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CONDITIONS FOR THE EXISTENCE OF SBR MEASURES
FOR “ALMOST ANOSOV” DIFFEOMORPHISMS

HUYI HU

Abstract. A diffeomorphism f of a compact manifold M is called “almost
Anosov” if it is uniformly hyperbolic away from a finite set of points. We
show that under some nondegeneracy condition, every almost Anosov dif-
feomorphism admits an invariant measure µ that has absolutely continuous
conditional measures on unstable manifolds. The measure µ is either finite
or infinite, and is called SBR measure or infinite SBR measure respectively.
Therefore, 1

n

∑n−1
i=0 δfix tends to either an SBR measure or δp for almost every

x with respect to Lebesgue measure. (δx is the Dirac measure at x.) For each
case, we give sufficient conditions by using coefficients of the third order terms
in the Taylor expansion of f at p.

0. Introduction

In this paper we study the existence of SBR measures of two-dimensional dif-
feomorphisms that are hyperbolic everywhere except at finite points. It is easy to
see that our methods extend to the situation in which hyperbolicity fails at only
finitely many periodic points.

If f : M →M is a C2 Anosov diffeomorphism of a compact connected Riemann-
ian manifold, then a result of Sinai (see e.g. [S]) says that f admits an invariant
Borel probability measure µ with the property that µ has absolutely continuous con-
ditional measures on unstable manifolds. With respect to this measure, Lebesgue
almost every point is generic. That is, if φ : M → R is a continuous function, then
for Lebesgue almost every x ∈M ,

lim
n→∞

1
n

n−1∑
i=0

φ(f ix)→
∫
φdµ.(0.1)

This result, as well as some other properties of µ, has been extended to Axiom A
attractors by Bowen, Ruelle, etc. (See e.g. [B].) In this article we will refer to an
invariant measure having absolutely continuous conditional measures on unstable
manifolds as a Sinai-Bowen-Ruelle measure or an SBR measure. Due to the works
of Oseledec, Pesin, Ledrappier, Young and others on nonuniformly hyperbolic set,
the notion of SBR measure is extended to a more general setting (see [O], [P1] and
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[LS]); some properties of SBR measure are obtained (e.g. [L] and [LY]). Further-
more, a few examples of SBR measure outside Axiom A systems are studied (see
e.g. [BY], [P2] and [C]).

This paper is motivated by the following question: Does a system f : M → M
admit an SBR measure if hyperbolicity fails at only one fixed point p? We confine
our topic to two-dimensional cases. Suppose in this system one of the eigenvalues
of the derivative Dfp is larger than 1 and the other is equal to 1. The map is
in fact uniformly expanding along unstable directions. It is easy to see that the
system admits an SBR measure µ, because the arguments on bounded distortion
estimates are standard and the push-forward method for invariant measure works.
Consequently, the set of generic points with respect to µ has full Lebesgue measure.
If the larger eigenvalue is equal to 1 and the smaller one is less than 1, then the
results in [HY] indicate that it does not admit SBR measures, and the limit in the
left-hand side in (0.1) is φ(p) at Lebesgue almost every point. It is also found that
this system admits an infinite measure that has absolutely continuous conditional
measures on weak unstable manifolds. Here we will refer to this measure as an
infinite SBR measure (see §1 for precise meaning). In this paper, we investigate
the case that the derivative Dfp is identity. Our results show that, under some
nondegeneracy conditions, f admits either an SBR measure or an infinite SBR
measure (Theorem A), and both cases do occur (Theorem B).

The phenomena in this case are quite different from that mentioned above, and
some interesting things happen. For example, the decomposition of the tangent
spaces into TxM = Eux ⊕Esx is discontinuous at the fixed point p (see Remark 4.3).
Consequently, we cannot expect the Hölder condition for Eux and the Lipschitz
condition for W s-foliation, which are used for bounded distortion and Lebesgue
genericity in [HY]. However, we find out that Eux satisfies Hölder condition away
from p and the W s-foliation remains absolutely continuous despite the discontinuity
of Eux and Esx. On the other hand, the failure of Lipschitzness of the W s-foliation
makes both SBR measure and infinite SBR measure possible. Notice that whether
the measure is finite or infinite depends on whether the area of the sets Pn =
{x ∈ P : f ix ∈ P, i = 0, 1, · · · , n} can be summed up or not for any rectangle P
containing p in its interior. For a normal Anosov system or a system considered in
[HY], because of the Lipschitzness of W s-foliation this solely depends on how fast
a point x in Wu(p)\{p} approachs p under backwards iteration. But in our case it
depends on how much a stable manifold W s(x) bends to W s(p) for x near p.

The proofs of the theorems involve detailed analysis of the dynamics near the
“hyperbolic type” indifferent fixed point, which hasn’t been done before. We find
out a similarity, i.e., the behavior of fn

2
at x

n is about the same as f at x but in
a smaller scale. We prove the existence and differentiability of stable and unstable
manifolds for the fixed point p. We use eigenspaces as coordinate systems to study
properties of the splittings Eux⊕Esx, and use the “local Hölder condition” away from
p to avoid the problem caused by discontinuity of the splittings at p; the latter is
crucial for the estimates of bounded distortion.

SBR measures on the Hénon attractors, whose existence is found by Benedicks
and L.-S. Young ([BY]), are notable examples for non-uniformly hyperbolic systems.
The Hénon attractors involve nontrivial interchanges between stable and unstable
directions. There exist some areas in which the maps contract very severely along
the directions corresponding to positive Lyapunov exponents. However, the orbits
jump out immediately and then stay outside the areas for a while so that expansion
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can be recovered. In our case, the stable and unstable directions are bounded away
from each other and the map is always expanding in unstable directions. But near
the fixed point p the expansion is very weak and the orbits spend a very long time
there. This causes non-uniform hyperbolicity. The speed of expansion may or may
not be able to keep exponentially fast eventually, depending on the local behaviors
of the maps (see Remark 1.5 and Theorem B).

