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CONDITIONS FOR THE EXISTENCE OF SBR MEASURES
FOR “ALMOST ANOSOV” DIFFEOMORPHISMS

HUYI HU

ABSTRACT. A diffeomorphism f of a compact manifold M is called “almost
Anosov” if it is uniformly hyperbolic away from a finite set of points. We
show that under some nondegeneracy condition, every almost Anosov dif-
feomorphism admits an invariant measure p that has absolutely continuous
conditional measures on unstable manifolds. The measure p is either finite
or infinite, and is called SBR measure or infinite SBR measure respectively.
Therefore, % Z?;J 0 i, tends to either an SBR measure or ), for almost every
x with respect to Lebesgue measure. (J; is the Dirac measure at z.) For each
case, we give sufficient conditions by using coefficients of the third order terms
in the Taylor expansion of f at p.

0. INTRODUCTION

In this paper we study the existence of SBR measures of two-dimensional dif-
feomorphisms that are hyperbolic everywhere except at finite points. It is easy to
see that our methods extend to the situation in which hyperbolicity fails at only
finitely many periodic points.

If f: M — M is a C? Anosov diffeomorphism of a compact connected Riemann-
ian manifold, then a result of Sinai (see e.g. [J]) says that f admits an invariant
Borel probability measure p with the property that u has absolutely continuous con-
ditional measures on unstable manifolds. With respect to this measure, Lebesgue
almost every point is generic. That is, if ¢ : M — R is a continuous function, then
for Lebesgue almost every x € M,

(0.1) lim — z_:qb(fza:) — /¢du.
=0

This result, as well as some other properties of u, has been extended to Axiom A
attractors by Bowen, Ruelle, etc. (See e.g. [B].) In this article we will refer to an
invariant measure having absolutely continuous conditional measures on unstable
manifolds as a Sinai- Bowen-Ruelle measure or an SBR measure. Due to the works
of Oseledec, Pesin, Ledrappier, Young and others on nonuniformly hyperbolic set,
the notion of SBR measure is extended to a more general setting (see [O], [P1] and
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ILS]); some properties of SBR measure are obtained (e.g. [L] and [LY]). Further-
more, a few examples of SBR measure outside Axiom A systems are studied (see
e.g. [BY], [P2] and [C]).

This paper is motivated by the following question: Does a system f : M — M
admit an SBR measure if hyperbolicity fails at only one fixed point p? We confine
our topic to two-dimensional cases. Suppose in this system one of the eigenvalues
of the derivative Df, is larger than 1 and the other is equal to 1. The map is
in fact uniformly expanding along unstable directions. It is easy to see that the
system admits an SBR measure u, because the arguments on bounded distortion
estimates are standard and the push-forward method for invariant measure works.
Consequently, the set of generic points with respect to p has full Lebesgue measure.
If the larger eigenvalue is equal to 1 and the smaller one is less than 1, then the
results in [HY] indicate that it does not admit SBR measures, and the limit in the
left-hand side in (0.1) is ¢(p) at Lebesgue almost every point. It is also found that
this system admits an infinite measure that has absolutely continuous conditional
measures on weak unstable manifolds. Here we will refer to this measure as an
infinite SBR measure (see §1 for precise meaning). In this paper, we investigate
the case that the derivative D f, is identity. Our results show that, under some
nondegeneracy conditions, f admits either an SBR measure or an infinite SBR
measure (Theorem A), and both cases do occur (Theorem B).

The phenomena in this case are quite different from that mentioned above, and
some interesting things happen. For example, the decomposition of the tangent
spaces into T, M = E¥ @ E? is discontinuous at the fixed point p (see Remark 4.3).
Consequently, we cannot expect the Holder condition for EY and the Lipschitz
condition for W#*-foliation, which are used for bounded distortion and Lebesgue
genericity in [HY]. However, we find out that E¥ satisfies Holder condition away
from p and the W#-foliation remains absolutely continuous despite the discontinuity
of E¥ and E7. On the other hand, the failure of Lipschitzness of the W *-foliation
makes both SBR measure and infinite SBR measure possible. Notice that whether
the measure is finite or infinite depends on whether the area of the sets P, =
{r € P: fix € P/i =0,1,--- ,n} can be summed up or not for any rectangle P
containing p in its interior. For a normal Anosov system or a system considered in
[HY], because of the Lipschitzness of W*-foliation this solely depends on how fast
a point x in W*(p)\{p} approachs p under backwards iteration. But in our case it
depends on how much a stable manifold W#(x) bends to W*(p) for  near p.

The proofs of the theorems involve detailed analysis of the dynamics near the
“hyperbolic type” indifferent fixed point, which hasn’t been done before. We find
out a similarity, i.e., the behavior of f"2 at = is about the same as f at x but in
a smaller scale. We prove the existence and differentiability of stable and unstable
manifolds for the fixed point p. We use eigenspaces as coordinate systems to study
properties of the splittings £ @ E?, and use the “local Holder condition” away from
p to avoid the problem caused by discontinuity of the splittings at p; the latter is
crucial for the estimates of bounded distortion.

SBR measures on the Hénon attractors, whose existence is found by Benedicks
and L.-S. Young ([BY]), are notable examples for non-uniformly hyperbolic systems.
The Hénon attractors involve nontrivial interchanges between stable and unstable
directions. There exist some areas in which the maps contract very severely along
the directions corresponding to positive Lyapunov exponents. However, the orbits
jump out immediately and then stay outside the areas for a while so that expansion
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can be recovered. In our case, the stable and unstable directions are bounded away
from each other and the map is always expanding in unstable directions. But near
the fixed point p the expansion is very weak and the orbits spend a very long time
there. This causes non-uniform hyperbolicity. The speed of expansion may or may
not be able to keep exponentially fast eventually, depending on the local behaviors
of the maps (see Remark 1.5 and Theorem B).

Acknowledgment. Part of this work was done while I was in the Department of
Mathematics at the University of Arizona. It is my pleasure to thank my advisor,
Professor Lai-Sang Young, for introducing me to this topic and for giving valuable
advice. I also wish to think Professor Marek Rychlik for his helpful conversation.

1. DEFINITIONS AND STATEMENT OF RESULTS

Let M be a C*° two-dimensional compact Riemannian manifold without bound-
ary and let m denote the Riemannian measure on M. Let f € Diff4(M ) be the set
of C* diffeomorphisms.

Definition 1. f € Diff4(M) is said to be an almost Anosov diffeomorphism, if
there exist two continuous families of cones z — C¥,CJ such that, except for a
finite set .S,

i) Df,C¥ C Cf, and D f,C3 2 C3,.

ii) |Dfyv] > |v| Vv € C¥ and | D fyv| < |v| Vv € C.

Remark 1.1. We may assume S is an invariant set. Moreover, by considering f"
instead of f we may also assume fp=p Vp € S.

Remark 1.2. By the continuity, it is easy to see that, if p € S, then
i) Df,Cy CCy and Df,Cy 2 Cy,
ii) [Dfpv] > |v| Yv € Cy and |D fyu| < o] Vv € C;.

For ' C M and r > 0, we denote B(T',r) ={y € M : d(y,T') <r}.
The ratio of |Dfyv| to |v| may tend to 1 if x — S and v € C¥ or C5. We need
some condition to control the speed of the ratio.

Definition 2. An almost Anosov diffeomorphism f is said to be nondegenerate (up
to the third order), if there exist constants ro > 0 and k%, x° > 0 such that for all
x € B(S,ro),

|Dfwv] > (1 + &%d(z, S)?)|v] Vv e Cy,

(1.1) )
|Dfyv] < (1 —k%d(z,5)%)|v] Vv € C;.

Remark 1.3. If f is an almost Anosov diffeomorphism, then for any constant r >
0, there exist constants 0 < K® < 1 < K“ depending on r, such that for all
x ¢ B(S,7),

|Dfyv] > K*|v| Vv e Cy,

1.2
(12) |Dfrv] < K°|v] Y € C;.

The following paragraphs concerning the definition of SBR measures can be seen
in [LS]. We state the following for the convenience of the reader.

Let &€ be a measurable partition of a measure space X, and let v be a probability
measure on X. Then there is a family of probability measures {v$ : x € X} with
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V& (&(x)) = 1, such that for every measurable set B C X, # — v5(B) is measurable
and

12 = 1/g vix).
B /Xxw)d()

The family {v$} is called a canonical system of conditional measures for v and &.
(For reference, see e.g. [R].)

Suppose now that f : (M, u) — (M, 1) has positive Lyapunov exponents almost
everywhere. Then for p-a.e. x, the unstable manifold W*(z) exists and is an im-
mersed submanifold of M (see [P1]). A measurable partition £ of M is said to
be subordinate to unstable manifolds if for p-a.e. x, £(xr) C W*(x) and contains an
open neighborhood of z in W*(z). Let m¥ denote the Riemannian measure induced
on W*(x). We say that u has absolutely continuous conditional measures on un-
stable manifolds if for every measurable partition £ that is subordinate to unstable
manifolds, 1§ is absolutely continuous with respect to m¥ (written us << m¥) for
p-a.e. € M. (For more details, see [LS].)

Definition 3. An f-invariant Borel probability measure p on M is called an SBR
measure for f: M — M if

i) (f, ) has positive Lyapunov exponents almost everywhere;
ii) p has absolutely continuous conditional measures on unstable manifolds.

Let ' be a subset of M. We denote by fr the first return map on T, i.e.,
fre = f7@)(z) Vo € T, where 7(z) is the smallest positive integer such that
@) (x) € T. We also denote by ur the normalization of u|r as uI' < oco.

Note that the notion of absolutely continuous conditional measures on unstable
manifolds makes sense if even f is a piecewise diffeomorphism.

Definition 4. An f-invariant Borel measure pu on M is called an infinite SBR
measure, if uM = oo and for any open set U DO S,

i) p(M\U) < oo,
ii) (far\v,#anv) has positive Lyapunov exponents almost everywhere, and gy
has absolutely continuous conditional measures on unstable manifolds of f.

Remark 1.4. In this paper, the term “SBR measure” without any qualifications
will always be reserved for probability measures.

Remember our assumption that M is a C**° two-dimensional compact Riemann-
ian manifold, m is the Riemannian measure on M and f € Diff*(M).

Theorem A. FEvery topologically transitive nondegenerate almost Anosov diffeo-
morphism f on M has either an SBR measure or an infinite SBR measure.

The nondegeneracy condition in the theorem is only for technical reasons. The
author believes that the result would remain true under some weaker conditions.

Corollary. Let f be as in Theorem A.
i) If f admits an SBR measure u, then for any continuous function ¢ : M — R,

1n—1 ‘
lim — ir) = [ ¢d “a.e. z € M.
nggongﬂfx) /cﬁu, m-a.e.
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i) If f admits an infinite SBR measure p, then for any open neighborhood U of
S,
1
lim —#{k;:fka:EU,OSkSn—l}:L m-a.e. x € M.
n—oo N

Remark 1.5. In case i) Lebesgue almost every point has a positive Lyapunov expo-
nent because of the definition of the SBR measure. On the contrary, it is evident
by the corollary that in case ii) there is no positive Lyapunov exponent at Lebesgue
almost every point in M.

In this paper we only consider the case that S contains a single point, i.e.,
S = {p}. Tt is not difficult for the reader to adjust the proof to the case that S
contains more than one point.

If S = {p}, then part ii) of the above corollary is equivalent to the following.

ii") If f admits an infinite SBR measure, then for any continuous function ¢ :
M — R,

n—1

nlln;o % ; o(fix) = é(p), m-a.e. x € M.

