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AN Lp A PRIORI ESTIMATE FOR THE TRICOMI EQUATION
IN THE UPPER HALF SPACE

JONG UHN KIM

Abstract. We establish an Lp a priori estimate for the Tricomi equation. Our
main tool is Mihlin’s multiplier theorem combined with well-known estimates
of the Newtonian potential.

0. Introduction

The purpose of this paper is to establish an Lp a priori estimate for the Tricomi
equation in the upper half-space. The Tricomi equation arises in transonic gas
dynamics, and is a typical model equation of changing type. It has been extensively
investigated from the various viewpoints. The Tricomi equation can be interpreted
as an elliptic equation which degenerates on the boundary, which is our viewpoint
in this paper. We can formulate the Dirichlet boundary value problem in the upper
half-space as follows.

∂2u

∂y2
+ y∆xu = f, in Rn

+,(0.1)

u(0, x) = φ(x), on ∂Rn
+,(0.2)

where Rn
+ = {(y, x) : y > 0, x ∈ Rn−1}, and ∆x is the Laplacian in the x variable.

An L2 a priori estimate can be obtained very easily. Following the presentation in

[8], we suppose that u ∈ C∞0 (Rn
+), and multiply the equation (0.1) by

∂2u

∂y2
. Then,

we integrate over Rn
+ to obtain∫

Rn−1

∫ ∞

0

(
∂2u

∂y2

)2

dy dx+
∫

Rn−1

∫ ∞

0

y

∣∣∣∣∇x
∂u

∂y

∣∣∣∣2 dy dx(0.3)

=
1
2

∫
Rn−1

∣∣∇xφ
∣∣2 dx +

∫
Rn−1

∫ ∞

0

f
∂2u

∂y2
dy dx,

where ∇x stands for the gradient in x ∈ Rn−1. This yields∥∥∥∥∂2u

∂y2

∥∥∥∥
L2(Rn

+)

+
∥∥∥∥√y ∇x

∂u

∂y

∥∥∥∥
L2(Rn

+)

+
∥∥∥∥y∆xu

∥∥∥∥
L2(Rn

+)

(0.4)

≤M
(∥∥f∥∥

L2(Rn
+)

+
∥∥∇xφ

∥∥
L2(Rn−1)

)
,
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where M is a positive constant independent of u. This estimate is also covered by
the result of [15]. Since (0.3) is an equality, the inequality (0.4) is an optimal L2

estimate. It is a natural question to ask whether a similar Lp estimate is valid,
which motivates the present work.

In this paper, we establish a similar estimate in the Lp setting, 1 < p <∞. Our
result is the following.

Theorem 0.1. Let 1 < p < ∞, and let 0 < L < ∞. Suppose u ∈ C∞0 (Rn
+)

satisfies (0.1), (0.2), and supp u ⊂ {(y, x) : y < L, x ∈ Rn−1}. Then, there is a
positive constant ML independent of u such that∥∥∥∥∂2u

∂y2

∥∥∥∥
Lp(Rn

+)

+
∥∥∥∥√y ∇x

∂u

∂y

∥∥∥∥
Lp(Rn

+)

+
∥∥∥∥y∆xu

∥∥∥∥
Lp(Rn

+)

(0.5)

≤ML

(∥∥f∥∥
Lp(Rn

+)
+

∥∥φ∥∥
B

4/3−2/(3p)
pp (Rn−1)

)
.

Here Br
pp(R

k) is the Besov space; see [1], [13], and [14]. When p = 2, we recover
(0.4) with modification that M depends on L, and that the L2 norm of φ is added
to the right-hand side. The above particular estimate is not covered by any of
the vast known results concerned with degenerate elliptic equations. For extensive
references, readers are referred to [7], [9], [10], and [14]. It is obvious that the above
simple procedure for the L2 estimate does not work for Lp, p 6= 2. As in the case of
regular elliptic equations, the method of potential theory is a possible approach. In
fact, the fundamental solutions of certain equations of mixed type were discussed
in [5]. By setting y = z2/3, (0.1) with f ≡ 0 reduces to

∂2u

∂z2
+ ∆xu +

1
3z

∂u

∂z
= 0.(0.6)

The fundamental solutions of (0.6) were analyzed in [3]. Parametrices of more
general differential operators were constructed in [2], [11], and [12]. In particular,
the problems discussed in [11] and [12] are closely related to our problem. In
[11], a parametrix for the second order equation of Tricomi type with the Dirichlet
boundary condition was constructed by means of Fourier integral operators, and
some L2 estimates were obtained via the parametrix. This was extended to more
general operators in [12]. But this elaborate device does not provide any short cut
for Lp estimates. Since the equation (0.1) is of a specially simple form, we can
bypass a parametrix, and directly set up integral representation of u through the
Fourier transform in x, and the variation of constants formula. Our approach is
quite elementary, and similar to that of [5]. However, our analysis of the integral
operators is different. The above mentioned results are not useful for our analysis.
We analyze the singular integral operators which involve the Airy functions by
borrowing known results on the Newtonian potential for the Laplacian. Our basic
tool is the following version of Mihlin’s multiplier theorem.

Lemma 0.2. Let m(ξ) be the symbol of a singular integral operator T in Rk.
Suppose that m(ξ) ∈ C∞(Rk \ {0}), and∣∣ξ∣∣|α| ∣∣∣∣∂αm(ξ)

∂ξα

∣∣∣∣ ≤M, for all ξ 6= 0, 0 ≤ |α| ≤ 1 + [k]/2,(0.7)

for some positive constant M. Then, T is a bounded linear operator from Lp(Rk)
into itself for 1 < p <∞, and its operator norm depends only on M, k and p.
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The proof of this fact can be found in [1], [8], [13], and [14].
After some preliminaries in the next two sections, we present the proof of The-

orem 0.1 in section 3.
Throughout this paper, we employ the following notation.
Z+ represents the set of all nonnegative integers. For α = (α1, · · · , αk) ∈ Zk

+,
we write |α| = α1 + · · ·+ αk, and

∂α

∂xα
=

(
∂

∂x1

)α1

· · ·
(

∂

∂xk

)αk

.

R+ is the set of all positive real numbers, and Rn
+ = {(y, x) : y ∈ R+, x ∈ Rn−1},

for n ≥ 2. C∞0 (Rn
+) is the restriction of C∞0 (Rn) to Rn

+.

