)i∈I of T -weight vectors for V . Since the weights are all
polynomial there exist elements λj in X(T ) for each j ∈ I such that

tvj = λj(t)vj , all t ∈ T .

For j ∈ I let cij ∈ K[G] be defined by

gvj =
∑
i∈I

cij(g) vi, g ∈ G.

The K-span of the cij is the coefficient space cfG(V ).
For each i, j ∈ I let us define c̃ij : T → K by

c̃ij =

{
λj if i = j,

0 otherwise.

Clearly c̃ij and cij have the same restriction to T . Thus, by Renner’s extension
principle [14, (4.5)], there exist unique c′ij ∈ K[M ] such that c′ij coincides with cij

on restriction to G and coincides with c̃ij on restriction to T . Then the equations

mvj =
∑
i∈I

c′ij(m) vi, m ∈M,

define the desired rational M -module structure on V .

3.2. Remark. The conclusion of the previous theorem in the special case M = Mn

is the content of Friedlander-Suslin [9, Prop. 3.4].

Now choose a Borel subgroup B of G with T ⊂ B. Let Φ = Φ(G, T ) be the set
of roots associated to the pair (G, T ) and set Φ− = Φ(B, T ), Φ+ = −(Φ−). Let
∆ denote the set of simple roots relative to Φ+ and set W = NG(T )/T , the Weyl
group associated to the pair (G, T ).

The set of dominant rational weights is the set X(T )+, consisting of those λ ∈
X(T ) for which 〈λ, α∨〉 ≥ 0 for all α ∈ Φ+. The set of dominant polynomial weights
is the set

X(T )+ = X(T ) ∩X(T )+.

Recall that the set X(T ) is partially ordered by declaring λ ≤ µ if and only if λ−µ
can be written as a nonnegative integral linear combination of positive roots. This
of course induces a partial order on the set X(T )+.

For λ ∈ X(T )+, let L(λ) denote the simple rational G-module of highest weight
λ. Every simple rational G-module is isomorphic to L(λ) for some dominant rational
weight λ; moreover, λ 6= µ implies L(λ) 6' L(µ).

For λ ∈ X(T ) denote by Kλ the one-dimensional T -module affording the char-
acter λ. Recall that B = TU where U is its unipotent radical. In particular, every
b ∈ B is uniquely expressible in the form b = tu with t ∈ T , u ∈ U , and we have
a morphism of algebraic groups B → T defined by b 7→ t. The action of T on Kλ

extends to a rational B-action by composition with the above morphism B → T .
Let H0(λ) = indG

B Kλ be the corresponding induced G-module. Then H0(λ) is
nonzero if and only if λ is dominant and in that case we have L(λ) = socG H0(λ).
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Now suppose λ ∈ X(T ) and let Kλ denote the one-dimensional T -module af-
fording the character λ. We need the following.

3.3. Lemma. The morphism B → T described above extends to an algebraic
monoid morphism B → T .

Proof. We may identify M with a closed submonoid of Mn, in such a way that
T consists of diagonal matrices and B consists of upper triangular matrices [11,
Prop. 15.4 and Thm. 17.6]. Then the same is true of T and B. In this guise the
map B → T is given by the rulea11 . . . a1n

. . .
...

ann

 7→
a11

. . .
ann

 .(6)

Now consider the algebraic group Dn of all diagonal matrices in GLn and the
algebraic group Tn of all upper triangular matrices in GLn. The closure Dn in
Mn consists of all diagonal matrices in Mn and Tn consists of all upper triangular
matrices in Mn. The map ϕ : Tn → Dn defined by the same rule (6) is a morphism
of algebraic monoids and its restriction to B is the desired extension.

By composing with the morphism B → T we can extend Kλ to a rational B-
module. The induced module indM

B Kλ is a rational M -module. Since the restriction
map K[M ]→ K[G] is injective (see [8, 2.1]) we observe that indM

B Kλ is isomorphic
with a submodule of H0(λ) = indG

B Kλ. Hence, a necessary condition for indM
B Kλ

to be nonzero is that λ ∈ X(T )+. Thanks to Renner’s extension principle, we can
establish the converse as well.