By Remark 1.3, we see that Df, has two eigenvectors. As we mentioned in §0,
it is known that Theorem A holds if at least one of eigenvalues of D f, is not equal
to 1. So to prove Theorem A, we only need consider the case that D f, = id.

For further analysis we need the following technical assumptions. Denote

Wep) ={y € M :d(f "y,p) < e Vn =0},

Wep) ={y € M:d(f"y, p) <e ¥n>0}.
We will prove in §4 that both are differentiable curves. To state and prove Theorem
B we give the following.

Assumption A. W¥(p) and W2 (p) are C* curves.

Note that Df, = id. We will show D?f, = 0 (Proposition 2.1). Thus we can
take a suitable coordinate system such that in some neighborhood of p, f can be
expressed as

(1.3) fay) = (2(1+ @), y(1 - (@) ),
where (z,y) € R? and
¢(z,y) = aoz® + arzy + azy® + O(|(z, y)|*),
(1.4) b(x,y) = boa® + bizy + bay® + O(|(x,9) ).
In this circumstance we have the following.

Theorem B. Let f be a topologically transitive nondegenerate almost Anosov dif-
feomorphism on M with S = {p}. Assume Df, = id, and W2 (p) and W2(p) are
C* curves. With the notation above,
(I) if cag > 2by for some 0 < a < 1, a3 = 0 = by and apba — azbg > 0, then f
admits an SBR measure;
(IT) if 2a3 < aby for some 0 < a < 1 and a1by # 0, then f admits an infinite
SBR measure.
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The systems satisfying the conditions in Theorem B exist. For example, we can
take a torus T2 and constants 0 < rg << r << 1 = diam T2 and then construct a
dynamical system in such a way that f is a hyperbolic toral automorphism outside
the r1 —neighborhood and has the form (1.3) and (1.4) within the rg—neighborhood
of the origin O.

Remark 1.6. The nondegeneracy conditions (1.1) guarantee that ag, az,bg, ba > 0.
Hence, the conditions in Theorem B(I) imply that ¢ > 4 in some small neighbor-
hood of p, while the conditions in Theorem B(II) imply that in some quadrants,
¢ < 1 near the y-axis.

Recall the cases discussed in §0 that Df, # id but one of the eigenvalues is
equal to 1. It seems that in such systems the existence of SBR measures depends
on whether expansion is “stronger” than contraction. The results in Theorem B is
consistent with this observation, because we can think that expansion is “stronger”
if ¢ > 1 and is “weaker” if ¢ < 9.

PART 1: PROOF OoF THEOREM A

In this part we always assume that B(p,7) is in the Euclidean plane R?, where
ro is as in Definition 2. Take a coordinate system in the plane such that the origin
is the fixed point p. Thus, we can write |z| = d(z,p). Also, Vz € B(p,ro), we
identify T, M with the same Euclidean plane. Let ©(z,y) denote the angle from x
to y counterclockwise in R2.

Assumption A is not going to be used in this part.

2. DYNAMICS NEAR THE FIXED POINT

We first prove in Proposition 2.1 that the second derivative D?f, is 0 and the

third derivative D3 f,, is not 0. Then we show that the action of f”2 at & is similar
to the action of f at z, on a smaller scale. This can be seen in Propositions 2.6 and
2.8, where the former deals with norms and the latter deals with angles.

Proposition 2.1. D?f, =0 and D3f,(a,a,-) # 0 Va € R2. So,
Df, =id 45 D% fy(a, ) + Re(a),

and
fr=x+ %Dgfp(x,x,x) + Ry(z),

where Rp(x) and Ry(x) are remainders with |Rp(x)| = O(|z]*) and |Rs(z)| =
O(|z[*).

Proof. Since Df,, =id, by Taylor expansion
1
(2.1) Df, =id+D?f,(x,-) + §D3fp(a:,x, )4 Rp(x).
Let <~, > denote the inner product. We have
[Dfov]? = Juf* + 2(D? fp(2,v), v) + O(lz[*) |v]*.

By (1.1) we know that for any sufficiently small z and v € C2, <D2fp(x, v), v> <0.
Note that x — CJ is continuous. There exists a small 0 < r < rg such

that () C: has nonempty interior. Thus, we get <D2fp(a:,v), v> < 0 for
z€B(p,r)
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all z € B(p,r) and v € [ C3. Since <D2fp(~, ), > is trilinear, this implies
z€B(p,r)
<D2fp(x,v), v> =0 Vz,v € R?. Now it is easy to conclude that D?f, = 0.
The inequality D3 f,(a,a,-) # 0 follows from (1.1), (2.1) and the fact D?f, =
0. ([l

Remark 2.2. Similarly, D2fp’1 =0 and D?’fp’l(x,x, ) # 0 Vo € R2
The next two corollaries follow directly from the above facts.
Corollary 2.3. There exists a constant n > 0 such that Yz € B(p,ro),
IDfE —id[l < 3nlzf* and  [fFle -] <nlaf.
Corollary 2.4. For all x,y € B(p,ro) with d(z,y) < |z|?,
d(fF e, fFy) < (Lt | = ) d(x, y).

Lemma 2.5. Let x € B(p,ro). If |z| > (3nk) : for some k > 1, then |fz| >
_1
(3n(k+1)) .

Proof. By Corollary 2.3,

e Lo, 1 _
|2l 2 |2l(1 = nlal*) 2 3kn(1 " 3lm>2m'

O
Proposition 2.6. For any € > 0, there exists 0 < r, = 1,(e) < 19 such that
) 2
Vz € B(parp)’ te (Oal]; J= ]-a"' 7[t_2]’

(1= e)[ta| < |/ (tz)| < (1+ €)|tal.

Proof. Take 0 < 1, < 19 such that e2n(1+e)*r] < (1+¢). Let z € B(p,r,) arbitrarily.

Suppose Vi =1,--- ,j — 1, ‘fl(tx)‘ < (1 + ¢)|tz|. By Corollary 2.3,

[ (t)] < |1 (14 ] )] ) < tlal (14 m(1 4+ 2
2
< tla|(1+ (1 + )23|22)F < t]a]e?1 017 < (1 4 e)tfa.

Therefore, the second inequality in the lemma follows from induction.

The first inequality can be obtained similarly. [l

For any 0 # x € B(p,ro), we denote e, = x/|z| or, equivalently, = |z|e,.
Lemma 2.7. For any e, in the unit circle, uniformly

lim () (tem f(tez))

1 .
L nE = 6‘D?’fp(egg,egg,egg)‘sm@(egg,D?’fp(egg,egg,em)).

Proof. Denote A(zx) = %D?’fp(x,x,x). The result follows from the facts |R¢(z)| =
o(|z]?) as * — 0, A(x) = |z|>A(e) and
|A(z)|sin © (z, A(z)) + |Ry(z)| sin © (z, Ry (x))

tan ©(z, fz) = 2| + |A(z)| cos © (2, A(x)) + | Ry ()| cos O (z, Ry ()
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Proposition 2.8. For any € > 0 there exists a constant 0 < 19 = 19(€) < 7,
such that ¥r € (0,79), if x,y € B(p,r) with |0(z,y)| < |0(x, fz)| and |y| = t|z|,
€ (0,1], then

- 1
(2.2) O(y, f7y)| < O(z, fr)| +ela]? Y0<j< =

- 1 2
(2.3) O(y, f7y)| > |O(x, fz)| —ela|* ¥ R Sisym

Moreover, if D‘?’fp(ex7 €z, €z) and e, are not collinear, then we can choose Ty =
To(e, ey) in such a way that Ya € B(p,7y),
. 1 2
(2.4) Oy, [y)| = |O(z, fz)| ¥ i—of <Jj< 5.

~

Proof. Denote A(z) = ¢ D3 fy(z, 2, 2).
Note that A(e,)sin O(e;, A(ey)) is continuous on the unit circle. By Lemma 2.7,
there exist rj > 0 and 6y > 0 such that Vz,z € B(p,r)) with ©(x, z) < by,
|22

2
@) EhleG fo) - {1 <106 £ < Fplete. fa)l + 1P

1
Also, there exists 3 € (0, 5] such that Vz € B(p, 1)),

€
2. < —lzf?
(26) O, f2)] < 55l

By Proposition 2.6, there exists ry > 0 such that Vo € B(p,ry), t € (0,1],

, , 2

(2.7) (L =Btz <[ (t2))? < 1+ Btz j=0,1,-- [l

Take
(2.8) T = min{ry, ry, QEHO}'

€

Now let z,y € B(p,r9) with |O(z,y)| < [O(z, fz)| and |y| = t|z|, t € (0,1].
) 2
Suppose for i = 0,1, -, 7, [O(z, f'y)| < Oy, where 0 < j < 2 By (2.5), (2.7) and
(2.6),

iy £ | 7yl? ¢
gy 1O < (0 )+ GleP)

<(1+ B)#2(|0(x, fz)| + £|x|2) < 1210(x, fr)| + et?|z]%.
Similarly,
(2.10) Oy, [ )l = 2|0z, fo)| — et?|al*.
By (2.9),
Oz, f7y)| < |0z, y)| + 8(y, F7H1y)| <|0(x,y)| +2|0(z, fz)| + 2¢[z|?
<3|0(z, fz)| + 2¢|z|*.
Using (2.6) and (2.8) we get

O, Py < (5 +20) D < b0,

Therefore (2.2) and (2.3) can be obtained by induction.
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If D3f,(ex, ez, e;) and e, are not collinear, then A(e;)sin O(e,, A(e,)) # 0. We
can use € = §|A(em)||sin O(eg, Aey))| instead of €, and therefore obtain 79 =
To(€',e;) > 0 such that if z,y € B(p, 7y) with |O(x,y)| < |O(z, fz)| and |y| = t|z]

©
for some t € (0, 1], then ¢ < e| (Eﬁ,ém and (2.10) holds for €. That is,
- , . 1
Oy, f1y)| = |8(x, fz)| = t*|z[* > (1 = t*|O(x, fz)], j=0,1,--- s [53]:
Thus (2.4) follows. O

3. EIGENVECTORS OF D?f,(x,z,-) NEAR THE FIXED POINT

We prove in Proposition 3.2 that id—l—%D?’fp(x7 x,-), the approximation of D f,
up to the second order of z, has two eigenspaces =% and Z3. This fact will be
used to construct coordinate systems in §5. Usually, the angle between z and EY
is not zero. However, there exists a unique line E* on which every point x and its
corresponding Z% are collinear (Lemma 3.6). We will see in §4 that ET is in fact

the tangent line, denoted by Ej, of “weak” unstable manifold W*(p) at p.

Lemma 3.1. There exist constants 0 < 7 < 19, 0 < &* < k" and 0 < R* < K%,
cones C* and C* such that Vx € B(p,7), C* D C¥, C* D C: and

|Dfov| > (1 4+ &“2]*)|v] Yo € CY,

|Dfov] < (1 —&%|z*)|v] Vo € CV.
Proof. Denote A, = %D3fp(x,x, -). Also, denote
Co(B) = {v € R : (v, Azv) > Blaf*|v]*}.

By Proposition 2.1, Df,v = v + A,v + Rp(z)v. Hence, |Df.v|*> = |v|? +
2(Azv,v) + o(|z|?)[v[*. So if || is small enough, then

(3.1) C, C Cm(gnu) C CI(%%“) C{veT,M:|Dfyw|>(1+ %ﬁ;“|x|2)|v|}

Note that C}% (8) is independent of ¢ provided ¢ # 0. By the continuity of C¥, we get
that for any e, in the unit circle, C C Ce, (3£*) and therefore C C [ Ce, (2").
ez €ST

PutC*= () C., (2k™). Tt is easy to see by (3.1) that C* is strictly larger than C,-
e, €S

Again, by the continuity of Cy, there exists ¥ > 0 such that B(p,7) C {z : i C c.
Now for any z € B(p,7) and v € C*, we have v € C,(2x"). Therefore by (3.1),
|Dfyv] > (1+ 3x%[z|?)|v|. This finishes the proof. O

Proposition 3.2. For any a € R2\{0}, id+A, has an eigenvector in C*, where
A, denotes %D3fp(a,a, ).