1. Some properties of the Laplacian

In this section we will present representation formula for solutions of the Laplace
equation and their operator estimates. Let us fix any 0 < c < 1, and define for
each f ∈ C∞0 (Rn

+)

(Λ1f)(y, x) = F−1
ξ

(
e−y|ξ|

∫ y

cy

et|ξ| |ξ|f̂(t, ξ) dt
)
,(1.1)

and

(Λ2f)(y, x) = F−1
ξ

(
ey|ξ|

∫ y/c

y

e−t|ξ| |ξ|f̂(t, ξ) dt
)
,(1.2)

where

f̂(t, ξ) = (Fxf)(t, ξ) =
∫

Rn−1
f(t, x) e−ix·ξ dx,

and F−1
ξ denotes the Fourier inversion in Rn−1.

Proposition 1.1. Λ1 and Λ2 can be uniquely extended as bounded linear operators
from Lp(Rn

+) into Lp(Rn
+), 1 < p <∞.

Proof. Choose any f ∈ C∞0 (Rn
+), and extend f to Rn such that f̃(−y, x) =

−f̃(y, x), for all (y, x) ∈ Rn, y 6= 0. Let E(y, x) be the Newtonian potential
in Rn, and set

u = E ∗ (∆xf̃),(1.3)

where ∗ stands for the convolution in Rn, and ∆x is the Laplacian in x ∈ Rn−1.
Then, u satisfies

∆u(y, x) = ∆xf̃(y, x), in Rn,(1.4)

u(0, x) = 0 on ∂Rn
+.(1.5)

By virtue of the inequality proved in [6, pp.230-235], it holds that

‖u‖Lp(Rn) ≤M‖f̃‖Lp(Rn) ≤M‖f‖Lp(Rn
+),(1.6)

where M denotes positive constants independent of f. Furthermore, we find that

u ∈ C∞(Rn
+) ∩C1(Rn),(1.7)

u(y, x) → 0, as |x|+ y →∞,(1.8)
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since ∆xf̃ has compact support and belongs to L∞(Rn)∩C∞(Rn
+). Next we con-

sider v(y, x) whose Fourier transform in x for y ≥ 0 is defined by

v̂(y, ξ) =
1
2
e−y|ξ|

∫ y

0

|ξ|et|ξ| f̂(t, ξ) dt(1.9)

+
1
2
ey|ξ|

∫ ∞

y

|ξ|e−t|ξ|f̂(t, ξ) dt

− 1
2
e−y|ξ|

∫ ∞

0

|ξ|e−t|ξ|f̂(t, ξ) dt

= v̂1(y, ξ) + v̂2(y, ξ) + v̂3(y, ξ),

where the above three integral terms are denoted by v̂j , j = 1, 2, 3. Then, it holds
that

∆v = ∆xf in Rn
+,(1.10)

v(0, x) = 0 on ∂Rn
+.(1.11)

It is easy to find that

ξα(v̂1(y, ξ) + v̂2(y, ξ)) ∈ C
(
[0,∞);L1(Rn−1)

)
, for each α ∈ Zn−1

+ ,(1.12)

and that

∆
(
v1(y, x) + v2(y, x)

)
= ∆xf(y, x) in Rn

+.(1.13)

Hence it follows that

v1 + v2 ∈ C∞(Rn
+).(1.14)

Suppose that L is a positive number such that

supp f ⊂ {(y, x) : y < L}.
Then, for y > L, we have

|v1(y, x) + v2(y, x)| =|v1(y, x)| ≤M

∫
Rn−1

∣∣∣∣e−y|ξ|
∫ L

0

|ξ|et|ξ|f̂(t, ξ) dt
∣∣∣∣ dξ(1.15)

≤M
∥∥e−(y−L)|ξ|∥∥

L2(Rn−1)

∫ L

0

∥∥ |ξ|f̂(t, ξ)
∥∥

L2(Rn−1)
dt

where M is a positive constant independent of (y, x). Thus, it follows that∥∥(v1 + v2)(y)
∥∥

L∞(Rn−1)
→ 0, as y →∞.(1.16)

Next fix any N > 0. For each j = 1, · · · , n− 1, it holds that∣∣xj

(
v1(y, x) + v2(y, x)

)∣∣ ≤M ∫
Rn−1

∣∣∣∣ ∂∂ξj (
v̂1(y, ξ) + v̂2(y, ξ)

)∣∣∣∣ dξ(1.17)

≤MN , for all x ∈ Rn−1 and 0 ≤ y ≤ N,

for some constant MN . It follows from (1.16) and (1.17) that

|v1(y, x) + v2(y, x)| → 0 as |x|+ y →∞.(1.18)

By a similar argument, we also find that

v3(y, x) ∈ C∞(Rn
+),(1.19)

and

v3(y, x) → 0, as |x|+ y →∞.(1.20)
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By the maximum principle for the Laplacian, we conclude that

u(y, x) = v(y, x) for all (y, x) ∈ Rn
+.(1.21)

By noting the following inequality for each α ∈ Zn−1
+ ,∣∣ξ∣∣|α| ∣∣∣∣ ∂α

∂ξα
|ξ|e−(t+y)|ξ|

∣∣∣∣ ≤ Mα

t+ y
, for all t+ y > 0, ξ 6= 0,(1.22)

with some positive constant Mα, we can apply Lemma 0.2 to v̂3 to derive

‖v3(y)‖Lp(Rn−1) ≤M

∫ ∞

0

1
t+ y

‖f(t)‖Lp(Rn−1) dt(1.23)

for all y > 0. By the well-known estimate of the Hilbert integral [13, p.271], we
have

‖v3‖Lp(Rn
+) ≤M‖f‖Lp(Rn

+),(1.24)

where M is a positive constant independent of f.
Next choose any g ∈ C∞0 (Rn

+), and extend g to Rn such that g̃(−y, x) = g̃(y, x),

for all (y, x) ∈ Rn. Then, we note that
∂g̃

∂y
(−y, x) = −∂g̃

∂y
(y, x), for all (y, x) ∈

Rn, y 6= 0, and set for j = 1, · · · , n− 1,

wj = E ∗ ∂2g̃

∂y∂xj
.(1.25)

Then, wj satisfies

∆wj =
∂2g̃

∂y∂xj
in Rn,(1.26)

wj(0, x) = 0, on ∂Rn
+.(1.27)

As above, we have

‖wj‖Lp(Rn) ≤M‖g̃‖Lp(Rn) ≤M‖g‖Lp(Rn
+),(1.28)

where M denotes positive constants independent of g. We also find that

wj ∈ C∞(Rn
+) ∩ C1(Rn),(1.29)

wj(y, x) → 0, as |x|+ y →∞.(1.30)