3.4. Theorem. Let M be a normal reductive affine algebraic monoid. Let λ ∈
X(T ). The induced module indM

B Kλ is nonzero if and only if λ lies in X(T )+.

Proof. If indM
B Kλ 6= (0) then it has a G-submodule isomorphic with L(λ), be-

cause indM
B Kλ embeds as a G-submodule of H0(λ). Thus the λ-weight space of

indM
B Kλ is nontrivial. But all the weights of a rational M -module are polynomial,

consequently λ is polynomial. Moreover, λ is dominant since H0(λ) 6= (0). Thus
λ ∈ X(T )+.

Conversely, suppose λ ∈ X(T )+. Then H0(λ) = indG
B Kλ 6= (0). Thus there

exists some f ∈ K[G] satisfying

f(bg) = λ(b)f(g), all b ∈ B, g ∈ G.(7)

Thus we have the equality f |T = a λ|T , where a = f(1) and where we regard λ
as a character on T . By the extension principle [14, (4.5)], there exists a unique
f̃ ∈ K[M ] such that f̃ |G = f and f̃ |T = a λ.

To complete the proof we need only show that f̃ satisfies the condition

f̃(bm) = λ(b)f̃(m), all b ∈ B, m ∈M .(8)

Since f̃ |G = f we have the equality (8) at least for b ∈ B and m ∈ G. Holding
b ∈ B fixed, observe that the map

m 7→ f̃(bm)− λ(b)f̃(m)
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in K[M ] is zero on the open set G. Thus it is zero on M ; i.e., we have the equality
(8) for all b ∈ B, m ∈M . Now hold m ∈M fixed and consider the map

b 7→ f̃(bm)− λ(b)f̃(m)

in K[B]. Since this map vanishes on the open set B, it vanishes on B. This
establishes (8) for all b ∈ B, m ∈M .

Now we obtain the highest-weight classification of the simple M -modules. This
result was already obtained in the case when dimZ(M) = 1 and M has a zero
element in Renner [15, Theorem 5.2].

3.5. Corollary. Let M be a normal reductive affine algebraic monoid. The set of
isomorphism classes of simple rational M -modules is {L(λ) : λ ∈ X(T )+}.
Proof. Let V be a simple rational M -module. Then V remains simple on restriction
to G, so V ' L(λ) for some λ ∈ X(T )+. Clearly λ is polynomial, so in fact
λ ∈ X(T )+.

On the other hand, suppose λ ∈ X(T )+. Then indM
B Kλ 6= (0) and as already

argued it follows that L(λ) is a G-submodule of indM
B Kλ. Therefore all its weights

are polynomial. By 3.1, L(λ) lifts to a rational M -module.

We can now clarify the relation between X(T )+ and X(T )+.

3.6. Proposition. Let T be a maximal torus in the group G of units in a reductive
normal algebraic monoid M , T its closure in M . Assume that the center Z(M) is
1-dimensional and that M has a zero element. Then the set X(T )+ is an ideal (i.e.
a “saturated” subset in the language of Donkin [4]) in the poset X(T )+.

Proof. According to Renner’s classification theorem [14, (6.5) Theorem], M is de-
termined up to isomorphism over K by the datum (X(T ), Φ, X(T )). Let MC be the
corresponding reductive monoid over the complex field C and let GC, BC, TC, etc.
be the groups over C corresponding with G, B, T . Then of course X(TC) = X(T ),
X(T ) = X(TC), X(TC)+ = X(T )+, X(T )+ = X(TC)+. Thus it suffices to prove
the stated result in the case K = C.

Assuming now that K = C, let λ ≤ µ for λ ∈ X(T )+ and µ ∈ X(T )+. We must
show that λ ∈ X(T )+. By the reductive version of [10, 21.3], λ is a weight of the
irreducible module of highest weight µ for the Lie algebra g of G, thus λ is a weight
of L(µ). Hence λ is polynomial.