Acknowledgment. Part of this work was done while I was in the Department of
Mathematics at the University of Arizona. It is my pleasure to thank my advisor,
Professor Lai-Sang Young, for introducing me to this topic and for giving valuable
advice. I also wish to think Professor Marek Rychlik for his helpful conversation.

1. Definitions and statement of results

Let M be a C∞ two-dimensional compact Riemannian manifold without bound-
ary and let m denote the Riemannian measure on M . Let f ∈ Diff4(M) be the set
of C4 diffeomorphisms.

Definition 1. f ∈ Diff4(M) is said to be an almost Anosov diffeomorphism, if
there exist two continuous families of cones x → Cux , Csx such that, except for a
finite set S,

i) DfxCux ⊆ Cufx and DfxCsx ⊇ Csfx,
ii) |Dfxv| > |v| ∀v ∈ Cux and |Dfxv| < |v| ∀v ∈ Csx.

Remark 1.1. We may assume S is an invariant set. Moreover, by considering fn

instead of f we may also assume fp = p ∀p ∈ S.

Remark 1.2. By the continuity, it is easy to see that, if p ∈ S, then
i) DfpCup ⊆ Cup and DfpCsp ⊇ Csp,
ii) |Dfpv| ≥ |v| ∀v ∈ Cup and |Dfpv| ≤ |v| ∀v ∈ Csp.

For Γ ⊂M and r > 0, we denote B(Γ, r) = {y ∈M : d(y,Γ) ≤ r}.
The ratio of |Dfxv| to |v| may tend to 1 if x → S and v ∈ Cux or Csx. We need

some condition to control the speed of the ratio.

Definition 2. An almost Anosov diffeomorphism f is said to be nondegenerate (up
to the third order), if there exist constants r0 > 0 and κu, κs > 0 such that for all
x ∈ B(S, r0),

|Dfxv| ≥ (1 + κud(x, S)2)|v| ∀v ∈ Cux ,
|Dfxv| ≤ (1 − κsd(x, S)2)|v| ∀v ∈ Csx.

(1.1)

Remark 1.3. If f is an almost Anosov diffeomorphism, then for any constant r >
0, there exist constants 0 < Ks < 1 < Ku, depending on r, such that for all
x /∈ B(S, r),

|Dfxv| ≥ Ku|v| ∀v ∈ Cux ,
|Dfxv| ≤ Ks|v| ∀v ∈ Csx.

(1.2)

The following paragraphs concerning the definition of SBR measures can be seen
in [LS]. We state the following for the convenience of the reader.

Let ξ be a measurable partition of a measure space X , and let ν be a probability
measure on X . Then there is a family of probability measures {νξx : x ∈ X} with
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νξx
(
ξ(x)

)
= 1, such that for every measurable set B ⊂ X , x→ νξx(B) is measurable

and

νB =
∫
X

νξx(B)dν(x).

The family {νξx} is called a canonical system of conditional measures for ν and ξ.
(For reference, see e.g. [R].)

Suppose now that f : (M,µ)→ (M,µ) has positive Lyapunov exponents almost
everywhere. Then for µ-a.e. x, the unstable manifold Wu(x) exists and is an im-
mersed submanifold of M (see [P1]). A measurable partition ξ of M is said to
be subordinate to unstable manifolds if for µ-a.e. x, ξ(x) ⊂Wu(x) and contains an
open neighborhood of x in Wu(x). Let mu

x denote the Riemannian measure induced
on Wu(x). We say that µ has absolutely continuous conditional measures on un-
stable manifolds if for every measurable partition ξ that is subordinate to unstable
manifolds, µξx is absolutely continuous with respect to mu

x (written µξx << mu
x) for

µ-a.e. x ∈M . (For more details, see [LS].)

Definition 3. An f -invariant Borel probability measure µ on M is called an SBR
measure for f : M →M if

i) (f, µ) has positive Lyapunov exponents almost everywhere;
ii) µ has absolutely continuous conditional measures on unstable manifolds.

Let Γ be a subset of M . We denote by fΓ the first return map on Γ, i.e.,
fΓx = f τ(x)(x) ∀x ∈ Γ, where τ(x) is the smallest positive integer such that
f τ(x)(x) ∈ Γ. We also denote by µΓ the normalization of µ|Γ as µΓ <∞.

Note that the notion of absolutely continuous conditional measures on unstable
manifolds makes sense if even f is a piecewise diffeomorphism.

Definition 4. An f -invariant Borel measure µ on M is called an infinite SBR
measure, if µM =∞ and for any open set U ⊃ S,

i) µ(M\U) <∞,
ii) (fM\U , µM\U ) has positive Lyapunov exponents almost everywhere, and µM\U

has absolutely continuous conditional measures on unstable manifolds of f .

Remark 1.4. In this paper, the term “SBR measure” without any qualifications
will always be reserved for probability measures.

Remember our assumption that M is a C∞ two-dimensional compact Riemann-
ian manifold, m is the Riemannian measure on M and f ∈ Diff4(M).

Theorem A. Every topologically transitive nondegenerate almost Anosov diffeo-
morphism f on M has either an SBR measure or an infinite SBR measure.

The nondegeneracy condition in the theorem is only for technical reasons. The
author believes that the result would remain true under some weaker conditions.

Corollary. Let f be as in Theorem A.

i) If f admits an SBR measure µ, then for any continuous function φ : M → R,

lim
n→∞

1
n

n−1∑
i=0

φ(f ix) =
∫
φdµ, m-a.e. x ∈M.
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ii) If f admits an infinite SBR measure µ, then for any open neighborhood U of
S,

lim
n→∞

1
n

#{k : fkx ∈ U, 0 ≤ k ≤ n− 1} = 1, m-a.e. x ∈M.

Remark 1.5. In case i) Lebesgue almost every point has a positive Lyapunov expo-
nent because of the definition of the SBR measure. On the contrary, it is evident
by the corollary that in case ii) there is no positive Lyapunov exponent at Lebesgue
almost every point in M .

In this paper we only consider the case that S contains a single point, i.e.,
S = {p}. It is not difficult for the reader to adjust the proof to the case that S
contains more than one point.