Analogously to (1.9), we define, for y ≥ 0,

ψ̂j(y, ξ) =
i

2
e−y|ξ|

∫ y

0

ξj e
t|ξ|ĝ(t, ξ) dt(1.31)

− i

2
ey|ξ|

∫ ∞

y

ξj e
−t|ξ|ĝ(t, ξ) dt

+
i

2
e−y|ξ|

∫ ∞

0

ξj e
−t|ξ|ĝ(t, ξ) dt

= ψ̂j
1(y, ξ) + ψ̂j

2(y, ξ) + ψ̂j
3(y, ξ),

where i =
√
−1, and ψ̂j

k, k = 1, 2, 3, represents each integral term. It is easy to
see that

∆ψj =
∂2g

∂y∂xj
in Rn

+,(1.32)



4616 JONG UHN KIM

ψj(0, x) = 0 on ∂Rn
+.(1.33)

By the same argument as above, we arrive at

wj(y, x) = ψj(y, x) for all (y, x) ∈ Rn
+,(1.34)

and

‖ψj
3‖Lp(Rn

+) ≤M‖g‖Lp(Rn
+),(1.35)

for some positive constant M independent of g. By combining (1.28), (1.34), and
(1.35), we find that

‖ψj
1 + ψj

2‖Lp(Rn
+) ≤M‖g‖Lp(Rn

+),(1.36)

for each j = 1, · · · , n− 1, for some positive constant M independent of g. By the
Lp boundedness of the Riesz transforms, we can deduce∥∥∥∥F−1

ξ

(
e−y|ξ|

∫ y

0

|ξ| et|ξ|ĝ(t, ξ) dt− ey|ξ|
∫ ∞

y

|ξ| e−t|ξ|ĝ(t, ξ) dt
)∥∥∥∥

Lp(Rn
+)

(1.37)

≤M

∥∥∥∥F−1
ξ

n−1∑
j=1

ξj
|ξ|

(
ψ̂j

1(y, ξ) + ψ̂j
2(y, ξ)

)∥∥∥∥
Lp(Rn

+)

≤M‖g‖Lp(Rn
+),

where M stands for positive constants independent of g. It now follows from (1.6),
(1.21), (1.24), and (1.37) that∥∥∥∥F−1

ξ

(
e−y|ξ|

∫ y

0

|ξ|et|ξ|f̂(t, ξ) dt
)∥∥∥∥

Lp(Rn
+)

≤M‖f‖Lp(Rn
+),(1.38)

∥∥∥∥F−1
ξ

(
ey|ξ|

∫ ∞

y

|ξ|e−t|ξ|f̂(t, ξ) dt
)∥∥∥∥

Lp(Rn
+)

≤M‖f‖Lp(Rn
+),(1.39)

for some positive constant M independent of f.
Next let 0 < c < 1 be fixed. We have∥∥∥∥F−1

ξ

(
e−y|ξ|

∫ cy

0

|ξ|et|ξ| f̂(t, ξ) dt
)∥∥∥∥

Lp(Rn−1)

(1.40)

≤M

∫ cy

0

1
y − t

‖f(t)‖Lp(Rn−1) dt

≤ M

1− c

1
y

∫ cy

0

‖f(t)‖Lp(Rn−1) dt, for all y > 0,

which follows from Lemma 0.2 with help of the following inequality for each α ∈
Zn−1

+ , ∣∣ξ∣∣|α| ∣∣∣∣ ∂α

∂ξα

(
|ξ|e−(y−t)|ξ|)∣∣∣∣ ≤ Mα

y − t
,(1.41)

with some positive constant Mα, for all y > t ≥ 0, ξ 6= 0. By the Hardy inequality,
we can infer from (1.40) that∥∥∥∥F−1

ξ

(
e−y|ξ|

∫ cy

0

|ξ|et|ξ| f̂(t, ξ) dt
)∥∥∥∥

Lp(Rn
+)

≤M‖f‖Lp(Rn
+),(1.42)
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for some positive constant M independent of f. By the same argument, we find
that ∥∥∥∥F−1

ξ

(
ey|ξ|

∫ ∞

y/c

|ξ|e−t|ξ| f̂(t, ξ) dt
)∥∥∥∥

Lp(Rn−1)

(1.43)

≤M

∫ ∞

y/c

1
t− y

‖f(t)‖Lp(Rn−1) dt

≤ M

1− c

∫ ∞

y/c

1
t
‖f(t)‖Lp(Rn−1) dt, for all y > 0.

For each φ(t) ∈ Lp(R+), it holds that∥∥∥∥∫ ∞

y/c

φ(t)
t

dt

∥∥∥∥
Lp(R+)

=
∥∥∥∥∫ ∞

1/c

φ(yλ)
λ

dλ

∥∥∥∥
Lp(R+)

(1.44)

≤
∫ ∞

1/c

1
λ
‖φ(yλ)‖Lp(R+) dλ

≤ ‖φ‖Lp(R+)

∫ ∞

1/c

1
λ1+1/p

dλ ≤ p c1/p ‖φ‖Lp(R+).

By applying this to (1.43), we obtain∥∥∥∥F−1
ξ

(
ey|ξ|

∫ ∞

y/c

|ξ|e−t|ξ| f̂(t, ξ) dt
)∥∥∥∥

Lp(Rn
+)

≤M‖f‖Lp(Rn
+),(1.45)

for some positive constant M independent of f. The proof of Proposition 1.1 is
complete by combining (1.38), (1.39), (1.42), and (1.45).

Next we fix any 0 < c < 1, and any real number γ to define for each f ∈
C∞0 (Rn

+),

(Λ1,γf)(y, x) = F−1
ξ

(
e−y|ξ|

∫ y

cy

et|ξ| |ξ|
(
t/y

)γ
f̂(t, ξ) dt

)
,(1.46)

and

(Λ2,γf)(y, x) = F−1
ξ

(
ey|ξ|

∫ y/c

y

e−t|ξ| |ξ|
(
t/y

)γ
f̂(t, ξ) dt

)
.(1.47)

Proposition 1.2. Λ1,γ and Λ2,γ can be uniquely extended as bounded linear oper-
ators from Lp(Rn

+) into Lp(Rn
+), 1 < p <∞.

