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CAPACITY CONVERGENCE RESULTS AND APPLICATIONS
TO A BERSTEIN-MARKOV INEQUALITY

T. BLOOM AND N. LEVENBERG

Abstract. Given a sequence {Ej} of Borel subsets of a given non-pluripolar

Borel set E in the unit ball B in CN with E ⊂⊂ B, we show that the rel-
ative capacities C(Ej) converge to C(E) if and only if the relative (global)
extremal functions u∗Ej

(V ∗Ej
) converge pointwise to u∗E (V ∗E). This is used

to prove a sufficient mass-density condition on a finite positive Borel measure
with compact support K in CN guaranteeing that the pair (K, µ) satisfy a
Bernstein-Markov inequality. This implies that the L2−orthonormal polyno-
mials associated to µ may be used to recover the global extremal function

V ∗K .

0. Introduction

Let E be a bounded Borel set with closure E contained in a bounded, hyper-
convex domain Ω in CN . This means that there exists a continuous, negative
plurisubharmonic (psh) exhaustion function for Ω. We set

UE,Ω(z) := sup{u(z) : u psh in Ω, u ≤ 0, u ≤ −1 on E}
and call U∗

E,Ω(z) := lim supζ→z UE,Ω(ζ) the relative extremal function of E (relative
to Ω). For most of this paper, we take Ω = B, the unit ball in CN ; in this case we
use the notation UE := UE,B. Also, letting

VE(z) := sup{u(z) : u ∈ L, u ≤ 0 on E}
where

L := {u psh in CN : u(z) ≤ log+ |z|+ C}

is the class of psh functions of logarithmic growth (here |z| =
(

n∑
i=1

|zi|2
)1/2

and

log+ |z| = max(0, log |z|)), we call V ∗
E(z) := lim supζ→z VE(ζ) the global extremal

function of E. For future use, we also define

L+ := {u : u is psh on CN and log+ |z| − C ≤ u ≤ log+ |z|+ C}.
The constants C in the definitions of L and L+ may depend on u.

It is well-known that U∗
E,Ω ≡ 0 ⇐⇒ V ∗

E ≡ +∞ ⇐⇒ E is pluripolar; i.e.,
there exists u psh in CN with E ⊂ {z ∈ CN : u(z) = −∞}. If E is not pluripolar,
then, using the complex Monge-Ampere operator (ddc(·))N for locally bounded psh
functions, we can define the relative and global equilibrium measures (ddcU∗

E,Ω)N
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and (ddcV ∗
E)N for E; these measures are supported on E. We will call a Borel

set E ⊂ Ω regular if U∗
E,Ω = −1 on E (equivalently, V ∗

E = 0 on E). For E ⊂ Ω
compact, E is regular if UE,Ω is continuous. Finally, we say that a property holds
quasi-everywhere (q.e.) on a set S if the property holds on all of S except perhaps
for a pluripolar set. For example, if E is not pluripolar, then U∗

E,Ω = −1 q.e. on E

(cf., [BT1]).
One can also define a nonnegative function C(E, Ω) on the Borel subsets E of Ω

via

C(E, Ω) := sup{
∫

E

(ddcu)N : u psh on Ω, 0 ≤ u ≤ 1}.

For Borel sets we have (Proposition 4.7.2 [K])

C(E, Ω) =
∫

Ω

(ddcU∗
E,Ω)N ;

moreover, from Proposition 10.1 [BT1] it follows that

C(E, Ω) =
∫

Ω

−U∗
E,Ω(ddcU∗

E,Ω)N .

This set function, which we denote by C(E) if Ω = B, enjoys the properties that
1. if E1 ⊂ E2, then C(E1) ≤ C(E2);
2. if {Kj} are compact subsets of B with Kj+1 ⊂ Kj , j = 1, 2, ..., then C(

⋂
Kj)

= limj→∞ C(Kj);
3. if {Ej} are Borel subsets of B with Ej+1 ⊃ Ej , j = 1, 2, ..., then C(

⋃
Ej) =

limj→∞ C(Ej).
This last property is easily seen in the case where

⋃
Ej ⊂⊂ B using the fact that the

complex Monge-Ampere operator (ddc(·))N is continuous under monotone limits;
i.e., if {uj} is a family of locally bounded psh functions on B which either increase
or decrease a.e. to a locally bounded psh function u, then the Monge-Ampere
measures (ddcuj)N converge weak-* to (ddcu)N (cf., [BT1]). If E :=

⋃
Ej ⊂⊂ B

where Ej+1 ⊃ Ej , j = 1, 2, ..., then the relative extremal functions uj := U∗
Ej

decrease to u := U∗
E; thus, if φ ∈ C∞

0 (B) is nonnegative and equal to one on E,

lim
j→∞

C(Ej) = lim
j→∞

∫
B

φ(ddcuj)N =
∫

B

φ(ddcu)N = C(E).