If S = {p}, then part ii) of the above corollary is equivalent to the following.
ii′) If f admits an infinite SBR measure, then for any continuous function φ :

M → R,

lim
n→∞

1
n

n−1∑
i=0

φ(f ix) = φ(p), m-a.e. x ∈M.

By Remark 1.3, we see that Dfp has two eigenvectors. As we mentioned in §0,
it is known that Theorem A holds if at least one of eigenvalues of Dfp is not equal
to 1. So to prove Theorem A, we only need consider the case that Dfp = id.

For further analysis we need the following technical assumptions. Denote

Wu
ε (p) = {y ∈M : d(f−ny, p) ≤ ε ∀n ≥ 0},

W s
ε (p) = {y ∈M : d(fn y, p) ≤ ε ∀n ≥ 0}.

We will prove in §4 that both are differentiable curves. To state and prove Theorem
B we give the following.

Assumption A. Wu
ε (p) and W s

ε (p) are C4 curves.

Note that Dfp = id. We will show D2fp = 0 (Proposition 2.1). Thus we can
take a suitable coordinate system such that in some neighborhood of p, f can be
expressed as

f(x, y) =
(
x
(
1 + φ(x, y)

)
, y
(
1− ψ(x, y)

) )
,(1.3)

where (x, y) ∈ R2 and

φ(x, y) = a0x
2 + a1xy + a2y

2 +O(|(x, y)|3),

ψ(x, y) = b0x
2 + b1xy + b2y

2 +O(|(x, y)|3).(1.4)

In this circumstance we have the following.

Theorem B. Let f be a topologically transitive nondegenerate almost Anosov dif-
feomorphism on M with S = {p}. Assume Dfp = id, and Wu

ε (p) and W s
ε (p) are

C4 curves. With the notation above,
(I) if αa2 > 2b2 for some 0 < α < 1, a1 = 0 = b1 and a0b2 − a2b0 > 0, then f

admits an SBR measure;
(II) if 2a2 < αb2 for some 0 < α < 1 and a1b1 6= 0, then f admits an infinite

SBR measure.
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The systems satisfying the conditions in Theorem B exist. For example, we can
take a torus T 2 and constants 0 < r0 << r1 << 1 = diamT 2 and then construct a
dynamical system in such a way that f is a hyperbolic toral automorphism outside
the r1−neighborhood and has the form (1.3) and (1.4) within the r0−neighborhood
of the origin O.

Remark 1.6. The nondegeneracy conditions (1.1) guarantee that a0, a2, b0, b2 > 0.
Hence, the conditions in Theorem B(I) imply that φ > ψ in some small neighbor-
hood of p, while the conditions in Theorem B(II) imply that in some quadrants,
φ < ψ near the y-axis.

Recall the cases discussed in §0 that Dfp 6= id but one of the eigenvalues is
equal to 1. It seems that in such systems the existence of SBR measures depends
on whether expansion is “stronger” than contraction. The results in Theorem B is
consistent with this observation, because we can think that expansion is “stronger”
if φ > ψ and is “weaker” if φ < ψ.

PART 1: Proof of Theorem A

In this part we always assume that B(p, r0) is in the Euclidean plane R2, where
r0 is as in Definition 2. Take a coordinate system in the plane such that the origin
is the fixed point p. Thus, we can write |x| = d(x, p). Also, ∀x ∈ B(p, r0), we
identify TxM with the same Euclidean plane. Let Θ(x, y) denote the angle from x
to y counterclockwise in R2.

Assumption A is not going to be used in this part.

2. Dynamics near the fixed point

We first prove in Proposition 2.1 that the second derivative D2fp is 0 and the
third derivative D3fp is not 0. Then we show that the action of fn

2
at x

n is similar
to the action of f at x, on a smaller scale. This can be seen in Propositions 2.6 and
2.8, where the former deals with norms and the latter deals with angles.

Proposition 2.1. D2fp = 0 and D3fp(a, a, ·) 6= 0 ∀a ∈ R2. So,

Dfx = id +
1
2
D3fp(x, x, ·) +RF (x),

and

fx = x+
1
6
D3fp(x, x, x) +Rf (x),

where RF (x) and Rf (x) are remainders with ‖RF (x)‖ = O(|x|3) and |Rf (x)| =
O(|x|4).

Proof. Since Dfp = id, by Taylor expansion

Dfx = id +D2fp(x, ·) +
1
2
D3fp(x, x, ·) +RF (x).(2.1)

Let
〈
·, ·
〉

denote the inner product. We have

|Dfxv|2 = |v|2 + 2
〈
D2fp(x, v), v

〉
+O(|x|2)|v|2.

By (1.1) we know that for any sufficiently small x and v ∈ Csx,
〈
D2fp(x, v), v

〉
≤ 0.

Note that x → Csx is continuous. There exists a small 0 < r < r0 such
that

⋂
x∈B(p,r)

Csx has nonempty interior. Thus, we get
〈
D2fp(x, v), v

〉
≤ 0 for
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all x ∈ B(p, r) and v ∈
⋂

x∈B(p,r)

Csx. Since
〈
D2fp(·, ·), ·

〉
is trilinear, this implies〈

D2fp(x, v), v
〉

= 0 ∀x, v ∈ R2. Now it is easy to conclude that D2fp = 0.
The inequality D3fp(a, a, ·) 6= 0 follows from (1.1), (2.1) and the fact D2fp =

0.

Remark 2.2. Similarly, D2f−1
p = 0 and D3f−1

p (x, x, ·) 6= 0 ∀x ∈ R2.

The next two corollaries follow directly from the above facts.

Corollary 2.3. There exists a constant η > 0 such that ∀x ∈ B(p, r0),

‖Df±1
x − id ‖ ≤ 3η|x|2 and |f±1x− x| ≤ η|x|3.

Corollary 2.4. For all x, y ∈ B(p, r0) with d(x, y) ≤ |x|2,

d(f±1x, f±1y) ≤ (1 + 4η|f±1x|2)d(x, y).