Proof. Choose any f ∈ C∞0 (Rn
+), and any small ε > 0. Let us define

f0(y, x) =

{
f(y, x), for 0 ≤ y < ε,

0, otherwise
(1.48)

and, for j ≥ 1,

fj(y, x) =

{
f(y, x), for ε c−(j−1) ≤ y < ε c−j,

0, otherwise
(1.49)

so that

f =
N(ε)∑
j=0

fj , for some 0 ≤ N(ε) <∞,(1.50)
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and ∥∥f∥∥p

Lp(Rn
+)

=
N(ε)∑
j=0

∥∥fj

∥∥p

Lp(Rn
+)
.(1.51)

We also define

gj(y, x) =
(
Λ1,γfj

)
(y, x), for j = 0, 1, · · · , N(ε),(1.52)

so that

supp gj ⊂ {(y, x) : ε c−(j−1) ≤ y ≤ ε c−(j+1)},(1.53)

and

Λ1,γf =
N(ε)∑
j=0

gj.(1.54)

For j ≥ 1, it holds that∥∥yγfj(y, x)
∥∥

Lp(Rn
+)
≤ c−|γ|

(
ε c−j

)γ∥∥fj(y, x)
∥∥

Lp(Rn
+)
,(1.55)

c|γ|
(
ε c−j

)γ∥∥gj(y, x)
∥∥

Lp(Rn
+)
≤

∥∥yγgj(y, x)
∥∥

Lp(Rn
+)
.(1.56)

By virtue of Proposition 1.1, we find that, for j ≥ 1,∥∥yγgj(y, x)
∥∥

Lp(Rn
+)
≤M

∥∥yγfj(y, x)
∥∥

Lp(Rn
+)
,(1.57)

and thus, ∥∥gj

∥∥
Lp(Rn

+)
≤M

∥∥fj

∥∥
Lp(R+)

,(1.58)

for some positive constant M independent of ε, j, and f. Next (1.53) implies that∣∣∣∣N(ε)∑
j=1

gj(y, x)
∣∣∣∣p ≤ 2p

N(ε)∑
j=1

∣∣gj(y, x)
∣∣p, for all (y, x) ∈ Rn

+.(1.59)

It follows that∥∥∥∥N(ε)∑
j=1

gj

∥∥∥∥p

Lp(Rn
+)

≤M

N(ε)∑
j=1

∥∥fj

∥∥p

Lp(Rn
+)
≤M

∥∥f∥∥p

Lp(Rn
+)
,(1.60)

for some positive constant M independent of ε and f. Meanwhile, it is obvious
that, as ε→ 0,

N(ε)∑
j=1

fj → f, in L2(Rn
+),(1.61)

and consequently,
N(ε)∑
j=1

gj → Λ1,γf,(1.62)

in the sense of distribution over Rn
+. Hence, we finally arrive at∥∥Λ1,γf

∥∥
Lp(Rn

+)
≤M

∥∥f∥∥
Lp(Rn

+)
,(1.63)

for some positive constant independent of f. Λ2,γ can be handled in the same
manner.
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The following fact is well-known; see [1].

Lemma 1.3. Let 0 < L < ∞, GL = {(y, x) ∈ Rn
+ : y < L}, and 1 < p < ∞. If

we define, for h(x) ∈ C∞0 (Rn−1) and 1/p < s <∞,

ψ̂(y, ξ) = |ξ|s e−y|ξ|ĥ(ξ),(1.64)

then it holds that ∥∥ψ∥∥
Lp(GL)

≤ML

∥∥h∥∥
B

s− 1
p

pp (Rn−1)
,(1.65)

for some positive constant ML independent of h.

2. Review of the Airy functions

Let us first review some basic facts on the Airy functions. The Airy function of
the first kind is denoted by A(z), and can be given by

A(z) =
1
2π

e−
2
3 z3/2

∫ ∞

−∞
e−ξ2√zeiξ3/3 dξ,(2.1)

which is valid for z 6= 0, |arg(z)| < π; see [8]. The Airy function of the second
kind is written as B(z), and can be given by

B(z) = eiπ/6A(zei2π/3) + e−iπ/6A(ze−i2π/3),(2.2)

and thus, for all y > 0,

B(y) =
1
π
e

2
3 y3/2

∫ ∞

−∞
e−ξ2√y/2 cos

(√3
2
ξ2
√
y − π

6
)
eiξ3/3 dξ.(2.3)

Then, A(z) and B(z) are two linearly independent solutions of

d2w

dz2
− zw = 0,(2.4)

and their Wronskian is

W (A(z), B(z)) =
1
π
, for all z.(2.5)

It is known that A(z) and B(z) are entire functions of z. Some other properties
can be also found in [4].

For later use, we define

QA(y) = A(y)e
2
3 y3/2

=
1
2π

∫ ∞

−∞
e−ξ2√y eiξ3/3 dξ,(2.6)

and

QB(y) = B(y)e−
2
3 y3/2

=
1
π

∫ ∞

−∞
e−ξ2√y/2 cos

(√3
2
ξ2
√
y − π

6
)
eiξ3/3 dξ.(2.7)

Lemma 2.1. For each α ∈ Z+, it holds that∣∣∣∣yα ∂
αQA(y)
∂yα

∣∣∣∣ +
∣∣∣∣yα ∂

αQB(y)
∂yα

∣∣∣∣ ≤Mα, for all y > 0,(2.8)

for some positive constant Mα.
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Proof. By direct differentiation of (2.7), we have

yα ∂
αQB(y)
∂yα

=
∫ ∞

−∞
e−ξ2√y/2

(
P1(ξ2

√
y) cos

(√3
2
ξ2
√
y − π

6
)

(2.9)

+ P2(ξ2
√
y) sin

(√3
2
ξ2
√
y − π

6
))
eiξ3/3 dξ

where P1(t) and P2(t) are polynomials in t. Hence, it is easy to see that, for all
y ≥ 1, ∣∣∣∣yα ∂

αQB(y)
∂yα

∣∣∣∣ ≤Mα, for each α ∈ Z+.(2.10)

This inequality is also valid for 0 < y < 1, because B(z) is an entire function of
z. The argument for QA is the same as above.

The inequality (2.8) yields the following.

Lemma 2.2. For each α ∈ Zk
+, we have∣∣ξ∣∣|α| ∣∣∣∣∂αQA(y|ξ|2/3)

∂ξα

∣∣∣∣ +
∣∣ξ∣∣|α| ∣∣∣∣∂αQB(y|ξ|2/3)

∂ξα

∣∣∣∣ ≤Mα,(2.11)

for all (y, ξ) ∈ R+ ×Rk, ξ 6= 0.