We will consider a sequence {Ej} of Borel subsets of a given non-pluripolar Borel
set E in the unit ball B in CN but we do not assume the sequence is monotone.
One of our results (Theorem 1.1) is that uj → u pointwise on B if and only if
limj→∞ C(Ej) = C(E). We also give a related condition on the global extremal
functions V ∗

Ej
and their corresponding Robin functions (the definition will be given

in the next section).
Our motivation for this research comes from a study of asymptotic behavior

of orthonormal polynomials. Precisely, let µ be a finite positive Borel measure
with compact support S(µ) := K in CN . We say that the pair (K, µ) satisfies
a Bernstein-Markov inequality if for each ε > 0 there exists a positive constant
M = M(ε) such that

||p||K := sup
z∈K

|p(z)| ≤ M(1 + ε)deg p||p||L2(µ)(0.1)
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for all holomorphic polynomials p = p(z). From the point of view of pluripotential
theory, such an inequality is important because one can recover the global extremal
function V ∗

K—under certain additional assumptions on K—from the orthogonal
polynomials associated to µ. We make this precise in (0.2) below.

For an arbitrary compact set K in CN we have

VK(z) := max[0, sup{ 1
degp

log |p(z)| : p holomorphic polynomial, ||p||K ≤ 1}]

(Theorem 5.1.7 [K]). We will use K, Kj to denote compact sets while E, Ej will be
used for Borel sets (compact or not). Suppose now K is a non-pluripolar compact
set. Then µK := (ddcV ∗

K)N is supported in K (cf., [BT1] or [K]); furthermore,
if K is regular, then (K, µK) satisfy (0.1) [TZ]. On the other hand, it is known
that for any regular compact set K in CN , there exists a discrete measure µ with
support equal to K such that (K, µ) satisfy (0.1). This phenomenon was observed
by Ullman on the interval [0, 1] ⊂ C in [U]; see [ST] for N = 1 and [Bl1] for
arbitrary N .

Given a unisolvent compact set K—this means that if a polynomial p vanishes
on K then p ≡ 0—the standard monomials {zα := zα1

1 · · · zαN

N } are linearly inde-
pendent in L2(µ) (cf., [Bl1], Proposition 3.5 or [L], Proposition 3.1); thus, via the
Gram-Schmidt procedure, we obtain orthonormal polynomials {pα}. Here we are
using the standard multi-index notation α := (α1, ..., αN ) and |α| := α1 + ... + αN .
It follows from [Z] (see also [Bl1]) that if K is regular and (K, µ) satisfy (0.1), then

lim sup
|α|→+∞

1
|α| log |pα(z)| ≤ VK(z)(0.2)

for all z ∈ CN with equality for z ∈ CN \ K̂, where

K̂ := {z ∈ CN : |p(z)| ≤ ||p||K for all polynomials p}
denotes the polynomial hull of K.

From the existence of a discrete measure µ with K := S(µ) regular such that
(K, µ) satisfies (0.1), we see that it is not necessary for the carriers of µ to be
“thick” in order for (0.1) to hold (a carrier of µ is a Borel subset of S(µ) of full
measure); indeed, in [ST] (N = 1) and [Bl1] it is shown that a type of “mass-
density” condition on µ suffices to ensure (0.1). We recall the result in [Bl1] in
Theorem 2.1 below. One goal in this note is to discuss, in section 2, more general
mass-density conditions on measures guaranteeing that (0.1) holds (Theorem 2.2);
here we utilize the capacity convergence results of section 1. We end the paper in
section 3 with some interesting open questions in these topics.

The second author would like to thank E. Bedford, U. Cegrell, S. Kolodziej, E.
Poletsky and Y. Xing for helpful discussions.

1. Relative capacity, Robin function, and convergence theorems

Conditions replacing monotone convergence of vj → v under which the Monge-
Ampere measures (ddcvj)N converge weak-* to (ddcv)N have been studied by Y.
Xing [X]. We say that vj → v in capacity on B if, for each F ⊂⊂ B,

lim
j→+∞

C({z ∈ F : |vj(z)− v(z)| > δ}) = 0

for all δ > 0. Xing shows that, e.g., if {vj} is a locally uniformly bounded family of
psh functions on B and vj → v in capacity on B where v is locally bounded, then
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(ddcvj)N converge weak-* to (ddcv)N . As in the introduction, we use the notation
uj := U∗

Ej
and u := U∗

E for the relative extremal functions of the Borel sets Ej

and E relative to the unit ball B; and we denote by C(Ej) and C(E) the relative
capacities of Ej and E relative to B. Our first result of this section is the following.

Theorem 1.1. Let {Ej} be a sequence of Borel subsets of a given non-pluripolar
Borel set E in the unit ball B in CN with E ⊂⊂ B. The following statements are
equivalent:

(i) limj→∞ C(Ej) = C(E);
(ii) uj → u in capacity on B and µj := (ddcuj)N converge weak-* to µ :=

(ddcu)N ;
(iii) uj → u pointwise on B;
(iv) V ∗

Ej
→ V ∗

E pointwise on CN .

Proof of Theorem 1.1. We may assume that each Ej is non-pluripolar.
I. (i) implies (ii): We proceed with a series of results.

Proposition 1.1. Suppose limj→∞ C(Ej) = C(E). Then for k = 0, 1, ..., N , the
sequences ∫

B

uj(ddcuj)k ∧ (ddcu)N−k,

∫
B

u(ddcuj)k ∧ (ddcu)N−k

converge to
∫

B
u(ddcu)N as j →∞.

Proof. Recall that −C(Ej) =
∫

B uj(ddcuj)N and note that Ej ⊂ E implies uj ≥ u.
Thus, by applying this inequality and repeated integration by parts,

−C(Ej) =
∫

B

uj(ddcuj)N ≥
∫

B

u(ddcuj)N

=
∫

B

uj(ddcu) ∧ (ddcuj)N−1 ≥ ... ≥
∫

B

u(ddcu)N = −C(E).

