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REPRESENTATIONS OVER PID’S WITH THREE
DISTINGUISHED SUBMODULES

STEVE FILES AND RÜDIGER GÖBEL

Abstract. Let R be a principal ideal domain. The R-representations with
one distinguished submodule are classified by a theorem of Gauß in the case
of finite rank, and by the “Stacked Bases Theorem” of Cohen and Gluck in
the case of infinite rank. Results of Hill and Megibben carry this classification
even further. The R-representations with two distinguished pure submodules
have recently been classified by Arnold and Dugas in the finite-rank case, and
by the authors for countable rank. Although wild representation type prevails
for R-representations with three distinguished pure submodules, an extensive
category of such objects was recently classified by Arnold and Dugas. We carry
their groundbreaking work further, simplifying the proofs of their main results
and applying new machinery to study the structure of finite- and infinite-rank
representations with two, three, and four distinguished submodules. We also
apply these results to the classification of Butler groups, a class of torsion-free
abelian groups that has been the focus of many investigations over the last
sixteen years.

1. Introduction

The abundance of torsion-free abelian groups [18, 19, 20, 29] indicates that it
is hopeless to classify them; any sort of classification of torsion-free groups must
inevitably be carried out under rather severe restrictions.

Well-known examples are limitations to finitely generated groups or to groups
of rank 1, that is to say to subgroups of Q, see [29]. Classification theorems follow
the usual strategy. First we find a result showing that the groups of the class
under consideration can be decomposed into direct sums of indecomposables. This
is possible for many rings R and R-modules of finite rank.

Assuming that the “building blocks”–indecomposable modules–determine the
module uniquely (which is often the case), it then remains to classify the inde-
composable modules, which is possible if there are not too many of them. A good
candidate for such objects are Butler groups with small typesets. Fortunately these
torsion-free groups of finite rank can be seen as images under a functor, called the
Butler functor, taking representations F = (F, F0, F1, ..., Fn−1) ∈ RepnR of free
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R-modules F over principal ideal domains R with n distinguished submodules Fi
to certain torsion-free abelian groups, see [4, 5, 8, 11, 13, 14, 15, 16]. The crucial
point is that this Butler functor preserves direct sums. Hence the indicated decom-
position problem of Butler groups can be transported to RepnR, which is studied
independently.

Earlier results [5, 8, 12, 23, 33, 34, 48] and the discussion in [33], for instance,
show that classification in RepnR is possible only for n ≤ 4. If R is a field and
n ≤ 4 this is now well-known, see [48]. However if R is a PID and not a field new
complications arise and classification may be hopeless even for n = 2, witness [23].
The key observation is the fact that classification strongly depends on the kinds of
embeddings of the Fi ’s in F . It helps substantially if the Fi ’s are pure submodules
of F for F = (F, F0, F1) ∈ Rep2R, a condition which trivially holds for fields.
However, we can still find many R2-modules F (elements in Rep2R) of this sort, of
rank ℵ0, with F0 ∩ F1 = 0 and End F = Z; see [28] and [23]. Such an abundance
of indecomposable R2-modules of infinite rank shows that a classification theorem
needs further restrictions. In [28], when we impose that F/F0 ⊕ F1 is a bounded
R-module, we are able to write R2-modules of at most countable rank as direct
sums of (a list of) indecomposable R2-modules of rank ≤ 2.

In order to deal with R3-modules, we observe that their structure is even more
complex, and classification needs further restrictions.

We say that F = (F, F0, F1, ..., Fn−1) ∈ RepnR is a complemented representation
if F is a free R-module, all the Fi ’s are pure in F , F0 + F1 = F , and Fi ∩ Fj = 0
for all i 6= j. Of course, we say that an object F ∈ RepnR has finite rank if the free
R-module F has finite rank.

Later in the paper (Example 4.8), we will note the existence of a complemented
representation F = (F, F0, F1, F2) of countably infinite rank which is not a direct
sum of finite rank R3-modules, but which is such that all factors F/Fi⊕Fj (i 6= j)
are nevertheless direct sums of cyclic p-modules, one for each prime p in R. In order
to avoid the obvious difficulties encountered in this example, we will require that
F has finite rank. Now we are successful in obtaining the desired decomposition
result (Theorem 2.6):

Let F = (F, F0, F1, F2) ∈ Rep3R be a complemented representation of finite rank.
Then F is a direct sum of complemented R3-modules of rank ≤ 2.

The indecomposable complemented R3-modules are listed as Remark 2.7.
From this, our main classification result concerning Rep3R, we derive a number

of results about representations with two, three and four submodules, as well as
certain Butler groups. The following corollary is due to Arnold and Dugas [5]; an
alternate proof is given in [28].

Corollary 4.6. Suppose F = (F, F0, F1) ∈ Rep2R has finite rank and F0, F1 are
pure in F . Then F is a direct sum of R2-modules of ranks 1 and 2.

We also observe that our decomposition theorem enables one to turn decompos-
able R2-modules into indecomposable, complemented R4-modules:

Corollary 4.7. Suppose F = (F, F0, F1) ∈ Rep2R has finite rank and F0, F1 are
pure in F . If F has no rank 1 summands, then there exist pure submodules F2, F3 ⊆
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F such that (F, F0, F2, F1, F3) is a complemented, indecomposable representation in
Rep4R.

Additional consequences of the main decomposition theorem will be given in the
sections to come, in both the global and local cases (Sections 2 and 3, respectively).
We remark that the existence of indecomposable, complemented R3-modules of
infinite rank was, for a while, a matter of considerable doubt. These objects indeed
exist, and we detail their construction in Section 4. The heart of the matter is
Proposition 4.3, an old result in abelian group theory due to Reid [47].

In Section 5, we apply our results to Butler groups. Despite the fact that Butler
groups are a special class of torsion-free abelian groups, they turn out to be as com-
plex as the totality of torsion-free abelian groups [21, 30, 31]. Every ring with free
additive group is realizable as the endomorphism ring of many Butler groups from a
proper class, for instance; see [21]. Hence we will place a number of restrictions on
the Butler groups we study, most notably restrictions on their ranks and typesets.
(Recall that a group of finite rank is a Butler group if it is a pure subgroup of
a completely decomposable torsion-free group of finite rank; equivalent conditions
are discussed in the forthcoming book [44].) Butler groups with a critical typeset
of the form Tn (an antichain of length n with a bottom element) for n = 2 are
classified in [43] as direct sums of indecomposable T2-Butler groups of rank ≤ 2.
This also follows from Rep2R-considerations in [5, 28]. We will bring our machinery
in RepnR for n = 2, 3 and 4 to bear on Tn-groups in the final section, obtaining
group-theoretical results about Butler groups of various torsion-free ranks, both
finite and infinite.

2. The Global Case of the Main Theorem

Throughout this section R will denote any principal ideal domain that is not a
field. If M is an R-module, p ∈ R and e ∈ M \ pM , we say e is p-pure in M . If e
is p-pure for all primes p of R, or equivalently for every non-unit p of R, then e is
said to be pure in R. We will constantly use the fact that pure elements e of free
R-modules M are basic, i.e. M = eR⊕M ′.

We will work with special objects of RepnR described by the following:

Definition 2.1. A representation F = (F, Fi : i < n) with F free is a complemented
representation if F0 +F1 = F , Fi is pure in F for all i, and Fi∩Fj = 0 for all i 6= j.

Lemma 2.2. Suppose F = (F, F0, F1, F2) ∈ Rep3R is such that F = F0 ⊕ F1. Let
πi : F −→ Fi for i = 0, 1 be the canonical projections and assume
F2π0 =

⊕
i<λ

Rtiai, where F0 =
⊕
i<λ

Rai and ti = t′i · t0 in R for all i < λ.