Lemma 2.3. For each α ∈ Z+, it holds that∣∣∣∣yα ∂
α+1QA(y)
∂yα+1

∣∣∣∣ +
∣∣∣∣yα ∂

α+1QB(y)
∂yα+1

∣∣∣∣ ≤Mα, for all y > 0.(2.12)

Proof. For y ≥ 1, (2.12) is a consequence of (2.8). For 0 < y < 1, we directly
differentiate QA(y) and QB(y), and use the fact that A(z) and B(z) are entire in
z.

Lemma 2.4. For each α ∈ Zk
+, we have∣∣ξ∣∣|α| ∣∣∣∣ ∂α

∂ξα

∂

∂y

(
QA(y|ξ|2/3)

|ξ|2/3

)∣∣∣∣ +
∣∣ξ∣∣|α| ∣∣∣∣ ∂α

∂ξα

∂

∂y

(
QB(y|ξ|2/3)

|ξ|2/3

)∣∣∣∣ ≤Mα,(2.13)

and ∣∣ξ∣∣|α| ∣∣∣∣ ∂α

∂ξα

(
1

y|ξ|−1/3

∂

∂ξj
QA(y|ξ|2/3)

)∣∣∣∣
+

∣∣ξ∣∣|α| ∣∣∣∣ ∂α

∂ξα

(
1

y|ξ|−1/3

∂

∂ξj
QB(y|ξ|2/3)

)∣∣∣∣ ≤Mα,

(2.14)

for all (y, ξ) ∈ R+ ×Rk, ξ 6= 0, j = 1, · · · , k.

This follows immediately from (2.12).
Next we define

JA(y) = A(y) y1/4 e
2
3 y3/2

=
1
2π

y1/4

∫ ∞

−∞
e−ξ2√y eiξ3/3 dξ,(2.15)

and

JB(y) = B(y) y1/4 e−
2
3 y3/2

=
1
π
y1/4

∫ ∞

−∞
e−ξ2√y/2 cos

(√3
2
ξ2
√
y − π

6
)
eiξ3/3 dξ.

(2.16)
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It is easy to see that, for each α ∈ Z+,∣∣∣∣yα ∂
αJA(y)
∂yα

∣∣∣∣ +
∣∣∣∣yα ∂

αJB(y)
∂yα

∣∣∣∣ ≤Mα, for all y > 0,(2.17)

which yields the following estimates.

Lemma 2.5. For each α ∈ Zk
+, we have

∣∣ξ∣∣|α| ∣∣∣∣∂αJA(y|ξ|2/3)
∂ξα

∣∣∣∣ +
∣∣ξ∣∣|α| ∣∣∣∣∂αJB(y|ξ|2/3)

∂ξα

∣∣∣∣ ≤Mα,(2.18)

and ∣∣ξ∣∣|α| ∣∣∣∣ ∂α

∂ξα

∂

∂y
JA(y|ξ|2/3)

∣∣∣∣ +
∣∣ξ∣∣|α| ∣∣∣∣ ∂α

∂ξα

∂

∂y
JB(y|ξ|2/3)

∣∣∣∣ ≤ Mα

y
,(2.19)

for all (y, ξ) ∈ R+ ×Rk, ξ 6= 0.

Proof. (2.18) follows directly from (2.17). If we set HA(y) = y
∂JA(y)
∂y

and

HB(y) = y
∂JB(y)
∂y

, then∣∣∣∣yα ∂
αHA(y)
∂yα

∣∣∣∣ +
∣∣∣∣yα ∂

αHB(y)
∂yα

∣∣∣∣ ≤Mα, for all y > 0.(2.20)

Since y
∂

∂y
JA(y|ξ|2/3) = HA(y|ξ|2/3) and y

∂

∂y
JB(y|ξ|2/3) = HB(y|ξ|2/3), (2.19)

follows from (2.20).

3. Proof of Theorem 0.1

Choose any f ∈ C∞0 (Rn
+), φ ∈ C∞0 (Rn−1), and define for j = 1, · · · , n− 1,

v̂j(y, ξ) =− π A(y|ξ|2/3)
∫ y

0

i ξj|ξ|−2/3B(t|ξ|2/3) f̂(t, ξ) dt(3.1)

− π B(y|ξ|2/3)
∫ ∞

y

i ξj |ξ|−2/3A(t|ξ|2/3) f̂(t, ξ) dt

+
√

3 π A(y|ξ|2/3)
∫ ∞

0

i ξj|ξ|−2/3A(t|ξ|2/3)f̂(t, ξ) dt

+ 32/3Γ(2/3)A(y|ξ|2/3) i ξj φ̂(ξ),

where i =
√
−1, and Γ(·) stands for the Gamma function. Then, vj(y, x) satisfies

∂2vj

∂y2
+ y∆xv

j =
∂f

∂xj
in Rn

+,(3.2)

and

vj(0, x) =
∂φ(x)
∂xj

on ∂Rn
+.(3.3)



4622 JONG UHN KIM

We can rewrite (3.1) as

v̂j(y, ξ) = −πQA(y|ξ|2/3)e−
2
3 y3/2|ξ|

∫ y

0

i ξj |ξ|−2/3e
2
3 t3/2|ξ|QB(t|ξ|2/3) f̂(t, ξ) dt

(3.4)

− πQB(y|ξ|2/3)e
2
3 y3/2|ξ|

∫ ∞

y

i ξj |ξ|−2/3e−
2
3 t3/2|ξ|QA(t|ξ|2/3) f̂(t, ξ) dt

+
√

3 πQA(y|ξ|2/3)e−
2
3 y3/2|ξ|

∫ ∞

0

i ξj |ξ|−2/3e−
2
3 t3/2|ξ|QA(t|ξ|2/3)f̂(t, ξ) dt

+ 32/3Γ(2/3)e−
2
3 y3/2|ξ|QA(y|ξ|2/3) i ξj φ̂(ξ)

= v̂j
1(y, ξ) + v̂j

2(y, ξ) + v̂j
3(y, ξ) + v̂j

4(y, ξ),

where the three integral terms are denoted by v̂j
k, k = 1, 2, 3, and the last term by

v̂j
4. By virtue of (2.11), (2.13), and the fact that f ∈ C∞0 (Rn

+), φ ∈ C∞0 (Rn−1),
we first find that

ξαv̂(y, ξ) ∈ C
(
[0,∞);L1(Rn−1)

)
, for each α ∈ Zn−1

+ .(3.5)

Then, it follows from (3.2) that

v(y, x) ∈ C∞(Rn
+).(3.6)

Next we will show that v decays to zero at infinity. Let L be a positive number
such that supp f ⊂ {(y, x) : y < L}. Then, for y > L, vj