Lemma 2.5. Let x ∈ B(p, r0). If |x| ≥
(
3ηk

)− 1
2 for some k > 1, then |fx| ≥(

3η(k + 1)
)− 1

2 .

Proof. By Corollary 2.3,

|fx| ≥ |x|
(
1− η|x|2

)
≥
√

1
3kη

(
1− η · 1

3kη

)
≥
√

1
3(k + 1)η

.

Proposition 2.6. For any ε > 0, there exists 0 < rρ = rρ(ε) ≤ r0 such that

∀x ∈ B(p, rρ), t ∈ (0, 1], j = 1, · · · , [ 2
t2

],

(1− ε)|tx| ≤
∣∣f j(tx)

∣∣ ≤ (1 + ε)|tx|.

Proof. Take 0 < rρ ≤ r0 such that e2η(1+ε)2r2
ρ ≤ (1+ε). Let x ∈ B(p, rρ) arbitrarily.

Suppose ∀i = 1, · · · , j − 1,
∣∣f i(tx)

∣∣ ≤ (1 + ε)|tx|. By Corollary 2.3,∣∣f j(tx)
∣∣ ≤ ∣∣f j−1(tx)

∣∣(1 + η
∣∣f j−1(tx)

∣∣2) ≤ t|x|(1 + η(1 + ε)2t2|x|2
)j

≤ t|x|
(
1 + η(1 + ε)2t2|x|2

) 2
t2 ≤ t|x|e2η(1+ε)2|x|2 ≤ (1 + ε)t|x|.

Therefore, the second inequality in the lemma follows from induction.
The first inequality can be obtained similarly.

For any 0 6= x ∈ B(p, r0), we denote ex = x/|x| or, equivalently, x = |x|ex.

Lemma 2.7. For any ex in the unit circle, uniformly

lim
|t|→0

Θ
(
tex, f(tex)

)
|t|2 =

1
6

∣∣D3fp(ex, ex, ex)
∣∣ sin Θ(ex, D3fp(ex, ex, ex)).

Proof. Denote A(x) =
1
6
D3fp(x, x, x). The result follows from the facts |Rf (x)| =

o(|x|3) as x→ 0, A(x) = |x|3A(ex) and

tan Θ(x, fx) =

∣∣A(x)
∣∣ sin Θ

(
x,A(x)

)
+
∣∣Rf (x)

∣∣ sin Θ
(
x,Rf (x)

)
|x|+

∣∣A(x)
∣∣ cos Θ

(
x,A(x)

)
+
∣∣Rf (x)

∣∣ cos Θ
(
x,Rf (x)

) .
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Proposition 2.8. For any ε > 0 there exists a constant 0 < rθ = rθ(ε) ≤ rρ
such that ∀r ∈ (0, rθ), if x, y ∈ B(p, r) with |Θ(x, y)| ≤ |Θ(x, fx)| and |y| = t|x|,
t ∈ (0, 1], then

|Θ(y, f jy)| ≤ |Θ(x, fx)|+ ε|x|2 ∀ 0 ≤ j ≤ 1
t2
,(2.2)

|Θ(y, f jy)| ≥ |Θ(x, fx)| − ε|x|2 ∀ 1
t2
≤ j ≤ 2

t2
.(2.3)

Moreover, if D3fp(ex, ex, ex) and ex are not collinear, then we can choose r̄θ =
r̄θ(ε, ex) in such a way that ∀x ∈ B(p, r̄θ),

|Θ(y, f jy)| ≥ |Θ(x, fx)| ∀ 1
(1− ε)t2 ≤ j ≤

2
t2
.(2.4)

Proof. Denote A(z) = 1
6D

3fp(z, z, z).
Note that A(ex) sin Θ(ex, A(ex)) is continuous on the unit circle. By Lemma 2.7,

there exist r′θ > 0 and θ0 > 0 such that ∀x, z ∈ B(p, r′θ) with Θ(x, z) ≤ θ0,

|z|2
|x|2 |Θ(x, fx)| − ε

4
|z|2 ≤ |Θ(z, fz)| ≤ |z|

2

|x|2 |Θ(x, fx)|+ ε

4
|z|2.(2.5)

Also, there exists β ∈ (0,
1
2

] such that ∀x ∈ B(p, r′θ),

|Θ(x, fx)| ≤ ε

3β
|x|2.(2.6)

By Proposition 2.6, there exists r′′θ > 0 such that ∀x ∈ B(p, r′′θ ), t ∈ (0, 1],

(1 − β)|tz|2 ≤ |f j(tz)|2 ≤ (1 + β)|tz|2 j = 0, 1, · · · , [ 2
t2

].(2.7)

Take

rθ = min{r′θ, r′′θ ,
β

2ε
θ0}.(2.8)

Now let x, y ∈ B(p, rθ) with |Θ(x, y)| < |Θ(x, fx)| and |y| = t|x|, t ∈ (0, 1].

Suppose for i = 0, 1, · · · , j, |Θ(x, f iy)| < θ0, where 0 ≤ j ≤ 2
t2

. By (2.5), (2.7) and

(2.6),

|Θ(f jy, f j+1y)| ≤ |f
jy|2
|x|2

(
|Θ(x, fx)|+ ε

4
|x|2
)

≤(1 + β)t2
(
|Θ(x, fx)|+ ε

4
|x|2
)
≤ t2|Θ(x, fx)|+ εt2|x|2.

(2.9)

Similarly,

|Θ(f jy, f j+1y)| ≥ t2|Θ(x, fx)| − εt2|x|2.(2.10)

By (2.9),

|Θ(x, f j+1y)| ≤ |Θ(x, y)|+ |Θ(y, f j+1y)| ≤|Θ(x, y)|+ 2|Θ(x, fx)|+ 2ε|x|2

≤3|Θ(x, fx)|+ 2ε|x|2.
Using (2.6) and (2.8) we get

|Θ(x, f j+1y)| ≤
( ε
β

+ 2ε
)
· β

2ε
θ0 ≤ θ0.