Since limj→∞ C(Ej) = C(E), the result follows. ♣
Remark. The integration by parts are justified since uj(z) ≥ u(z) ≥ A(|z|2− 1) for
all z ∈ B if A > 0 is sufficiently large (cf., [C], Theorem 3.1.3).

Corollary 1.1. Suppose limj→∞ C(Ej) = C(E). Then uj → u in capacity on B.

Proof. Following the proof of Theorem 2 in [X], for F ⊂⊂ B, given w psh in B with
0 ≤ w ≤ 1 and given δ > 0,∫

F∩{uj−u>δ}
(ddcw)N ≤ 1

δ

∫
B

(uj − u)(ddcw)N

≤ C(N, δ)(
∫

B

(uj − u)[(ddcuj)N − (ddcu)N ])1/2N

(1.1)

for some constant C(N, δ). The result now follows from Proposition 1.1. ♣
Using Theorem 1 (i) of [X] and the uniform boundedness of {uj}, u, we get

convergence of the relative equilibrium measures µj to µ.
II. (ii) implies (i): If the relative equilibrium measures µj converge to µ, then, as
in the introduction, if φ ∈ C∞

0 (B) is nonnegative and equal to one on E,

lim
j→∞

C(Ej) = lim
j→∞

∫
B

φ(ddcuj)N =
∫

B

φ(ddcu)N = C(E).
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III. (i) implies (iii): We need a lemma about subharmonic functions. Below, m
denotes Lebesgue measure in CN and B(0, r) denotes the ball of radius r centered
at the origin.

Lemma 1.1. Fix 0 < r < 1 and 0 ≤ a < b ≤ 1. There exists δ = δ(r, a, b) > 0
such that for all v subharmonic in B with 0 ≤ v ≤ 1 and v(0) ≥ b,

m({z ∈ B(0, r) : v(z) > a}) > δ.

Proof. For any such v, let E := {z ∈ B(0, r) : v(z) > a}. Then

b ≤ v(0) ≤ 1
m(B(0, r))

∫
B(0,r)

v =

∫
E

v +
∫

B(0,r)\E v

m(B(0, r))

≤
∫

E v + a[m(B(0, r)) −m(E)]
m(B(0, r))

.

Hence

(b− a)m(B(0, r)) ≤
∫

E

(v − a) ≤ (1 − a)m(E)

which implies

m(E) ≥ (
b− a

1− a
)m(B(0, r)).

♣
Now to show that uj → u pointwise on B, fix a point in B which, for simplicity,

we take to be the origin. Let vj := uj +1 and v := u+1. We show limj→∞ vj(0) =
v(0). Since Ej ⊂ E, vj(0) ≥ v(0); suppose, for the sake of obtaining a contradiction,
that there is a subsequence {vnj (0)} with vnj (0) ≥ b > v(0). Fix a, a′ with
v(0) < a′ < a < b. By uppersemicontinuity of v at 0, there exists r > 0 such that
v(z) < a′ for z ∈ B(0, r). For this r, we apply Lemma 1.1 to conclude that

m({z ∈ B(0, r) : vnj (z) > a}) > δ

for all j. But then since Lebesgue measure is dominated by the relative capacity
[BT1],

C({z ∈ B(0, r) : vnj (z)− v(z) > a− a′}) ≥ C({z ∈ B(0, r) : vnj (z) > a}) > δ′

for all j where δ′ = δ′(δ, a, b, r) > 0 is independent of j. This latter inequality
contradicts the convergence of uj to u in capacity on B (Corollary 1.1).
IV. (iii) implies (ii): Since Ej ⊂ E implies uj ≥ u, we obtain the inequality

u(z) ≤ uj(z) ≤ vj(z) := sup
s≥j

us(z) ≤ v∗j (z) ≤ 0

for z ∈ B and each j. We show that v∗j → u in capacity on B; by the above
inequality, it will then follow that uj → u in capacity on B. The argument below
may be found in [Ko], Corollary 1.2.10. Recall that there exists a constant A > 0
so that for all z ∈ B, A(|z|2 − 1) ≤ u(z). Fix F ⊂⊂ B and choose A sufficiently
large so that

A(|z|2 − 1) ≤ u(z)− 1 on F .
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Then ũ(z) := max[u(z) − 1, A(|z|2 − 1)] and ṽj(z) := max[v∗j (z) − 1, A(|z|2 − 1)]
are uniformly bounded psh functions in B which agree on a neighborhood of ∂B.
Furthermore, ṽj(z) decrease pointwise q.e. on B to ũ(z) since

u(z) = lim sup
j→∞

uj(z) = lim
j→∞

vj(z)

for z ∈ B. Using Theorem 3.4 of [BT1], we conclude that for any δ > 0,

lim
j→∞

C({z ∈ B : ṽj(z) > ũ(z) + δ}) = 0.

Since {z ∈ F : v∗j (z) > u(z) + δ} ⊂ {z ∈ B : ṽj(z) > ũ(z) + δ}, we conclude that
v∗j → u in capacity on B. As before, the convergence of the relative equilibrium
measures µj → µ follows from Theorem 1 (i) of [X] and the uniform boundedness
of {uj} and u.
V. (i) implies (iv): We first show that V ∗

Ej
converges pointwise to 0 q.e. on E.