2(y, x) vanishes, and it
follows from (2.11) that∥∥vj

1(y)
∥∥

L∞(Rn−1)
+

∥∥vj
3(y)

∥∥
L∞(Rn−1)

+
∥∥vj

4(y)
∥∥

L∞(Rn−1)
(3.7)

≤M

(∥∥v̂j
1(y)

∥∥
L1(Rn−1)

+
∥∥v̂j

3(y)
∥∥

L1(Rn−1)
+

∥∥v̂j
4(y)

∥∥
L1(Rn−1)

)
≤ C

(∥∥e− 2
3 (y3/2−L3/2)|ξ|∥∥

L2(Rn−1)
+

∥∥e− 2
3 y3/2|ξ|∥∥

L2(Rn−1)

)
,

where C is a positive constant depending on f̂ and φ̂.
It is now apparent that, for j = 1, · · · , n− 1,∥∥vj(y)

∥∥
L∞(Rn−1)

→ 0, as y →∞.(3.8)

Next we fix any N > 0. For j, µ = 1, · · · , n− 1, we use (2.14) to see that

∣∣xµv
j(y, x)

∣∣ ≤M

4∑
k=1

∫
Rn−1

∣∣∣∣∂v̂j
k(y, ξ)
∂ξµ

∣∣∣∣ dξ(3.9)

≤ CN , for all x ∈ Rn−1, 0 ≤ y < N,

for some positive constant CN . It follows from (3.8) and (3.9) that∣∣vj(y, x)
∣∣ → 0, as |x|+ y →∞.(3.10)

By means of the maximum principle, we conclude that if u ∈ C∞0 (Rn
+) satisfies

(0.1) and (0.2) with the same f and φ as in (3.1), then

∂u(y, x)
∂xj

= vj(y, x), for all (y, x) ∈ Rn
+, j = 1, · · · , n− 1.(3.11)
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We define

ŵk(y, ξ) =
n−1∑
j=1

i ξj y v̂
j
k(y, ξ), k = 1, 2, 3, 4,(3.12)

and

ŵ(y, ξ) = ŵ1(y, ξ) + ŵ2(y, ξ) + ŵ3(y, ξ) + ŵ4(y, ξ).(3.13)

For the estimate of w1(y, x), we write, for y > 0,

ŵ1(y, ξ) = π y QA(y|ξ|2/3)e−
2
3 y3/2|ξ|

∫ y/2

0

|ξ|4/3e
2
3 t3/2|ξ|QB(t|ξ|2/3) f̂(t, ξ) dt

(3.14)

+ π JA(y|ξ|2/3)y3/4e−
2
3 y3/2|ξ|

∫ y

y/2

|ξ| t−1/4e
2
3 t3/2|ξ|JB(t|ξ|2/3) f̂(t, ξ) dt

= ŵI
1(y, ξ) + ŵII

1 (y, ξ),

where the two integral terms are denoted by ŵI
1(y, ξ) and ŵII

1 (y, ξ). By virtue of
(2.11), and the inequality for each α ∈ Zn−1

+ ,

∣∣ξ∣∣|α| ∣∣∣∣ ∂α

∂ξα

(
|ξ|4/3 e−

2
3 (y3/2−t3/2)|ξ|

)∣∣∣∣ ≤ Mα

y2
, for all ξ 6= 0, 0 ≤ t < y/2,

(3.15)

we obtain, for 1 < p <∞,∥∥wI
1(y)

∥∥
Lp(Rn−1)

≤ M

y

∫ y/2

0

∥∥f(t)
∥∥

Lp(Rn−1)
dt,(3.16)

which yields by Hardy’s inequality∥∥wI
1

∥∥
Lp(Rn

+)
≤M

∥∥f∥∥
Lp(Rn

+)
,(3.17)

for some positive constant M independent of f.
For the estimate of wII

1 , we first observe by change of variables∫
R+

∫
Rn−1

∣∣wII
1 (y, x)

∣∣p dx dy =
2
3

∫
R+

∫
Rn−1

∣∣wII
1 (z2/3, x)

∣∣p z−1/3 dx dz,(3.18)

and hence, we need to write

(3.19) ŵII
1 (z2/3, ξ)z−1/(3p) =

2π
3
z

1
2− 1

3p JA(z2/3|ξ|2/3)e−
2
3 z|ξ|

×
∫ z

z/23/2
|ξ| e 2

3 s|ξ|JB(s2/3|ξ|2/3)f̂(s2/3, ξ)s−
1
3p s

1
3p− 1

2 ds.

Thus, it follows from Lemma 0.2, Proposition 1.2, Lemma 2.5, (3.18), and (3.19)
that ∥∥wII

1

∥∥
Lp(Rn

+)
=

(
2
3

∫
R+

∫
Rn−1

∣∣wII
1 (z2/3, x)

∣∣p z−1/3 dx dz

)1/p

(3.20)

≤M

(∫
R+

∫
Rn−1

∣∣f(s2/3, x) s−1/(3p)
∣∣p dx ds)1/p

≤M
∥∥f‖Lp(Rn

+),

where M is a positive constant independent of f.
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Next we will estimate w2. For y > 0, we write

ŵ2(y, ξ) = π yQB(y|ξ|2/3)e
2
3 y3/2|ξ|

∫ ∞

2y

|ξ|4/3e−
2
3 t3/2|ξ|QA(t|ξ|2/3) f̂(t, ξ) dt(3.21)

+ π JB(y|ξ|2/3)y3/4e
2
3 y3/2|ξ|

∫ 2y

y

|ξ| t−1/4e−
2
3 t3/2|ξ|JA(t|ξ|2/3) f̂(t, ξ) dt

= ŵI
2(y, ξ) + ŵII

2 (y, ξ),

where the two integral terms are denoted by ŵI
2(y, ξ) and ŵII

2 (y, ξ). Since it holds
that

∣∣ξ∣∣|α| ∣∣∣∣ ∂α

∂ξα

(
|ξ|4/3 e−

2
3 (t3/2−y3/2)|ξ|

)∣∣∣∣ ≤ Mα

t2
, for all ξ 6= 0, 0 ≤ 2y < t,

(3.22)

we obtain ∥∥wI
2(y)

∥∥
Lp(Rn−1)

≤M

∫ ∞

2y

1
t

∥∥f(t)
∥∥

Lp(Rn−1)
dt(3.23)

and hence, by (1.44), ∥∥wI
2

∥∥
Lp(Rn

+)
≤M

∥∥f∥∥
Lp(Rn

+)
,(3.24)

for some positive constant independent of f.
As above, we write

(3.25) ŵII
2 (z2/3, ξ)z−1/(3p) =

2π
3
z

1
2− 1

3p JB(z2/3|ξ|2/3)e
2
3 z|ξ|

×
∫ 23/2 z

z

|ξ| e− 2
3 s|ξ|JA(s2/3|ξ|2/3)f̂(s2/3, ξ)s−

1
3p s

1
3p− 1

2 ds,

and derive by Lemma 0.2, Proposition 1.2 and Lemma 2.5,∥∥wII
2

∥∥
Lp(Rn

+)
≤M

∥∥f∥∥
Lp(Rn

+)
,(3.26)

for some constant M independent of f. We proceed to estimate w3. It is easy to
see that for each α ∈ Zn−1

+

∣∣ξ∣∣|α|∣∣∣∣ ∂α

∂ξα

(
|ξ|4/3 e−

2
3 (y3/2+t3/2)|ξ|

)∣∣∣∣ ≤ Mα

t2 + y2
, for all ξ 6= 0, y > 0, t > 0.