Proof. Suppose there is a € R? with |a| = 1 such that id +4, has no eigenvector
in C*. We may assume O(v,v + Agv) > 0 Vv € C*. Thus there exists 6y > 0 such

that for all unit vectors v € C*, and unit vectors a’ and v’ with |©(a,a’)| < 6 and
|©(v,v")| < by,

1
(3.2) |Agv'|sin O (v, Agv') > 3 |Aqv]sin O (v, Agv).
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Take = ta for some ¢ € (0, 3) such that O(z, fz) + |z|* < 6.
Let v, be a unit vector in the boundary of C¥ satisfying ©(v,v,) > 0 Vv € C¥.
By continuity we can take n > 0 such that for any 21,22 € B(p, 2),

1
(3.3) O(vz,,7:,) < min{fy, —|A,v|sinO(v, A,v)}.
veCn 32
We may assume that n is large enough such that
1 -
(3.4) O(v,Df.v) > §|sz| sin ©(v, A,v) Yv € CY,

provided z € B(p, %) with |©(x, z)| < 6p. This is possible because
|A,v|sin©(v, A,v) + |Rp(2)|sin O (v, Rp(z)v)
[v] + [A.v] cos O(v, Av) + |Rp(2)| cos O(v, Rp(2)v)

tan O (v, Df,v) =

_z Y ~() _ Dfyvy
Put y = —. Denote y; = f*y and 9" = —— . We may also assume that
n |D fivyl
Proposition 2.6 and Proposition 2.8 can be applied with € = l. Therefore O(z,y;) <
3
O(z, fr) + |x|2<90and||<|l|< Bal 1 SVi= 0,1, n?,

2n -
Note that Df, C“ CCy,. We have that Vi = O, 1,---,n% 0% e Cy, € C* and

By (3.4) and (3.2) we get

— n?-1

e(ﬁyoannzﬁyo Z (7’)5ny7217(1)) 2 Z §|Ayi5(z)|Sin@(a(z)vAyf@(z))
i=0
. _ 1
| |2 |Aew1’)x|s1n®(vx,A ) > 16|A 20z SIn O (T, AzVs).
It contradicts (3.5) and (3.3). O

We denote by £} and & the unit eigenvectors of id +4, in C" and C*, respectively,
and by 1+ A%|a]® and 1 — A$|a|? the corresponding eigenvalues. Also, denote by
Z¢ and =2 the subspaces generated by ¢ and £5. Since A;, = t>A,, we know that

(3.6) & =¢&r, &L, =¢E, and AL =AY, AL =
By Lemma 3.1 and Corollary 2.3, &* < A¥ < 3nand &° < A3 < 3n.

Lemma 3.3. For anyas,--- ,a, € R?\{0}, H (id +Aq,) has an eigenvector in C*,
i=1
where A, = %D3fp(a,a, ).

Proof. By the proof of Proposition 3.2, we have £ € int cv. (Otherwise~ we can
shrink C* a little bit and the arguments still work.) This implies (id +A4,)C* C C*.

n ~ ~
So ] (id+Ag,)C* C C*. Then the result follows. O
i=0

Lemma 3.4. If r is small enough, then Yx € B(p,r), Dfxé" cC" and Dfxés D
Cs.

Proof. This is because (id +4,)C* C C* and | Df, — (id +A,)|| = O(|z[*). O

Remark 3.5. Df, has an eigenvector in C* and an eigenvector in Cs if || is small.
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Lemma 3.6. For a,b € R?\{0}, denote the matriz of identity =% ® =
by

s —u qp =S
o S D=

1+ hu(a,b) hlg(a,b)
hgl(a, b) 1+ hgg(a, b) '
Then Yi,j = 1,2, |hi;(a’,b) — hij(a”,b)] < C|©(d,a”)|, |hij(a,b") — hij(a,b")| <
CloW,b")|, and |hij(a,b)| < C|O(a,b)|, where C is a generic constant depending
only on f.

Proof. Note that Va # 0, A, has one positive eigenvalue and one negative eigen-
value. So it is clear that the maps a — €%, &% are smooth on R?\{0}. By (3.6) the
result follows. O

Lemma 3.7. There exists a unique subspace ET C R? such that Ya € ET\{0}, a
is an eigenvector of A, with positive eigenvalue, where A, = %D3f,,(a7 a,-)

Proof. The existence follows from the continuity of the map a — ©(a, Aya).

Now we suppose that there exist x,y with x,y € C* and O(x,y) > 0 such that
Apz = Ni|z?x and Ayy = Xi|yl*y.

First, we assume Ay = Aj. Take such z and y with z —y € C* and |z| # |y|. By

1
the law of cosines, Lemma 2.7 and the fact that |f(tz)| = t|z|+ g)\gt3|x|3 +O(|t),

we obtain that

2 (17(ty) — F(a)? ~ Ity — taf?)
=2+ 2031yl — 2allyl L + Xlyl?) cos Oy, ) + O(1)
as t — 0. Since
Al + Al = e Jpl X8 Jal? + Xelyl?) = (el = A1) (1l = Io).

The right-hand side is positive if ¢ is small. So |f(ty) — f(tz)| > |ty — tz|. But the
fact y — = € C® implies | f(ty) — f(tz)| < |ty — tz|, a contradiction.

Next, we assume \; # M. In this case, for any = and y, f(tz) — f(ty) is
not parallel to z — y. Hence we can find = and y such that z — y ¢ C* but
f(tz) — f(ty) € C*. Therefore, there is a point tz between tz and ty such that D f;.
maps a vector outside the cone C* into C*. This contradicts Lemma 3.4 which says
that thzés > C* if t is small. O

4. UNSTABLE MANIFOLDS ON M

In this section we prove the existence of invariant decomposition of the tangent
bundle into TM = E* @ E* (Proposition 4.2) and the existence of “weak” unstable
manifolds W*(z) := {y € M : nlg{.lo d(f~"x, f~"y) = 0} (Proposition 4.4). E¥ is
tangent to W*(z) for all z € M and is continuous everywhere else except the fixed
point p. Most of the arguments are routine except for proving that E} is tangent
to W*(p) (Lemma 4.5).

For convenience we will refer to W*(z) and W¥(x) ={y € M : d(f "z, f"y) <
e Vn > 0} as the “unstable manifold” and “local unstable manifold” at x, even
though points on the manifolds may not be contracted exponentially in backwards
time.
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Lemma 4.1. Let x € M\{p}. Then |DfIv| — oo Yv € C¥ and |Df; "v| — o
Yv € C2, as n — 0.

Proof. If f™x ¢ B(p,ro) for infinite number of n’s, then by (1.2) the result is clear.
If there exists N > 0 such that Vn > N, f"a € B(p,ro), then by Lemma 2.5,

n—1 n—1
n N w| £1,,12 N u
|Dfiv| > |Dfs v‘i:E[H(l—l—/ﬁ |f'z?) > |Df] v‘izl;lﬂ(l—l—/ﬁ 3(/<;+i)n)
for some k > 1. Thus | D fI'v]| — oo. O

Proposition 4.2. There exists an invariant decomposition of the tangent bundle
into TM = E" & E® such that Vx € M, Ey C Cy, E; C C3, and Df,Ey = EY,,
DfyES = E},. Except for the fized point p, the decomposition is continuous.

Proof. Ey and E,; have been defined in the above section.
For x € M\{p},let E¥ = nQO Dff 0, Cfn,. Clearly, & C C and D fo&3 = &Y.

We show that £} is a one-dimensional subspace in T, M. In fact, if there are two
independent vectors in £¥, then we can choose v, v’ € £ such that 0 # v —v' € C5.
By Lemma 4.1 |Df "(v —v')| — 00 as n — 0o0. On the other hand, since v,v" €
DffnyChnyr DI (v =) < [DfF™ [+ |Dfg 0| < o] +[v'| ¥r > 0. This is a
contradiction.

Put EY = &Y Vo € M\{p}.

Now we prove the continuity of E¥. Suppose for some xg € M\{p}, there exists
a sequence {x;} such that Zlirglo x; = o and zlirglo E} =E, # E} . Takev € E}
with [v| = 1. Let v* and v* denote the projection of v in £} and Ej respectively.
Since E}, # Ep, v # 0. By Lemma 4.1 |Df, "v®| — oo as n — oo. Hence,
we can find an n > 0 such that [Df;"v| > 2. On the other hand, if we take
v; € B Vi > 0 such that lim v; = v, then by the continuity of Df ", we have

71— 00
|Dfrv] = z1520 |Dfz."vi] <1, a contradiction. O

Remark 4.3. The decomposition into T, M = E} @ E; is not continuous at p. This
can be seen by using a similar method as in the proof of Proposition 3.2 for vectors
in unstable subspaces instead of those in the boundaries of unstable cones. We
leave the details to the reader.

Proposition 4.4. For any x € M, W¥(x) is a curve tangent to E*.

Proof. Let € M\{p}. Construct a continuous vector field v, in a suitable neigh-
borhood of z such that v, € E,. It is easy to see that the integral curve of the
vector field that passes throuth x is contained in W*(z). To prove that W*(z) is
also contained in the integral curve passing through z, it is enough to show that
any piece of stable curve v° intersects W*(z) at most one point.
In fact, if v* N W¥(z) D {y,z} with y # z, then by Lemma 4.1, we have
lim d(f~"y, f~™z) =0and lim d(f~ "z, f~"x) =0. So lim d(f~"y, f~"z) =0.
n—oo n—oo n—oo
This contradicts the fact that D f~" is expanding along the tangent lines of ~°.
Now we consider the case z = p. Let € be the set of points in B(p, ¢) that can
be jointed from p by a curve tangent to vectors in C*. Note that f™(Q) N B(p, €)
o0

is decreasing as n — oo. It is easy to check W (p) = ) (sz N B(p, e)) The
i=0
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above argument on uniqueness shows that W (p) is a curve. The differentiability
of W(p) at p is proved in Lemma 4.5. O

Lemma 4.5. W (p) is tangent to E,;.

Proof. Let v : [—1,1] — WX(p) be the parameter expression with v(0) = p. For
x1, T3 € W¥(p), we say x1 > x2, if 21 = y(s1), mg = v(s2) and s1 > so.

First, we prove that the one side limit lim exists. Suppose there are two

s—0+ |7(8)|
sequences x), = ’y( "), alh = ~v(st), sl, sl — 0 as n — oo, and two unit vectors
1
xy . .
e’, ¢’ such that | = ¢’ and 2] =¢” V¥n > 0. Without loss of generality we
B/e/_’_ﬁlle//
assume O(e/,e”) > 0 and o] > af > b > af > ---. Let e = BT e for

some ', 8" > 0. Take yp, z, € W(p) such that
yn =sup{y <zl : y=lyle} and  z,=sup{z <z : z=|z|e}.
By Corollary 2.3, | fyn — yn| < n|yn|>. Thus, if n is large enough, then y,, < fy, <
, and therefore ©( fyn, y,) and O(z,, yn) have the same sign, i.e. @(fyn, Yn) > 0.
Snmlarly7 we have ©(fz,, z,) < 0. Thus, by Lemma 2.7 we get @(e, D3f,(e,e, e)) =
0. Since 3’ and 3" are arbitrary, by Lemma 3.7 we must have ¢/ = ¢”. So the limit
()
e} := lim
T 0t y(s)]
Now we prove % € Ej;. Suppose it is not true. We may assume O (e, AE elt) >

O(tet, f(t
0. By Lemma 2.7 lim M
t—0+ t
find to > 0, 6p > 0 such that for any z € I' := {y : |y| < t0,|O(y,eY)| < 6o},
O(z, fz) > B|z|%. Also, we can find sy > 0 such that the piece of unstable curve
{7(s) : 0 <s< so} is contained in I'. Take any point x in this curve We have

o(f"z,x) = E@(f xf”1)>ﬂ2|f ‘z[>. By Lemma 2.5, Zlf “zf? is
unbounded. ThlS contradicts the fact that fTilr e Vi>0.