Choose c0 ∈ F1 with d0 = t0a0 + c0 ∈ F2, and write c0 = s0e for some pure
element e of F1. If F2π1 ⊆ s0F1, then (Ra0 ⊕ Re,Ra0, Re,Rd0) is a summand of
F.

Proof. By hypothesis we have

F/(F1 ⊕ F2) = (F1 ⊕ F0)/(F1 ⊕ F2) ∼= F0/F1π0

=
⊕
i<λ

Rai/
⊕
i<λ

Rtiai ∼=
⊕
i<λ

(R/tiR).
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Hence tiai ∈ F1 ⊕ F2 and there are unique elements ci ∈ F1, di ∈ F2 with tiai =
di − ci. Clearly

⊕
i<λ

Rdi =
⊕
i<λ

R(tiai + ci) ⊆ F2, and it is easy to check

F2 =
⊕
i<λ

Rdi with di = tiai + ci (i < λ).(∗)

Since c0 = s0e and e is pure in the free module F1, we get a decomposition F1 =
Re ⊕ F ′1; let π : F1 −→ Re be the canonical projection. Denote ciπ = sie for all
0 6= i < λ. Since F2π1 ⊆ s0F1, diπ1π = sie ∈ s0F1, and e is pure in F1, s0 must
divide all si for i < λ. Put d′0 = d0; s′i = si

s0
and d′i = di−s′id0 for i > 0. Then clearly

F2 = Rd′0 ⊕ F ′2, where F ′2 =
⊕
i>0

Rd′i and F ′2π = 0. We also have F0 = Ra0 ⊕ F ′0,

where F ′0 =
⊕

06=i<λ
Rtia

′
i with a′i = ai − s′it′ia0. Clearly F ′2π0 ⊆ F ′0, and it follows

that F = (Ra0 ⊕Re,Ra0, Re,Rd0)⊕ (F ′0 ⊕ F ′1, F ′0, F ′1, F ′2), as desired.

Note that although a sum e1 + e2 of two pure elements e1, e2 need not be pure,
p1e1 + p2e2 is at least pi-pure for distinct primes pi (i = 1, 2). Except for trivial
cases it will not be pure; take e1 = −e2, for instance. The following trick to arrange
primes was used in Cohen and Gluck’s classic paper [17], and generalizes the above
remark. If {s0, . . . , sn−1} is a set of elements in R, let (si : i ∈ n) denote its g.c.d.,
which is unique up to units in R.

Lemma 2.3. Let P be a finite set of primes of R, and e0, . . . , en−1 be p-pure ele-
ments of an R-module M for all p ∈ P. Assume that s0, . . . , sn−1 ∈ R are given
such that (si : i ∈ n) = 1. Then we can find t0, . . . , tn−1 ∈ R such that

∑
i∈n

tisiei is

p-pure in M for all p ∈ P, and (tisi : i ∈ n) = 1 as well.

Proof. Enumerate P = {p0, . . . , pm−1} without repetition for some m ≥ 1. For
each i ∈ m, we may choose ϕ(i) ∈ n such that pi does not divide sϕ(i) because
(si : i ∈ n) = 1. This determines a function ϕ : m −→ n. For i ∈ n, put
ti =

∏
{pk ∈ P : ϕ(k) 6= i}.

Suppose p divides tisi for all i ∈ n. Since (si : i ∈ n) = 1, there is an i ∈ n with
p|ti, hence p has a name, say p = pk for some k ∈ m. If ϕ(k) = j, then clearly
pk - tj by definition of tj , hence pk|sj since pk|tjsj . This is impossible because
pk - sϕ(k) = sj by definition of ϕ. The condition (tisi : i ∈ n) = 1 is therefore met.

Now suppose pk ∈ P and pk divides
∑
i∈n

tisiei. If ϕ(k) = j, then pk also divides

ti for all i 6= j, hence pk divides
∑
i∈n

tisiei −
∑

j 6=i∈n
tisiei = tjsjej . But since ej is

pk-pure, pk divides tjsj , and we obtain pk|(siti : i ∈ n) = 1, a contradiction.

Next we consider a fixed divisibility chain tn−1|tn−2| . . . |t0 in R. We abbreviate
divisibility by n − 1|n − 2| . . . |0, and the corresponding quotients ti

tk
in R by i/k

for i < k. The divisibility chain gives rise to a class of (n − 1)× n matrices with
entry i/k · ∗ in the row labeled by k and the column labeled by i < k (∗ = any
element of R), and an arbitrary entry ∗ for i ≥ k. Note the the rows are labeled
by 1, . . . , n− 1, and the columns by 0, . . . , n− 1. The matrices have the following
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form, where we suppress the ∗ in i/k · ∗.
0/1 ∗ ∗ ∗ ∗
0/2 1/2 ∗ ∗ ∗
0/3 1/3 2/3 ∗ ∗

...
...

...
...

...
0/n− 1 1/n− 1 2/n− 1 3/n− 1 ∗

(+)

We also fix j ∈ n and have a forbidden j-th column (the column labeled by j).
Let Π be any product of n−1 factors which are entries from exactly n−1 rows and
n− 1 columns, but not from the forbidden j-th column. We claim that 0/j divides
Π in R.

The claim follows by an induction on r < j, as follows: If the columns and rows
determined by the factors in Π indexed by (a, b) with b ≤ r are removed from (+),
then we claim Π = 0/r′ · Π′ where Π′ is the product of all factors coming from
rows labeled by (c, d) with c > r′, where r′ is the index of the largest row we have
removed.

Note that if r = 0 and we remove column 0 along with the appropriate row
labeled by `, the claim is ensured by the entry 0/`.

In the induction step we remove column r and some row, say k, according to the
entry (k, r) used in Π. If k < r′, the claim Π = 0/r′ · Π′ holds trivially. The case
k = r′ is impossible, because row r′ was removed earlier. If k > r′, we must show
that Π = 0/k ·Π′′. Clearly the shrunken matrix has only ∗’s on the diagonal above
k, hence the corresponding rows have done their duty and just wait to be removed.

By hypothesis Π = 0/r′ ·Π′ and Π′ has a factor r/k from the new entry (k, r) used
for Π. Since r rows are removed, we have r′ ≥ r, hence r′|r from our divisibility
chain, and (0/r′) · (r/k) = (0/k)(r/r′) is a product in R. Now it is clear that
Π = (0/k) ·Π′′ with Π′′ a product that still has all factors of Π coming from entries
of rows after k. The induction is complete.

If k ≥ j, the claim will follow, and this must happen after at most j − 1 steps,
which saves us from case distinction due to the forbidden column j.

Corollary 2.4. If tn−1|tn−2| . . . |t0 is a given divisibility chain in R and if |Ωj |
denotes the determinant of the (n− 1)× (n− 1) matrix (+) above after removing
its j-th column for some j < n, then t0

tj
divides |Ωj | in R.

Proof. Recall that the determinant |Ωj | is a sum of all products of the factors
considered in the discussion above. Each of them is divisible by t0

tj
, hence |Ωj | is,

and the corollary follows.

Remark. We will need only a special case of Corollary 2.4, where entries labeled
by (k, j) of the matrices (+) are 0 for all k > j. In this case the corollary can also
be deduced by means of row-by-row Laplace developments, beginning with the top
row of (+).