4. Truncation Functors

A good filtration for a rational G-module V is an ascending series

(0) = V0 ⊂ V1 ⊂ V2 ⊂ · · ·
of G-submodules of V such that V is the union of the Vi and such that for each
i there exists some λi ∈ X(T )+ for which Vi+1/Vi ' H0(λi). The number of
subquotients Vi+1/Vi isomorphic to a given H0(λ) is denoted by (V : H0(λ)). Note
that this may be infinite.

We keep all the notations and assumptions of the previous section. In particular,
M is a normal reductive monoid with unit group G, T a maximal torus in G, and
B a Borel subgroup containing T . We will suppose additionally that M has 1-
dimensional center Z(M) and that M has a zero element, so we are from now on
dealing with one of Renner’s so-called “semisimple” monoids. We are going to show
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that indM
B Kλ is isomorphic with H0(λ) = indG

B Kλ for all λ ∈ X(T )+. From this it
will follow that the principal injective objects in the category of rational M -modules
all have good filtrations and those filtrations satisfy the expected reciprocity law.
From this in turn we see that K[M ] has a good filtration and (K[M ] : H0(λ)) =
dim H0(λ) for all λ ∈ X(T )+.

From Donkin [4] we have two functors on rational G-modules. To describe (a
special case of) the first functor, let V be a rational G-module. Since G is dense
in M , the restriction map K[M ]→ K[G] is injective. Thus we may identify K[M ]
with a subcoalgebra of K[G]. There is a unique maximal G-submodule of V having
the property that its coefficient space lies in K[M ]: the union of all submodules with
that property. Denoting this submodule by FMV we get a functor V 7→ FMV from
rational G-modules to rational M -modules. We may view FMV as the maximal
G-submodule of V which extends to a rational M -module.

The second functor depends on choosing a subset π ⊂ X(T )+. If V is a rational
G-module, one says that V belongs to π if all the composition factors of V have
highest weights lying in π. Set OπV equal to the unique maximal G-submodule
of V belonging to π. The assignment V 7→ OπV is the second functor. One may
ask how these functors relate when π is taken to be the set X(T )+ of dominant
polynomial weights. The answer is provided by the following.

4.1. Lemma. With π = X(T )+ we have the equality Oπ = FM .

Proof. Let V be a rational G-module. The inclusion FMV ⊂ OπV is clear, since by
3.5 the composition factors of FMV all belong to π. On the other hand, by 3.1 we
know that OπV lifts to a rational M -module, establishing the opposite inclusion
OπV ⊂ FMV .

4.2. Theorem. Suppose the reductive normal algebraic monoid M has 1-dimen-
sional center Z(M) and that M has a zero element. Let π = X(T )+. For any
λ ∈ X(T )+ we have

OπH0(λ) =

{
H0(λ) if λ ∈ π,

(0) otherwise.

Moreover, for λ ∈ π we have an isomorphism between H0(λ) and indM
B Kλ.

Proof. Since H0(λ) has simple socle L(λ), any nonzero submodule of H0(λ) must
also have socle L(λ). Thus OπH0(λ) = (0) if λ /∈ π.

Now suppose that λ ∈ π. Since the highest weights of the composition factors
of H0(λ) are all ≤ λ, by 3.6 we have the equality OπH0(λ) = H0(λ). More-
over, since indM

B Kλ embeds in H0(λ), there is an M -submodule of H0(λ) iso-
morphic to indM

B Kλ. This also shows that there is a unique B-stable line in
FMH0(λ). Therefore, by Frobenius reciprocity, there is a nontrivial homomor-
phism FMH0(λ)→ indM

B Kλ. Since both sides have the same socle, this is injective.
Hence dimFMH0(λ) ≤ dim indM

B Kλ. It follows that indM
B Kλ ' FMH0(λ). Since

FMH0(λ) = OπH0(λ) = H0(λ), the proof is complete.