Similarly, the limit e := lim 7(5)
s—0- |y(s)|

exists.

> 273 for some 8 > 0. Hence, we can

exists and satisfies e € Ey. O

Though EY and Ej are not continuous at p, they are contained in C} and C;.
Therefore, we know that f has a local product structure, i.e, there exist constants
e > 0,6 > 0, such that Yo,y € M with d(z,y) < 4, [z,y] := W(zx) N W2(y)
contains exactly one point.

Lemma 4.6. Let x € B(p,7m9) and y be in the W¥-segment connecting x and
[z, fx]. Then

d(z,y) < Cd(z, fx)  and  d(z,y) < nClal’,
for some generic constant, which is allowed to depend only on f.

Proof. Use the fact that C¥ and C; are bounded away from each other to get the
first inequality. The second one then follows from Corollary 2.3. |
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5. COORDINATE SYSTEMS

The purpose of this section is to choose a suitable coordinate system at each
tangent space, under which we can prove that at most points in M, D f, contract
angles between vectors in C*. This is important for the proof of the local Holder
condition in next section.

Let E¥@® E* be any coordinate system such that E* € C* and ES € C3 Yz € M.
Under the coordinate systems, for each z € M there exists a correspondence T,
from the unit circle in the tangent space T, M to R U {co} such that if m,e = o,
then e and (1, 0) are collinear. The correspondence is one-to-one if we identify —e
with e.

For simplicity of notations, we say o, € C¥ if 7, '0, € C¥ and o € C* if 0, € C*
Vx € M. In particular, we denote by ¢" the unique function that satisfies o € E™.

Suppose (f”(x)) is the matrix expression of Df, : E;j @ E; — E;ﬁx D E;z With
respect to the coordinate systems, D f, induces a map F, on R given by

(5.1) F,o= (fgl(x‘) =+ fQQ(J?)O’) (fll(a:) + f12($)0’)_1 Vo € R.

For any o, we define Fo = Fooo f71 ie., (Fo)(z) = F-1,0(f'z). Clearly,
FoeC¥if o € C* and Fo € E" if 0 € E“.

Lemma 5.1. For any o € C*, lim (F"o)(z) = o¥(z) Vo € M\{p}.

Proof. Note that (F"o)(z) € Df}lnxC? By the proof of Proposition 4.2,

—nge

(o]
lim (F"0)(z) € (| Dff-nyClny = B
n=0

O
s on T, M Vx € B(p,r9), where

Consider a particular coordinate system =% & =

=u =s ; —_ 13
EY and Z are eigenspaces of A, = 5D° fy(x, z,-).

Lemma 5.2. Suppose rq > 0 is small sufficiently. Then with respect to the decom-
position TM, = E¥ @ E3 Vo € B(p,10), the induced map F, of Df, satisfies the
following.

i) There exists a constant Co > 0 such that Yo € cv,

(5.2) |Fpo — Fyo| < Colz|™'d(z, y) Yz € B(p,r0), y € B(z,|z[?).

ii) There exist constants k',1 > 0, sectors Syt = {y € B(p,r0) : 0(y, Ey)| <
0"} and S;, ={y € B(p,r0) : |0(y, E;)| < 0°} for some 6%,0° > 0 such that
VYoi,09 € C~;‘,

(53) |Fx(0'1 — 02
(5.4) |Fo(o1 — 02

1= K|z*)|o1 — 02| Vo e Sy US;,

T0?

1+ 77/|x|2)|01 - 02‘ Vo € B(p,ro)\(S:,‘O U Sfo).

Proof. Note that D f,£% = (1+ X¢|z|?)&% + Rp(x)€4 and Df,&5 = (1— A|x]?)&5 +

Rp(2)€;. The matrix of Df, : Ef © E; — =}, @ E}, can be expressed as

<1+911($) g12() ):(1+h11($,f$) hia(z, fx) )
g21(z) 1+ goo(x) hoi(z, fx) 1+ hoo(x, fx)

1+ X\¢z]2 + O(|z)?) O(|=]?)
(5:5) . ( O(|z[?) 1= Agfaf? + O(|$|2)> ’

)| < (
)] < (
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where h;; are as in Lemma 3.6.
By (5.1) we get

(5.6)  Fro=(gn(e) + 0+ g2(0)0) (L+am(2) + giz()o) .
|Fx(0'1 — 0’2)|
_ 1+ 9u(@) + g922(2) + 911(2)g22(2) — g12(2) 921 (7)
(14 g11(z) + 912(3?)0)2
where o in (5.7) is between o1 and o3.
It is easy to see by (3.6) and the linearity of A, that |\ —\}| < 3C|O(x,y)l, if C' is
large enough. Note that sin |©(z,y)| < |z| 'd(z,y) and ||z|* — |y|?| < 3|z|d(z,y).
Therefore, (5.2) follows from (5.5) and (5.6).
By Lemma 2.7, |O(x, fz)| = O(|z|?). So (5.4) follows from (5.5) and (5.7).
Moreover, if z € EY or ES, then ©(z, fz) = o(|x|?). Hence hi;(x, fz) = o(|z|*) as
x — 0. So g11(x) = \g+o(|z[?), g22(x) = =3 +0(|z[?), and g12(2), ga1 (2) = o(|z*).
Thus, (5.3) holds for these z. Then we use continuity. O

(57) |0’1 —0’2|,

Let 8 > 0 small. For z € B(p, ), take k = k(x) such that

k—1

1428 < [[ (14 1£2) < 1+48.

i=0
Considering Proposition 2.6, we have that there exist 0 < ¢; < ¢y < 1 such that
(5.8) c1 < klz]* < eo.
Lemma 5.3. There exists C’ﬁ > 0 such that
IDfs = Dfyll < kChlald(z,y)  Va € B(p,ro), y € Bla,|z]).
Proof. We have

k—1
o .
IDfE = DI <D D2 D f 5w = D sy | DS
j=0

By Proposition 2.1, |Dftix — Dfiyll < C'|fiz|d(fiz, fiy) for some C’ > 0. Also,
by Corollary 2.3, ||Dfi|| < 31:[1(1+377|f"x|2) < jl:[l(l—i— | fiz]?)3". Since the difference
among x, |fiz| and | fiy| a;:()of higher order, vézohave
IDfy = Df;ll < kC'(1 +46)*"|z|d(x, y).
O

Suppose (fz(]k)(x)) is the matrix expression of D fF : ek ®E5 k= Sty 1O Feg g
k=1 o
where =% ; and =; ; are eigenspaces of [] (id+3 D3 f,(fiz, fiz,-)). It induces a
i=0
map on R by

(5.9) F®o = (£ (@) + [35) (@)0) (D (2) + [3) (@)0) ™ Vo eR.

Lemma 5.4. The map Fék) satisfies the following.



2346 HUYI HU

i) There exists a constant Cg > 0 such that Vo € C*,
(5.10) ‘Fék)a - Fék)a| < Cglz| td(z,y) Vz € B(p,r0), y € B(x, |z]?).

ii) There exist constants 1 > C,, > 0, Cp, > 0 such that Voi,09 € (fx“,

(5.11) |F{F) (01 — 02)| < Chlor — 02| VeSSt USE,
(5.12) ‘Fék) (01 — 02)| < Cylo1 — o2 vz € B(p,ro)\ (St USS).

Proof. The matrix ( fi(f) (z)) can be written as

) f5) ()
<ﬁﬂm WuJ
C+mmmﬁ> h&@fk))Unu>fwm>
WS (. fre) 1+ b (@, fha) ) \FiV () Jas) (@) )

where (ﬁ(f) (z)) is the matrix of D fy with respect to the coordinate system Z% , @
E; x> and (65 + hif) (z)) is the matrix of identity By ®E, —
By (5.9),

(5.13)

=u =s
“fkxk ® “fkx k"

|01 - 02|7

WY@ (@) - ﬁﬂmﬁﬂm
(5.14) |F‘z (0'1 0’2)|— *) *)
(f @) + 135 (2)0)”
where o is between o1 and o».
Similarly, we have |}’ (z, f*x) — b (y, f¥)| < ClO(z, )| + ClO(FfFx, f*y)|
3C|0(z,y)| < 4C|z|"'d(z,y). By (5.8) and Lemma 5.3, |fsF(z) — F{F ()]
Chklzld(z,y) < Chlz|~'d(z,y). Hence (5.10) follows from (5.13), (5.8) and (5.9).

Since fi(f) (x) and h%c) (z, f¥z) are bounded, (5.12) follows from (5.13) and (5.14).

<
<

Now it remains to prove (5.11). Note that Vv € £, | with [v[ =1,
k—1 -
MH@H@v } H1+MWM (1+5)"",
=0 =0
where A, = %D?’fp(x, x,-). Also note that by Proposition 2.1 and (5.8),
k—1
|pst =TT (a+4:)| = kO(al*) = O(la).

i=0

So given € > 0, we can take ry such that f(k)( ) (1+B3)"" —¢, and |f_1(§) ()] <e

Vx € B(p,rg). For the same reason, we have |f. | 21 (m)| <k, féfj) () < (1-PB)" +e.
Since z € S US;, fx,--- , fFx are close to Ej or Ej, and the eigenvectors
are close to EY and Z5. Hence |hl(.;-€) (z, f¥x)| < e. Now we obtain that the matrics

(f (k)( )) satisfies the following condition:
W 21+ —ee @) < e
@l e @) SA=H e

where ¢ is a constant independent of €. So we can take € small enough such that
(5.14) implies (5.11). O
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For r € (0,70], denote S} = B(p,7) N Sy,
B(p,r)\ (81 US;).

Let A C M. For x € A, denote by Tf(a:) the maximal nonnegative integers such
that Vk = 0,1,--- , 75 (z), f**z € A.

S; = B(p,r) NS, and S =

Lemma 5.5. Let 3 > 0. For each x € S}, take —Tg-;:o () =ng <mp < -+ <
N, = Tgﬁo (x) such that 1+ 23 < ‘”ﬁl (L4 [f'z?) <1+48Yj=1,---,m. Then
m is bounded for all x € S . o

Proof. Denote 7% (x) = Tétﬁo (). Fix an 2z € 8¢, such that f~7 *)71(2) € S5, and

FE(z) e Sy . We may assume AP <1448V —77(2) 1< j < 7H(2).
We only need to consider the case that

|flx| < %min{|sz| T () - 1< < (2)}, 1t (2) -1 <i <7V (2).

Otherwise, the result is clear.