Corollary 2.4 is used to obtain

Proposition 2.5. Let tn−1|tn−2| . . . |t0 be a given divisibility chain in R, and d0k ∈
R (k ∈ n) be given such that (d0k

t0
tk

: k ∈ n) = 1. Then it is possible to choose
additional elements dij ∈ R (1 ≤ i < n, j ∈ n) such that the n × n matrix
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∆ = (sij)i,j∈n defined by

sij =
{
dij if i ≤ j;
dij

tj
ti

if i > j

has determinant |∆| = 1.

Proof. Let ∆ij denote the minors of ∆ obtained by removing the row of ∆ indexed
by i and the column indexed by j. By induction on n, we may assume dij ∈ R
(i, j ∈ n − 1) have been chosen so that |∆n−1,n−1| = (d0k

t0
tk

: k ∈ n − 1). [Note
that we also could assume dij = 0 for i < j in accordance with the remark after
Corollary 2.4.] Then since |∆n−1,n−1| and d0,n−1

t0
tn−1

are coprime in R, we may
choose d, t ∈ R with

1 = d · |∆n−1,n−1|+ td0,n−1
t0
tn−1

.

If we put di,n−1 = 0 for 0 < i < n, and dn−1,n−1 = (−1)n−1d, then up to sign we
have

|∆| = d · |∆n−1,n−1|+ d0,n−1|∆0,n−1|
by Laplace applied to the last column. If we can choose dn−1,j ∈ R (j ∈ n − 1)
so that |∆0,n−1| = t t0

tn−1
, then |∆| is ±1 and the proof is complete. Let Ωj be the

matrix obtained from ∆ by deleting the rows of ∆ indexed by 0 and n − 1 (the
first and last rows), together with the columns of ∆ indexed by j and n− 1, where
j ∈ n − 1. Then Ωj has the form described in Corollary 2.4, hence |Ωj | = t0

tj
· rj ,

where rj ∈ R. We now carry out Laplace expansion across the top row of ∆n−1,n−1

to see that

|∆n−1,n−1| =
∑
j∈n−1

(−1)jd0j |∆j | =
∑
j∈n−1

(−1)jd0j
t0
tj
rj = (d0k

t0
tk

: k ∈ n) .

Therefore (rj : j ∈ n − 1) = 1. At the same time, we see by expanding about the
bottom row of ∆0,n−1 that, up to sign,

|∆0,n−1| =
∑
j∈n−1

(−1)jdn−1,j
tj
tn−1

|∆j | =
t0
tn−1

∑
j∈n−1

(−1)jdn−1,jrj .

Then because (rj : j ∈ n− 1) = 1, the elements dn−1,j (j ∈ n− 1) can be chosen so
that the last expression in brackets is ±1, as desired. This completes the proof.

Theorem 2.6. Let F = (F, F0, F1, F2) ∈ Rep3R be a (nonzero) complemented
representation of finite rank. Then F is a direct sum of complemented R3-modules
of ranks 1 and 2.

Proof. Since F is finite rank free, Fi is also free of finite rank. If F2 has rank
rkF2 < rkF0, then we can write F2 =

⊕
i∈n

R(ai + bi) with ai ∈ F0 and bi ∈ F1,

where 〈ai : i ∈ n〉 is contained in a direct summand F ′0 of F0 of rank ≤ rkF2. Then
F0 = F ′0 ⊕ C and F = (C,C, 0, 0) ⊕ (F ′0 ⊕ F1, F

′
0, F1, F2). Since (C,C, 0, 0) 6= 0

decomposes into rank 1 summands and rkF2 = rkF ′0, we may assume rkF2 ≥
rkF0 (and by symmetry rkF2 ≥ rkF1) for our original R3-module F. Then since
F2 ⊕ Fi ⊆ F0 ⊕ F1, also rkF2 ≤ rkFi for i = 0, 1, hence rkF0 = rkF1 = rkF2 = n
for some n.

We now show that our (adjusted) representation F can be brought into the
special form required by Lemma 2.2. To that end, let πi : F −→ Fi (i = 0, 1) be
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the projections relative to F = F0⊕F1. Clearly F0 ⊇ F2π0 is finitely generated, and
Gauss’ theorem applies. We get stacked bases for F0 and this submodule, namely

F0 =
⊕
i∈n

Rai

There is a divisibility chain tn−1|tn−2| . . . |t0 such that
F2π0 =

⊕
i∈n

Rtiai

(1)

and similarly for F1 ⊃ F2π1 we obtain
F1 =

⊕
i∈n Rbi

There is a divisibility chain s0|s1| . . . |sn−1 such that
F2π1 =

⊕
i∈nRsibi.

(2)

Note that none of the si, ti are 0, and divisibility is expressed in opposite orders in
(1) and (2). Since s0|si for all i ∈ n we have F2π1 ⊆ s0F1, a condition required in
Lemma 2.2.

As in the proof of Lemma 2.2 we may choose unique ci ∈ F1 such that di =
tiai + ci and F2 =

⊕
i∈n

Rdi. Write ci = giei with gi ∈ R and ci pure in F1 for all

i < n. Because F2π1 has rank n, the sum

F2π1 =
⊕
i∈n

Rgiei =
⊕
i∈n

Rsibi ⊆ s0F1

is indeed direct. Since ei is pure in F1, s0 must divide (gi : i ∈ n), and since b0
is pure in F1, the converse holds as well. Therefore s0 = (gi : i ∈ n). Clearly,
d0 is pure in F2, which is pure in F , hence d0 is pure in F as well. The element
d0 = t0a0 + g0e0 must satisfy (t0, g0) = 1. We deduce

(
gi t0
s0 ti

: i ∈ n
)

= 1.
If P denotes all primes dividing gn, then by Lemma 2.3, there are elements

d0i ∈ R (i ∈ n) such that

e =
∑
i∈n

d0i

(
gi t0
s0 ti

)
ei(3)

is p-pure in F1 for all p ∈ P , and such that(
d0i

gi t0
s0 ti

: i < n

)
= 1.(4)

It follows that s0e =
∑
i∈n

d0i
t0
ti
ci is pure in

⊕
i∈n

Rci, hence s0e is p-pure in F1 for all

primes p /∈ P because F1/F2π2 is p-torsion-free for these primes by (2). Therefore,
e is pure in F1. Because of (4) we may apply Proposition 2.5 and find an n × n
matrix ∆, with |∆| = 1, of the form ∆ = (sij) with sij = dij

ti
tj

for i > j, where
d0i, ti are given above. Since |∆| = 1, ∆ represents an automorphism of the free
module F2 =

⊕
i∈n

Rdi.

We denote ∆di = d′i =
∑
j∈n

sijdj for i ∈ n. Using di = tiai + ci we get d′i =

tia
′
i + c′i, where similarly we denote a′i =

∑
j∈n

sijaj and c′i =
∑
j∈n

sijcj . In particular,

d′0 = t0a
′
0 + s0e because of (3). Clearly a′i ∈ F0, and F0 =

⊕
i∈n

Rai =
⊕
i∈n

Ra′i

since |∆| = 1. Note F ′2 :=
⊕
i∈n

Rd′i ⊆ F2. In order to show equality, we observe

that F0/F2π0
∼= (F0/F

′
2π0)/(F2π0/F

′
2π0), hence F2π0 = F ′2π0 because F0/F2π0

∼=
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i∈n

R/Rti ∼= F0/F
′
2π0 is finitely generated. Now F0 =

⊕
i∈n

Ra′i ⊃ F2 =
⊕
i∈n

Rd′i

is of the form required by Lemma 2.2 to split off the rank 2 summand (Ra′0 ⊕
Re,Ra′0, Re,Rd

′
0) from F. An induction on the rank of F now completes the proof

of the theorem.