For λ ∈ X(T )+, let I(λ) be the injective envelope of L(λ) in the category of
rational G-modules. Similarly, for λ ∈ X(T )+, let Q(λ) be the injective envelope
of L(λ) in the category of rational M -modules. Denote by [V : L] the multiplicity
of a simple module L in a composition series of V .
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4.3. Theorem. Suppose the reductive normal algebraic monoid M has 1-dimen-
sional center Z(M) and that M has a zero element. Let π = X(T )+. For any
λ ∈ X(T )+ we have

OπI(λ) =

{
Q(λ) if λ ∈ π

(0) otherwise.

Moreover, for λ ∈ π, Q(λ) has a good filtration satisfying the reciprocity law

(Q(λ) : H0(µ)) = [H0(µ) : L(λ)] for all µ ∈ π.

Proof. Since FM takes injectives to injectives [4, (1.1d)], FMI(λ) = OπI(λ) is
injective as rational M -module. It is nonzero precisely when λ ∈ π and in that case
has simple socle L(λ). This proves the first statement. The reciprocity statement
follows from [6, Thm. 8].

4.4. Theorem. Suppose the reductive normal algebraic monoid M has 1-dimen-
sional center Z(M) and that M has a zero element. With π = X(T )+, we have the
equality OπK[G] = K[M ]. Moreover, K[M ] has a good filtration satisfying

(K[M ] : H0(µ)) = dim H0(µ) for all µ ∈ π.

Proof. Considering K[M ] as right M -module via left translation, we have K[M ] =⊕
λ∈X(T ) K[M ]λ. Similarly, K[G] =

⊕
λ∈X(T ) K[G]λ. These are weight spaces for

the right action by left translation; since left and right translation commute they
are also left modules for M , G, resp. Moreover, from the definition of induction we
have isomorphisms K[M ]λ ' indM

T Kλ and K[G]λ ' indG
T Kλ. Both indM

T Kλ and
indG

T Kλ are injective in their respective category, and by Frobenius reciprocity we
have (

indM
T Kλ : Q(µ)

)
= dim L(µ)λ, λ ∈ X(T ), µ ∈ X(T )+,(9)

and (
indG

T Kλ : I(µ)
)

= dim L(µ)λ, λ ∈ X(T ), µ ∈ X(T )+,(10)

the symbol on the left-hand side of each equation denoting the number of summands
isomorphic to the respective principal injective module. Thus for all λ ∈ X(T ), µ ∈
X(T )+ we have the equality(

indM
T Kλ : Q(µ)

)
=

(
indG

T Kλ : I(µ)
)

.(11)

It follows that Oπ takes K[G]λ onto K[M ]λ for all λ ∈ X(T ) and to (0) otherwise.
Thus OπK[G] ' K[M ].

Since K[G] has a good filtration satisfying

(K[G] : H0(λ)) = dim H0(λ), λ ∈ X(T )+(12)

(see [6, Thm. 5]), the second statement of the theorem follows from [6, Thm. 8].

We also have the following corollary to the equality OπK[G] = K[M ], which
yields, by restricting to M × 1 in M × M , another proof of the good filtration
statement in the previous theorem.
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4.5. Corollary. Suppose the reductive normal algebraic monoid M has 1-dimen-
sional center Z(M) and that M has a zero element. As an M ×M -module under
joint left and right translation, K[M ] has a filtration with sections of the form
H0(λ)⊗H0(λ∗) for λ ∈ X(T )+, each occurring exactly once.

Proof. This follows immediately from the equality OπK[G] = K[M ], by Donkin [4,
(2.2a)].

