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THE SET OF IDEMPOTENTS
IN THE WEAKLY ALMOST PERIODIC COMPACTIFICATION

OF THE INTEGERS IS NOT CLOSED

B. BORDBAR AND J. PYM

Abstract. This paper answers negatively the question of whether the sets
of idempotents in the weakly almost periodic compactifications of (N, +) and
(Z, +) are closed.

1. Introduction

The weakly almost periodic compactification wN of N is the largest semigroup
with a compact topology in which multiplication is continuous in each variable sep-
arately and which contains (N,+) as a dense subsemigroup. ‘Largest’ here means
in the sense of universal mapping theorems: any other separately continuous com-
pactification of N is a continuous homomorphic image of wN. (wZ has a parallel
description.) The importance of this compactification was recognised over 30 years
ago in the ground-breaking paper of de Leeuw and Glicksberg [6]. In spite of years of
study, the subject has been hampered by the difficulty of finding accessible weakly
almost periodic functions, that is, functions defined on N which extend to contin-
uous functions on wN. From one perspective this is not surprising, since weakly
almost periodic functions are characterised by the possibility of interchanging two
limit processes (see Theorem 2.2 below) and so are intimately connected with one
of the fundamental problems of analysis.

Because weakly almost periodic functions are hard to discover, some of the most
significant advances have come through indirect methods. This was the case with
results about idempotents in wN. (The operation in the commutative semigroup wN
is written +, so that an idempotent e satisfies e = e+ e.) The question of whether
wN could contain more than one idempotent was raised by West in connection with
a problem in operator theory about the existence of projections, and he found a
positive solution in that context [15]. Techniques from harmonic analysis allied with
the operator theoretic approach enabled Brown and Moran, in a series of papers,
to say much about the lattice structure of the semigroup of idempotents and in
particular to show that this semigroup was infinite (see [4]).

However the difficulty of these methods held out little hope of further progress,
and indeed no deep new facts about idempotents were discovered for nearly 20 years.
Then Ruppert made the important breakthrough: he found a class of weakly almost
periodic functions which could be described in elementary terms [14]. His direct
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approach not only allowed him to refine the results of Brown and Moran, but gave
new information on the relationship between idempotents and group topologies on
Z. His starting point was a very ingenious idea. In the simplest case it involved
expanding integers in the form

x =
∞∑

i=0

xik
i,

where k ≥ 3 and the digits xi are integers with − 1
2k < xi ≤ 1

2k. (His general theory
actually uses a variable base in place of the fixed base k. The remarkable insight
lay in allowing the digits xi to take negative values.) His functions were defined
by infinite products taking values in [0, 1], and the proof that his functions were
weakly almost periodic was hard.

In [2] the first of the present authors presented a theory which was on the same
general lines as Ruppert’s but which was in some ways simpler. There are two
main differences. First the base for the expansion of the integers is taken to be
the negative number (−2). This allows the digits to remain positive, and once the
simple rules for carrying out addition to a negative base have been worked out,
the necessary calculations become easier. Secondly, the interval [0, 1] is replaced
by [0,∞]. Although this entails handling weakly almost periodic functions which
are unbounded, it has the advantage that infinite sums can be considered instead
of infinite products. The weakly almost periodic functions which arise have a very
simple form (Theorem 2.3 below). We shall, in §3, give a proof of this result which
is even easier than the one in [2].

Ruppert did not solve all the basic problems about idempotents in wN in [14].
For example, he left open the question of whether the set of idempotents is closed.
This appears in the list of problems about semitopological semigroups compiled by
Berglund in 1980 [1], and was raised again by Ruppert in his 1984 monograph [12]
and his 1990 survey article [13]. That is the question which this paper answers
negatively, for both wN and wZ. To achieve this end, we produce in Theorem 2.8
another new type of weakly almost periodic function, though one which is obtained
from a sequence of functions of the form given in [2]. The proof that these functions
are weakly almost periodic is technically complicated, and involves (in Lemma 4.3)
an elementary result about interchanging the order of limits for a particular kind
of double sequence of real numbers. This proof is the subject of §4. The basic
strategy for the whole argument is the same as the one used in [3] to solve the same
problem in the simpler situation of the weakly almost periodic compactification of
a discrete countable direct sum of finite groups; we present this, the core of our
proof, in §2.

Throughout the paper we shall work with Z rather than N, as Ruppert did in
[14], because Z arises naturally when expansions to negative bases are considered.
The conclusion we desire for N is an easy consequence of the result for Z (Corollary
2.10). As usual, ω denotes the first infinite ordinal (or {0} ∪ N).

2. The main argument

This section contains the proof of our main result, namely

Theorem 2.1. The set of idempotents in wZ is not closed.
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with the exception of the calculations which show that two classes of functions are
weakly almost periodic (Theorems 2.3 and 2.8). These arguments will be presented
in §3 and §4 respectively. We shall deduce the result for N in Corollary 2.10.

We begin by observing that any integer x ∈ Z can be written uniquely in the
form

x =
∑
i∈ω

x(i)(−2)i = x(0) + x(1).(−2) + x(2).(−2)2 + . . . ,

where x(i) ∈ {0, 1} for each i, and x(i) = 1 for at most finitely many i (this
possibility occurs as Example 1.6.1 of [7] and was introduced and used in [10] at
the same time as that book appeared). If we define the support of x, suppx, by

suppx = {i : x(i) 6= 0},
then suppx is finite. Obviously suppx determines x. We write suppx < k if
i < k whenever i ∈ suppx, and suppx < supp y if i < j whenever i ∈ suppx
and j ∈ supp y. If we have a sequence (xn) in Z, we say suppxn → ∞ when
min(suppxn) →∞.

Let c = (c(i)) be a sequence with c(i) ∈ [0,∞) for all i. We write

〈c, x〉 =
∑
i∈ω

c(i)x(i) =
∑

i∈supp x

c(i),(∗)

and also, for any subset E of ω,

〈x〉E =
∑
i∈E

c(i)x(i).

In particular, 〈c, x〉∅ = 0. Observe too that this function is additive over disjoint sets
E. Notice that the function x 7→ 〈c, x〉 takes values in [0,∞) and in general is not
bounded. We shall therefore need a theory of unbounded weakly almost periodic
functions. This is fully described in [2]; we simply quote the main conclusion which
we need.

Theorem 2.2. Let X be a compact metrizable space and let f : Z → X be a
mapping. Then f has a continuous extension to wZ if and only if whenever (xm),
(yn) are sequences in Z for which the limits

a = lim
m→∞ lim

n→∞ f(xm + yn), b = lim
n→∞ lim

m→∞ f(xm + yn)

both exist, then a = b.

Of course when X is a compact subset of C, this is just the usual criterion for
a bounded complex valued function to be weakly almost periodic; and it is not
hard to deduce Theorem 2.2 from that observation using compositions of f with
complex-valued functions defined on X.

The main result we require about these functions is one of the principal theorems
of [2]:

Theorem 2.3. Let (c(i))i∈ω be a non-increasing sequence of non-negative real num-
bers with c(i) ↘ 0. Then x 7→ 〈c, x〉 is weakly almost periodic from Z to [0,∞].