Without loss of generality, we may assume that there is an r < 1 such that the
ball B(0, r) of radius r centered at the origin contains E (and hence each Ej).
By hypothesis, there exists j0 such that C(Ej) > C(E)/2 for j > j0. Using the
capacity comparison theorem of Alexander and Taylor (Theorem 2.1, eqn. (2.7) in
[AT]; see also Theorem 3.2 [AT]), there exists a constant A depending only on r
such that

sup
z∈B

V ∗
Ej

(z) ≤ A

C(Ej)
.

Hence,

sup
z∈B

V ∗
Ej

(z) <
2A

C(E)
for all j > j0.(1.2)

Thus we get the trivial estimate

V ∗
Ej

(z) ≤ 2A

C(E)
(uj(z) + 1) for all z ∈ B

for j > j0 (cf., Proposition 5.3.3 [K]). In particular, for z ∈ E, we have

0 ≤ V ∗
Ej

(z) ≤ 2A

C(E)
(uj(z) + 1);

since uj converges pointwise to u on B and u = −1 q.e. on E, we conclude that
V ∗

Ej
converges pointwise to 0 q.e. on E.

We now show

lim
j→∞

V ∗
Ej

(z) = V ∗
E(z) pointwise on all of CN .(1.3)

Let ws(z) := supj≥s V ∗
Ej

(z). Note that w∗
s ∈ L for sufficiently large s since, by

(1.2),

sup
B

ws ≤ 2A

C(E)
for all s > j0.

Indeed,

V ∗
E(z) ≤ V ∗

Es
(z) ≤ ws(z) ≤ 2A

C(E)
+ log+ |z|(1.4)
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so that w∗
s ∈ L+. Note that the sequence {ws} is decreasing; since V ∗

Ej
converges

pointwise to 0 q.e. on E, we have that

w(z) := lim
s→∞ws(z) = lim sup

j→∞
V ∗

Ej
(z) = 0 q.e. on E.

Thus the usc regularization w∗(z) = 0 q.e. on E; and, by (1.4), w∗ ∈ L+. From
Lemma 6.5 of [BT2], we conclude that

w∗(z) ≤ V ∗
E(z) pointwise on all of CN .

On the other hand, since Ej ⊂ E, we have V ∗
E ≤ V ∗

Ej
so that for all j and for all

z ∈ CN ,

w∗(z) ≤ V ∗
E(z) ≤ V ∗

Ej
(z).

Thus, for all z ∈ CN ,

w(z) ≤ w∗(z) ≤ V ∗
E(z) ≤ lim inf

j→∞
V ∗

Ej
(z) ≤ lim sup

j→∞
V ∗

Ej
(z) = w(z).

Thus equality holds throughout; in particular, limj→∞ V ∗
Ej

(z) exists and equals
V ∗

E(z); i.e., (1.3) is proved.
VI. (iv) implies (iii): From Proposition 5.3.3 of [K], for z ∈ B,

V ∗
Ej

(z) ≥ (inf
∂B

V ∗
Ej

)[uj(z) + 1] ≥ 0.

Since V ∗
Ej

converges pointwise q.e. to 0 on E, we conclude that uj converges
pointwise q.e. to −1 on E. Next, we recall the inequality

u(z) ≤ uj(z) ≤ vj(z) := sup
s≥j

us(z)(1.5)

for z ∈ B and each j (since Ej ⊂ E). Thus {vj} is a decreasing sequence of
functions which converges to −1 q.e. on E; i.e.,

v(z) := lim
j→∞

vj(z) = lim sup
j→∞

uj(z)

equals −1 q.e. on E from which we conclude that v∗(z) ≤ u(z) on B. Thus,
combining with (1.5), we have

v(z) ≤ v∗(z) ≤ u(z) ≤ lim inf
j→∞

uj(z) ≤ lim sup
j→∞

uj(z) = v(z)

for all z ∈ B so that equality holds throughout; i.e., limj→∞ uj(z) exists and equals
u(z) = v(z) = v∗(z). ♣

If E is compact and regular, the convergence of the extremal functions is stronger;
the extra ingredient in the proof of the result below is Hartogs’ lemma (Theorem
2.6.4 [K]).

Theorem 1.2. Let {Kj} be a sequence of compact subsets of a given compact set
K in the unit ball B in CN ; let uj := U∗

Kj
and u := U∗

K . Suppose K is regular.
Then the following statements are equivalent:

(i) limj→∞ C(Kj) = C(K);
(ii) uj → u in capacity on B and µj := (ddcuj)N converge weak-* to µ :=

(ddcu)N ;
(iii) uj → u uniformly on B;
(iv) V ∗

Kj
→ V ∗

K uniformly on CN and the global equilibrium measures (ddcV ∗
Kj

)N

converge weak-* to (ddcVK)N .
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We briefly indicate how one obtains the (global!) uniform convergence in (iv)
from the pointwise convergence of V ∗

Kj
→ V ∗

K . Using the uniform boundedness of
{V ∗

Kj
} on B for large j (cf., (1.2)) together with Hartogs’ lemma and regularity of K

yields uniform convergence of V ∗
Kj
→ 0 on K. Thus, given ε > 0, we have V ∗

Kj
≤ ε

on K for sufficiently large j; thus V ∗
K − ε ≤ V ∗

Kj
− ε ≤ V ∗

K on CN for sufficiently
large j. The uniform convergence in (iii) is obtained in a similar manner.