Remark 2.7. The nonzero indecomposable, complemented R-representations (F, F0,
F1, F2) of finite rank have the following forms:

(1) (R,R, 0, 0) and (R, 0, R, 0);
(2) (Re⊕Rf,Re,Rf,R(ae+ bf)), where a and b are nonzero and coprime in R.

3. The Local Case of the Main Theorem

In this section, we prove our main theorem in the much easier case where the
base ring R is a discrete valuation domain. Let pR be the maximal ideal of R, and
let F = (F, Fi : i < 3) ∈ Rep3R be a nonzero, complemented representation of
finite rank. We claim that F has a direct summand of rank 1 or 2. In what follows,
πi : F = F0 ⊕ F1 → Fi (i = 0, 1) denotes projection.

We first show that if F/(F1 + F2) is not torsion, then F has a rank 1 direct
summand. An easy check verifies F/(F1 + F2) = (F0 ⊕ F1)/(F1 + F2) ∼= F0/F2π0.
By assumption, the (finitely generated) quotient F/(F1 +F2) has a direct summand
isomorphic to R. Therefore we obtain a decomposition F = F ′0 ⊕ F ′′0 with the first
summand isomorphic to R and F2π0 ⊆ F ′′0 . Since clearly F2 ⊆ F2π0⊕F1, it follows
that F = (F ′0, F

′
0, 0, 0)⊕ (F ′′0 ⊕ F1, F

′′
0 , F1, F2), as desired.

Now we assume that F0/F2π0 is torsion. Since F2 is pure in F , it follows that
F0 6= 0. By Gauss’ theorem, we get stacked bases F0 =

⊕
1≤i≤m

Rei and F2π0 =⊕
1≤i≤m

Rpniei, where n1 ≥ · · · ≥ nm ≥ 0. Since F2 ∩ F1 = 0, there are unique

fi ∈ F2 such that fiπ0 = pniei for i ≤ i ≤ m. It is easy to check that the fi’s
are independent and span F2, whence F2 =

⊕
1≤i≤m

Rfi. Since F2 is p-pure in F

and F2 ∩ F0 = 0, f1π1 is a nonzero, pure element of F1 if n1 > 0. If n1 = 0,
we may relabel to put ourselves in the situation where the p-height h(f1π1) of the
nonzero element f1π1 is minimal in the set {h(fiπ1) : 1 ≤ i ≤ m}. Let Rg be the
purification of Rf1π1 in F1. Then F1 = Rg ⊕ F ′1; for each i, write rig (ri ∈ R)
for the projection of fiπ1 onto Rg. Then by construction ri/r1 ∈ R for all i.
Put f ′i = fi − (ri/r1)f1 and e′i = e1 − pn1−ni(ri/r1)ei for 1 < i ≤ m. Clearly
F0 = Re0 ⊕ F ′0 and F2 = Rf1 ⊕ F ′2, where F ′0 =

⊕
1<i≤m

Re′i and F ′2 =
⊕

1<i≤m
Rf ′i .

Observe F ′2π0 =
⊕

1<i≤m
Rpnie′i ⊆ F ′0, and F ′2π1 ⊆ F ′1 because we have arranged by

our choice of bases that F ′2π1 has trivial projection onto Rg. Thus F ′2 ⊆ F ′0 ⊕ F ′1.
Evidently F = (Re0 ⊕Rg,Re0, Rg,Rf1)⊕ (F ′0 ⊕ F ′1, F ′0, F ′1, F ′2), as desired.

An induction on the rank of F now completes the proof of the decomposition
theorem:

F is a direct sum of (complemented) indecomposable representations of ranks 1
and 2.

Remark 3.1. Up to isomorphism, the indecomposable, complemented representa-
tions 6= 0 in Rep3R have the following forms:

(1) (R,R, 0, 0) and (R, 0, R, 0);
(2) (Re⊕Rf,Re,Rf,R(pne+ pmf)), where 0 ∈ {n,m}.
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We conclude with some remarks about various subcategories of Rep3R.
For 0 ≤ i ≤ j, let C3(i, j) denote the category of finite-rank objects
(F, Fi : i < 3) subject to the following conditions:
(i) Fi is pure in F for i < 3;
(ii) Fi ∩ Fj = 0 if i 6= j;
(iii) the torsion parts of the factors F/(F0 ⊕ F1) and F/(F1 ⊕ F2) are bounded

by pj ; and
(iv) at least one of the factors in (iii) is bounded by pi.
We are thankful to D. Arnold for discussions about the representation types of

C3(i, j) for different values of the parameters. If 1 ≤ i < j, the category C3(i, j)
contains indecomposables of arbitrarily large rank, hence has infinite representa-
tion type. The category C3(i, j) has so-called “endo-wild” representation type if
2 ≤ i ≤ j. The latter notion is a generalization of wild representation type for
representations of posets over fields, and indicates that a meaningful classification
of all indecomposables in C3(i, j) is unfeasible when 2 ≤ i ≤ j.

Note that after a permutation of the distinguished submodules, each representa-
tion in C3(0, j) is a finite-rank, complemented representation over R. Conversely,
every finite-rank complemented representation in Rep3R lies in C3(0, j) for some
value of j. Remark 3.1 can be used to deduce that C3(0, j) contains exactly 3j + 4
nonzero indecomposables, hence is of finite representation type.

Finally, it is relatively straightforward to verify that the following representation
(F, Fi : i < 3) of rank 2m is an indecomposable member of C3(1, j) if j ≥ 1.

Let eij (1 ≤ i ≤ m, j = 0, 1) be a set of generators for a free R-module of rank
2m, and define:
Fj =

⊕
1≤i≤m

Rpeij for j = 0, 1;

F = F0 ⊕ F1 +
⊕

1≤i≤m
R(ei−1,0 + ei1), where e00 = 0;

F2 =
⊕

1≤i≤m
Rp(ei0 + ei1).

4. Applications of the Main Theorem

In this section, we show how Theorem 2.6 can be applied to obtain new facts
about modules with two distinguished submodules.

Let Σ2R denote the full subcategory of Rep2R consisting of all finite-rank rep-
resentations (F, F0, F1) such that F = F0 + F1 (we make no assumption about the
purity of the submodules here). We thank D. Arnold for pointing out the following
category equivalence.

Proposition 4.1. There is an additive equivalence from Σ2R onto the category of
all finite-rank, complemented representations in Rep3R.

We briefly indicate the (covariant) functors involved in the proof of this result.
Define

f : Σ2R −→ Rep3R

by putting
f(F) = (F0 × F1, F0, F1, F2),

where F = (F, F0, F1) ∈ Σ2R and F2 is the kernel of the homomorphism (x, y) 7→
x+ y from the external direct sum F0 × F1 onto F .
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It is straightforward to verify that f(F) is complemented, and that f commutes
with direct sums in the category.

Conversely, if U =(U,U0, U1, U2) ∈ Rep3R is complemented and of finite rank,
then it is easy to verify that

g(U) = (U/U2, (U0 ⊕ U2)/U2, (U1 ⊕ U2)/U2))

lies in Σ2R. Morphisms F −→ F′ induce morphisms f(F) −→ f(F′) in a natural
way, and similarly for the other functor g.

Observe that if (F, F0, F1) ∈ Σ2R, then

gf(F, F0, F1) = ((F0 × F1)/F2, (F0 ⊕ F2)/F2, (F1 ⊕ F2)/F2) ∼= (F, F0, F1)

because the canonical isomorphism

(F0 × F1)/F2 −→ F ((x, y) + F2 7→ x+ y)

carries the submodule (F0 ⊕ F2)/F2 onto F0 and (F1 ⊕ F2)/F2 onto F1. Thus
gf = 1Σ2R. A similar check reveals that fg is the other identity.