We shall give a proof of this result in §3. In passing, we notice that it is important
in this theorem that the range of the function is understood as [0,∞] and not [0,∞),
because in Theorem 2.2 the target space X has to be compact. (We also remark
that the result may not hold for other compactifications of [0,∞).)
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We next see how functions of the kind described in Theorem 2.3 enable us to
detect idempotents. We consider functions f : Z → ([0,∞],+). We call f an oid
map if whenever x, y ∈ Z and suppx < supp y we have f(x + y) = f(x) + f(y).
(The term arises from [11]; see also [10]. Ruppert [14] uses the description ‘almost
homomorphism’.) It is obvious from the last expression in equations (∗) that x 7→
〈c, x〉 is an oid map. We also write

H =
∞⋂

r=1

cl{x : suppx ≥ r}.

The following theorem, again from [2], is parallel to a standard result in the theory
of the semigroup structure of Stone-Čech compactifications (see [11] or [9]).

Theorem 2.4. H is a compact subsemigroup of wZ. If f is a weakly almost periodic
oid map, then the continuous extension f : wZ → ([0,∞],+) is a homomorphism
on H.

Proof. {x : suppx ≥ r} is a semigroup, and therefore its closure is, and therefore
H is.

Take x ∈ Z. Let ζ ∈ H. Let s = max(supp x). Then ζ ∈ cl{z ∈ Z : supp z ≥ s+1}.
For any such z, we have f(x + z) = f(x) + f(z) since f is an oid map, whence
letting z → ζ gives f(x + ζ) = f(x) + f(ζ). Take ξ ∈ H and let x → ξ to get
f(ξ + ζ) = f(ξ) + f(ζ), as required.

We shall need a refinement of the last result. We present no more than we shall
use. Let (un) be a sequence in Z with supp u1 < suppu2 < . . . . Then it is very
easy to see that this sequence has distinct finite sums, meaning that if

ui1 + ui2 + · · ·+ uir = uj1 + uj2 + · · ·+ ujs ,

with i1 < i2 < . . . < ir and j1 < j2 < . . . < js, then r = s and i1 = j1, i2 = j2,
. . . , ir = jr. Such sequences play an important role in the theory of Stone-Čech
compactifications ([8] or [9]).

Theorem 2.5. Let (un) be as above. Then

H(un) =
∞⋂

h=0

∞⋂
k=1

cl{ui1 + ui2 + · · ·+ uir : r ∈ N, r ≥ k,

suppui1 ≥ h, and i1 < i2 < . . . < ir}
is a subsemigroup of H.

Proof. Let ξ ∈ H(un). Then, given any neighbourhood W of ξ and any h ∈ N, we
can find v ∈ W with v = ui1 + ui2 + · · · + uir (as in the formula which defines
H(un)) such that supp v ≥ suppui1 ≥ h. Thus ξ ∈ H.

Now let w = uj1 +uj2 + · · ·+ujs be a second sum of the same kind with j1 > ir.
Then

v + w = ui1 + ui2 + · · ·+ uir + uj1 + uj2 + · · ·+ ujs

is also of the same kind. If we take ξ, ζ ∈ H(un), we can first let w → ζ and then
let v → ξ to find that ξ + ζ ∈ H(un).

Next we produce a particular family of functions of the form described in The-
orem 2.3. This type of function made a significant appearance in [2]. We first
define a strictly increasing sequence (kn) of integers and a non-increasing sequence
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(αn) of numbers in (0, 1] inductively as follows. We take k0 = 1 and α0 = 1.
When kn and αn have been chosen we take αn+1 so small that both αn+1 ≤ αn

and αn+1kn ≤ 2−(n+1), and then kn+1 so large that αn+1(kn+1 − kn) ≥ 1. (In
[2], the place of αn was taken by 2−2n

.) Observe that
∑

n αn+1kn ≤ 1, whereas∑
n∈E αn+1(kn+1 − kn) = ∞ for any infinite set E ⊆ ω.
We now define a sequence from which we shall generate a weakly almost periodic

function. Take an infinite strictly increasing sequence γ = (γ1, γ2, . . . ) in ω with
γ1 ≥ 1 and γn + 2 ≤ γn+1 for all n. Define

dγ(i) =
{
αγ1 , 0 ≤ i ≤ kγ1 ,

αγn , kγ(n−1) < i ≤ kγn .

(In reading this paper, it is important to be able to distinguish between γn− 1 and
γn−1; to make this easier – especially when these expressions occur as subscripts –
we shall write the second of these as γ(n−1).) Then (dγ(i)) is non-increasing with
limit 0, and so from Theorems 2.3 and 2.4 we obtain immediately

Proposition 2.6. The function

gγ(x) = 〈dγ , x〉
is weakly almost periodic and is a homomorphism on H. �

We now define a sequence (uγ
n)∞n=1 of integers by writing

uγ
n(i) =

{1 if kγn−1 < i ≤ kγn ,

0 otherwise,

and putting uγ
n =

∑
i∈ω u

γ
n(i)(−2)i. Note that if m < n then suppuγ

m < suppuγ
n.

Then

gγ(uγ
n) =

∑
{dγ(i) : uγ

n(i) = 1} =
∑

{αγn : kγn−1 < i ≤ kγn}
= αγn(kγn − kγn−1) ≥ 1.

Since gγ is an oid map, if n1 < n2 < . . . < nr we have

gγ(uγ
n1

+ · · ·+ uγ
nr

) = gγ(uγ
n1

) + · · ·+ gγ(uγ
nr

) ≥ r,

from which we see that gγ takes the value∞ on the whole of the semigroupH(uγ
n) of

Theorem 2.5. In particular, if eγ is any idempotent in H(uγ
n) we have gγ(eγ) = ∞.

Now take a second sequence η = (η1, η2, . . . ) of the same form as γ, but suppose
that η and γ are disjoint – no element of ω is in both. Then, for any integer n, since
(kn) is strictly increasing, there is a unique integer m = m(n) for which kη(m−1) <

kγn ≤ kηm−1. Notice that as n → ∞ we have m(n) → ∞. Since γn ≤ ηm − 1, we
have also αηm ≤ αγn+1. Thus we find that

gη(uγ
n) =

∑
{dγ(i) : uγ

n(i) = 1} = αηm(kγn − kγn−1) ≤ αγn+1kγn ≤ 2−(γn+1).

The integers γn are distinct for distinct values of n, so if n1 < n2 < . . . < nr and
m = m(n1) we find that

gη(uγ
n1

+ · · ·+ uγ
nr

) = gη(uγ
n1

) + · · ·+ gη(uγ
nr

) ≤
∑

n≥n1

2−(γn+1) = 2−γn1 .

Whatever r does, when n1 → ∞, γn1 → ∞, so that gη(H(uγ
n)) = 0. In particular,

gη(eγ) = 0.
Of course it is easy to find a countable set Γ of disjoint subsequences γ in ω.

Thus we have proved:
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Lemma 2.7. For any countable set Γ of disjoint sequences γ in ω there is a family
{eγ : γ ∈ Γ} of distinct idempotents in H such that for η, γ ∈ Γ

gη(eγ) =
{∞ if η = γ,

0 if η 6= γ.

�
We shall go on to prove that if ζ is any cluster point of the family (eγ) in wZ then

ζ is not an idempotent (indeed, ζ generates a semigroup isomorphic with (N,+)).
To achieve this we need a weakly almost periodic function which will distinguish
between elements of the form eγ and elements of the form eη + eγ (when η 6= γ).
Unfortunately some simple choices of functions do not work. For example, the
function

∑
θ∈Γ g

θ fails because it takes the value ∞ on all these elements. The
function defined in the next theorem is satisfactory, but it is difficult to prove
that it is weakly almost periodic (this we shall do in §4). We first define, for any
continuous function f : wZ → [0,∞],

f ∧ 1(ξ) = min{f(ξ), 1} (ξ ∈ wZ).