For —77(2) —1 < j < 77(2), let S; C B(p,r0) be the smaller sector bounded by
rays from the origin to f7z and f/™!z. Let i; be the smallest integer k such that
fkz € Sj. Thus, |fiz| = tj|sz| for some 0 < ¢; < % By Proposition 2.8, there
are at most 2tj_2 successive f'z’s in S;. By Proposition 2.6, each of them satisfies
|fiz] < V2 t;|f72|. Thus,

; N g
[T a+1fa?) < (1 + 22727 5 <ellF=F <1+4p.
fi:CESJ‘
It means that m = m(z) <77 (2) + 77 (2) + 1. O

Lemma 5.6. There exists D > 0 such that Vo € S¢

0’

(@) .
II a+ir7aP <D,
i=—1"(x)
where 7F(2) = 12, (2).
o
Proof. This is a direct corollary of Lemma 5.5. |

Now we construct the coordinate systems.
Choose 0 < 7 < rp such that for any » € S; \S? with fT+(””)+1(x) € S, then

TH(z)-1
|
11 (1—§f€|fz$|)§ma

i=—7"(x)+1
where 7% (z) = Téts \s: () and &’ and 1’ are as in Lemma 5.2.ii).
7o \S2
Denote
P={yeBpro):3—715,,,) i <15, st flye S}

Choose 0 < 7* < 7 such that B(p,7*)\W} (p) C T'. In other words, for any
x € B(p,r*)\W (p), if we iterate backwards, then the orbit of x goes to S7 before
it leaves B(p,ro). We also assume that r* is small enough such that Vo & B(x,ro),



2348 HUYI HU

Cii= U mimClandCsi= |J m,'mC; arestill bounded away from
yEB(x,r*3) yEB(z,r*?)
eath other.

For z € 57, USL. 5
these coordinate systems to M\{p} in such a way that E* @ E$ remains C* and

with respect to these coordinate systems, ¢, < 1+ 7/|z|* for z € S§ and ¢, < 1 for
x ¢ B(p,r*), where

USy, let E" @ E? coincide with Z% @ Z5. Then we extend

(5.15) (e =min{( : |Fyo1 — Fpo2| < (|oy — 02 Vou,03 € ¢y
Since E¥@® E$ are O, there exists a constant Cy > 0 such that Vo € M\B(p, r*),
y € B(z,r*3),
Co S
(5.16) |Fro — Fyo| < r—*d(x,y) Vo € Cy.

We may regard this Cy the same as that in (5.2).

6. LocAL HOLDER CONDITION

In this section we prove that for any € M\{p}, there exists a neighborhood in
which Holder condition holds with a constant depending on x. We call this property
local Hélder condition.

Proposition 6.1. There exist constants H > 0, § > 0 and r* > 0, such that for
all z € M\{p},

U u H
d(Evay) < Wd(xﬂy)e Vy € B(x’pi)v

x

where p, = min{|x|,r*}.
We will prove it by showing the following result.

Lemma 6.2. Let {E*® ES : x € M} be constructed as in the last section. There
exist constants H > 0, § > 0 and r* > 0 such that if v € M\{p}, y € B(z,p3),
where p, = min{|z|,r*}, then

H
|0 (2) = 0" (y)| < 5d(x,y)°.
Pz
Before we prove the lemma, we give the following fact.

Lemma 6.3. Lemma 6.2 implies Proposition 6.1.

Proof. Recall that 7, is a map from the unit circle of T, M to RU{oco}. By choosing
a suitable branch we may think - Lis well defined. Since C* and C*® are bounded
away from each other, restricted to C¥, both my and T, L are Lipschitz with a

Lipschitz constant L Yy € M. Denote e*(y) =, 'o"(y).

First, consider the case that z € B(p,r*). We have
d(e"(x),e"(y)) < L|mpet(x) — mee"(y)]
< L(|met(2) = mye )] + [mye (o) — mac(v)] ).
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1

Denote o' = me"(y). We know mye"(y) — mye*(y) = mym, ‘o’ —o’. By Lemma 3.6

and the definition of m,

hoi(x,y) 4 hao(,y)o’ o
1+ hi1(z,y) + hio(z,y)o’
:‘ ho1 (@, y) + hoa(z,y)o’ — hui(z,y)o’ — hia(z, y)o’
1+ hi1(z,y) + hio(z,y)o’

-1

|7Ty 0’—0‘

©(z,y)|

for some C’ > 0. Since d(z,y) < p2 = |z|?, we have

diay) _ dey) ™" day) o dey)
EC A P

©(z,y)| <
By Lemma 6.2,
[ree(@) = mye" (1) = |0 (@) = 0" ()| < o)
Thus,
e (o)) < L + C'af’) 0 1iig

We get the inequality in Proposition 6.1 for € B(p,*) with L(H 4 C’'r*?) instead
of H.

Similarly, since the coordinate systems is C! on M\ B(p,r*), we can find a con-
stant C” > 0 such that

CII *30d(l‘ y) .

|y “lo' — ¢ ‘ <C"d(z,y) < p39

The rest of the arguments are the same as above. O
Proof of Lemma 6.2. Take 6 > 0 such that for x € B(p, 1),
3 1|2 2136 2\6 1 1|2
(6.1a) (1= o #|2")(1 +0|2[7)7 (1 +dnfa")” <1 - gw'|z]" Vo€ B(p,ro),
3 .
(6.1b) (14 Zn'[f*)(1 + nlz?)* (1 + 4nla|*)® <1+ 20 |z[> Vo € B(p, o),

(6.1c) L + Cx —=|

|Df~ 1|fB(:cpT)| <1 Va ¢ B(p,r"),

where " and 7’ are as in Lemma 5.2.ii), and (, is as in (5.15).
Take

400 200 2007“
? 77, ) 1_<-

where Cj is as in (5.2) and (5.16) and B is the bound of all o € C* with respect to
coordinate systems E & E7.

H> max{ , 2YB|Df~ ||9}7
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Define a function s: M — [1, DQ"'] by putting

/‘r};(z) , )
max{1, D*" ] (1—%|f "z } r € S5 \S5
i=1
1, x € SF;
Se =14

Ts (z) .

[T (1+20|f2?), reSENTy
i=1
D21’ otherwise,

where 75 () = 75, 1 (2) and 75 (2) = T5eqp(@).
Let

sz H

p3?

H={oec": lo"(@) - o"(y)| < Zgd(a,y)’ Vo€ Mye Bl,pl) }.

H is closed in the sense that for a sequence {0, }52; C H if lim o, = o pointwise,
n—oo
then o € H. In fact, Vo € M V(3 > 0, we can find N > 0 such that for all n > N
lon () —o(z)] < 6.

Thus Yy € B(z, p3),

lon(y) —o(2)] < |on(y) — on (@) + lon(z) —o(z)] < SZTJZd(m, y)’ + 5.

x

H
Since lim o, (y) = o(y) and B are arbitrary, |o(y) — o(z)| < 5;3 d(z,y)’. Hence
n—oo
oceH. v
Let 0 € H. Take x € M and y € B(z, p3). We will show that

Sfo 0

(6.2) |[(Fo)(fz) — (Fo)(fy)| < 0 d(fx, fy)°.
fx

If it is true, then we have FH C H. So by Lemma 5.1 and the closeness of H, for
any 0 € H, c* = lim F"o € H, which will complete the proof.

n—oo
We point out here that it is enough to consider the case y € B(x, p2). Because

if d(z,y) > p2, then

d .
Ve I9) = D 7 oy = 20T

H
So by the choice of H we have —d(fz, fy)? > > 2B, which means
p

"
7 @IDF )

that (6.2) is always true.
Now suppose z € M\{p} and y € B(z, p3). We have

‘(fa)(fx) — (fa)(fy)‘ = ‘an(x) — Fya(y)‘
(63 <|Fuoly) - Fyoy)| + | Feo(a) - Fuoly).

We consider the following cases.
Case I x € §; US, .
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By (6.3) and Lemma 5.2,

C d xZ, SIH
God@,9) \ (1 lep) = o, )”

|| >

:(Qﬁ&%ﬁifﬁz+w1—ﬁmmﬁﬁfﬁ(%§)3( éz?;)e e o’

Since p, < |z, d(x,y) < |z|® and syx'H > 4Cj, we have

COd(xa y)l Op;%c&
|z

Cod(x v) (1 — '|z})|o(z) — o(y)]

<

+ (1 = & |z|})s. H

3
< Colo? + (1= #'|a*)sp H < (1= 2 |al*)s, H

By the definition of s, and p,, Corollary 2.3 and 2.4,

sz)3‘9< . 2130 ( d(z,y) )" 210 K

=Z) < (l1+nz =) < (1 +4nz)?), (11— =|z|7)ss < S¢z.
(%)™ < onlal)”, (gay) < (ot anlel®)’ (0= Gleyse < s

Therefore, (6.2) follows from (6.1a).
Case II: z € SENT.

Similarly,
|(fa)<fx>—(fa)<fy>\c°d|(| Y 4 (112 o(a) — o)
<O (o)

:(M+(1+n’|x|2)sxﬂ) (@)36( d(z, y))>e ifz. )

We get,
Cod 1-6 .36
% (L+7|z)*)s. H < Colz|> + (1 + 1/ |z|*)s. H
3/ 2
<1+ X |z|?)s. H
Also,
Pfx)39< 1 230 ( d(z,y) )9 N o
HEV < (Q4nzP)”, () < (A, (1420 )2)7)se < spo
(5) " < @rnleP)” (g5 7y) < (o anleP)’s (20 leP)s, < o

Therefore, (6.2) follows from (6.1b).

Case III: x € M\ (S5, UT USY ).

This is the complement of the above two cases. In this case p, = pf, = 7* and
5z = spp = D" By (6.3), (5.16) and (5.15),

[(Fo) (1) (Fo) ()] < DUE)

C d seH
0 (iL' y) + G = d(:[,‘ y)e

0
Z(Cod(x, y)l_a’l“*30_1 + CxSxH> (%) 7+30 (fl‘ fy) :

+ Galo(z) = a(y)|
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By the choice of H,

1 1
Cod(z,y) = 0r*30=1 4 (s, H < Cor*? + (s, H < +T<:;CS$H = ';Cx SpeH.
Since _dlz,y) < ||Df*1|fB(x,ps)| , by (6.1c) we get (6.2). O
d(fx, fy) :

7. DISTORTION ESTIMATES AND PROOF OF THEOREM A

The main work in this section is to prove bounded distortion estimates for small
unstable curves away from p (Proposition 7.5). This result makes it possible to
prove Theorem A through standard arguments. The absolute continuity of stable
foliation is also proved (implied in Proposition 7.7) and is then applied to the proof
of the corollary. In the end of the section we give a criterion distinguishing between
the two cases in Theorem A (Proposition 7.8), which will be used in Part 2.

We fix a rectangle of the form P = [W*(p), W2 (p)], where r € (0,7*], such that
fPUPU P C B(p,r*).

Lemma 7.1. There exist constants HY > 0 and 6 > 0 such that if v C fP\P is a
Wt-segment with f~'y C P fori=1,---,n — 1, then for any x,y € 7,
d(f ", f"y)"

A" (f "), B (f ) < B
Proof. We assume 6 < % Take H > 0 satisfying Lemma 6.1 and
r39Cs

1-C’

H>

where Cg and C); are as in Lemma 5.4.