A consequence of (iv) will be used in the next section (cf., Proposition 2.2; see
also Corollary 3.1).

Corollary 1.2. Let K ⊂ B be a regular, compact set. Given ε > 0, there exists
δ > 0 such that for any compact subset E ⊂ K satisfying C(E) > C(K) − δ, we
have V ∗

E(z) ≤ ε for z ∈ K.

We next recall the notion of the Robin function associated to a function u ∈ L.
For such a function, we define

ρu(z) = lim sup
|λ|→+∞

λ∈C

{
u(λz)− log+ |λz|}

and

ρu(z) = lim sup
|λ|→+∞

λ∈C

{u(λz)− log |λ|} .

Following the convention used by Bedford and Taylor [BT2], we consider ρu to be
defined on PN−1 (complex projective (N − 1)-space) and refer to it as the Robin
function of u. We let [z] denote the point in PN−1 determined by z ∈ CN − {0},
and we use the notation ρu([z]) for the value of the Robin function at this point.
Clearly

ρu([z]) = ρu(z)− log |z| for z ∈ CN − {0}.
For E ⊂ CN , the Robin function of E, denoted by ρE , is defined to be the Robin
function of V ∗

E . We recall the following result (cf., [Bl2]).

Proposition 1.2. (i) Let u ∈ L. Then ρu is psh on CN .
(ii) Let u ∈ L. Then ρu is uppersemicontinuous on PN−1.
(iii) Let u, v ∈ L. Suppose that ρu = ρv almost everywhere (a.e.) on PN−1. Then

ρu = ρv at all points of PN−1.
(iv) For K compact and regular, ρK is continuous on PN−1.

Proposition 1.3. Under the hypothesis of Theorem 1.1, the following are equiva-
lent:

(a) V ∗
Ej
→ V ∗

E pointwise on CN ;
(b) ρEj → ρE pointwise on PN−1.

Proof. (a) implies (b): Using the notation from part V of the proof of Theorem 1.1,
we recall that {ws} is a sequence of functions in L+ which decreases pointwise to V ∗

E

on CN . From the discussion on p. 136 of [BT2], it follows that the corresponding
Robin functions ρws decrease pointwise to ρE . But ws ≥ V ∗

Es
≥ V ∗

E for all s; thus
the Robin functions ρEj also converge pointwise to ρE .
(b) implies (a): The hypothesis implies that ρEj

→ ρE pointwise on CN . Since
ρEj

, ρE ∈ L, by Lemma 3.2 of [Bl1], {ρEj
} is locally uniformly bounded above on
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CN . Hence {ρEj} is uniformly bounded above on PN−1. We now proceed with
several steps.

Step 1. limj→∞
∫
CN V ∗

Ej
(ddcV ∗

E)N = 0.

Proof. We first set up some notation, following [BT2]. We consider CN ⊂ PN ,
where (z1, ..., zN ) ∈ CN correspond to homogeneous coordinates [1, z1, ..., zN ] ∈
PN ; i.e., (z1, ..., zN) give local coordinates for U0 := {[z0, z1, ..., zN ] ∈ PN : z0 6= 0}.
We work in the coordinate chart U1 := {[z0, z1, ..., zN ] ∈ PN : z1 6= 0} with local
coordinates (t′, t) := (t′, t2, ..., tN ) of CN where z1 = 1/t′, zj = tj/t′, j = 2, ..., N .
Then t′ = 0 corresponds to the hyperplane at infinity intersected with U1 and for
a function u in the class L+, the function

ũ(t′, t) := u(1/t′, t/t′) + log |t′|
belongs to L+ in the (t′, t) coordinates. It follows that

ρu(t) = ũ(0, t)− 1
2

log (1 + |t|2)
and we define

Ω(u) := ddcũ(0, t) = ddcρu + ddc 1
2

log (1 + |t|2).
Since V ∗

Ej
, V ∗

E ∈ L+, by the equation below (6.6) in [BT2],∫
PN−1

Ω(V ∗
E)N−1−s ∧Ω(V ∗

Ej
)s = (2π)N−1 for s = 0, 1, ..., N − 1.(1.6)

Now using Theorem 6.1 in [BT2],

0 ≤
∫
CN

V ∗
Ej

(ddcVE)N ≤
∫
CN

VE(ddcV ∗
Ej

)N

+
N−1∑
s=0

2π

∫
PN−1

(ρEj − ρE)Ω(V ∗
E)N−1−s ∧Ω(V ∗

Ej
)s

for j = 1, 2, .... Since V ∗
E = 0 q.e. on E ⊃ Ej ,∫

CN

VE(ddcV ∗
Ej

)N = 0

and we have

0 ≤
∫
CN

V ∗
Ej

(ddcVE)N ≤
N−1∑
s=0

2π

∫
PN−1

(ρEj − ρE)Ω(V ∗
E)N−1−s ∧ Ω(V ∗

Ej
)s.

We claim that for each s = 0, 1, ..., N − 1,

lim sup
j→∞

∫
PN−1

(ρEj − ρE)Ω(V ∗
E)N−1−s ∧ Ω(V ∗

Ej
)s = 0.(1.7)

Assuming (1.7), we then have

lim sup
j→∞

∫
CN

V ∗
Ej

(ddcV ∗
E)N = 0.