This is continuous, and so its restriction to Z (which we again denote by f ∧ 1) is
weakly almost periodic.

Theorem 2.8. Let Γ be a countable set of disjoint sequences in ω. Then the func-
tion

G =
∑
γ∈Γ

(gγ ∧ 1)

is weakly almost periodic from Z to [0,∞].

We shall now derive Theorem 2.1 from Theorem 2.8. Let ζ be any cluster point
of (eγ). From Lemma 2.7 we see that for η, γ ∈ Γ we have gη ∧ 1(eγ) is 0 if η 6= γ
and is 1 if η = γ. Therefore G(eγ) = 1 for every γ. Since G, being a weakly almost
periodic function, is continuous on wZ, we see that G(ζ) = 1.

Now take η 6= γ. Because gγ is a homomorphism on H we find that gγ(eη +eγ) =
gγ(eη) + gγ(eγ) = ∞, and similarly gη(eη + eγ) = ∞, while if θ 6= η and θ 6= γ
we have gθ(eη + eγ) = 0. Therefore G(eη + eγ) = 2. Letting first eγ → ζ and then
eη → ζ, we find that G(ζ + ζ) = 2.

Therefore ζ 6= ζ + ζ, so that ζ is not idempotent. �
Of course, the method of the above proof will also establish that if γ1, . . . , γk

are distinct elements of Γ, then G(eγ1 + · · ·+ eγk) = k, whence G(ζ + · · ·+ ζ) = k.
This shows that ζ, ζ + ζ, ζ + ζ + ζ, . . . are all distinct:

Theorem 2.9. Any cluster point of the set {eγ : γ ∈ Γ} of idempotents generates
an algebraic copy of (N,+) in wZ. �

Thus there are at least c copies of N in wZ (since there is a family of c almost
disjoint subsets of the countable set Γ). Whether the closure of any of these sets is
isomorphic with wN we do not know.

Corollary 2.10. The set of idempotents in wN is not closed.

Proof. We give two proofs. (i) The first requires little knowledge about wN. There
are two natural homomorphisms φ, ψ : N → Z, given by φ(n) = n and ψ(n) = −n.
These extend to continuous homomorphisms from wN to wZ. Any net in Z which
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does not converge to the isolated point 0 either has a subnet which is contained
in φ(N) or one in ψ(N), and since φ(wN) and ψ(wN) are compact and so closed,
we deduce that wZ \ {0} = φ(wN) ∪ ψ(wN). Because φ and ψ are homomorphisms
and wN is compact, the idempotents in φ(wN) (resp ψ(wN)) are precisely the
images under φ (resp ψ) of the idempotents in wN, so that if E(wN) is the set of
idempotents in wN we have that φ(E(wN)) ∪ ψ(E(wN)) is E(wZ) \ {0}. If E(wN)
were closed we would deduce that E(wZ) was compact, which we now know is not
true.

(ii) Experts in the subject will know of Ruppert’s remarkable result in Theorem
4.2.1(i) of [13]: the continuous map φ above is algebraically an isomorphism of
E(wN) onto E(wZ) \ {0}. Therefore if E(wN) is compact, so is E(wZ).

3. The proof of Theorem 2.3

In this section, we prove Theorem 2.3. The method is the same as in [2], but the
details are simpler. In §4 we shall need the inequalities obtained here. The proof
depends on the peculiarities of the arithmetic of addition in Z when numbers are
expressed to the base (−2). When x =

∑∞
i=0 x(i)(−2)i, y =

∑∞
i=0 y(i)(−2)i and

x+ y =
∑∞

i=0 z(i)(−2)i, we shall write

x = x(0) x(1) x(2) . . .
y = y(0) y(1) y(2) . . .

x+ y = z(0) z(1) z(2) . . .

Expressed in this way, the calculation

1.(−2)n + 1.(−2)n = (−1).(−2)n+1 = (1 + (−2)).(−2)n+1 = (−2)n+1 + (−2)n+2,

becomes

. . . 0 1 0 0 0 . . .

. . . 0 1 0 0 0 . . .

. . . 0 0 1 1 0 . . .

where all the other digits are zero. Put in the language of elementary arithmetic,
if the sum in the nth column is 2, then (−1) should be carried into the (n + 1)st

column, and that is the same as carrying 1 into the (n + 1)st column and also 1
into the (n+ 2)nd. Thus we also see that

. . . 0 1 1 0 . . .

. . . 0 1 0 0 . . .

. . . 0 0 0 0 . . .

In fact, carrying into the rth column for any r must be either (−1) or 1, and the
latter happens only when, as in the situation just described, (−1) has been carried
into the (r−1)st column and the two digits in the (r−1)st column are both 0. (For
more details about arithmetic in negative bases, see [5].)

We now come to our first inequality. Its proof is very elementary, but is compli-
cated by the number of cases which have to be considered.

Lemma 3.1. Let c(i) ↘ 0. Let x, y ∈ Z, and let r, s ∈ ω with r < s. Suppose
y(i) = 0 for r ≤ i < s. Then



830 B. BORDBAR AND J. PYM

(i) if there is no carrying into the rth place,∣∣〈c, x+ y〉[r,s) − 〈c, x〉[r,s) − 〈c, y〉[r,s)
∣∣ = 0;

(ii) in all cases, ∣∣〈c, x+ y〉[r,s) − 〈c, x〉[r,s) − 〈c, y〉[r,s)
∣∣ ≤ 2c(r).

Proof. First observe that 〈c, y〉[r,s) = 0 (this term is included in the formula only
because it will be needed later). The situation we have is this:

. . . x(r − 1) x(r) x(r + 1) . . . x(p) x(p+ 1) . . . x(s− 1) x(s) . . .

. . . y(r − 1) 0 0 . . . 0 0 . . . 0 y(s) . . .

. . . z(r − 1) z(r) z(r + 1) . . . z(p) z(p+ 1) . . . z(s− 1) z(s) . . .

(i) If there is no carrying from the (r−1)st place into the rth place, then there is
no carrying at all between the rth and sth places, so that z(i) = x(i) for r ≤ i < s.
Thus ∣∣〈c, x+ y〉[r,s) − 〈c, x〉[r,s)

∣∣ = 0.

(ii) Since 0 ≤ 2c(r), (ii) holds in the circumstances of (i). We may therefore
suppose that there is carrying into the rth place. We know that what is carried
must be either (−1) or 1.

Case (a). Suppose that (−1) is carried into the rth place, and that there is
carrying as far as into the pth place, but nothing is carried into the (p+ 1)st place.
We shall first take r+1 < p < s. Then there will be carrying into the (r+1)st place;
because this does not happen if x(r) = 1, we must have x(r) = 0. Then z(r) = 1,
and 1 is carried into the (r+1)st place. As there is carrying into the (r+2)nd place,
x(r + 1) = 0 is not possible. Thus x(r + 1) = 1, and then z(r + 1) = 0 and (−1)
is carried into the (r + 2)nd place. This process repeats itself until the pth place is
reached. There are now two possible patterns. Firstly, when p = r + 2k for some
positive integer k, we find

. . . x(r − 1) 0 1 0 . . . 1 x(p) x(p+ 1) . . . x(s − 1) x(s) . . .