Suppose N is the minimal positive integer such that f~™~ ¢ P. By the same
argument in the proof of Lemma 6.3, it is enough to show that for any z,y € f=N+,
n=1,---,N,

d( fm , n,\0
() — o ()| < A LSS
r

Let 1 <n < N. Fix f > 0 such that |Df,|| < 1+ 8V z € B(p,r*). Take

njr1—1 )
0=mng<ng <---<n <mqy=nsuchthat 1+23< T[] (1+|fiz[?) <1+48
i=n;
Vj=0,---,l. Then put k; =nj41 —n;,j=0,---,L
For j =0,---,l, define s; = max{1,5;}, and
]-a fanE 68;?*;
5 = ) r°Cy nj c .
Sj Sj_lcn-f— T f JJ)EST*,
Sj—1, f’ﬂ]x 68;."*,

where C;, and Cg are is as in Lemma 5.4. By Lemma 5.5, there are at most m
different n; with f™z € Sf.. So there are at most m + 1 different s;, and therefore
s; are bounded.
The result of the lemma follows with H* = max{s;H} if we prove that for all
j

0<j<i+1,
d(f"ix, friy)°

(7.1) | (f72) = o (fy)] < s H=—3



SBR MEASURES FOR “ALMOST ANOSOV” DIFFEOMORPHISMS 2353

By Lemma 6.2, (7.1) is true for 7 = 0. Suppose it is true for some 0 < j < [.
Recall Ff’m Y(frix) = o (fMt1x). We have
o (" @) — ) )| = |Ff 0t () = Fi2, Uu(f"j )
<[P, 0 (fry) — Py, o (Froy)| + |Fp, o (f92) = Fyis o™ (f"y)|.
By Lemma 4.6, d(f'z, fiy) < nC|fiz|®. So
[t d(f e, fry) Tl <t t0Ol a0 < 1

for all f*x € B(p,r*) if r* is small enough.
Hence by Lemma 5.4.1), we get

| fJx fnJ ) f”Jy (fnJ )}
< Cplfa| ™t -d(f™z, fy) < Cad(f™, fH7y)°.

To prove (7.1) for j + 1, we need use Lemma 5.4.ii). Consider two cases.
Case I: fiz € 85 USY. Note that in this case, s; = sj11. By the choice of H,

ot (frotra) — o (f 1 y)| < Cad(fMia, fy)° + 5;Cx 30 (f”’w fry)’

. " d fnj-*—lx’fnjﬁ-ly 0
(7.2) <(Cs+s;Cu 39) (f"a, fy)’ < sjpH ( 130 L

Case II: fiz € S¢.. By the definition of s;, we have

‘O_u(fnj+1x)_o.u(fnj+ly)| Sng(fan?,fnj ) +S] Y 30 (fan fn.} )

S d(fri+ia, friviy)®
(13) <(Cp+5,Cym )l frim, friy)? < sy i L ETTO]

Hence, we get (7.1) for j + 1 instead of j. This completes the proof. O

Lemma 7.2. There exist constants H~ > 0 and 6 > 0 such that if v C f~'P\P
is a W*-segment with fiy C P fori=1,--- ,n— 1, then for any x,y € v,

A(B"(7"2), B (")) < Terd( ", 1)’

Proof. The idea is the same as that in the Lemma 7.1. However, since d(f™ z, f"iy)
is decreasing, the fact d(f™ x, fy)? < d(fr+1z, fri+1y)? cannot be used. We need
some adjustment to obtain the last inequalities in (7.2) and (7.3).

By Corollary 2.3, we have

d( Fmi n; nj+1—1 njp1—1
d(f(rf+1§3§nffy) = H (L+nlfief) < H (L+17%*)" < (1+49)".

So if we take € small enough such that (1 + 4[3)UGCK < 1, and then take H >

r¥(1448)"Cy r¥Cpg 0o
,and set s; = (s;_1Cp+——) - (1+45)" for f"x € S¢., then
1—(1+4ﬂ)necﬁ J (J 1%n H ) ( )

the last step of (7.2) and (7.3) can go through. O
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Lemma 7.3. There exists constant D > 0 such that if v C fP\P is a W"-segment
with f~'y C P fori=1,---,n—1, then Vx,y € v,

> d(f 'z, fy) < D.
=0

Proof. By Lemma 4.6,

n n

D od(f T, fThy) <O d(f T f ).

i=0 =0

Choose 0 < n* < n® < n such that f~'z € Shif 0 < i < nY, fx € So.if
n® <i<mn,and flx € S if n* <i < nb.

Note that if z € E} with |z| small, then z € S;% and therefore d(z, fz) is close
to | fz| —|z|. So we may assume that the sectors S* were chosen in such a way that
for all z € 8%, d(z, fz) = |fz — z| < K(|fz| — |2]) for some K > 0. Similarly, if
z € 8., then d(z, fz) = |fz — z| < K(|z| — |fz|). Thus,

n"—1 n"—1
S d(f e T e < KOS (I el = | 7]) < K f2] < Ko
i=0 i=0

n

En: d(f 7, fT ) < KOS (I e = 1T el) < KJFa] < Kt

i=ns+1 i=ns+1

By Corollary 2.3 and Lemma 5.6,

s ns

STd(f T, f ) < T [F TP < 2t 10g( I+ |f—ix|2)) < 277* 1og D.

i=nl i=n¥ i=n¥

So the result follows by putting D > Cr*(2nlog D + 2K). O

For y € W*(z), let d“(x,y) denote the distance between = and y measured along
W (z), and for z € W#(z), let d°(x, z) be defined in an analogous way.

Lemma 7.4. There exists constant I > 0 such that if v C fP\P is a W*-segment
with f~%y C P fori=1,---,n—1, then Vx,y € v,

|ny_n|E7"| 0
log 2"V < [q%(x, y)".
og DF: e (z,y)

Proof. Denote x; = f iz, y; = f'y and v; = f~y.
Choose 3 > 0 such that |[Df.|| <14+ VY z € B(p,r*). Take 0 = ng < n1 <
n
<o <my=mnsuch that 1 +28 < ] (1+|xi|2)§1+4ﬁVj:1,---,l. Then
i=nj_1+1
put kj =n; —nj_1,j=1,--- L
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Let e(z) = e¢*(x) be a unit vector in E¥. We have

DIy " mg| _ IDfE e(xa)| |Df2,elyn)
[Df: | D2 ela)l [Dfy elyn)]

u
Ey

Eu

n

DS e(@n;) = D, e(un) | |Dfue(yi) = Dfyie(i)
(1+ IDfyl e(yn,) ) H< D fyee(ys)| )

-
li[ n

(141075 11 - le(n,) — e(wn)l) - TL(1+ IDF i) ).

i=1

By Corollary 2.3, || Dfz,|| < 1+3n|z;|?. The choice of n; implies that V1 < j <,

ng n;
Iofs < T G+l < [T @+l < 1 +46)™
i=n;_1+1 i=n;_1+1
So by Lemma 7.1,
Df, " Eu
) s [ 0 S DAY )
2 i=1
For any z; € ;, |z|* > % Hence for all 1 < 5 <1,
"y nj
IDf% Jee |2 TI 4wt > [T Gl >0 +28)% .
7;:77«]71“1’1 i:nj,1+1

This means that d"(xy,, y,,;) and therefore d(xn;,y,,) decrease exponentially as j
increases. Thus the first sum in (7.4) is bounded. By Lemma 7.4, the second sum
is also bounded. Now it is easy to conclude that

|Dfy " |y
*or
for some Iy > 0 independent of the choice of v, z and y.

Take 4 D v in such a way that ¥ C fP\P with maximal length. The arguments
above tell us that

10 < I()

Eu

d“(Zs, Ji)
———d"(z,y),
Ty | Y

du(xia yz) < 62[0

where Z, and g; are the extreme points of 4;. Note that d(x,y) and d“(z,y) are
equivalent for any y € W (z) and that d*(Z,y) is bounded away from 0 for any
given P. Using (7.4) again we get the result. O

Proposition 7.5. There exist constants § > 0 and J, > 1, depending on P, such
that if v is a W¥-segment with I(y) < § and y NP =0, then Vx,y € v and n > 0,

|Dfy " |y
= |DfE " gy

Proof. Use Lemma 7.4 and the fact that D f|g« is uniformly expanding outside P.
See the proof in [HY], Proposition 3.1 for more details. O

J ! < Jy.
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Lemma 7.6. There exist constants § > 0 and Js > 1, depending on P, such that
if v is a WS-segment with diam(y) < & and yN P =, then Vz,z € v and n > 0,

Df gu
J;l < ‘fﬁ < Js.
|Df2 By
Proof. By using Lemma 7.2, we can prove a result parallel to Lemma 7.4. The rest
is the same as in the proof of the previous proposition. [l

Proof of Theorem A. Take a rectangle P as in |[HY], Lemma 5.1. Define the first
return map g : M\P — M\P. Using the same proof as in [HY], Lemma 5.2, we
know that there exists a g-invariant Borel probability measure i with the property
that o has absolutely continuous conditional measures on the unstable manifolds
of f. By pushing forward, we can extend fi to an f-invariant measure on M. That
is, let

(o]
(7.5) p=>Y_ i@,

i=0
where foji=fio f~', Qo= M\P and Q; = {x € M\P: fx,---, flx € P} Vi > 1.
It is easy to see that u also has absolutely continuous conditional measures on the
unstable manifolds of f. So if the series in (7.5) converges, then pM is finite, and
after normalization we get an SBR measure of f. Otherwise, u is a o-finite measure
on M and therefore is an infinite SBR measure of f. |

Let 1 and 35 be two W¥—leaves, and let ¢ : 31 — X5 be a continuous map
defined by sliding along the W*—leaves, i.e., for x € X1, ¢(z) € X N W?*(z).

Proposition 7.7. The W?-foliation is locally Lipschitz away from p. More pre-
cisely, for any rectangle P = [W¥(p), W72 (p)|, there exist constants L > 0 and
e > 0 such that Yz € M\P with [W¥(z),Ws(x)]N P = 0, and Vz € WS(x),
L W(z) — W"¥(z) is Lipschitz with Lipschitz constant L.

Proof. Let 7 be an arbitrarily short segment in W (x). We will prove I(vy) < L-I(¥)
for some L > 0 independent of -, where I(7) denote the length of ~.

Denote by «° the stable curve connecting z; € v and (x € W2 (x1). Take n > 0
such that I(f"*) < min{l(f™v),l(f"(¢y))}. Without loss generality we assume the
lengths of f*yN P and f™(vy) N P are 0 and I(f™y),1(f™y*) < §, where § is as in
Proposition 7.5 and Lemma 7.6. This is possible because, otherwise, we can take a
shorter v and larger n.

By the continuity of E¥ and E2, there is an L’ > 0 such that l(f”(L'y)) <
L l(f”('y)) The distorsion estimates in Proposition 7.5 and Lemma 7.6 imply
that

l(vy) S L' Jsdy - (7).
O

Proof of the Corollary of Theorem A. The Lipschitzness of the W?#—foliation is
given by Proposition 7.7. This enables us to follow the proof of Lemma 5.3 and
Theorem B in [HY] to get the desired results. O

The following facts will be used in the proof of Theorem B in the next part.
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Take pt,p~ € W/ (p) in such a way that p™ and p~ are in different components
of Wi (p)\{p}, and take ¢*,¢~ € W (p) similarly. We have [q, f~'p%] € Wh(q)
and lim [g, f~ip*] = q for ¢ = ¢ or ¢—. Put

n—oo

(7.6) ATH=3"d"(g" [¢", f"pT]) and A=ATT L AT L AT LA,
n=1

where AT~ A=F and A=~ are understood in a similar way as AT+, It is clear
whether A < oo is independent of the choice of p*. Since W*-foliation is Lipschitz
away from p, whether A < oo is also independent of the choice of ¢*.

Proposition 7.8. If A < oo, then f admits an SBR measure. Otherwise, f admits
an infinite SBR measure.

Proof. We may assume p* and ¢* are in the boundary of P. Denote by Pt+ the
quarter of P bounded by W (p), W2 (p), W (¢*) and W7.(p1). It is enough to
show that pPTT < oo if and only if AT < co.