In view of Remark 2.7 and the discussion above, we have the following classifi-
cation of objects in Σ2R:

Corollary 4.2. Nonzero objects in Σ2R are direct sums of indecomposables of rank
≤ 2. Up to isomorphism, the indecomposable objects 6= 0 in Σ2R have the follow-
ing forms: (R,R, 0), (R, 0, R) and (Re,Rae,Rbe), where a and b are nonzero and
coprime in R.

It seems rather hard to visualize what kinds of techniques in Rep2R itself (op-
posed to Rep3R) would be suitable to obtain the decompositions of objects (F0 +
F1, F0, F1) guaranteed by Corollary 4.2. On the other hand, there seem to be no
methods available in Rep3R to produce even a single specimen of an indecompos-
able, complemented representation of infinite rank.

Concerning this last problem, we remark that it is easy to verify (and we will do
so below) that if F = (F, Fi : i < 3) is complemented and F/F2 is indecomposable,
then F is indecomposable. The problem here lies in arranging somehow that F0 ∩
F2 = 0 and F1 ∩ F2 = 0. Let us concentrate on the case R = Z. Working in the
spirit of Corollary 4.2 and using the functors f and g described above, we are able
to formulate the problem at hand as one about abelian groups with two special
subgroups:

Which (indecomposable) abelian groups can be written as sums of two free sub-
groups?

This fundamental question was answered some time ago by Reid [47]. We supply
our own proof.

Proposition 4.3. (i) If G is a torsion-free abelian group of finite torsion-free
rank which is a sum of two free subgroups, then G is finitely generated and free.

(ii) If G is an abelian group of infinite torsion-free rank not less than its
cardinality (in particular, any torsion-free group of infinite rank), then G is the
sum of two free subgroups.

Proof. (i) If G = F0 + F1 for some free subgroups Fi, then Fi must have finite
rank and consequently must be finitely generated by assumption on the rank of G.
Hence G is finitely generated and G = E ⊕ F for some finite group E and some
finitely generated free group F . Now it is clear that E = 0 and (i) follows.
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(ii) Let κ ≥ ω be the torsion-free rank of G, and let F0 =
⊕

i<κ Zxi be a
maximal free subgroup of G. Then we may enumerate the nonzero elements of
G/F0 as {gj + F0 : j < κ}. For each j, there is a least positive integer nj with
njgj ∈ F0; let [njgj ] denote its support with respect to the given basis for F0.
Observe that for each i < κ, the set

⋃
j≤i[njgj ] has cardinality < κ. Hence we can

define (by recursion) a function τ : κ −→ κ such that for each i < κ,⋃
j≤i

[njgj] ∩ {τ(j) : j ≤ i} = ∅.

Put F1 =
∑
i<κ

Z(gi + xτ(i)) ⊂ G. Clearly, G = F0 + F1. Moreover, it follows by our

definition of τ that F1 =
⊕
i<κ

Z(gi + xτ(i)), hence F1 is free.

Corollary 4.4. Let G be an indecomposable, torsion-free group of infinite rank κ.
Let Fi (i = 0, 1) be free subgroups of G whose sum is G, and let F2 be the kernel of
the map

F0 × F1 −→ F ((x, y) 7→ x+ y).
Then F = (F0 × F1, F0, F1, F2) ∈ Rep3Z is an indecomposable, complemented rep-
resentation of rank κ. If G has endomorphism ring Z, then so does F.

Proof. Assume G = F0 + F1 is indecomposable and torsion-free. Note F/F2
∼= G

is torsion-free, hence F2 is pure in F . It is easy to check F2 ∩ Fi = 0 for i = 0, 1.
Hence F is a complemented representation of rank κ. Suppose σ2 = σ ∈ End(F).
Then σ induces an idempotent in End(F/F2), with F/F2 indecomposable, hence
by replacing σ by 1 − σ if necessary we may assume that σ induces the zero map
on F/F2, that is, Fσ ⊆ F2. Then (Fi)σ ⊆ Fi ∩ F2 = 0 for i = 0, 1, whence σ = 0
and F is indecomposable. If in addition G has endomorphism ring Z, then given
any endomorphism σ of F we obtain an integer z so that σ − z is zero on F/F2,
and proceed in the same way to conclude σ − z = 0, whence End F ⊆ Z.

Of course, a similar strategy will work to produce indecomposables as in Corol-
lary 4.4 over many domains besides Z. We chose Z because Proposition 4.3 seems
to be a noteworthy result for abelian groups, and because Corollary 4.4 will serve
as a tool for constructing special Butler groups in the final section.

We turn now to a different application of Theorem 2.6. Here, we are interested
in generating indecomposables in Rep4R from objects in Rep3R and Rep2R. In
the setting of representations U = (U,Ui : i < n) over a field K, Brenner [12]
realizes the trivial algebra K as EndU using four subspaces Ui (i = 0, 1, 2, 3),
and in fact provides a complete list of all such representations with dim U finite.
An inspection of her list shows that when dim U = 2m > 2, U and its first
three subspaces constitute a finite rank complemented representation in Rep3K.
Moreover, U2 is the usual “diagonal” subspace of dimension m. The fourth, more
“complicated” subspace U3 has dimensionm+1, hence Ui∩U3 must be nontrivial for
all i < 4. Hence U is not a complemented representation ofRep4K. In fact, the rigid
representations of infinite rank given in Göbel, May [33] fail to be complemented
for the same reason.

In the next section we will want to work only with complemented representa-
tions in order to apply our results to Tn-Butler groups, a setting in which each
pair of distinguished submodules is required to have zero intersection. Brenner’s
results indicate that we cannot hope to transform a complemented representation
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as in Theorem 2.6 into a rigid one by adjoining a fourth (pure) submodule which
intersects the others trivially. However, there is enough leeway to produce an in-
decomposable representation in this fashion. The following corollary of Theorem
2.6 will be used in Section 5 to construct Butler groups in a very special way.

Corollary 4.5. Let R be a PID with infinitely many primes. Assume that F =
(F, Fi : i < 3) ∈ Rep3R is a complemented representation of finite rank which has
no direct summand of rank 1. Then there is a pure submodule F3 ⊆ F (there are
in fact infinitely many) such that the following holds:

F′ = (F, Fi : i < 4) is a complemented, indecomposable R4-module.

Proof. Since F has no cyclic summands, Theorem 2.6 and Remark 2.7 provide us
with the following explicit bases for the first three submodules:

F0 =
n⊕
i=1

Rei , F1 =
n⊕
i=1

Rfi and F2 =
n⊕
i=1

R(aiei + bifi),

where ai, bi ∈ R\{0} and (ai, bi) = 1 for all i. Denote aiei+ bifi by di. Since R has
infinitely many primes, we may choose a prime p ∈ R which does not divide any of
the coefficients ai and bi. We define F3 ⊆ F by

F3 =
n−1⊕
i=1

R(aiei + pi+1bi+1fi+1)⊕R(anen + pb1f1)

and put F′ = (F, Fi : i < 4) ∈ Rep4R.
Denote the indicated basis elements of F3 by g1, ..., gn respectively. Since (ai, pbi)

= 1 for all i, it follows easily that F3 is a pure submodule of F , and obviously
F3 ∩ Fi = 0 for i = 0, 1.