Therefore (2.2) and (2.3) can be obtained by induction.
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If D3fp(ex, ex, ex) and ex are not collinear, then A(ex) sin Θ(ex, A(ex)) 6= 0. We
can use ε′ =

ε

2
|A(ex)|| sin Θ(ex, A(ex))| instead of ε, and therefore obtain r̄θ =

r̄θ(ε′, ex) > 0 such that if x, y ∈ B(p, r̄θ) with |Θ(x, y)| ≤ |Θ(x, fx)| and |y| = t|x|
for some t ∈ (0, 1], then ε′ ≤ ε |Θ(x, fx)|

|x|2 and (2.10) holds for ε′. That is,

|Θ(f j−1y, f jy)| ≥ t2|Θ(x, fx)| − ε′t2|x|2 ≥ (1− ε)t2|Θ(x, fx)|, j = 0, 1, · · · , [ 1
t2

].

Thus (2.4) follows.

3. Eigenvectors of D3fp(x, x, ·) near the fixed point

We prove in Proposition 3.2 that id + 1
2D

3fp(x, x, ·), the approximation of Dfx
up to the second order of x, has two eigenspaces Ξux and Ξsx. This fact will be
used to construct coordinate systems in §5. Usually, the angle between x and Ξux
is not zero. However, there exists a unique line E+ on which every point x and its
corresponding Ξux are collinear (Lemma 3.6). We will see in §4 that E+ is in fact
the tangent line, denoted by Eup , of “weak” unstable manifold Wu(p) at p.

Lemma 3.1. There exist constants 0 < r̃ ≤ r0, 0 < κ̃u ≤ κu and 0 < κ̃s ≤ κs,
cones C̃u and C̃s such that ∀x ∈ B(p, r̃), C̃u ⊇ Cux , C̃s ⊇ Csx and

|Dfxv| ≥ (1 + κ̃u|x|2)|v| ∀v ∈ C̃ux ,

|Dfxv| ≤ (1 − κ̃s|x|2)|v| ∀v ∈ C̃ux .

Proof. Denote Ax = 1
2D

3fp(x, x, ·). Also, denote

Cx(β) = {v ∈ R2 :
〈
v,Axv

〉
≥ β|x|2|v|2}.

By Proposition 2.1, Dfxv = v + Axv + RF (x)v. Hence, |Dfxv|2 = |v|2 +
2
〈
Axv, v

〉
+ o(|x|2)|v|2. So if |x| is small enough, then

Cux ⊆ Cx(
4
5
κu) ⊂ Cx(

3
5
κu) ⊆

{
v ∈ TxM : |Dfxv| ≥ (1 +

1
2
κu|x|2)|v|

}
.(3.1)

Note that Cutx(β) is independent of t provided t 6= 0. By the continuity of Cux , we get
that for any ex in the unit circle, Cup ⊆ Cex(4

5κ
u) and therefore Cup ⊆

⋂
ex∈S1

Cex(4
5κ

u).

Put C̃u =
⋂

ex∈S1
Cex(3

5κ
u). It is easy to see by (3.1) that C̃u is strictly larger than Cup .

Again, by the continuity of Cux , there exists r̃ > 0 such that B(p, r̃) ⊆ {x : Cux ⊆ C̃u}.
Now for any x ∈ B(p, r̃) and v ∈ C̃u, we have v ∈ C̃x(3

5κ
u). Therefore by (3.1),

|Dfxv| ≥ (1 + 1
2κ

u|x|2)|v|. This finishes the proof.

Proposition 3.2. For any a ∈ R2\{0}, id +Aa has an eigenvector in C̃u, where
Aa denotes 1

2D
3fp(a, a, ·).

Proof. Suppose there is a ∈ R2 with |a| = 1 such that id +Aa has no eigenvector
in C̃u. We may assume Θ(v, v + Aav) > 0 ∀v ∈ C̃u. Thus there exists θ0 > 0 such
that for all unit vectors v ∈ C̃u, and unit vectors a′ and v′ with |Θ(a, a′)| ≤ θ0 and
|Θ(v, v′)| ≤ θ0,

|Aa′v′| sin Θ(v′, Aa′v′) >
1
2
|Aav| sin Θ(v,Aav).(3.2)
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Take x = ta for some t ∈ (0, 1
2 ) such that Θ(x, fx) + 1

2 |x|2 ≤ θ0.
Let v̄z be a unit vector in the boundary of Cuz satisfying Θ(v, v̄z) ≥ 0 ∀v ∈ Cuz .

By continuity we can take n > 0 such that for any z1, z2 ∈ B(p, 1
n ),

Θ(v̄z1 , v̄z1) < min
v∈C̃u

{
θ0,

1
32
|Axv| sin Θ(v,Axv)

}
.(3.3)

We may assume that n is large enough such that

Θ(v,Dfzv) >
1
2
|Azv| sin Θ(v,Azv) ∀v ∈ C̃u,(3.4)

provided z ∈ B(p, 1
n ) with |Θ(x, z)| ≤ θ0. This is possible because

tan Θ(v,Dfzv) =
|Azv| sin Θ(v,Azv) + |RF (z)| sin Θ(v,RF (z)v)

|v|+ |Azv| cos Θ(v,Azv) + |RF (z)| cos Θ(v,RF (z)v)
.

Put y =
x

n
. Denote yi = f iy and v̄(i) =

Df iyv̄y

|Df iyv̄y |
. We may also assume that

Proposition 2.6 and Proposition 2.8 can be applied with ε = 1
2 . Therefore Θ(x, yi) ≤

Θ(x, fx) +
1
2
|x|2 ≤ θ0 and

|x|
2n
≤ |yi| ≤

3|x|
2n
≤ 1
n
∀i = 0, 1, · · · , n2.