. . . y(r − 1) 0 0 0 . . . 0 0 0 . . . 0 y(s) . . .

. . . z(r − 1) 1 0 1 . . . 0 z(p) z(p+ 1) . . . z(s− 1) z(s) . . .

and when p = r + (2k + 1) for some k, we have

. . . x(r − 1) 0 1 0 . . . 0 x(p) x(p+ 1) . . . x(s − 1) x(s) . . .

. . . y(r − 1) 0 0 0 . . . 0 0 0 . . . 0 y(s) . . .

. . . z(r − 1) 1 0 1 . . . 1 z(p) z(p+ 1) . . . z(s− 1) z(s) . . .

In the first situation, when p = r + 2k, we have that (−1) is carried into the pth

place, and since carrying stops at the pth place by assumption, x(p) must be 1, and
then z(p) = 0. Since there is no carrying thereafter, z(i) = x(i) for p + 1 ≤ i < s.
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Thus (using the hypothesis that (c(i)) is a decreasing sequence)

〈c, x+ y〉[r,s) − 〈c, x〉[r,s)
= c(r)− c(r + 1) + c(r + 2)− c(r + 3) + · · · − c(r + 2k − 1)− c(r + 2k)

= (c(r) − c(r + 1)) + (c(r + 2)− c(r + 3)) +

· · ·+(c(r + 2k − 2)−c(r + 2k − 1))−c(r + 2k)

≥ −c(r + 2k),

and on the other hand

〈c, x+ y〉[r,s) − 〈c, x〉[r,s)
= c(r) − (c(r + 1)− c(r + 2))−

· · ·−(c(r + 2k − 3)−c(r + 2k − 2))−c(r + 2k − 1)−c(r + 2k)

≤ c(r).

Therefore ∣∣〈c, x+ y〉[r,s) − 〈c, x〉[r,s)
∣∣ ≤ max{c(r), c(r + 2k)} = c(r).

Thus the conclusion of the lemma holds (even with c(r) in place of 2c(r)).
When p = r+2k+1 we have that 1 is carried into the pth place, and because there

is no further carrying, x(p) = 0 and z(p) = 1. Again z(i) = x(i) for p+ 1 ≤ i < s.
Thus

〈c, x+ y〉[r,s) − 〈c, x〉[r,s) = c(r)− c(r + 1) + · · ·+ c(r + 2k) + c(r + 2k + 1)

≥ c(r + 2k + 1) > 0,

and on the other hand,

〈c, x+ y〉[r,s) − 〈c, x〉[r,s)
≤ c(r)−(c(r + 1)−c(r + 2))−· · ·−(c(r + 2k − 1)−c(r + 2k))+c(r + 2k + 1)

≤ c(r) + c(r + 2k + 1) ≤ 2c(r).

So the conclusion of the lemma holds in this case too.
There are some minor cases to deal with before Case (a) is complete. Above

we took p > r + 1. When p = r + 1 the result turns out to be just like the case
p = r + 2k + 1 with k = 0, as it should. When p = r the situation is

. . . x(r − 1) 1 x(r + 1) . . . x(s− 1) x(s) . . .

. . . y(r − 1) 0 0 . . . 0 y(s) . . .

. . . z(r − 1) 0 x(r + 1) . . . x(s− 1) z(s) . . .

so that ∣∣〈c, x+ y〉[r,s) − 〈c, x〉[r,s)
∣∣ = |−c(r)| = c(r).
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Finally we must confront the possibility that p = s – that is, that carrying goes
right through to the sth place. Again there are two cases, when p = r + 2k and
when p = r + 2k + 1. In the former case, the situation is

. . . x(r − 1) 0 1 0 . . . 1 x(s) . . .

. . . y(r − 1) 0 0 0 . . . 0 y(s) . . .

. . . z(r − 1) 1 0 1 . . . 0 z(s) . . .

and so

〈c, x+ y〉[r,s) − 〈c, x〉[r,s) = c(r) − c(r + 1) + · · ·+ c(r + 2k − 2)− c(r + 2k)

which is positive and does not exceed c(r). If p = 2k + 1, we find in a similar way
that the difference is again positive and less than 2c(r). Case (a) is finished.
Case (b). When 1 is carried into the rth place, we can argue as in Case (a) to
obtain the same conclusion. We leave the details to the reader.

Next we shall derive an inequality like the one in Lemma 3.1 but without the
restriction on y. Note that for any i, because each of x(i), y(i) and (x + y)(i) is
either 0 or 1 we have

|c(i)(x+ y)(i)− c(i)x(i)− c(i)y(i)| ≤ 2c(i).(∗∗)
In particular, if y(i) 6= 0, so that y(i) = 1, the right hand side here is just 2c(i)y(i).

Now take any integers r, s with r < s. Write {i : r ≤ i ≤ s and y(i) 6= 0} as an
ordered set of elements r ≤ r0 ≤ r1 ≤ . . . ≤ r` ≤ s. Then on each interval [rj−1, rj)
and also on [r`, s] we have, using (∗∗) and Lemma 3.1,∣∣〈c, x+ y〉[rj−1,rj) − 〈c, x〉[rj−1,rj) − 〈c, y〉[rj−1,rj)

∣∣
≤ ∣∣〈c, x+ y〉{rj−1} − 〈c, x〉{rj−1} − 〈c, y〉{rj−1}

∣∣
+

∣∣〈c, x+ y〉[rj−1+1,rj) − 〈c, x〉[rj−1+1,rj) − 〈c, y〉[rj−1+1,rj)

∣∣
≤ 2c(rj−1)y(rj−1) + 2c(rj−1 + 1) ≤ 4c(rj−1)y(rj−1) = 4〈c, y〉[rj−1,rj)

because y(rj−1) = 1 and y(i) = 0 on [rj−1 + 1, rj).
To deal with the interval [r, r0) if r0 > r, notice that when there is no carrying

into the rth place then from Lemma 3.1 (i) we find that∣∣〈c, x+ y〉[r,r0) − 〈c, x〉[r,r0) − 〈c, y〉[r,r0)

∣∣ = 0 ≤ 4〈c, y〉[r,r0),

while if there is carrying into the rth place then Lemma 3.1 (ii) applies to [r, r0). If
we add these results over the disjoint intervals [r, r0), [r0, r1), . . . , [r`−1, r`), [r`, s]
we obtain the following conclusions for the case in which s <∞ :

(i) if either y(r) 6= 0 or there is no carrying into the rth place, then∣∣〈c, x+ y〉[r,s) − 〈c, x〉[r,s) − 〈c, y〉[r,s)
∣∣ ≤ 4〈c, y〉[r,s);

(ii) in all cases,∣∣〈c, x+ y〉[r,s) − 〈c, x〉[r,s) − 〈c, y〉[r,s)
∣∣ ≤ 2c(r) + 4〈c, y〉[r,s).