Suppose x =
n∑
i=1

ridi =
n∑
i=1

sigi ∈ F3 ∩ F2 is a pure element, where ri, si ∈
R. Upon writing these sums in terms of basis elements ei and fi, and equating
coefficients, we obtain r1 = psn and ri = pisi−1 for i > 1, hence x ∈ p(F3 ∩ F2)
and x = 0 by purity. Therefore F3 ∩ F2 = 0 as well, and F′ is a complemented
representation.

We now consider any σ ∈ End F′. Since Fiσ ⊆ Fi (i = 0, 1) we may write

eiσ =
n∑
k=1

rikek and fiσ =
n∑
k=1

sikfk(i)

for k ≤ i ≤ n, where rik, s
i
k ∈ R. Since F2σ ⊆ F2, we may also write diσ =

ai(eiσ) + bi(fiσ) =
n∑
k=1

tik(akek + bkfk) for all i, where tik ∈ R. Inserting the

expressions (i) and equating coefficients, we obtain

air
i
k = akt

i
k and bisik = bkt

i
k (1 ≤ i, k ≤ n).(ii)

Set k = i to see

rii = sii (1 ≤ i ≤ n).(iii)

At this point we assume that σ is an idempotent. If we can show that σ = 0 or
σ = 1 then F′ is indecomposable and (4.5) holds.
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Using (i) and Fubini’s theorem we compute

eiσ =
n∑
k=1

rikek = eiσ
2 =

n∑
k=1

 n∑
j=1

rjkr
i
j

 ek

for all i, whence

rij =
n∑
k=1

rikr
k
j (1 ≤ i, j ≤ n).(iv)

Now we employ the fact that F3 is invariant under σ. For each i there are
elements vik ∈ R such that

qiσ =
n∑
k=1

vikgk.(v)

Fix i < n and write the g’s in (v) in terms of the e’s and f ’s, apply (i) to the
left-hand side of (v) and equate coefficients to derive{

air
i
k = vikak (1 ≤ k ≤ n, 1 ≤ i < n) and

pi+1bi+1s
i+1
k = vik−1p

kbk (1 < k ≤ n, 1 ≤ i < n).
(vi)

Similarly, we set i = n in (v) to deduce
anr

n
k = vnkak (1 ≤ k ≤ n),

b1s
1
k = vnk−1p

k−1bk (1 < k ≤ n),
s1

1 = vnn .
(vii)

Recall that the elements ai and bi are prime to p. By (vii) we see that
s1
k ≡ 0 mod p, when k > 1, and a shift of indices in the second equation of (vi)

yields sik ≡ 0 mod p, when 1 < i < k ≤ n. Together with (ii), these facts give us

rik ≡ sik ≡ 0 mod p, 1 ≤ i < k ≤ n.(viii)

Now (iv) reveals that rii(1 − rii) ≡ 0 mod p for all i. Replacing σ by 1 − σ if
necessary, we may assume that r1

1 ≡ s1
1 ≡ 0 mod p. By setting k = i and k = i+ 1

in the first and second equations of (vi), respectively, we obtain rii = vii = si+1
i+1 for

1 ≤ i < n. Similarly, rnn = vnn = s1
1 by (vii). Therefore by (ii), we have rii ≡ sii ≡ 0

mod p for all i. Setting i = j + 1 in (iv) and employing (viii), we deduce rj+1
j ≡ 0

mod p for j < n. If i > 1, we may assume by induction that rj+i−1
j ≡ 0 mod p

for j ≤ n + 1 − i. Then once again an application of (iv) and (viii) reveals that
rj+ij ≡ 0 mod p for j ≤ n+ i. We have shown

rji ≡ 0 mod p, 1 ≤ i, j ≤ n.(ix)

Now (iv) implies rji ∈
⋂
k<ω p

kR = 0 for all i and j. By (ii), all sji are zero as
well. Therefore σ = 0, as desired.

Last, we observe that there were infinitely many choices of the prime p ∈ R,
hence of the fourth submodule F3 ⊆ F . In fact, we get an infinite family of such
F’s with only the zero homomorphism between distinct members.

In recent accounts of representation theory and Butler groups (see [5, 28]), R2-
modules (F, F0, F1) with pure submodules F0 and F1 have played a major role. It
is worth pointing out how an important theorem concerning such representations
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[5, Theorem A.1], [28, Corollary 3.3] follows with relative ease from our splitting
theorem for R3-modules.

Corollary 4.6. Suppose F = (F, F0, F1) ∈ Rep2R has finite rank and F0, F1 are
pure in F . Then F is a direct sum of R2-modules of ranks 1 and 2.

Proof. Because F/F0 is finitely-generated and torsion free, it is free. Therefore F0

splits in F , say F = F0 ⊕ C. We first show how Corollary 4.6 follows when F
satisfies the following condition:

F0 ∩ F1 = C ∩ F1 = 0.(∗)

Denote F′ = (F, F ′0, F
′
1, F

′
2) = (F, F0, C, F1). Clearly, F is a complemented repre-

sentation in Rep3R. Using Theorem 2.6, there exists a decomposition F =
n⊕
j=1

Aj

into summands Aj of rank ≤ 2 such that F ′i =
n∑
j=1

(F ′i ∩ Aj) for i = 0, 1, 2. Now

(F, F0, F1) =
n⊕
j=1

(Aj , F ′0 ∩ Aj , F ′2 ∩ Aj) is a sum of R2-modules of rank ≤ 2, as

desired.
Finally we consider any R2-module F = (F, F0, F1) with pure F0 and F1. As

above we see that F0 ∩ F1 is a summand in F , say F = F ′ ⊕ (F0 ∩ F1). Clearly,

F = (F ′, F0 ∩ F ′, F1 ∩ F ′)⊕ (F0 ∩ F1, F0 ∩ F1, F0 ∩ F1).

Because the second summand is a direct sum of cyclic R2-modules, and (F0 ∩F ′)∩
(F1 ∩ F ′) = (F0 ∩ F1) ∩ F ′ = 0, we may assume that our original representation F
satisfies F0 ∩ F1 = 0.

Write F = F0 ⊕C as above. Then C = C′ ⊕ (F1 ∩C) for some C′, and we have
a decomposition

F = (F0 ⊕ C′, F0, (F0 ⊕ C′) ∩ F1)⊕ (F1 ∩C, 0, F1 ∩ C)

in which the second summand is a direct sum of cyclic R2-modules.
Consequently, it suffices to replace F by the R2-module F′ = (F ′, F ′0, F

′
1) = (F0⊕

C ′, F0, (F0⊕C′)∩F1) above. The proof is complete provided F′ satisfies condition
(∗). To this end, we simply note F ′0∩F ′1 ⊆ F0∩F1 = 0 and C′∩F ′1 ⊆ C′∩F1 = 0.

Suppose F = (F, F0, F1) is an R2-module as in Corollary 4.6, and write F = F0⊕C.
The second paragraph of the proof of Corollary 4.6 shows that F has a rank 1 direct
summand if either intersection F0 ∩ F1 or C ∩ F1 is nonzero. We use this fact to
help establish an analogue to Corollary 4.5 for R2-modules. The following result
will be applied to Butler groups in Section 5; note that the second submodule F1

in Corollary 4.7 is transferred to the third place in the R4-module.

Corollary 4.7. Suppose F = (F, F0, F1) ∈ Rep2R has finite rank and F0, F1 are
pure in F . If F has no rank 1 summands, then there exist pure submodules F2, F3 ⊆
F such that (F, F0, F2, F1, F3) is a complemented, indecomposable representation in
Rep4R.