Note that Df iyCuy ⊆ Cuyi . We have that ∀i = 0, 1, · · · , n2, v̄(i) ∈ Cuyi ⊆ C̃u and

Θ(v̄y0 , v̄yi) = Θ(v̄y0 , Df
i
xv̄y0) + Θ(v̄(i), v̄yi) ≥ Θ(v̄y0 , Df

i
xv̄y0).(3.5)

By (3.4) and (3.2) we get

Θ(v̄y0 , Df
n2

x v̄y0) =
n2−1∑
i=0

Θ(v̄(i), Dfyi v̄
(i)) ≥

n2−1∑
i=0

1
2
|Ayi v̄(i)| sin Θ(v̄(i), Ayi v̄

(i))

≥ n2 · 1
2
· | x

2n
|2 · 1

2
|Aex v̄x| sin Θ(v̄x, Axv̄x) ≥ 1

16
|Axv̄x| sin Θ(v̄x, Axv̄x).

It contradicts (3.5) and (3.3).

We denote by ξua and ξsa the unit eigenvectors of id +Aa in C̃u and C̃s, respectively,
and by 1 + λua |a|a and 1 − λsa|a|2 the corresponding eigenvalues. Also, denote by
Ξua and Ξsa the subspaces generated by ξua and ξsa. Since Ata = t2Aa, we know that

ξuta = ξua , ξsta = ξsa, and λuta = λua , λuta = λua .(3.6)

By Lemma 3.1 and Corollary 2.3, κ̃u ≤ λua ≤ 3η and κ̃s ≤ λsa ≤ 3η.

Lemma 3.3. For any a1, · · · , an ∈ R2\{0},
n∏
i=1

(id +Aai) has an eigenvector in C̃u,

where Aa = 1
2D

3fp(a, a, ·).

Proof. By the proof of Proposition 3.2, we have ξux ∈ int C̃u. (Otherwise we can
shrink C̃u a little bit and the arguments still work.) This implies (id +Ax)C̃u ⊂ C̃u.

So
n∏
i=0

(id +Aai)C̃u ⊂ C̃u. Then the result follows.

Lemma 3.4. If r is small enough, then ∀x∈ B(p, r), DfxC̃u ⊂ C̃u and DfxC̃s ⊃
C̃s.

Proof. This is because (id +Ax)C̃u ⊂ C̃u and ‖Dfx − (id +Ax)‖ = O(|x|3).

Remark 3.5. Dfx has an eigenvector in C̃u and an eigenvector in C̃s if |x| is small.
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Lemma 3.6. For a, b ∈ R2\{0}, denote the matrix of identity Ξua ⊕Ξsa → Ξub ⊕Ξsb
by (

1 + h11(a, b) h12(a, b)
h21(a, b) 1 + h22(a, b)

)
.

Then ∀i, j = 1, 2, |hij(a′, b) − hij(a′′, b)| ≤ C|Θ(a′, a′′)|, |hij(a, b′) − hij(a, b′′)| ≤
C|Θ(b′, b′′)|, and |hij(a, b)| ≤ C|Θ(a, b)|, where C is a generic constant depending
only on f .

Proof. Note that ∀a 6= 0, Aa has one positive eigenvalue and one negative eigen-
value. So it is clear that the maps a→ ξua , ξ

u
a are smooth on R2\{0}. By (3.6) the

result follows.

Lemma 3.7. There exists a unique subspace E+ ⊆ R2 such that ∀a ∈ E+\{0}, a
is an eigenvector of Aa with positive eigenvalue, where Aa = 1

2D
3fp(a, a, ·)

Proof. The existence follows from the continuity of the map a→ Θ(a,Aaa).
Now we suppose that there exist x, y with x, y ∈ C̃u and Θ(x, y) > 0 such that

Axx = λux|x|2x and Ayy = λuy |y|2y.
First, we assume λux = λuy . Take such x and y with x− y ∈ C̃s and |x| 6= |y|. By

the law of cosines, Lemma 2.7 and the fact that |f(tx)| = t|x|+ 1
3
λuxt

3|x|3 +O(|t|4),
we obtain that

3
t4
(
|f(ty)− f(tx)|2 − |ty − tx|2

)
=2λux|x|4 + 2λuy |y|4 − 2|x||y|(λux|x|2 + λ̄uy |y|2) cos Θ(y, x) +O(t)

as t→ 0+. Since

λux|x|4 + λuy |y|4 − |x| |y|(λux|x|2 + λuy |y|2) =
(
λux|x|3 − λuy |y|3

)(
|x| − |y|

)
.

The right-hand side is positive if t is small. So |f(ty)− f(tx)| > |ty − tx|. But the
fact y − x ∈ C̃s implies |f(ty)− f(tx)| < |ty − tx|, a contradiction.

Next, we assume λux 6= λuy . In this case, for any x and y, f(tx) − f(ty) is
not parallel to x − y. Hence we can find x and y such that x − y /∈ C̃s but
f(tx)− f(ty) ∈ C̃s. Therefore, there is a point tz between tx and ty such that Dftz
maps a vector outside the cone C̃s into C̃s. This contradicts Lemma 3.4 which says
that Dftz C̃s ⊃ C̃s if t is small.

4. Unstable manifolds on M

In this section we prove the existence of invariant decomposition of the tangent
bundle into TM = Eu⊕Es (Proposition 4.2) and the existence of “weak” unstable
manifolds Wu(x) := {y ∈ M : lim

n→∞
d(f−nx, f−ny) = 0} (Proposition 4.4). Eux is

tangent to Wu(x) for all x ∈M and is continuous everywhere else except the fixed
point p. Most of the arguments are routine except for proving that Eup is tangent
to Wu(p) (Lemma 4.5).

For convenience we will refer to Wu(x) and Wu
ε (x) = {y ∈M : d(f−nx, f−ny) ≤

ε ∀n ≥ 0} as the “unstable manifold” and “local unstable manifold” at x, even
though points on the manifolds may not be contracted exponentially in backwards
time.
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Lemma 4.1. Let x ∈ M\{p}. Then |Dfnx v| → ∞ ∀v ∈ Cux and |Df−nx v| → ∞
∀v ∈ Csx, as n→∞.