Naturally there are corresponding inequalities with the roles of x and y inter-
changed. Putting these together, we obtain the following lemma in the case s <∞ :

Lemma 3.2. Let 0 ≤ r ≤ s ≤ ∞. Then
(i) if there is no carrying into the rth place (and so in particular if r = 0), then∣∣〈c, x+ y〉[r,s) − 〈c, x〉[r,s) − 〈c, y〉[r,s)

∣∣ ≤ 4min{〈c, x〉[r,s), 〈c, y〉[r,s)};
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(ii) in all cases,∣∣〈c, x+ y〉[r,s) − 〈c, x〉[r,s) − 〈c, y〉[r,s)
∣∣ ≤ 2c(r) + 4min{〈c, x〉[r,s), 〈c, y〉[r,s)}.

Proof. We have only to prove the result when s = ∞. This is trivial, for x, y and
x+ y have supports which are finite, and so the case s = ∞ is the same as s = s0
for any sufficiently large s0.

Remarks on subsequences 3.3. We need to make use of some complex argu-
ments involving subsequences. We shall try to simplify things by presenting the
basic ideas here. We are concerned with expressions of the form

a = lim
n

lim
m
f(xm + yn), b = lim

m
lim
n
f(xm + yn).

If we substitute subsequences (xmr ), (yns) for (xm), (yn), these limits still exist
and remain unchanged. Thus if we are trying to prove that a = b we can work
with any subsequences which have desirable properties. For simplicity of notation
(which can rapidly get very complicated) we shall usually simply assume that our
original sequences have these properties.

One particular problem which arises frequently is that we want to ensure that an-
other countable family of limits, say limm φ(m,n) and limn φ(m,n), exist. If φ takes
its values in a compact metric space, we can certainly find a subset M1 of N such
that limm∈M1 φ(m, 1) exists. Then we find M2 ⊆M1 such that limm∈M2 φ(m, 2) ex-
ists, and so on. We take the set M ′ to consist of the first element of M1, the second
of M2, and so on. With this diagonal construction all the limits limm∈M ′ φ(m,n)
exist. We can then take a second subset N ′ by operating with the n variable, and
we find that the family {φ(m,n) : m ∈M ′, n ∈ N ′} satisfies our requirements.

Now suppose that the terms of the double sequence (φ(m,n)) have a property
A when m > n and a property B when n > m. We want to take subsequences
such that the limits in the last paragraph exist but also such that these properties
are retained. The family we arrived at there is not adequate, since the sets M ′

and N ′ may be different. What we must do is first construct the family {φ(m,n) :
m ∈ M ′, n ∈ M ′}; this family has the property A when m > n and B when
n > m, as well as all the m-limits existing. Now we find in the same manner
a subset N ′′ ⊆ M ′ for which the n-limits of the new family exist, and finally
{φ(m,n) : m ∈ N ′′, n ∈ N ′′} satisfies all the requirements.

We are now in a position to prove Theorem 2.3, that if c(i) ↘ 0 then x 7→ 〈c, x〉 is
a weakly almost periodic mapping into [0,∞]. We shall show that the iterated limit
condition of Theorem 2.2 is satisfied. Let (xm), (yn) be two sequences for which
the iterated limits limm limn〈c, xm + yn〉 and limn limm〈c, xm + yn〉 exist in [0,∞].
Our first step is to replace these sequences by subsequences (which we continue to
denote by (xm) and (yn)) for which a = limm〈c, xm〉 and b = limn〈c, yn〉 both exist
in [0,∞]; the values of the iterated limits remain unchanged.

Now we use a diagonal process to put these sequences into a canonical form.
The first coordinates (xm(1)) form a sequence in the two-element space {0, 1}.
This therefore has a constant subsequence, say with all terms equal to u(1). That
sequence has a further subsequence whose second term is constant (equal to u(2),
say), and so on. We take a diagonal sequence, and denote it by (xm) again. This
(xm) has the form

xm = (u(1), u(2), . . . , u(m), xm(m+ 1), . . . , xm(Mm), 0, 0, . . . )
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where Mm = max{i : xm(i) 6= 0}. Similarly we can suppose

yn = (v(1), v(2), . . . , v(n), yn(n+ 1), . . . , yn(Nn), 0, 0, . . . )

with Nn = max{i : yn(i) 6= 0}.
Let us write u = (u(1), u(2), . . . ), v = (v(1), v(2), . . . ) and w = u + v (w

is defined by doing the arithmetic formally, but the process works); observe that
if r ≤ min{m,n} then w(r) = (xm + yn)(r). Also 〈c, w〉[r,s) is defined whenever
0 ≤ r ≤ s ≤ ∞, and is finite if s <∞.
Case (i). Suppose a <∞ and b <∞. We shall show that the two iterated limits are
the same. Since they converge to finite limits, (〈c, xm〉) and (〈c, yn〉) are bounded
sequences of real numbers. Now from Lemma 3.2(i) (with r = 0) we get

|〈c, xm + yn〉 − 〈c, xm〉 − 〈c, yn〉| ≤ 4min{〈c, xm〉, 〈c, yn〉},
so that all the iterated limits of 〈c, xm + yn〉 are finite. We now take n > Mm. We
split the range [0,∞) into three parts.

(1) On [0,m] we have 〈c, xm + yn〉[0,m] = 〈c, w〉[0,m], since w(r) = (xm + yn)(r)
for r ≤ min{m,n}.

(2) On [m+ 1, n] we have yn(i) = v(i). Therefore

〈c, v〉[m+1,n] = 〈c, yn〉[m+1,n] ≤ 〈c, yn〉[m+1,∞) ≤ 〈c, yn〉,
so that

〈c, v〉[m+1,∞) = lim
n
〈c, v〉[m+1,n] ≤ lim

n
〈c, yn〉 = b <∞.

Hence, since 〈c, v〉 here stands for a convergent series,

lim
m

lim
n
〈c, yn〉[m+1,n] = lim

m
〈c, v〉[m+1,∞) = 0.

Also, since yn(i) = v(i) for i ≤ n, 〈c, xm + yn〉[m+1,n] = 〈c, xm + v〉[m+1,n], so that
for each m, limn〈c, xm + yn〉[m+1,n] exists in [0,∞]. Now from Lemma 3.2(ii)

|〈c, xm + yn〉[m+1,n] − 〈c, xm〉[m+1,n] − 〈c, yn〉[m+1,n]|
=

∣∣〈c, xm + v〉[m+1,n] − 〈c, xm〉[m+1,n] − 〈c, v〉[m+1,n]

∣∣
≤ 2c(m+ 1) + 4〈c, v〉[m+1,n].

Take limits over n and then over m, to find∣∣∣lim
m

lim
n
〈c, xm + yn〉[m+1,n) − lim

m
〈c, xm〉[m+1,∞) − 0

∣∣∣ ≤ 0 + 0,

so that

lim
m

lim
n
〈c, xm + yn〉[m+1,n) = lim

m
〈c, xm〉[m+1,∞).

(3) On [n+ 1,∞) we have from Lemma 3.2(ii)

|〈c, xm + yn〉[n+1,∞) − 〈c, xm〉[n+1,∞) − 〈c, yn〉[n+1,∞)|
≤ 2c(n+ 1) + 4〈c, xm〉[n+1,∞).

Since n > Mm, xm(i) = 0 on [n+ 1,∞), whence the middle term on the left hand
side of this inequality disappears and the right hand side is just 2c(n+ 1). Thus

lim
m

lim
n
〈c, xm + yn〉[n+1,∞) = lim

n
〈c, yn〉[n+1,∞).