Proof. We may decompose F = F0 ⊕C since F0 is pure in F . As remarked above,
our hypotheses imply F0 ∩F1 = C ∩F1 = 0. Put F2 = C. Because decompositions
of the R3-module F′ = (F, F0, F1, F2) induce ones of F, it follows that F′ has
no rank 1 summands. By Corollary 4.5, a fourth pure submodule F3 ⊆ F with
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F3 ∩ Fi = 0 (i = 0, 1, 2) can be adjoined to F′ to produce an indecomposable
R4-module (F, F0, F2, F1, F3) of the desired form.

Corollary 4.4 shows in particular that indecomposable, complemented R3-modules
(F, Fi : i < 3) of infinite rank need not decompose into direct sums of R3-modules
of finite rank. A rather obvious necessary condition for such a decomposition to
exist is that all quotients F/(Fi ⊕ Fj) (i 6= j) be direct sums of cyclic R-modules.
The following example shows that this condition does not suffice.

Example 4.8. Suppose F0 and F1 are free R-modules of rank ω and the PID R
contains infinitely many primes {pi : i < ω}. Then there is a pure submodule
F2 ⊆ F = F0 ⊕ F1 such that F = (F, F0, F1, F2) is a complemented representation
in Rep3R, which is not a direct sum of finite rank R3-modules. Moreover,

F/(F0 ⊕ F2) ∼= F/(F1 ⊕ F2) ∼=
⊕

1≤i<ω
R/piR.

Proof. Write F0 =
⊕
i<ω

Rai, F1 =
⊕
i<ω

Rb, and denote di = ai + bi ∈ F = F0 ⊕ F1.

Define
F2 = Rd0 ⊕R(b0 + p1d1)⊕

⊕
1≤i<ω

R(di + pi+1di+1).

We first show that F2 is pure in F . Let πai : F −→ Rai and πbi : F −→ Rbi denote
the obvious projections. Suppose q ∈ R is prime and

x = rd0 + s(b0 + p1d1) +
∑
i≥1

ri(di + pi+1di+1)

lies in F2 ∩ qF , where r, s, ri ∈ R.
Then xπb0 = (r + s)b0, xπa0 = ra0 and xπa1 = (r1 + sp1)a1 are divisible by q

in F . Therefore r, s, r1 ∈ qR. Now xπai = (ri−1pi + ri)ai (i ≥ 2) is in qF as well,
hence it follows by induction that ri ∈ qR for all i ≥ 2. Therefore x ∈ qF2, and the
purity of F2 in F is established.

Also note that F/F2
∼= (Ra0 ⊕ Rb0 ⊕

⊕
1≤i<ω

Rdi)/F2 ⊕
⊕

1≤i<ω
Rai and the first

summand is torsion free of rank 1 of type (1, 1, ...).
It is routine to verify that F is complemented. Let πi : F −→ Fi denote the

canonical projection for i = 0, 1. The composition F1 −→ F −→ F/F0 ⊕ F2 of
inclusion followed by the natural epimorphism is surjective with kernel F2π1, hence
F/F0 ⊕ F2

∼= F1/F2π1. Note F2π1 is generated by the set

{b0, p1b1} ∪ {bi + pi+1bi+1 : 1 ≤ i < ω}.

Denote b′1 = b1 and b′i = p1 · · · pi−1bi for i ≥ 2. Because the pk are distinct
primes of R it is easy to see that F1 is generated by {b′i : 1 ≤ i < ω} and F2π1.
Moreover b′i has order pi modulo F2π1, hence

F1/F2π1 =
⊕

1≤i<ω
R(b′i + F2π1) ∼=

⊕
1≤i<ω

R/piR.

Similarly, it follows that F/F1 ⊕ F2
∼= F0/F2π0

∼=
⊕

1≤i<ω
R/piR.

Note that if F = (F, F0, F1, F2) were a direct sum of finite rank R3-modules,
F/F2 would be a direct sum of finitely generated torsion-free R-modules, hence
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free. However a look back at the definition of F2 shows b0 6∈ F2, while

b0 ≡ −p1d1 mod F2 and di ≡ −pi+1di+1 mod F2

for all i ≥ 1. Therefore 0 6= b0 + F2 ∈
⋂

1≤i<ω
pi(F/F2), and F/F2 is certainly not a

free R-module. This finishes 4.8.

Finally we note an additional property of Example 4.8: Choose an idempotent
σ ∈ End F, acting on generators as aiσ = biσ = 0 for i > 1 and aiσ = a1 + p2a2,
b1σ = b1 + p2a2.

Then d1σ = d1 + p2d2 and σ ∈ End F\{0, 1}. Actually

F = (〈a1 + p2a2, b1 + p2b2〉 , 〈a1 + p2a2〉 , 〈b1 + p2b2〉)
⊕ (〈ai, bi : i > 1〉 , 〈di : i > 1〉 , 〈bi : i > 1〉 , 〈d0, b0 + p2d2, d2 + p3d3, ...〉)

in Rep3R, where the second summand C0 is isomorphic to F.
We can find a descending chain of Rep3R-submodules Ci with completely de-

composable complements (into summands of ranks 1 and 2) in F such that
⋂
i∈ω

Ci =

〈a0, b0〉.

5. Applications to Butler Groups

A Butler group of finite rank is a torsion-free, homomorphic image of any fi-
nite direct sum of additive subgroups of the rationals. More generally, a countable
torsion-free abelian group is called a Butler group if it is the union of an ascending
chain of pure, finite-rank Butler subgroups. There are a number of alternate defini-
tions of Butler groups, many of them as deceptively simple as the ones we just gave.
This special class of groups, dazzlingly complex, has fundamental links to several
branches of mathematics: ring theory, abelian group and module theory, represen-
tation theory, even number theory and category theory. It is one of the links to
representation theory that concerns us in this brief section. The methodology we
summarize in the following paragraph is due to Arnold and Dugas [5].

Fix an additive subgroup C and a subring R of Q. Our work will revolve around
a set A = {A0, A1, A2, . . . } of additive subgroups of Q, each containing 1, that
satisfy the following conditions whenever i 6= j < ω:

(i) Ai ∩Aj ∼= C;
(ii) Hom(Ai, Aj) = 0;
(iii) End(Ai) = R.
Let E be any set of rational primes (possibly empty) such that for each p ∈ E,

p−1 is not contained in any member of A. Moreover, let τi = type(Ai) and τ =
type(C).

With the sets A and E in place, we let B(Tn, E) denote the category of finite-
rank Butler groups G with typesets contained in Tn = {τ0, . . . , τn−1, τ} such that
G modulo the sum G(τ0) + · · ·+G(τn−1) of type subgroups is a torsion E-group.

The extended category B(Tn, E, ω) will denote those countable groups which
are obtainable as unions of ascending chains of pure subgroups in B(Tn, E). The
theory recently developed in [5] states, roughly, that the groups G in B(Tn, E, ω)
are determined up to isomorphism by representations

F = (F, Fi : i < n) ∈ RepnR, where AiFi = G(τi)
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in the divisible hull of G, and F is the E-purification of F0 + · · ·+Fn−1 in G. The
existence and uniqueness of the free R-modules Fi ⊆ G with the stated property
are guaranteed by [5, Lemma 1.1], and the situation is such that:

(a) each Fi is pure in the free R-module F ;
(b) Fi ∩ Fj = 0 if i 6= j; and
(c) F/(F0 + · · ·+ Fn−1) is a torsion E-group.
We use

Ln : B(Tn, E, ω)→ RepnR

to denote the functor just described, whose image is the full subcategory of RepnR
comprised of countable-rank representations F which satisfy the conditions (a), (b)
and (c). Theorem 3.1 in [5] asserts that Ln is a full, additive, rank-preserving
equivalence whose inverse takes

F = (F, Fi : i < n) ∈ Im Ln to G = F +
∑
i<n

AiFi ⊆ Q⊗ F.