. (oo}
Put Q" ={zx€Q: fz,---,flx € P}. By (7.5) uP** = > uQ; ™. Denote
i=1

¢ = [qF, f~pT]. Clearly, Qj"" is a rectangle whose unstable direction is bounded
by W (¢7) and W7.(q;). The distortion estimates imply that the densities of the
conditional measures of x4 on unstable manifolds are bounded away from 0 and oo
(see e.g. the proof of [HY], Lemma 5.2). So, uQ; " is proportional to d(q*, g;), i.e.
there exists J, > 1 such that J,~'d(¢*,q;) < pQft < Jud(q*,q) for all i > 1.
Now the result becomes clear. |

PART 2: PROOF OF THEOREM B

In this part we assume that Assumption A holds. Therefore f can be expressed
as (1.3) and (1.4) in some neighborhood B(p, r) of the fixed point p.

Take z = (z,y) € B(p,r) and denote z = (Z,7) = [z, fz]. To determine whether
the series in (7.6) converges, we should estimate the order of £ —x as z — 0. Since
both z and fz are in W*(fz), we need to know the slope of W?(fz). Let v: be a
real number or oo such that (v$,1) is a tangent vector of W?(z). Most of the work
in this part is estimating v for z near the y—axis.

8. PRELIMINARIES

We assume that v] has the form —p%, where p = p(x,y). Results in Lemma
8.3 and Proposition 8.4 imply that p(z,y) = 2 + p(y) + R,(z,y), where p(y) is
determined by equations (8.6) and (8.7) in Proposition 8.4, and R,(z,y) — 0 as
x — 0. These facts allow us to estimate the bounds of p(z,y) in §9 and §10.

By (1.3) we know that for z = (x,y) € B(p,r),

L+ ¢(z,y) + 2¢s(2,y) zdy(2,y) )
8.1 Df, =
(81) ! ( —y¥(x,y) 1 —(z,y) — ydy(z,y)
where ¢, denotes the partial derivative of ¢ with respect to z, etc. The nondegen-
eracy condition (1.1) implies that on B(p,7), ¢(x,y) + 2¢,(x,y) > x*|(x,y)|* and
V(x,y) + yy(z,y) > £°|(z,y)]?. In other words, for all z = (x,y) € B(p,r),
3apz? + 2a12y + azy® > H"($2 + yQ);

(8.2
) boz® + 21y + 3bay® > £ (2% + 4P,
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Therefore
(83) ao, az, by, by > 0.

In this part we always assume that z = (z,y) € B(p,r). We also assume that r
is small enough such that all higher order terms can be controlled by corresponding
lower order terms. We will denote z, = (Zn,yn) = "2, ¢n = O(Tn,Yn), ¥n =
Y(xn, yn), etc. Without loss generality we only consider the case that z is in the
first quarter. So we have x,,,y, > 0 except for the opposite statement. Also we
may assume

(8.4) —1<v; <1 Vz € B(p,r).

Otherwise, we can rescale the z-axis and y-axis by constant factors. This does not
change the conditions of Theorem B because by (1.3) and (1.4) the ratio of a;/b;
and the signs of a; and b;, i =0, 1,2, remain the same.

Lemma 8.1. Let {t,} be a sequence of positive numbers, and let C > 0 and o > 0.
i) If ¥n > 1, ty_1 > t, + Cti+®, then there exist D > 0, ko > 1 such that
o0
tn < D(n—ko)~= for all large n. Therefore S t, converges as o < 1.

n=1

i) If Vvn > 1, t,—1 < t, + Ct'T, then there exist D > 0, kg > 1 such that
t, > D(n+ ko)*i for all large n. Therefore Y t,, diverges as a > 1.

n=1
Proof. i) Take D > 0 such that «CD* > 2. Suppose t,, > Dk~= for some integer
k > 1. Then

tno1 > Dk™a (1+C - (Dk™«)%) = Dk™a (1 + CDk™Y).
It is easy to see that if k is large enough , then (1 — k=1)(1 + CD*k~1)* > 1 or
k=« (1+ 0D ) > (k—1)"w. Sot,—1 > D(k —1)"=.
The arguments show that if ¢,—1 < D(n — ko — 1)*§ for some ko > 1, then
tn < D(n — ko) =.
ii) The proof is similar. O

Lemma 8.2. Let z = (0,y) and z, = (0,y,) = f"z. Then Y. y: < %yo and the
n=0
convergence is uniform for all yo € [0,7].

Proof. Since yn+1 = Yn—yn(0,yn), (1.3) and (1.4) imply y, —yn+1 = yn(0,yn) >

ba, 3
FYp- SO

®|l\9

2

o0 o0 2
Zyig Z(yn_ynJrl) :b_ Y.
2
n=0 n=0
The uniformity is clear. O

Denote z; = fz and p; = p(z1). Note that p1 = p(z(1 + ¢),y(1 — ¢)) is also a
function of z = (x,y). Let

Ap(z,y) =(p— 1)1+ Q) (1 =) + pry(1 + )Yy —y(1 = P)gy
(8.5) —p1px(1 + @)he + pa(l — )¢
Lemma 8.3. Ifv; < —p(z)E and 0 < A,(x,y), then vi < —p(zl)§, The result
1
also holds if all “<” are replaced by “>".
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(1 +ci)v+c2
c1v + (1 — c12)
v < —(1+¢+a0s) pr+ady-y
Tyt prt (Y —yiy) -y
To get the result, use the fact that 0 < A,(z,y) is equivalent to
—(1+¢+a0s) pr+ady-y < _plx(l—i—qb)
Yo pr+ (1=t —ydy)-y = Tyl —)

Proof. Since the map v — is increasing as ¢;; small, by (8.1),

The next proposition plays a key role for the proof of Theorem B.

Proposition 8.4. There exist a Lipschitz function p on [0,r] with p(0) = 0 satis-
fying the following two equations:

A y5(0,9) =(py) = p617)) (1 +9)(1 = ¥)

(G + ™)1+ By —y(1 =)oy =0
and
(8.7) by log(l + ¢) + azlog(l — ) — be /(yo) @dt =0,
Y1

where ¢ = ¢(0,y), ¥ = ¥(0,y) and yi” = y(1 = ¥(0,y)).
Proof. Denote z = (0,y), z, = [z = (0,yn), &n = ¢(0,y,), etc. So y§0) can be
written as y;. Define p(0) = 0 and for y # 0 define
(8.8)

N byl = )y (0,9) — anyn (1 D)y (0,5m) T (0 wrtly (0,3
o) =2 ba(L+ )L — ) (-5

By (1.4) boyn¢y(0,y5) — a2yntby(0,y,) = O(y2). The product in each term in
(8.8) is less than 1 because y, > 0. So by Lemma 8.2,
(8.9) 1p(y)] < Lpy

for some L; > 0.
It is easy to check

n=0 k=0

ﬁ(yl) — i b2y"(1 — wn)¢y(07yn) a2yn(1 + ¢n wy 0 yn H( M)

= ba(1 + én)(1 — ¢n) Pt 1 — g
Therefore,
o Yy (0,9) . bay(1 — ¥)¢y(0,y) — azy(1 + ¢)¢y (0, )
ply) = (1— o )p(y1)+ : 62(1+¢)(12_ 5 :

Multiplying by (1 + ¢)(1 — 1), we get (8.6).
Note y1 = y(1 —v). Differentiating the left-hand side of (8.7) with respect to y,
we get

bady  aziy ply) . ply)
T+ 1—1/)+b2 y b2y(1—1/))(1 P ywy)
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By (8.6) it is equal to 0. This means that the left-hand side of (8.7) is a constant.
Since p(y), #(0,4),¥(0,y) — 0 as y — 0, this constant must be zero.

Now we prove Lipschitzness of p. We will prove that the derivative of p is
bounded by a constant for y # 0. This combined with (8.9) implies Lipschitzness
of p on [0,7].

By (1.4) we can write

b2yn(1 - W)%(O, yn) - a2yn(1 + ¢n)¢y(07 yn)

_ /3 3
b2+ 6n) (1 — thm) = Cyn +olun)

and
ykwy(ov Yk) ol — g — ykwy(ov Yk) 2 v 3 3
1 - S LI =(1- 1+C"y2 + 0
for some constants C’ and C”. Clearly, 1:[ (1—y) = y? Hence we can write (8.8)
as k=0
00 _
=) [C'y3 + o(yd) H (1= ) (1+C"yi + o))
n=0 k=0
00 y + o y n—1
Z ~ In T Y\In) H 14 C//yk + O(yk))
d d
Since AL — 1 _yy, — Uy (0,yx) <1 — 1y = Pl e get b < Tb <,
dyp, Yk dy ~— y
Thus,
d C'vP 5 5 3
‘_ yn+20(yn) gcly—g’gcly—”
dy y y y

n—1
for some C7 > 0. By Lemma 8.2, [] (1 + C’”yz + o(y,?;)) < C». Hence,
k=0

n—1

\dy IT0+cs +o(yd) |

n—1 n—1

3C”yk+o v uk .
= S= 1+ C"y} + o(y; ‘
‘Z 1—|—C”y +0(yk) y kl;[O( k ( k))
4C"|Cy =
< E 4|C”|yiz'y—;'02§% E yi < Cs.
k=0

From these inequalities we get

y - o .
‘Z dy{c ;o(yn H 1+ O o)) | < Z(Cl%” oyt 203 Cy).
k=0 n—0

Now it is easy to see by Lemma 8 2 that the convergence is uniform. Thus, we
know that | dply | is bounded by —(01 Co +2C'Cyr) for all y € (0,7]. This proves
the result. O
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9. EXISTENCE OF SBR MEASURES

In this section we prove the first part of Theorem B. We estimate the upper
bounds of |[v¢| in Lemma 9.1 and then show that the general terms of the series in
(7.6) decrease at a rate faster than n~= (implied in Lemma 9.2).

Lemma 9.1. Suppose aas > 2bs, a1 = 0 = by and agbs — asbg > 0. Then for any
point ¢ = (0,yq) with y, > 0 small, there exists € > 0 such that Vzo = (zo,y0) €
WX(q) with z¢ > 0,

€

(9.1) A b 2+ o)) (1 — 2 L

Lo

Proof. For each zo = (z0,y0) € W*(q), 2n = (Tn,Yyn) = f™20, we denote

9.2) pi=p(z) = (o) (L-af)  vizo.

We show that for y, > 0 small, there exists ¢ > 0 such that Vzo = (zo,y0) €
W(q) with zg > 0,

.
v < —p;— and piz; <y

imply

This proves the result of the lemma. In fact, if (9.1) is not true, then for some large

x
N, PnZn > Yn and therefore v < —p, - % < —1, contradicting to (8.4).

By Lemma 8.3, it is enough to show for such z; = (z;,y;),

Ay (i, yi) = (pi — piv1) (1 + ¢i) (1 — ;)
+ pit1yi(1 + i)y (s, yi) — yi(1 — i) dy (i, y4)
(9.3) — pipit12i(1 4+ 0i) e (s, yi) + pizi(1 — V) dz (i, ys) > 0.

Note that 2, — z8 = zf(1 + ¢;)* — zf = am?(@ + O(d’?)) = aagrly? +
z20(2? + y3). By (9.2) we have

~ ~ a a2 ~ « a
pi = pisn = (P(s) = i) (1 = 2f) + (32 + plwn) ) (s — )
~ ~ a (o3 (e
=p(yi) = Ayir1) + b—jaazxi yi + 280 +y7).