Since V ∗
Ej
≥ 0, the conclusion of Step 1 follows from the obvious inequalities

0 ≤ lim inf
j→∞

∫
CN

V ∗
Ej

(ddcV ∗
E)N ≤ lim sup

j→∞

∫
CN

V ∗
Ej

(ddcV ∗
E)N = 0.



4762 T. BLOOM AND N. LEVENBERG

For simplicity of notation, let vj(t) := Ṽ ∗
Ej

(0, t) and v(t) := Ṽ ∗
E(0, t); we work in

CN−1. Note that vj → v pointwise on CN−1 and, from the uniform boundedness
of the Robin functions, for each fixed R > 0, the functions vj , v are uniformly
bounded on B(0, R) ⊂ CN−1 (below by 0; above by M + log R for a fixed M =
M(R) = o(log R)). From (1.6), the measures (ddcv)N−1−s ∧ (ddcvj)s each have
finite total mass. Fix ε > 0 and choose R = R(ε) so that∫

CN−1\B(0,R)

(ddcv)N−1−s ∧ (ddcvj)s < ε(1.8)

for j > J(ε). This can be done from the uniform boundedness of the Robin functions
{ρEj} on PN−1 and Proposition 3.1 of [BT2]:∫

CN−1\B(0,R)

(ddcṼ ∗
E(0, t))N−1−s ∧ (ddcṼ ∗

Ej
(0, t))s = o(

1
log R

)

uniformly in j.
Note that since

(ρEj − ρE)Ω(V ∗
E)N−1−s ∧ Ω(V ∗

Ej
)s

= [Ṽ ∗
Ej

(0, t)− Ṽ ∗
E(0, t)](ddcṼ ∗

E(0, t))N−1−s ∧ (ddcṼ ∗
Ej

(0, t))s,

our goal is to show that for each s = 0, ..., N − 1,

lim sup
j→∞

∫
CN−1

(vj − v)(ddcv)N−1−s ∧ (ddcvj)s = 0.(1.6′)

From the uniform boundedness of vj − v and (1.8), it suffices to show

lim sup
j→∞

∫
B(0,R)

(vj − v)(ddcv)N−1−s ∧ (ddcvj)s = 0.(1.9)

Fix R′ > R. From the uniform boundedness of the functions vj , v on B(0, R′)
and pointwise convergence of vj → v, by use of Lemma 1.1 and the argument
afterwards, it follows that vj → v in capacity (relative to B(0, R′)) on B(0, R′).
Now (1.9) follows from the proof of Theorem 1 (ii) of [X].

Step 2. V ∗
Ej

converges pointwise q.e. to 0 on E.

Proof. Let E′ := {z ∈ E : V ∗
E(z) = 0}. Then E \E′ is pluripolar; we show that V ∗

Ej

converges pointwise to 0 on E′. Suppose not; i.e., suppose there is a point z0 ∈ E′

with

lim sup
j→∞

V ∗
Ej

(z0) > 0.

We take a subsequence J1 of the positive integers such that

lim
j→∞, j∈J1

V ∗
Ej

(z0) > 0.

Using Step 1, the sequence {V ∗
Ej
}j∈J1 converges to 0 in µE-measure. Thus we can

take a further subsequence J2 ⊂ J1 with {V ∗
Ej
}j∈J2 converging to 0 µE-almost

everywhere on E.
Define v(z) :=

[
lim supj→∞, j∈J2

V ∗
Ej

(z)
]∗. Then v = 0 q.e.-µE ; i.e., there is

a (possibly empty) pluripolar set Z with v = 0 a.e.-µE on E \ Z. Since E is
non-pluripolar, µE is a determining measure and VµE = V ∗

E (see [Bl1] for the
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terminology). Using Proposition 3.4 [Bl1], it follows that v ≤ VµE = V ∗
E . In

particular, at z0,

V ∗
E(z0) ≥ v(z0) ≥ lim

j→∞, j∈J2
V ∗

Ej
(z0) = lim

j→∞, j∈J1
V ∗

Ej
(z0) > 0,

a contradiction.

Step 3. V ∗
Ej
→ V ∗

E pointwise on CN .

Proof. As in the proof of step V of Theorem 1.1, we let w(z) := lim supj→∞ V ∗
Ej

(z).
From Step 2, w∗(z) = 0 q.e. on E; and by Lemma 3.2 [Bl1], w∗ ∈ L. Using [BT2],
Lemma 6.5, we conclude that w∗ ≤ V ∗

E on CN . Since V ∗
E ≤ V ∗

Ej
, we obtain the

string of inequalities

w∗ ≤ V ∗
E ≤ lim inf

j→∞
V ∗

Ej
≤ lim sup

j→∞
V ∗

Ej
= w ≤ w∗

valid on all of CN . Thus equality holds throughout and the result follows. ♣
2. Sufficient mass-density conditions for Bernstein-Markov

We return to the situation described in the introduction, letting µ be a finite
positive Borel measure with compact support K := S(µ) in CN . For simplicity, we
assume S(µ) ⊂ B. Let B(z, r) denote the closed ball of radius r centered at z. We
can now state the result in [Bl1] (Theorem 4.1).

Theorem 2.1. Suppose there exists a positive constant T such that

C({z : lim inf
r→0+

µ(B(z, r))
rT

≥ 1}) = C(S(µ)).(2.1)

If K := S(µ) is regular, then (K, µ) satisfy (0.1).