G is a member of B(Tn, E, ω). Moreover, G(τi) coincides with the subgroup AiFi
used to build G.

The following consequence of Corollary 4.6 has been noted in a number of recent
papers [5, 9, 28, 22, 46]. It provides, in effect, a complete classification of finite-rank
Butler groups with at most two critical types.

Proposition 5.1. Groups in B(T2, E) are direct sums of indecomposable groups
isomorphic to A0, A1 and A0e + A1f + R e+af

b ⊆ Qe ⊕ Qf , where a, b 6= 0 are
coprime in R and b is a nonunit whose prime factors lie in E.

On the other hand, there are indecomposable groups in B(T3, E) of arbitrarily
large finite rank, even when E = ∅ (see [5, Example A.5]). A tractable subclass of
B(T3, E) consists of those members G whose images L3(G) are the complemented
R3-modules studied earlier in this paper; by Theorem 2.6, Remark 2.7 and the
categorical equivalence discussed above, these special Butler groups are direct sums
of indecomposable groups isomorphic to A0, A1, A2 and A0e+A1f+A2(ae+bf) ⊆
Qe⊕ Qf , where a 6= 0 6= b are coprime in R. We refer the interested reader to [5,
Corollary A.4] for details about the group-theoretical properties of this particular
class of Butler groups with three or fewer critical types.

We know of no result quite like the following anywhere in the literature on Butler
groups. It is complementary to Proposition 5.1, and asserts that most Butler groups
with two critical types are full-rank subgroups of indecomposable Butler groups with
only two additional critical types.

Proposition 5.2. If G ∈ B(T2, E) has no rank one direct summands, then G is
contained in an indecomposable group H ∈ B(T4, ∅) with H/G torsion. Moreover,
H =

∑
i<4H(τi) can be chosen so that H(τi) = G(τi) for i = 0, 1, and so that H/G

is a homomorphic image of a finite direct sum of copies of A2/R and A3/R.

Proof. The assumptions (i)-(iii) we made about the set A of rank one groups imply
that the PID R contains infinitely many rational primes. Assume G ∈ B(T2, E) has
no rank one summands, and denote F = L2(G) = (F, F0, F1). Then F satisfies all
conditions needed to apply Corollary 4.7; we conclude the existence of pure submod-
ules F2, F3 ⊆ F such that Fi ∩ Fj = 0 if 0 ≤ i 6= j < 4, and F′ = (F, F0, F2, F1, F3)
is a complemented, indecomposable R4-module. Note F =

∑
i<4 Fi because F′ is

complemented. Applying the inverse of L4 to the indecomposable representation
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(F, F0, F1, F2, F3), we obtain an indecomposable member H = F +
∑

i<4 AiFi ⊆
Q ⊗ F of B(T4, ∅). If we identify G with F + A0F0 + A1F1 = L−1

2 (F), then G is
embedded in H with G(τi) = AiFi = H(τi) for i = 0, 1. Clearly, H/G is torsion
because rank(H) = rank(F ) = rank(G). In fact, since H = G+H(τ2)⊕H(τ3) and
F2 ⊕ F3 is contained in G ∩ (H(τ2)⊕H(τ3)), it follows that

H

G
∼=

H(τ2)⊕H(τ3)
G ∩ (H(τ2)⊕H(τ3))

is a homomorphic image of
A2F2 ⊕A3F3

F2 ⊕ F3
,

hence has the form we desired.

Finally, we give some examples of Butler groups of infinite rank that arise nat-
urally from the complemented representations of infinite rank constructed in the
previous section. For the moment, we assume R = Z, and that A has been chosen
so that the characteristic of 1 in the group A2 consists of only zeros and ones.

Example 5.3. There is a group G ∈ B(T3, ∅, ω) of infinite rank such that
(i) End(G) = Z;
(ii) G modulo the completely decomposable subgroup G(τ0)⊕G(τ1) is a direct

sum of elementary p-groups.

To construct G, let F = (F, F0, F1, F2) be a rigid, complemented Z3-module, the
existence of which was established in Corollary 4.4. Applying the inverse of the
(full) functor L3 to F, we obtain a rigid group G =

∑
i<3 G(τi) in B(T3, ∅, ω). Now

since F = F0 ⊕ F1, we reason that

G

G(τ0)⊕G(τ1)
∼=

G(τ2)
G(τ2) ∩ (G(τ0)⊕G(τ1))

=
A2F2

A2F2 ∩ (A0F0 ⊕A1F1)

is a homomorphic image of A2F2/F2
∼=
⊕

ω A2/Z. Because of our assumption
about the characteristic of 1 in A2, it follows that the last factor is a direct sum of
elementary p-groups, establishing (ii).

We remark that rigid extensions H of completely decomposable groups D =
D(τ0) ⊕ D(τ1) by torsion groups were previously constructed in [22], but with
the important difference that H/D was divisible. The discussion and examples
in [28, Section 4] make it clear that different techniques are required to obtain
rigid groups H for which H/D is, say, a direct sum of cyclic groups. Our work in
Section 4 that led to indecomposable, complemented Z3-modules of infinite rank
enabled us to realize the group in Example 5.3 above with relative ease; compare
the construction of a similar kind of rigid group given in [28, Examples 2.2 and
5.2]. Depending on the choice of F, however, it can be the case that G modulo the
completely decomposable subgroup G(τ1)⊕G(τ2) is divisible.

We want to point out the existence of what are still fairly intractable members
G of B(T3, ∅, ω) for which all quotients G/(G(τi) ⊕G(τj)) (i 6= j) are direct sums
of elementary p-groups. To do this, we continue to take R = Z, and make a slightly
more careful choice of A. Partition the rational primes into two disjoint, infinite
sets Π1 and Π2, and choose A such that for i = 0, 1, 2, the characteristic of 1
in Ai consists of zeros and ones, with the latter entries occurring only in places
corresponding to primes in Π1.
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Example 5.4. There is a Butler group G =
∑

i<3G(τi) ∈ B(T3, ∅, ω) of infinite
rank such that:

(i) If 0 ≤ i 6= j < 3, then G modulo the completely decomposable subgroup
G(τi)⊕G(τj) is a direct sum of elementary p-groups;

(ii) G is not a direct sum of finite-rank subgroups.

To construct G, we invoke Example 4.8 and obtain a complemented Z3-module
F = (F, F0, F1, F2) of rank ω such that

F/F0 ⊕ F2
∼= F/F1 ⊕ F2

∼=
⊕
p∈Π2

Z/pZ,

but F is not a direct sum of finite-rank Z3-modules. Let

G =
∑
i<3

AiFi ⊆ Q⊗ F.

Since L3(G) = F, G is not a direct sum of finite-rank subgroups. Because F is
complemented, it follows as in the proof of Example 5.3 that G/G(τ0) ⊕ G(τ1) is
a homomorphic image of

⊕
ω A2/Z, hence is a direct sum of elementary p-groups.

Note that our choice of the sets Π1 and Π2 (disjoint) and of the characteristic of
1 in A0 implies that A0F/F1 ⊕ F2 is a direct sum of elementary p-groups, where
p ranges over Π2 and the places where the characteristic of 1 in A0 is nonzero.
Since G/G(τ1) ⊕ G(τ2) is naturally a homomorphic image of A0F/F1 ⊕ F2, it is
of the desired form. Similarly, the other factor G/G(τ0) ⊕ G(τ2) is an image of
A1F/F0 ⊕ F2 and is therefore a direct sum of elementary p-groups, as well.
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