Putting these three parts together, we find that

lim
m

lim
n
〈c, xm + yn〉 = lim

m
〈c, w〉[0,m] + lim

m
〈c, xm〉[m+1,∞) + lim

n
〈c, yn〉[n+1,∞).
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Symmetry now shows that the other iterated limit has the same value. This case
is finished.
Case (ii). At least one of a, b is infinite – say a = ∞. From Lemma 3.2(i)

|〈c, xm + yn〉 − 〈c, xm〉 − 〈c, yn〉| ≤ 4〈c, yn〉,
which shows that, for each fixed n, limm〈c, xm + yn〉 = ∞, because limm〈c, xm〉 =
a = ∞ and all other terms in the inequality are finite. Therefore,

lim
n

lim
m
〈c, xm + yn〉 = ∞.

If also b = ∞, then symmetry allows us to conclude that both iterated limits are
∞. If b is finite, we can take the n-limit in the inequality to get∣∣∣lim

n
〈c, xm + yn〉 − 〈c, xm〉 − b

∣∣∣ ≤ 4b,

and then as above we find that limm limn〈c, xm + yn〉 = ∞.
Since the iterated limits are equal, our function is weakly almost periodic and

Theorem 2.3 is proved. �

4. The proof of Theorem 2.8

In this section, we prove Theorem 2.8. We begin with a few elementary lemmas.

Lemma 4.1. (i) If a, b, c ≥ 0 then |a− b| ≤ c implies |a ∧ 1− b ∧ 1| ≤ c ∧ 1.
(ii) Let a, b, c, ` ≥ 0 and let k ≥ 1 be an integer. Suppose that |a− b− c| ≤ `+ kb.

Then |a ∧ 1− b ∧ 1− c ∧ 1| ≤ `+ k(b ∧ 1).

Proof. (i) For non-negative numbers a, b, c it is obvious that a ≤ b + c implies
a ∧ 1 ≤ b ∧ 1 + c ∧ 1, and our conclusion follows easily.

(ii) We have both

a ≤ `+ kb+ b+ c

=⇒ a ∧ 1 ≤ (`+ kb+ b+ c) ∧ 1 ≤ ` ∧ 1 + k(b ∧ 1) + b ∧ 1 + c ∧ 1

and

b+ c ≤ `+ kb+ a =⇒ c ≤ `+ (k − 1)b+ a

=⇒ c ∧ 1 ≤ ` ∧ 1 + (k − 1)(b ∧ 1) + a ∧ 1,

whence the result follows (and we could even have `∧1 in place of ` on the right).

Our second lemma is just a tool for the third.

Lemma 4.2. For each γ ∈ ω let (aγ
m)m∈ω, (bγn)n∈ω be sequences satisfying

(i) 0 ≤ aγ
m, b

γ
n ≤ 1,

(ii) there is a constant K such that
∑

γ∈ω(aγ
m + bγn) ≤ K for all m,n.

Let (γ(m,n)) be a double sequence with values in ω such that limn limm γ(m,n) =
∞. Then, provided the iterated limit exists, limn limm(aγ(m,n)

m + b
γ(m,n)
n ) ≤ 1.

Proof. Suppose not, so that for some ε > 0

lim
n

lim
m

(aγ(m,n)
m + bγ(m,n)

n ) = 1 + 2ε.

Then there is N and for each n > N there is Mn such that when n > N and
m > Mn we have

aγ(m,n)
m + bγ(m,n)

n > 1 + ε.
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Hence for such n and m we have

aγ(m,n)
m > 1 + ε− bγ(m,n)

n ≥ ε,

and similarly bγ(m,n)
n > ε.

Take an integer r with rε > K. Suppose that for some n > N we have γ(m,n) −→
m

∞. Then we can choose m1, . . . ,mr > Mn with γ(m1, n), . . . , γ(mr, n) all distinct,
so that

rε < bγ(m1,n)
n + · · ·+ bγ(mr,n)

n ≤
∑

γ

bγn ≤ K,

a contradiction.
Since our hypotheses guarantee that our limits exist, the alternative is that the

sequences (γ(m,n))∞m=1 converge to a finite limit for each n, and since they are
integer-valued, there must be an integer, γ′(n) say, such that γ(m,n) = γ′(n)
eventually, say for m > M ′

n. Again from our hypotheses, γ′(n) → ∞. We take
n1, . . . , nr all greater than N with γ′(n1), . . . , γ′(nr) all distinct. Take also m >

max{Mn1 , . . . ,Mnr ,M
′
n1
, . . . ,M ′

nr
}. Then a

γ(m,nj)
m > ε for j = 1, . . . , r, and we

obtain a contradiction as before.

Lemma 4.3. For each γ ∈ ω let (aγ
m)m∈ω, (bγn)n∈ω be sequences of non-negative

numbers for which there is a constant K such that
∑

γ∈ω(aγ
m ∧ 1 + bγn ∧ 1) ≤ K for

all m, n. Then, provided all the limits exist (in [0,∞], but here they are necessarily
finite)

lim
n

lim
m

∑
γ∈ω

((aγ
m + bγn) ∧ 1) = lim

m
lim
n

∑
γ∈ω

((aγ
m + bγn) ∧ 1).

Proof. Because (a+ b)∧ 1 = (a∧ 1+ b∧ 1)∧ 1 for any non-negative numbers a and
b, we may replace aγ

m by aγ
m ∧ 1 and bγn by bγn ∧ 1 throughout the statement of the

lemma, or in other words we may assume that 0 ≤ aγ
m, b

γ
n ≤ 1 for all γ,m, n.

Now assume that all the limits in the lemma exist. By passing to subsequences
we may assume that limm aγ

m and limn b
γ
n also exist for every γ.

For a given pair m, n we put

E(m,n) = {γ : aγ
m + bγn > 1}

and we also write

E = {γ : lim
m
aγ

m + lim
n
bγn > 1}.

Now obviously cardE(m,n) ≤ K. Thus the sequences (cardE(m,n))∞m=1 for each n
and (cardE(m,n))∞n=1 for each m are bounded sequences of integers, and so have
constant subsequences. Following Remarks 3.3, we may assume that (E(m,n)) has
the properties that cardE(m,n) is constant (say equal to rn) when m > n, and
constant and equal to sm when n > m. But now (rn) is a sequence of integers
bounded by K and so also has a constant subsequence, say with value r. Thus by
taking further subsequences we may assume that cardE(m,n) = r when m > n
and cardE(m,n) = s when n > m.

When m > n we may now write

E(m,n) = {γ1(m,n), γ2(m,n), . . . , γr(m,n)}.
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By passing to subsequences again (with Remarks 3.3 in mind) we may assume that
limn limm γj(m,n) exists in ω ∪ {∞} ⊆ [0,∞] for 1 ≤ j ≤ r. We now need two
cases. If limn limm γj(m,n) = ∞, then we may apply Lemma 4.2 to conclude that

lim
n

lim
m

(aγj(m,n)
m + bγj(m,n)

n − 1) ≤ 0,

and since γj(m,n) ∈ E(m,n) we see that the terms in this limit are all positive,
so that the limit itself must be zero. The alternative is that there is an integer γj

such that limn limm γj(m,n) = γj , in which case there is N0 and for each n > N0

an M∗
n such that when n > N0 and m > M∗

n we have γj(m,n) = γj , so that also

aγj(m,n)
m + bγj(m,n)

n = aγj
m + bγj

n .