Proof. If fnx /∈ B(p, r0) for infinite number of n’s, then by (1.2) the result is clear.
If there exists N > 0 such that ∀n > N , fnx ∈ B(p, r0), then by Lemma 2.5,∣∣Dfnx v∣∣ ≥ ∣∣DfNx v∣∣ n−1∏

i=N+1

(
1 + κu|f ix|2

)
≥
∣∣DfNx v∣∣ n−1∏

i=N+1

(
1 + κu

1
3(k + i)η

)
for some k > 1. Thus

∣∣Dfnx v∣∣→∞.

Proposition 4.2. There exists an invariant decomposition of the tangent bundle
into TM = Eu ⊕ Es such that ∀x ∈ M , Eux ⊂ Cux , Esx ⊂ Csx, and DfxE

u
x = Eufx,

DfxE
s
x = Esfx. Except for the fixed point p, the decomposition is continuous.

Proof. Eup and Esp have been defined in the above section.

For x ∈M\{p}, let Eux =
∞⋂
n=0

Dfnf−nxCuf−nx. Clearly, Eux ⊂ Cux and DfxEux = Eufx.

We show that Eux is a one-dimensional subspace in TxM . In fact, if there are two
independent vectors in Eux , then we can choose v, v′ ∈ Eux such that 0 6= v− v′ ∈ Csx.
By Lemma 4.1 |Df−nx (v − v′)| → ∞ as n → ∞. On the other hand, since v, v′ ∈
Dfnf−nxCuf−nx, |Df−nx (v − v′)| ≤ |Df−nx v′|+ |Df−nx v| ≤ |v|+ |v′| ∀n > 0. This is a
contradiction.

Put Eux = Eux ∀x ∈M\{p}.
Now we prove the continuity of Eux . Suppose for some x0 ∈M\{p}, there exists

a sequence {xi} such that lim
i→∞

xi = x0 and lim
i→∞

Euxi = E′x0
6= Eux0

. Take v ∈ E′x0

with |v| = 1. Let vu and vs denote the projection of v in Eux0
and Esx0

respectively.
Since E′x0

6= Eux0
, vs 6= 0. By Lemma 4.1 |Df−nx0

vs| → ∞ as n → ∞. Hence,
we can find an n > 0 such that |Df−nx0

v| ≥ 2. On the other hand, if we take
vi ∈ Euxi ∀i > 0 such that lim

i→∞
vi = v, then by the continuity of Df−nx , we have

|Df−nx0
v| = lim

i→∞
|Df−nxi vi| ≤ 1, a contradiction.

Remark 4.3. The decomposition into TxM = Eux ⊕Esx is not continuous at p. This
can be seen by using a similar method as in the proof of Proposition 3.2 for vectors
in unstable subspaces instead of those in the boundaries of unstable cones. We
leave the details to the reader.

Proposition 4.4. For any x ∈M , Wu
ε (x) is a curve tangent to Eu.

Proof. Let x ∈ M\{p}. Construct a continuous vector field vy in a suitable neigh-
borhood of x such that vy ∈ Euy . It is easy to see that the integral curve of the
vector field that passes throuth x is contained in Wu(x). To prove that Wu(x) is
also contained in the integral curve passing through x, it is enough to show that
any piece of stable curve γs intersects Wu

ε (x) at most one point.
In fact, if γs ∩ Wu

ε (x) ⊃ {y, z} with y 6= z, then by Lemma 4.1, we have
lim
n→∞

d(f−ny, f−nx) = 0 and lim
n→∞

d(f−nz, f−nx) = 0. So lim
n→∞

d(f−ny, f−nz) = 0.

This contradicts the fact that Df−n is expanding along the tangent lines of γs.
Now we consider the case x = p. Let Ω be the set of points in B(p, ε) that can

be jointed from p by a curve tangent to vectors in C̃u. Note that fn(Ω) ∩ B(p, ε)

is decreasing as n → ∞. It is easy to check Wu
ε (p) =

∞⋂
i=0

(
f iΩ ∩ B(p, ε)

)
. The
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above argument on uniqueness shows that Wu
ε (p) is a curve. The differentiability

of Wu
ε (p) at p is proved in Lemma 4.5.

Lemma 4.5. Wu
ε (p) is tangent to Eup .

Proof. Let γ : [−1, 1] → Wu
ε (p) be the parameter expression with γ(0) = p. For

x1, x2 ∈Wu
ε (p), we say x1 > x2, if x1 = γ(s1), x2 = γ(s2) and s1 > s2.

First, we prove that the one side limit lim
s→0+

γ(s)
|γ(s)| exists. Suppose there are two

sequences x′n = γ(s′n), x′′n = γ(s′′n), s′n, s
′′
n → 0 as n → ∞, and two unit vectors

e′, e′′ such that
x′n
|x′n|

= e′ and
x′′n
|x′′n|

= e′′ ∀n > 0. Without loss of generality we

assume Θ(e′, e′′) ≥ 0 and x′1 > x′′1 > x′2 > x′′2 > · · · . Let e =
β′e′ + β′′e′′

|β′e′ + β′′e′′| for

some β′, β′′ > 0. Take yn, zn ∈ Wu
ε (p) such that

yn = sup{y < x′n : y = |y|e} and zn = sup{z < x′′n : z = |z|e}.

By Corollary 2.3, |fyn − yn| ≤ η|yn|3. Thus, if n is large enough, then yn < fyn <
x′n, and therefore Θ(fyn, yn) and Θ(x′n, yn) have the same sign, i.e., Θ(fyn, yn) > 0.
Similarly, we have Θ(fzn, zn) < 0. Thus, by Lemma 2.7 we get Θ

(
e,D3fp(e, e, e)

)
=

0. Since β′ and β′′ are arbitrary, by Lemma 3.7 we must have e′ = e′′. So the limit

eu+ := lim
s→0+

γ(s)
|γ(s)| exists.