Roughly speaking, condition (2.1) says that the measure is sufficiently dense on
a set of full relative capacity; the example of the discrete measure µ described in
the introduction shows that in some sense, such a set can be very “sparse”. We
give a slightly stronger result, showing that one only needs a type of denseness in
the mean.

Theorem 2.2. Suppose there exists a positive constant T such that

lim
r→0+

C({z : µ(B(z, r)) ≥ rT }) = C(S(µ)).(2.2)

If K := S(µ) is regular, then (K, µ) satisfy (0.1).

Remark. Theorem 2.2 is a direct several-variable analogue of Theorem 4.2.3 [ST].

If a measure satisfies the mass-density criterion (2.1) in Theorem 2.1, then clearly
it satisfies criterion (2.2) of Theorem 2.2; since the proofs of these theorems are sim-
ilar, we outline the reasoning for both and give the details of the proof of Theorem
2.2 below. The key ingredient in each proof is an approximation result for a regular
compact set; Proposition 2.1 is used for Theorem 2.1 and Proposition 2.2 is used
for Theorem 2.2.

Proposition 2.1 (Proposition 2.1 [Bl1]). Let K be a regular compact set in CN

and let {Ej} be an increasing sequence of Borel subsets of K with limj→∞ C(Ej) =
C(K). Then there exists an increasing family of compact sets {Lj} with Lj ⊂ Ej

such that, given ε > 0, there exists J = J(ε) so that for j > J , V ∗
Lj
≤ VK + ε.
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Proposition 2.2. Let K be a regular compact set in CN and let {Kj} be a sequence
of compact subsets of K with limj→∞ C(Kj) = C(K). Then given ε > 0, there exists
J = J(ε) so that for j > J , V ∗

Kj
≤ VK + ε.

Remark. Note that Proposition 2.2 is equivalent to Corollary 1.2 of the previ-
ous section; we state this version to draw the analogy with Proposition 2.1. It
also follows from Proposition 1.3 that in Proposition 2.2, the hypothesis that
limj→∞ C(Kj) = C(K) may be replaced by ρKj → ρK pointwise (equivalently,
uniformly) on PN−1. Thus, the mass-density condition (2.2) can also be reformu-
lated in terms of the Robin function.

We outline the main ideas involved in the proofs of both theorems and then we
give the precise proof of Theorem 2.2; this also proves Theorem 2.1 (for details of
the original proof of Theorem 2.1, see [Bl1]).

Given ε > 0, we choose δ = δ(ε) sufficiently small so that if we set Kδ := {z ∈
CN : d(z, K) ≤ δ}, then:

1. VK(z) ≤ ε for z ∈ Kδ;
thus for a polynomial p of degree d, the Bernstein-Walsh inequality (cf., [K]) is
valid:

||p||Kδ
≤ ||p||Keεd;(2.3)

and we find a compact subset E of K — chosen appropriately using the mass-
density condition — with

2. V ∗
E ≤ VK + ε.

In Theorem 2.1, E will be chosen as Lj (Proposition 2.1) for j sufficiently large,
while in Theorem 2.2, E will be chosen as Kj (Proposition 2.2) for j sufficiently
large.

In the next step, we fix a polynomial p of degree d and w ∈ E with |p(w)| = ||p||E
and we show that

|p(z)| ≥ 1
2
||p||E if |z − w| < δ

4
e−2dε.(2.4)

We then take a closed ball B(w, rd) centered at w with radius rd sufficiently small
so that, together with the appropriate mass-density condition, the inequality

||p||2L2(µ) ≥
∫

B(w,rd)

|p|2dµ ≥ [ min
z∈B(w,rd)

|p(z)|]2µ(B(w, rd)) ≥ 1
4
||p||2Eµ(B(w, rd))

yields (0.1).

Proof of Theorem 2.2. We begin as above: given ε > 0, choose δ = δ(ε) sufficiently
small so that VK(z) ≤ ε for z ∈ Kδ. Then for any polynomial p of degree d, we
have the Bernstein-Walsh estimate

||p||Kδ
≤ ||p||Keεd.(2.3)

By taking δ = δ(ε) smaller, if necessary, for any compact subset E of K with
C(E) > C(K)− δ we have V ∗

E ≤ VK + ε from Corollary 1.2. Then for a polynomial
p of degree d, we have the Bernstein-Walsh estimate

||p||K ≤ ||p||Eeεd.(2.5)
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Fixing p of degree d and choosing w ∈ E with |p(w)| = ||p||E , we show that

|p(z)| ≥ 1
2
||p||E if |z − w| < δ

4
e−2dε.(2.4)

We follow the argument in [Bl1]. For z 6= w, let e = (e1, ..., eN ) := z−w
|z−w| and let

U(t) := p(w1 + e1t, ..., wN + eN t);

note this is a polynomial of the single complex variable t. Then

p(z)− p(w) = U(|z − w|) − U(0) =
∫ |z−w|

0

U ′(ζ)dζ

so that, since |z − w| < δ
2 ,

|p(z)− p(w)| ≤ |z − w|||U ′|||t|≤ δ
2
.(2.6)

Now for |t| ≤ δ, the point (w1 +e1t, ..., wN +eN t) lies in Kδ so from (2.3) and (2.5),

||U |||t|≤δ ≤ ||p||Ee2εd.