Therefore

lim
n

lim
m

(aγj(m,n)
m + bγj(m,n)

n ) = lim
n

lim
m

(aγj
m + bγj

n ) = lim
m
aγj

m + lim
n
bγj
n .

This limit is > 1 if γj ∈ E by definition of E, but otherwise is 1.
Now to calculate the iterated limit of∑

γ∈ω

(aγ
m + bγn) ∧ 1 =

∑
γ∈ω

aγ
m +

∑
γ∈ω

bγn −
∑

γ∈E(m,n)

(aγ
m + bγn − 1)

in the case in which the m-limit is taken first, we use∑
γ∈E(m,n)

(aγ
m + bγn − 1) =

r∑
j=1

(aγj(m,n)
m + bγj(m,n)

n − 1),

and we see that the only nonzero terms here arise from
∑

γ∈E(aγ
m + bγn − 1). Con-

versely, it is easy to see that elements of E give rise to nonzero terms in this limit.
Thus we have

lim
n

lim
m

∑
γ∈ω

(aγ
m + bγn) ∧ 1 = lim

m

∑
γ∈ω

aγ
m + lim

n

∑
γ∈ω

bγn − lim
n

lim
m

∑
γ∈E(m,n)

(aγ
m + bγn − 1)

= lim
m

∑
γ∈ω

aγ
m + lim

n

∑
γ∈ω

bγn −
∑
γ∈E

(lim
m
aγ

m + lim
n
bγn − 1).

The symmetry of this expression shows that the iterated limit taken in the other
order must be the same. Our proof is finished.

We now begin to deal with the function G defined in Theorem 2.8. Let Γ =
(γ1, γ2, . . . ) be a countable collection of disjoint sequences. We write

Gh =
h∑

r=1

(gγr ∧ 1),

so that G(x) = limhGh(x) for each x. We wish to proveG is weakly almost periodic.
To this end we take sequences (xm), (yn) in Z for which the iterated limits of

G(xm + yn)

exist in [0,∞]. By passing to subsequences (see 3.3) we can assume that the limits
of (G(xm)) and (G(yn)) exist in [0,∞], and that all the iterated limits of

gγ ∧ 1(xm + yn)
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exist for each γ ∈ Γ. Note that each gγ ∧ 1 is weakly almost periodic (see just
before Theorem 2.8) and – since finite sums of weakly almost periodic functions are
weakly almost periodic – Gh is weakly almost periodic for any h.

We now make some further modifications to our sequences and define some new
ones. First we use the methods of §3 to write our sequences (xm), (yn) in the forms

xm = (u(0), u(1), . . . , u(m), xm(m+ 1), . . . , xm(Mm), 0, 0, . . . ),
yn = (v(0), v(1), . . . , v(n), yn(n+ 1), . . . , yn(Nn), 0, 0, . . . ),

where Mm = max{i : xm(i) 6= 0} and Nn = max{i : yn(i) 6= 0}. We put

um = (u(0), u(1), . . . , u(m), 0, 0, . . . ),
vn = (v(0), v(1), . . . , v(n), 0, 0, . . . ),

and write
u = (u(0), u(1), u(2), . . . ),
v = (v(0), v(1), v(2), . . . ).

We put w = u + v where the addition is carried out formally; but observe that if
we put

wr = (w(0), w(1), . . . , w(r), 0, 0, . . . ),

then if r ≤ min{m,n} for 0 ≤ i ≤ r we have

w(i) = wr(i) = (um + vn)(i) = (xm + yn)(i).

Finally we write

Xm = xm − um = (0, . . . , 0, xm(m+ 1), . . . , xm(Mm), 0, 0, . . . ),
Yn = yn − vn = (0, . . . , 0, yn(n+ 1), . . . , yn(Nn), 0, 0, . . . ).

We write gγ
[r,s)(x) = 〈dγ , x〉[r,s) and G[r,s) =

∑
γ g

γ
[r,s) ∧ 1.

Lemma 4.4. For any x, y and 0 ≤ r < s ≤ ∞ we have∣∣G[r,s)(x + y)−G[r,s)(x) −G[r,s)(y)
∣∣ ≤ 2D(r) + 4min{G[r,s)(x), G[r,s)(y)},

where D(r) = 0 if r = 0 and D(r) → 0 as r →∞.

Proof. First take r > 0. From Lemma 3.2(ii), for r < s ≤ ∞, any γ and any x, y,∣∣∣gγ
[r,s)(x+ y)− gγ

[r,s)(x) − gγ
[r,s)(y)

∣∣∣ ≤ 2dγ(r) + 4gγ
[r,s)(x).

We apply Lemma 4.1(ii) to get∣∣∣gγ
[r,s) ∧ 1(x+ y)− gγ

[r,s) ∧ 1(x)− gγ
[r,s) ∧ 1(y)

∣∣∣ ≤ 2dγ(r) + 4gγ
[r,s) ∧ 1(x),

and then sum over γ, putting D(r) =
∑

γ d
γ(r), to find that∣∣G[r,s)(x+ y)−G[r,s)(x)−G[r,s)(y)

∣∣ ≤ 2D(r) + 4G[r,s)(x).

Taking into account the symmetry between x and y, this will prove our result when
r > 0 if we show that D(r) → 0. Now from the definition of dγ(r) just before
Proposition 2.6 we see that dγ(r) = αγn(r) where γn(r) is the unique term in the
sequence γ = (γn) for which kγ(n−1) < r ≤ kγn . Now for any r, there is precisely
one integer p = p(r) for which kp−1 < r ≤ kp. Notice that p(r) → ∞ as r → ∞.
Since (kn) is strictly increasing, this implies that p(r) ≤ γn(r) for each r. Thus

D(r) =
∑

γ

αγn(r) ≤
∑

γ

2−γn(r)
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since, by definition of αn, we have αn ≤ αnkn−1 ≤ 2−n. Now (γn(r))γ∈Γ is a
sequence of distinct integers each ≥ p(r). Thus D(r) ≤ 2−p(r)−1 → 0 as r →∞.

For the case in which r = 0 we have only to use Lemma 3.2(i) in place of 3.2(ii)
to see that we can here replace dγ(r) and then D(r) by zero.

If, in the preceeding proof, we sum only over a subset of Γ we get a similar
inequality (and we can use the same term 2D(r), though strictly speaking it is
larger than necessary):

Corollary 4.5. Under the conditions of the lemma,∣∣(G−Gh)[r,s)(xm + yn)− (G−Gh)[r,s)(xm)− (G−Gh)[r,s)(yn)
∣∣

≤ 2D(r) + 4min{(G−Gh)[r,s)(xm), (G−Gh)[r,s)(yn)}.
�

The first case in which we establish that the iterated limit condition holds for G
is easy. The proof is virtually the same as that given at the end of §3 for Case (ii)
of Theorem 2.3.

Case (i). Suppose that G(yn) → ∞ as n → ∞. Then with r = 0, s = ∞ in
Lemma 4.4 we have

|G(xm + yn)−G(xm)−G(yn)| ≤ 4G(xm).

For each fixed m we find that limnG(xm +yn) = ∞, since all the other terms in the
inequality except G(yn) remain finite as n→∞. Thus limm limnG(xm + yn) = ∞.

If also G(xm) → ∞, the equality of the iterated limits follows from symmetry.
Otherwise G(xm) → ` <∞ (say). Then, taking the m-limit in the above inequality
we find that ∣∣∣lim

m
G(xm + yn)− `−G(yn)

∣∣∣ ≤ 4`.