5. Polynomial Representations

Retain the assumptions and notations of the previous section. In particular,
M is a normal reductive affine algebraic monoid over K with dim Z(M) = 1 and
0 ∈M and G is its unit group. We will identify M with a closed submonoid of Mn

in such a way that T consists of diagonal matrices. (This is always possible.) The
assumption dimZ(G) = 1 means that, under the above identification, G contains
the subgroup

Hn = {cIn : c ∈ K×}
of scalar matrices. This means that G admits a graded polynomial representation
theory [8, Prop. 1.5] and all the results of [8] are applicable to G. In particular, the
rational representation theory of M is equivalent to the polynomial representation
theory of G [8, Prop. 2.2]

We want to summarize the results of [8], but first we need to introduce more
notation. Let A(n) denote the algebra of regular functions on Mn; i.e., polynomials
in the n2 matrix entries Tij , 1 ≤ i, j ≤ n. Let A(n, d) denote the span of the
d-fold products of the linear maps on Mn. Elements of A(n, d) are homogeneous
polynomials of degree d in the generators {Tij} and A(n) =

⊕
d≥0 A(n, d). This

is of course just the Hn-eigenspace decomposition of the coordinate algebra K[Mn]
under left or right translation. The coalgebra structure on A(n) is determined by

∆(Tij) =
n∑

k=1

Tik ⊗ Tkj , ε(Tij) =

{
1 if i = j,

0 otherwise.
(13)

and A(n, d) is a subcoalgebra of A(n) for each d. Let A(G), Ad(G) denote respec-
tively the image of A(n), A(n, d) under the restriction map K[Mn] to K[G]. The
bialgebra A(G) is the direct sum of the subcoalgebras Ad(G) (that is the meaning
of graded polynomial representation theory). By a polynomial G-module we mean
a G-module with coefficients contained in A(G); by a homogeneous polynomial
G-module of degree d we mean one with coefficients contained in Ad(G).

Set S(n, d) = A(n, d)∗ = HomK(A(n, d), K). Since A(n, d) is a coalgebra, S(n, d)
is an (associative) algebra. The S(n, d) are known as Schur algebras. Set Sd(G) =
Ad(G)∗. Since Ad(G) is a quotient of A(n, d), we may identify Sd(G) with a subal-
gebra of the Schur algebra S(n, d). If we set V = Kn with G acting by left matrix
multiplication, then G acts diagonally on the tensor power V ⊗d and Sd(G) is iso-
morphic with the enveloping algebra of G (or of M) acting on V ⊗d [8, Prop. 3.2].

We have K[M ] =
⊕

d≥0 K[M ]d, the Hn (or even Hn)-eigenspace decomposition
for left or right translation. The restriction map K[M ] → K[G] is injective and
maps K[M ] onto A(G), K[M ]d onto Ad(G). Thus K[M ]d ' Ad(G) as coalgebras,
K[M ] ' A(G) as bialgebras. We have

5.1. Proposition. [8, Prop. 1.3, 1.4]
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(a) Every polynomial G-module V has a direct sum decomposition of the form V =⊕
d≥0 Vd where each Vd is homogeneous of degree d.

(b) The category of homogeneous polynomial G-modules of degree d is equivalent to
the category of Sd(G)-modules.

In [4], Donkin introduces the notion of a generalized Schur algebra Sπ(G) asso-
ciated to a reductive group G and a finite ideal π in X(T )+. He defines Aπ(G) to
be OπK[G] and shows this is a subcoalgebra of K[G]. Then Sπ(G) is defined to
be its linear dual Aπ(G)∗. We will now show that our algebras Sd(G) are in fact
generalized Schur algebras in Donkin’s sense.

Restriction from T to Hn gives a map X(T )→ X(Hn). Let us define a character
χd on Hn by the rule cIn 7→ cd for any d ∈ Z, c ∈ K×. Then X(Hn) = {χd : d ∈ Z}
and we have

X(T ) =
⋃
d∈Z

X(T )d (disjointly)

where X(T )d is the inverse image of χd under the restriction map X(T )→ X(Hn).
Moreover,

if λ ∈ X(T )d, µ ∈ X(T )e, then λ + µ ∈ X(T )d+e.(14)

Similarly, restriction from T to Hn gives a map X(T ) → X(Hn). Defining X(T )d

to be the inverse image of χd under this map, we have

X(T ) =
⋃
d≥0

X(T )d (disjointly).