Since a; = 0 = by, by (1.4) we see that ¢y (z,y) = ¢4 (0,y)+20(xz+y), ¥y(z,y) =
¥y (0,y) + 20(x + y) = 2boy + O(x? + y?). So

Pit1Yithy (i, yi) :(% + p(Wit1))yi (Vy (0, yi) +2:0(2i +y5))
—b—x *(2boy? + yiO(27 +47)),
2

and

Yidy (T, yi) = i (dy (0, y;) + 2;0(x; + 1))
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By Lemma 8.4,

(Blyi) — Ay (L + 6:)(1 — )
+(Z_j + ﬁ(yz(%))yi(l + i)y (@i, yi) — yi(1 — i) by (i, 9:) = 0,

where yl(?r)l = y;(1—1(0,;)). Note that y;+1 = y;(1 —¢(zi,y;)). So both y; 41 —yg)l

and p(yit1) — ﬁ(yz@l) have order O(x?y;). Hence
(pi = pit 1) (L + &) (1 = i) + piryi (1 + 0i)Yy (2, yi) — yi(1 — ¥i)y (24, i)
:%(aaz — 2bo)x (yf + O(x? + yf’)) + 290 (2 + y5)-
2

Also, since ¥, (x,y) = 2apx + O(z? + y?) and ¥, (z,y) = 2box + O(2? + y?),
—pipi1 @it (i, yi) + piide (i, yi) = 2pi(—pip1bo + ao)z} + z:0(x} + 7).
By (9.2), we have

apba — azb as
—pit1bo +ag = % + b—zxiﬂ + O(Yit1)-

So
— PiPir1Zi0e (T, Yi) + piide (Ti, Yi)
agba — ash a
= 2/%(% + b—§$?+1)9012 + 2,0(x + 7).

Therefore, (9.3) can be written as

a
Ay (Tiyyi) Zb—j(aaz — 2b9)x (y7 + O(xF + 7))
by — aob
2 i(w + %%‘aﬂ)xf +2;0(7 + y7).
ba by

Now the assumptions as > 4by and agbs — a2bp > 0 imply A,(z;,y;) > 0 if yo and
o are small. O

Lemma 9.2. Let zo = (z9,y0) with xg,yo > 0. If for all z = (x,y) in the stable
curve that joins Zy and z1,

as R x
9.4 s> (= 1—z%)=
(9-4) ez =(g T Aw) L -a) T,
then
(95) To > To + C$(1)+a

for some constant C = C(yq) > 0.

Proof. We regard W2 (x) as the graph of a function = x(y). Then (9.6) gives

dx as R T
s (22 1— )2
ie.,
dx as . dy
e >
z(1 — z%) (b2 ) y 0
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(xlayl) to Zp = (E07g0)a we get

_ '!70 A
— g +@10g@+/ PW) 4y > 0,
bo Y1 v

Integrating it from z; =

log———lg1
T

From now on we omit subscript 0 in the rest of proof. This inequality implies

2 () () oo [ 2]
Y1

1—2xf

Since z1 = (1 + ¢) and y; = y(1 — ), we can write
11—z 3 ﬁ(y
1+ ¢)(1— . Py
> o) -0 () (4 o[- / y
)

1—xf

8] |8

_ {b ) B Yply
epr 2 log(1l + ¢) + aglog(1 ” d
o

1- = T Yp
@faewm/&%
— I3 ) g Y

The first factor on the right-side is of the form 1+ O(z), because by Lemma 8.4

and (8.9),
WA b i€
b 10g(1 + ¢) + ag log(l — ’Lp) - b2/ Tdy = by /ygo) Tdy = O(l‘),

Y1

where y(o) ( — (0, y))
Note that 1 = z 4+ x¢. We have
1—z¢ (1 + @) — ¢
=1 =1
+ T +

%+ az®p — 2% + O(¢?)
11—z '

1—2af
. . 1 .
Without loss of generality, we may assume z¢ — x% < 5x“¢; otherwise, we have
_ 1

s (1+ 5(,25) @ > 14 Cz* for some C = O(y?) > 0 and therefore (9.5) is true.

Thus, we get
1— 2%\ % az®d + O(d?)\ = 1
> (1 —) > 14 —x%p.
( a) *(”L 21 — 29) =1+grte
(z,y) are in the same local unstable manifold,

—x) = Nz¢ for some N > 0. So,

\(3)5—2 (H%) — 14 0(x).

By (8.9) we have
Yp(y) )
exp/ Tdy <exp(Lsly — 3|) < exp(L;Nzg) =14 O(x).
Y

2

Summarizing these results, we get that if = is small enough, then
a2y”
—z“.

8

1
>1+ 2%+ 0@) > 1+

SHES]
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Proof of Theorem B(I). By Lemmas 9.1, 9.2 and 8.1.i) we know that the sum A*+
n (7.6) converges. Similary, we have A~T, A~~ A%~ < oo. Thus the result
follows from Proposition 7.8. O

Remark 9.3. By Lemma 9.2 and 8.1.i), we can see that under the assumptions of
the theorem, the rate of convergence of the series in (7.6) is faster than now.

10. EXISTENCE OF INFINITE SBR MEASURES

We prove the second part of Theorem B. We get the lower bounds of |vi| in
Lemma 10.2 and then prove in Lemma 10.3 that there is at least one series in (7.6)
whose general terms decrease at a rate slower than noe.

Lemma 10.1. Suppose 2as < abs. Then for any constants K, N > 0, point q =
(0,yq) with yg > 0 small, there exists € > 0 such that Yzo = (x0,y0) € W (q) with
xo > 0, the inequalities

ZoYo H( yzwy O yz)> > N and Kxn < Yn

hold simultaneously for some n = n(zy) > 0.

Proof. We may assume that K is large enough such that if Kz <y, then

7 3
1- gywy(07y) <1- 1_83be2 < (L—9)2
and
(1+¢)*(1—9)* <1

for some a < a; < 1. Hence for any zo = (zg,y0) with Kzg < yo, we have
22yt <231+ ¢1)%y] T (1 — 1)+ < 23y, ™. Let n = n(zo) be the largest integer
such that Kz, <vy,. Thus Kx,1 > yn+1. So we have

2 Oy 2 o 2 24ay
oY = Tp1Ynir = K U4

and therefore

3 3 5— 2
Z0Yo - yé Toyo o wo¥i o Y6 o/
L 7 - L 3 5 - K (I-ay)/2”
IT (1 = 592y (0. 4)) A=) Y Ynt1
Jj=0 Jj=0
Since yp4+1 — 0 as 2o = (0,%0) — ¢ = (0,yq), we get the result. O

Lemma 10.2. Suppose 2as < aby and by < 0 < a1. Then for any point ¢ = (0, y,)
with yq > 0, there exists € > 0 such that Vzo = (x0, yo) € W (q) with zg > 0,

as A Lo
10.1 s (= —
(10.1) vi, < = (g, +Aw) o
Proof. For each zo = (x0,y0) € W (q), define ¢ = 0 and

az

10.2 ;=
(102) =

—=(a 1)ZoYo H( ylwy (0, yl)) B Vi > 0.

We have
7 .
(103) Cit1 — Cj = Cjg1 * gyﬂ/)y(o,yi) Vi > 0.
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Put

1
(10.4) pi = max{ B2 ) - ci} Vi > 0.
3" by
We prove that for each small y, > 0, these exists € > 0 such that Vzo = (20, yo) €
W(a), a = (0,yq), with zo >0,

T
i
implies
T
(10..6) VS > i1

This will prove the result of the lemma. In fact, if (10.1) is not true, then for some
large n, In S 3 and vy > % JIn 1, contradicting to (8.4).
By Le?r?ma 8.3, to prove tha?‘in(lO.B) implies (10.6), it is enough to show that
Ap, (i yi) = (pi — pir1) (1 + ¢i) (1 — o)
+ pir1yi (1 + @)y (i, yi) — yi(1 — i)y (x4, vi)
= pipit17i (1 + i) Ve (w5, yi) + piwi(1 — Vi) P (@i, y5) < 0.
By (10.3) and (10.4),
p(yo) — p(y1) + c1, if i = 0;

pi = pit1 = PWi) = pir1) + Seiv1yiy (0, yi) — digr, ifi>0& pi > —3;
ifi>0& p;=—1,

=

where diy1 = p(yit1) — (Z—; + p(yit1) — CiJrl) >0, and d; 1 = 0 except for the case
pi > —5 and £ — p(yi1) + cip1 < 3
If pig1 > —%, we write

Pit1Yithy (%0, yi)—Yidy (Ti, yi) = (Z—z + p(ir1)) Yty (0, i) — yidy (0, ys)
—(Cit1 — dit1)yitvy (0, 4i) + (pix101 — a1)ziy; + 2y O(xi + vi);
otherwise,
Pit1Yitby (Tis yi) — yidy (T, yi)
=2(piy1b2 — a2)y? + (piv1br — ar1)ziyi + 2O (2 + ;).
Also,

= Pipit1%i%z (25, Yi) + pi%ida (i, yi)
=— pi(piy1b1 — a1)ziy; — 2pi(pis1bo — a0)z? + ;YO (i + i)
Similarly, as in the proof of Lemma 9.1, we use Lemma 8.4 to get
Ap, (@i, yi) = Di(@i,yi) + (1 — pi) (pir1b1 — ar)ziy;
—2pi(pit1bo — ao)x} + 2y O(z; + y5),
where
32 (a1 — 2b1)zoyo ifi=0;
Di(xi,yi) < § —gCir1yithy(0,9:) ifi>0& p; > —3;
2(piy1be —ag)y? i i>0& p=—3.
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Recall 2a5 < abs and by < 0 < a;.

Since po = $2 + O(yo) < § + O(yo) and p1 = po + O(y3), we have p1b; —a; =
‘;—jbl —a1+O(yo) <0and 1 — pg — Z—j > 0 if yg is small. So if Kxzg < yo for some
large K, then A, (z0,%0) < 0.

For the case ¢ > 0 and p; > —%, by Lemma 10.1, we can choose € small enough
such that Kz; < y; for some large K. Also, y;t,(0,y;) = 2bay? + O(y?). So if
pi+1 > 0, then both y? and z;y; terms has negative sign, and if p;11 < 0, then
ci+1 > = and therefore the first term can control other terms.

For the case p; = —%, we can see that A, (z;,y;) is equal to

4 1 2 1
—(—§b1 —ay)riyi + 5 —gbo — ag)z? + 2;y;,0(z; + i)

2 s 2 3(
= — 3 Bazy} + 201@iy; + a0zy) — 5 (3bay] + 2rwiys + bow?) + 2y Olwi + yi).
By (8.2) it is less than 0. This proves the lemma. O

1
2(—552 — ax)y; +

Lemma 10.3. Let zg = (xo,y0) with xg,yo > 0. If for all z = (x,y) in the stable
curve that joins Zg and z1,

s as ~ Zo
< _( 2= -0
Uzo = ( b2 + p(yo)) y07
then
Ty < 0 + Cf
for some constant C' = C(yq) > 0, where T satisfies z = (T, y) = [z, f#].

Proof. Using a similar way as in the proof of Lemma 9.3, we can get

Z 1 Yo b )
20 <exp —[ba log(1+ go) + az log(1 — v) — bo Mdy] (£)"
Zo bo v Y 9o
Yo A
~exp/ Mdy <14+ O(=o).
g Y
Therefore the result follows. O

Proof of Theorem B(II). First we assume that b < 0 < a;. By Lemma 10.3 and
8.1.ii), AT* = oo, where AT is defined in (7.6). Therefore by Proposition 7.8 f
has an infinite SBR measure.

By (1.3) and (1.4), the signs of a; and b; change under the transformation
x — —x and y — —y respectively. So under the assumption of Theorem B (II), we
can always find a suitable coordinate system such that b; < 0 < a;. O
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