(3.27)

Hence, by virtue of Lemma 0.2 and (2.11), we obtain∥∥w3(y)
∥∥

Lp(Rn−1)
≤M

∫ ∞

0

y

y2 + t2

∥∥f(t)
∥∥

Lp(Rn−1)
dt(3.28)

which, combined with an integral inequality given in [13, p.271], yields∥∥w3

∥∥
Lp(Rn

+)
≤M

∥∥f∥∥
Lp(Rn

+)
,(3.29)

for some positive constant M independent of f.
To estimate w4, we write

ŵ4(z2/3, ξ)z−
1
3p = −32/3Γ(2/3)

(
z|ξ|

) 2
3− 1

3p
∣∣ξ∣∣ 4

3+ 1
3p e−

2
3 z|ξ|QA(z2/3|ξ|2/3)φ̂(ξ).

(3.30)
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Since it holds that for each α ∈ Zn−1
+ ,∣∣ξ∣∣|α| ∣∣∣∣ ∂α

∂ξα

((
z|ξ|

) 2
3− 1

3p e−
1
3 z|ξ|

)∣∣∣∣ ≤Mα, for all z > 0, ξ 6= 0,(3.31)

it follows from Lemma 1.3 and (2.11) that∥∥w4

∥∥
Lp(GL)

≤ML

∥∥φ∥∥
B

4/3−2/(3p)
pp (Rn−1)

,(3.32)

where 0 < L < ∞, and GL = {(y, x) ∈ Rn
+ : y < L}. Since y∆xu = w1 + w2 +

w3 + w4, we combine (3.17), (3.20), (3.24), (3.26), (3.29), and (3.32) to obtain

∥∥∥∥∂2u

∂y2

∥∥∥∥
Lp(Rn

+)

+
∥∥∥∥y∆xu

∥∥∥∥
Lp(Rn

+)

≤ML

(∥∥f∥∥
Lp(Rn

+)
+

∥∥φ∥∥
B

4/3−2/(3p)
pp (Rn−1)

)
,

(3.33)

provided supp u ⊂ {(y, x) : y < L}.
It remains to estimate

√
y∇x

∂u

∂y
. Let us fix any j = 1, · · · , n− 1, and set

σ̂1(y, ξ) = −π√y ∂A(y|ξ|2/3)
∂y

∫ y

0

i ξj |ξ|−2/3B(t|ξ|2/3) f̂(t, ξ) dt,(3.34)

σ̂2(y, ξ) = −π√y ∂B(y|ξ|2/3)
∂y

∫ ∞

y

i ξj|ξ|−2/3A(t|ξ|2/3) f̂(t, ξ) dt,(3.35)

σ̂3(y, ξ) =
√

3 π
√
y
∂A(y|ξ|2/3)

∂y

∫ ∞

0

i ξj |ξ|−2/3A(t|ξ|2/3)f̂(t, ξ) dt,(3.36)

σ̂4(y, ξ) = 32/3Γ(2/3)
√
y
∂A(y|ξ|2/3)

∂y
i ξj φ̂(ξ),(3.37)

and

σ̂(y, ξ) = σ̂1(y, ξ) + σ̂2(y, ξ) + σ̂3(y, ξ) + σ̂4(y, ξ),(3.38)

so that
√
y
∂2u(y, x)
∂y ∂xj

= σ(y, x), for all (y, x) ∈ Rn
+.(3.39)

To estimate σ1(y, x), we write

σ̂1(y, ξ) = σ̂I
1(y, ξ) + σ̂II

1 (y, ξ) + σ̂III
1 (y, ξ)

(3.40)

= −π√y
(
∂

∂y

{
QA(y|ξ|2/3)e−

2
3 y3/2|ξ|}) ∫ y/2

0

iξj |ξ|−2/3e
2
3 t3/2|ξ|QB(t|ξ|2/3)f̂(t, ξ) dt

− π
√
y

(
∂

∂y

{
JA(y|ξ|2/3)y−1/4

})
e−

2
3 y3/2|ξ|

×
∫ y

y/2

iξj |ξ|−1t−1/4e
2
3 t3/2|ξ|JB(t|ξ|2/3)f̂(t, ξ) dt

+ πy3/4JA(y|ξ|2/3)e−
2
3 y3/2|ξ|

∫ y

y/2

iξj |ξ|−1t−1/4|ξ|e 2
3 t3/2|ξ|JB(t|ξ|2/3)f̂(t, ξ) dt.
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By Lemma 0.2, (2.11), (2.13), and an inequality similar to (3.15), we have∥∥σI
1(y)

∥∥
Lp(Rn−1)

≤ M

y

∫ y/2

0

∥∥f(t)
∥∥

Lp(Rn−1)
dt, for all y > 0,(3.41)

which yields ∥∥σI
1

∥∥
Lp(Rn

+)
≤M

∥∥f∥∥
Lp(Rn

+)
,(3.42)

for some positive constant M independent of f. Again by Lemma 0.2 and Lemma
2.5, we obtain ∥∥σII

1 (y)
∥∥

Lp(Rn−1)
≤ M

y

∫ y

y/2

∥∥f(t)
∥∥

Lp(Rn−1)
dt,(3.43)

and hence, ∥∥σII
1

∥∥
Lp(Rn

+)
≤M

∥∥f∥∥
Lp(Rn

+)
,(3.44)

for some positive constant M independent of f. σ̂III
1 (y, ξ) has the same structure

as ŵII
1 (y, ξ) above with an additional Riesz transform. Hence, we can copy (3.20)

so that ∥∥σIII
1

∥∥
Lp(Rn

+)
≤M

∥∥f∥∥
Lp(Rn

+)
.(3.45)