Cauchy’s inequality applied to U yields ||U ′|||t|≤ δ
2
≤ 2

δ ||U |||t|≤δ and putting this
together with (2.6) and the assumption that |z − w| < δ

4e−2dε gives (2.4).
We will take such a set E determined from the mass-density condition (2.2).

First, using (2.2), take T > 0 so that

lim
r→0+

C({z : µ(B(z, r)) ≥ rT }) = C(K).

With ε, δ as above, for d ≥ d(δ) there exist Ed ⊂ K compact as in Corollary 1.2,
i.e., with C(Ed) > C(K)− δ and V ∗

Ed
(z) ≤ ε for z ∈ K, and such that, setting

rd := e−3dε,

µ(B(x, rd)) ≥ rT
d = e−3dTε if x ∈ Ed.

We can assume d is sufficiently large so that rd < δ
4e−2dε. Then taking p of degree

d and w ∈ Ed with |p(w)| = ||p||Ed
, using (2.4) we obtain

||p||2L2(µ) ≥
∫

B(w,rd)

|p|2dµ ≥ ( min
z∈B(w,rd)

|p(z)|2)µ(B(w, rd)) ≥ 1
4
||p||2Ed

e−3dTε

≥ 1
4
||p||2Ke−3dTε−2dε (from (2.5))

=
1
4
||p||2Ke−dε(2+3T ) for d ≥ d(δ)

which yields the result. ♣
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3. Final remarks and open questions

A compactly supported measure µ in the complex plane is said to have regular
asymptotic behavior, or simply µ ∈ Reg, if

lim
n→∞

1
n

log |pn(z)| = VK(z)

for all z outside the convex hull of K = S(µ), where {pn} are the orthonormal
polynomials for µ. In [ST], a sufficient mass-density condition implying that µ ∈
Reg is given (Theorem 4.2.1 [ST]); no assumption of regularity of S(µ) is made.
In the proof, use is made of a deep result of Ancona [A], which states that given
K ⊂ C compact and non-polar, and given ε > 0, there exists K ′ ⊂ K compact
which is regular and for which c(K ′) > c(K) − ε. The capacity c here is the so-
called logarithmic capacity: c(K) = exp [−γ(K)] where

γ(K) := lim
|z|→+∞

[V ∗
K(z)− log |z|].

The difficult part of Ancona’s theorem is the weaker statement: given K ⊂ C
compact and non-polar, there exists K ′ ⊂ K compact which is regular. These
results are true in greater generality; e.g., for Newtonian capacities in RN , N > 2
[A].

Problem 1. Is there an Ancona theorem for the relative capacity of compact subsets
of the unit ball in CN for N > 1?

If so, then a generalization to several variables of Theorem 4.2.1 [ST] would
follow (see Remark 4.4 [Bl1]). As a possible aid in this direction, we remark that a
version of Corollary 1.2 is valid for a regular Borel set.

Corollary 3.1. Let E be a regular Borel subset of B. Given ε > 0 and X ⊂ E
compact, there exists δ = δ(ε, X) > 0 such that for any F ⊂ E compact with
C(F ) > C(E)− δ, we have V ∗

F (z) ≤ ε for z ∈ X.

Proof. It suffices to show that if we take any sequence {Ej} of compact subsets of
E such that

lim
j→∞

C(Ej) = C(E),

then {V ∗
Ej
} converges uniformly to 0 on X . By assumption, V ∗

E = 0 on E so that
VE = V ∗

E on CN . Thus for ε > 0, the sub-level sets

Θε/2 := {z ∈ CN : VE(z) < ε/2}
are open neighborhoods of E. By Theorem 1.1 (iv), V ∗

Ej
→ V ∗

E pointwise on CN ;
thus lim supj→∞ V ∗

Ej
(z) ≤ ε/2 for z ∈ Θε/2. By Hartogs’ lemma, given X ⊂ E

compact and ε > 0, we have V ∗
Ej
≤ ε on X for j > j0(ε, X). ♣

If one starts with a non-pluripolar compact set K ⊂ B ⊂ CN , the set of “regular”
points

E := {z ∈ K : V ∗
K(z) = 0} = {z ∈ K : U∗

K(z) = −1}
is a regular Borel set (but not necessarily compact).

Regarding the mass-density condition in Theorem 2.2, the one-variable counter-
part to Theorem 2.2 in [ST] is Theorem 4.2.3; essentially this is best possible for
the case S(µ) = [0, 1] (Theorems 4.2.6 and 4.2.7 [ST]).
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Theorem 4.2.8 [ST] gives a necessary condition satisfied by a measure µ with
S(µ) = [0, 1] for which (0.1) holds. To the best of our knowledge, no such results
are known for any compact sets in CN , N > 1.

Problem 2. Let µ be a measure in CN with S(µ) = B. Find necessary conditions
on µ so that (B, µ) satisfies (0.1).

Perhaps a better “test” set would be the totally real (closed) ball in RN ⊂ CN ;
cf., the discussion in [BBCL].
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compact de Cn, Bull. Sci. Math. (2) 109 (1985), 325-335. MR 87h:32039

Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3,

Canada

E-mail address: bloom@math.toronto.edu

Department of Mathematics, University of Auckland, Private Bag 92019, Auckland,

New Zealand

E-mail address: levenber@math.auckland.ac.nz