Moreover, our identification of X(T ) with a subset of X(T ) identifies X(T )d with
X(T )d, for all d ≥ 0.

We will soon need the following fact.

5.2. Lemma. We have the inclusion Φ ⊂ X(T )0.

Proof. If V is any rational T -module we have the T -weight space decomposition
V =

⊕
λ∈X(T ) Vλ and the T -weights of V are {λ ∈ X(T ) : Vλ 6= (0)}. Restricting

to Hn we have V =
⊕

d∈Z Vd, where Vd is the χd-eigenspace. Moreover, restriction
to Hn maps the T -weights of V onto the Hn-weights of V . If T acts by conjugation,
then the restricted Hn-action is trivial, so in that case V = V0 and the T -weights of
V will all lie in X(T )0. Specializing V to be the Lie algebra g of G, with G acting
via the adjoint representation, thus yields the result.

5.3. Proposition. For each d ≥ 0, X(T )+d is a finite ideal in the poset X(T )+.

Proof. Suppose µ ≤ λ for λ ∈ X(T )+d , µ ∈ X(T )+. Then µ ∈ X(T )+, by 3.6. By
(14) and 5.2 we have λ− µ ∈ X(T )0; hence µ ∈ X(T )+d and consequently we have
µ ∈ X(T )+d . This shows X(T )+d is an ideal in the poset X(T )+.

To see that it is finite, recall that we may assume that T consists of diagonal
matrices. So we have a commutative diagram

Dn −−−−→ Dnx x
T −−−−→ T

(15)
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in which all the maps are inclusions. This in turn induces the commutative diagram

X(Dn) ←−−−− X(Dn)y y
X(T ) ←−−−− X(T )

(16)

in which all the maps are restriction maps. The horizontal maps are injective
(see Section 3) and the vertical maps are surjective. (See [1, Prop. 8.2(c)] for the
surjectivity of the vertical map on the left; for the surjectivity of the vertical map
on the right see the proof of [12, Lemma 2.2].)

Now it is very easy to check that X(Dn)d is finite for each d ≥ 0. Since restriction
carries X(Dn)d onto X(T )d it follows that X(T )d is finite. Hence X(T )+d is finite.

We now obtain a generalization of [5, (1), p. 356]:

5.4. Theorem. Suppose the reductive normal algebraic monoid M has 1-dimen-
sional center Z(M) and that M has a zero element. With π(d) = X(T )+d we have
the equalities Ad(G) = Oπ(d)K[G], Sd(G) = Sπ(d)(G). In particular, Sd(G) is a
generalized Schur algebra.

Proof. We have an isomorphism Ad(G) ' K[M ]d and

K[M ]d =
⊕

λ∈X(T )d

K[M ]λ.

By an argument similar to the one in the proof of 4.4 we see that Oπ(d) maps
indG

T Kλ onto indM
T Kλ for λ ∈ X(T )d and to (0) otherwise. Thus it follows that

Oπ(d)K[G] = Ad(G). The equality Sd(G) = Sπ(d)(G) follows immediately.

5.5. Corollary. Suppose the reductive normal algebraic monoid M has 1-dimen-
sional center Z(M) and that M has a zero element.
(a) The category of Sd(G)-modules is a highest weight category, in the sense of
Cline, Parshall, Scott [2].
(b) For each d ≥ 0, Sd(G) is a quasihereditary algebra with global dimension bounded
by 2`(X(T )+d ).
(c) The K-vector space dimension of Sd(G) is given by the formula

dim Sd(G) =
∑

λ∈π(d)

(dim H0(λ))2.

(d) If V , W are homogeneous polynomial G-modules of degree d, then

Ext•M (V, W ) ' Ext•G(V, W ) ' Ext•Sd(G)(V, W ).

Proof. (a) follows from what has already been proven. The first statement of (b)
follows from (a) by the main result of [2], and the second statement from (2.2f) in
[4]. For (c) and (d) see (2.2c) and (2.2d) in [4].
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