We next write

σ̂2(y, ξ) = σ̂I
2(y, ξ) + σ̂II

2 (y, ξ) + σ̂III
2 (y, ξ)

(3.46)

= −π√y
(
∂

∂y

{
QB(y|ξ|2/3)e

2
3 y3/2|ξ|}) ∫ ∞

2y

iξj |ξ|−2/3e−
2
3 t3/2|ξ|QA(t|ξ|2/3)f̂(t, ξ) dt

− π
√
y

(
∂

∂y

{
JB(y|ξ|2/3)y−1/4

})
e

2
3 y3/2|ξ|

×
∫ 2y

y

iξj |ξ|−1t−1/4e−
2
3 t3/2|ξ|JA(t|ξ|2/3)f̂(t, ξ) dt

− πy3/4JB(y|ξ|2/3)e
2
3 y3/2|ξ|

∫ 2y

y

iξj |ξ|−1t−1/4|ξ|e− 2
3 t3/2|ξ|JA(t|ξ|2/3)f̂(t, ξ) dt.

It follows from Lemma 0.2, (2.11) and (2.13) that∥∥σI
2(y)

∥∥
Lp(Rn−1)

≤M

∫ ∞

2y

1
t

∥∥f(t)
∥∥

Lp(Rn−1)
dt,(3.47)

and thus, ∥∥σI
2

∥∥
Lp(Rn

+)
≤M

∥∥f∥∥
Lp(Rn

+)
,(3.48)

for some positive constant M independent of f. By means of (2.11) and (2.19), we
obtain ∥∥σII

2

∥∥
Lp(Rn

+)
≤M

∥∥f∥∥
Lp(Rn

+)
.(3.49)

By the same argument as for wII
2 above, we find∥∥σIII

2

∥∥
Lp(Rn

+)
≤M

∥∥f‖Lp(Rn
+).(3.50)
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For the estimate of σ3, we rewrite (3.36) as

(3.51) σ̂3(y, ξ) =
√

3π
√
y

(
∂

∂y

{
QA(y|ξ|2/3)e−

2
3 y3/2|ξ|})

×
∫ ∞

0

i ξj |ξ|−2/3e−
2
3 t3/2|ξ|QA(t|ξ|2/3)f̂(t, ξ) dt.

By means of (2.13) and the same argument as for w3 above, we derive∥∥σ3(y)
∥∥

Lp(Rn−1)
≤M

∫ ∞

0

(
y1/2

t3/2 + y3/2
+

y

t2 + y2

) ∥∥f(t)
∥∥

Lp(Rn−1)
dt,(3.52)

which, together with an integral inequality given in [13, p.271], yields∥∥σ3

∥∥
Lp(Rn

+)
≤M

∥∥f∥∥
Lp(Rn

+)
(3.53)

for some positive constant M independent of f.
To estimate σ4, we rewrite (3.37) as

σ̂4(y, ξ) = σ̂I
4(y, ξ) + σ̂II

4 (y, ξ)(3.54)

= 32/3Γ(2/3)
√
y e−

2
3 y3/2|ξ| ∂

∂y

(
QA(y|ξ|2/3)

|ξ|2/3

)
iξj |ξ|2/3φ̂(ξ)

− 32/3Γ(2/3)y e−
2
3 y3/2|ξ|QA(y|ξ|2/3)iξj |ξ|φ̂(ξ).

Setting y = z2/3, we have

σ̂I
4(z2/3, ξ)z−

1
3p = 32/3Γ(2/3)

ξj
|ξ|

(
z|ξ|

) 1
3− 1

3p e−
2
3 z|ξ|L(z, ξ)i|ξ| 43 + 1

3p φ̂(ξ),(3.55)

where L(z, ξ) =
∂

∂y

QA(y|ξ|2/3)
|ξ|2/3

.

By virtue of Lemma 0.2, Lemma 1.3, (2.13), the Lp boundedness of the Riesz
transforms, and an inequality similar to (3.31), we have∥∥σI

4

∥∥
Lp(GL)

≤ML

∥∥φ∥∥
B

4/3−2/(3p)
pp (Rn−1)

,(3.56)

where 0 < L <∞, and GL = {(y, x) ∈ Rn
+ : y < L}.

We can estimate σII
4 in the same manner so that∥∥σ4

∥∥
Lp(GL)

≤ML

∥∥φ∥∥
B

4/3−2/(3p)
pp (Rn−1)

,(3.57)

where ML is a positive constant independent of φ. By combining the above esti-
mates, and choosing L such that supp u ⊂ GL, we have, for j = 1, · · · , n− 1,∥∥∥∥√y ∂2u

∂y∂xj

∥∥∥∥
Lp(Rn

+)

≤ML

(∥∥f∥∥
Lp(Rn

+)
+

∥∥φ∥∥
B

4/3−2/(3p)
pp (Rn−1)

)
.(3.58)

Now the proof of Theorem 0.1 is complete.
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8. Hörmander, L., “The Analysis of Linear Partial Differential Operators,” Vol I and III,

Springer-Verlag, Berlin-Heidelberg-New York, 1983. MR 85g:35002a; MR 85g:35002b
9. Levendorskii, S., “Degenerate Elliptic Equations,” Kluwer Academic Publisher, Dordrecht-

Boston-London, 1993. MR 95b:35079

10. Olĕinik, O.A. and Radkevič, E.V., “Second Order Equations with Nonnegative Characteris-
tic Form,” American Mathematical Society, Providence, R.I. and Plenum Press, New York-
London, 1973. MR 56:16112

11. Segala, F., Parametrices for operators of Tricomi type, Annali di Mat. Pura Appl., t.140, pp.
285-299, 1985. MR 87b:35065

12. Segala, F., Parametrices for a class of differential operators with multiple characteristics,
Annali di Mat. Pura Appl., t.146, pp. 311-336, 1987. MR 89c:35028

13. Stein, E.M., “ Singular Integrals and Differentiability Properties of Functions,” Princeton
University Press, 1970. MR 44:7280

14. Triebel, H., “Interpolation Theory, Function Spaces, Differential Operators,” North-Holland
Publishing Co., Amsterdam-New York-Oxford, 1978. MR 80i:46032b

15. Visik, M.I. and Grusin, V.V., Boundary value problems for elliptic equations degenerate on
the boundary of a domain, Math. USSR Sbornik, Vol 9, No 4, pp. 423-454, 1969. MR 41:2212

Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061-0123

E-mail address: kim@math.vt.edu