Since G(yn) →∞, this implies that limn limmG(xm + yn) = ∞.
The case in which G(xm) →∞ follows from symmetry.
Case (ii). Let both limmG(xm) and limnG(yn) be finite. Then also G(u)

(defined to be limmG[0,m)(u) = limmG[0,m)(xm)) exists and is finite, because
(G[0,m)(u)) is an increasing sequence and G[0,m)(u) ≤ G(xm) for each m. Simi-
larly, for each n, G[0,n)(v) ≤ G(v) <∞. Also, from∣∣G[0,m)(u+ v)−G[0,m)(u)−G[0,m)(v)

∣∣ ≤ 4G[0,m)(u)

(Lemma 4.4) we find that

G[0,m)(w) ≤ 5G[0,m)(u) +G[0,m)(v) ≤ 5G(u) +G(v) <∞,

so that G(w) is finite.

Lemma 4.6. For each ε > 0 there is h0 such that 0 ≤ (G − Gh)(u) < ε, 0 ≤
(G−Gh)(v) < ε, and 0 ≤ (G−Gh)(w) < ε when h > h0.

Proof. We have (Gh)[0,m)(u) ↗h G[0,m)(u) ↗m G(u) < ∞. Since (Gh)[0,m)(u) ≤
Gh(u) ≤ G(u), we easily deduce the result for u, and the results for v, w are
obtained in the same way.

Since Gh is weakly almost periodic, its iterated limits are equal, and we need to
investigate the iterated limits of G−Gh. We fix the ε and h0 of Lemma 4.6.

Lemma 4.7. For each integer M there is n ≥M such that v(n) = v(n+ 1) = 0.
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Proof. Recall that for any γ and n we have αγn(kγn − kγn−1) ≥ 1, and so if x ∈ Z
satisfies x(i) = 1 for kγn−1 < i ≤ kγn , then gγ(x) ≥ 1. Now all the coordinates dγ(i)
for kγn−1 < i ≤ kγn are equal to αγn , so that if there are never two consecutive zero
digits of v in this range, then at least 1

2 (kγn − kγn−1)− 1 of these digits are 1 and
hence gγ

(kγn−1,kγn ](v) ≥ 1
2−αγn . Since there are infinitely many γn with kγn−1 ≥M,

we find that gγ
[M,∞)(v) = ∞. Therefore gγ

[M,∞) ∧ 1(v) = 1. This is for every γ, so
that G(v) = ∞, contrary to our assumptions.

We now define J(m) (more precisely Jv(m), but our v is fixed) to be the smallest
integer exceeding m+ 2 for which v(J(m)− 2) = v(J(m)− 1) = 0. The point here
is that if an integer x also has x(J(m)− 2) = x(J(m)− 1) = 0, then in calculating
the sum x + v there is no carrying into the J(m)th place; carrying in base (−2)
arithmetic is either 1 (affecting the next place) or −1 (affecting at most the next
two places). The precise situation in which we shall wish to apply this observation
is as follows. Recall that yn(i) = v(i) for i ≤ n.

Lemma 4.8. Let m be an integer. Take n > J(m). Suppose suppx ≤ m. Then
(x+ yn)(i) = yn(i) for i ≥ J(m) and so for i > n. �

Now we consider

gγ(xm + yn)− gγ(Xm)− gγ(Yn),

where γ is any element of Γ. We take some m and fix it temporarily. We take n to
be large – at least n > J(Mm). We write gγ as gγ

[0,m] + gγ
(m,n] + gγ

(n,∞). First, on
[0,m] we have xm + yn = w, so that

gγ
[0,m](xm + yn) = gγ

[0,m](w).

The definition of Xm shows that gγ(Xm) = gγ
(m,Mm](Xm) = gγ

(m,n](Xm), since
n > Mm and xm is zero on (Mm, n]. Also on (0, n] we have yn = v. Therefore,
applying Lemma 3.2(ii) to gγ ,∣∣∣gγ

(m,n](xm + yn)− gγ
(m,n](Xm)− gγ

(m,n](v)
∣∣∣

=
∣∣∣gγ

(m,n](xm + v)− gγ
(m,n](xm)− gγ

(m,n](v)
∣∣∣ ≤ 2dγ(m)+4gγ

(m,n](v),

whence ∣∣∣gγ
(m,n](xm + v)− gγ

(m,n](Xm)
∣∣∣ ≤ 2dγ(m) + 5gγ

(m,n](v).

On (n,∞) from Lemma 4.8 we see that gγ
(n,∞)(xm + yn) = gγ

(n,∞)(yn), and the
definition of Yn shows that gγ

(n,∞)(yn) = gγ(Yn), so that

gγ
(n,∞)(xm + yn)− gγ(Yn) = 0.

Putting these three facts together gives

|gγ(xm + yn)− gγ(Xm)− gγ(Yn)| ≤ gγ
[0,m](w) + 2dγ(m) + 5gγ

(m,n](v).

Therefore, using Lemma 4.1(i),

|gγ ∧ 1(xm + yn)− (gγ(Xm) + gγ(Yn)) ∧ 1|
≤ (2dγ(m) + gγ

[0,m](w) + 5gγ
(m,n](v)) ∧ 1

≤ 2dγ(m) + gγ ∧ 1(w) + 5gγ ∧ 1(v).
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Replacing γ by γr, summing from h+ 1 to ∞, where h > h0, and using Lemma 4.6
gives∣∣∣∣∣(G−Gh)(xm + yn)−

∞∑
r=h+1

(gγr

(Xm) + gγr

(Yn)) ∧ 1

∣∣∣∣∣
≤ 2D(m) + (G −Gh)(w) + 5(G−Gh)(v) ≤ 2D(m) + 6ε.

Now we have assumed that the iterated limits of G(xm + yn) exist and we have
arranged for the iterated limits of Gh(xm + yn) to exist. If we pass to subsequences
(ms) and (nt), these limits remain unchanged. We choose (ms) and (nt) so that
the iterated limits (in both orders) of

∞∑
r=h+1

(gγr

(Xms) + gγr

(Ynt)) ∧ 1

exist. Then, since D(m) → 0 as m→∞, we find that∣∣∣∣∣limm lim
n

(G−Gh)(xm + yn)− lim
s

lim
t

∞∑
r=h+1

(gγr

(Xms) + gγr

(Ynt)) ∧ 1

∣∣∣∣∣ ≤ 6ε.

We can now deduce from Lemma 4.3 that the second of these iterated limits
coincides with the limit taken in the other order. (We substitute gγr

(Xms) for the
aγ

m of that lemma, and gγr

(Ynt) for bγn. We have
∞∑

r=h+1

gγr

(Xms) ∧ 1 ≤
∑
γ∈Γ

gγ(xms) ∧ 1 ≤ G(xms).

In the case we are considering, the sequence (G(xms)) is bounded because it is con-
vergent. The same argument shows that (G(ynt)) is bounded. Thus the hypotheses
of the lemma are satisfied.) Hence∣∣∣lim

m
lim
n

(G−Gh)(xm + yn)− lim
n

lim
m

(G−Gh)(xm + yn)
∣∣∣ ≤ 12ε,

and since the iterated limits of Gh(xm +yn) coincide, we conclude that the iterated
limits of G(xm + yn) must be equal.

Thus G is weakly almost periodic, and our proof is complete. �
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