Now we prove eu+ ∈ Eup . Suppose it is not true. We may assume Θ(eu+, Aeu+e
u
+) >

0. By Lemma 2.7 lim
t→0+

Θ
(
teu+, f(teu+)

)
t2

> 2β for some β > 0. Hence, we can

find t0 > 0, θ0 > 0 such that for any z ∈ Γ := {y : |y| ≤ t0, |Θ(y, eu+)| ≤ θ0},
Θ(z, fz) > β|z|2. Also, we can find s0 > 0 such that the piece of unstable curve
{γ(s) : 0 ≤ s ≤ s0} is contained in Γ. Take any point x in this curve. We have

Θ(f−nx, x) =
n∑
i=1

Θ(f−ix, f−i+1x) ≥ β
n∑
i=1

|f−ix|2. By Lemma 2.5,
n∑
i=1

|f−ix|2 is

unbounded. This contradicts the fact that f−ix ∈ Γ ∀i ≥ 0.

Similarly, the limit eu− := lim
s→0−

γ(s)
|γ(s)| exists and satisfies eu− ∈ Eup .

Though Eux and Esx are not continuous at p, they are contained in Cux and Csx.
Therefore, we know that f has a local product structure, i.e, there exist constants
ε > 0, δ > 0, such that ∀x, y ∈ M with d(x, y) ≤ δ, [x, y] := Wu

ε (x) ∩ Wu
ε (y)

contains exactly one point.

Lemma 4.6. Let x ∈ B(p, r0) and y be in the Wu-segment connecting x and
[x, fx]. Then

d(x, y) ≤ Cd(x, fx) and d(x, y) ≤ ηC|x|3,

for some generic constant, which is allowed to depend only on f .

Proof. Use the fact that Cux and Csx are bounded away from each other to get the
first inequality. The second one then follows from Corollary 2.3.
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5. Coordinate systems

The purpose of this section is to choose a suitable coordinate system at each
tangent space, under which we can prove that at most points in M , Dfx contract
angles between vectors in C̃u. This is important for the proof of the local Hölder
condition in next section.

Let Ẽux ⊕ Ẽsx be any coordinate system such that Ẽux ⊂ Cux and Ẽsx ⊂ Csx ∀x ∈M .
Under the coordinate systems, for each x ∈ M there exists a correspondence πx
from the unit circle in the tangent space TxM to R ∪ {∞} such that if πxe = σ,
then e and (1, σ) are collinear. The correspondence is one-to-one if we identify −e
with e.

For simplicity of notations, we say σx ∈ Cux if π−1
x σx ∈ Cux , and σ ∈ Cu if σx ∈ Cux

∀x ∈M . In particular, we denote by σu the unique function that satisfies σ ∈ Eu.
Suppose

(
fij(x)

)
is the matrix expression of Dfx : Ẽux ⊕ Ẽsx → Ẽufx⊕ Ẽsfx. With

respect to the coordinate systems, Dfx induces a map Fx on R given by

Fxσ =
(
f21(x) + f22(x)σ

)(
f11(x) + f12(x)σ

)−1 ∀σ ∈ R.(5.1)

For any σ, we define Fσ = F ◦ σ ◦ f−1, i.e., (Fσ)(x) = Ff−1xσ(f−1x). Clearly,
Fσ ∈ Cu if σ ∈ Cu and Fσ ∈ Eu if σ ∈ Eu.

Lemma 5.1. For any σ ∈ Cu, lim
n→∞

(Fnσ)(x) = σu(x) ∀x ∈M\{p}.

Proof. Note that (Fnσ)(x) ∈ Dfnf−nxCuf−nx. By the proof of Proposition 4.2,

lim
n→∞

(Fnσ)(x) ∈
∞⋂
n=0

Dfnf−nxCuf−nx = Eux .

Consider a particular coordinate system Ξux ⊕ Ξsx on TxM ∀x ∈ B(p, r0), where
Ξux and Ξsx are eigenspaces of Ax = 1

2D
3fp(x, x, ·).

Lemma 5.2. Suppose r0 > 0 is small sufficiently. Then with respect to the decom-
position TMx = Ξux ⊕ Ξsx ∀x ∈ B(p, r0), the induced map Fx of Dfx satisfies the
following.

i) There exists a constant C0 > 0 such that ∀σ ∈ C̃u,∣∣Fxσ − Fyσ∣∣ ≤ C0|x|−1d(x, y) ∀x ∈ B(p, r0), y ∈ B(x, |x|3).(5.2)

ii) There exist constants κ′, η′ > 0, sectors Sur0 = {y ∈ B(p, r0) : |Θ(y,Eup )| ≤
θu} and Ssr0 = {y ∈ B(p, r0) : |Θ(y,Esp)| ≤ θs} for some θu, θs > 0 such that
∀σ1, σ2 ∈ C̃ux ,∣∣Fx(σ1 − σ2)

∣∣ ≤ (1− κ′|x|2)
∣∣σ1 − σ2

∣∣ ∀x ∈ Sur0 ∪ S
s
r0 ,(5.3) ∣∣Fx(σ1 − σ2)

∣∣ ≤ (1 + η′|x|2)
∣∣σ1 − σ2

∣∣ ∀x ∈ B(p, r0)\
(
Sur0 ∪ S

s
r0

)
.(5.4)

Proof. Note that Dfxξux = (1 +λux|x|2)ξux +RF (x)ξux and Dfxξsx = (1−λsx|x|2)ξsx +
RF (x)ξsx. The matrix of Dfx : Ξux ⊕ Ξsx → Ξufx ⊕ Ξsfx can be expressed as(

1 + g11(x) g12(x)
g21(x) 1 + g22(x)

)
=
(

1 + h11(x, fx) h12(x, fx)
h21(x, fx) 1 + h22(x, fx)

)
×
(

1 + λux|x|2 +O(|x|2) O(|x|2)
O(|x|2) 1− λsx|x|2 +O(|x|2)

)
,(5.5)
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where hij are as in Lemma 3.6.
By (5.1) we get

Fxσ =
(
g21(x) + σ + g22(x)σ

)(
1 + g11(x) + g12(x)σ

)−1
,(5.6) ∣∣Fx(σ1 − σ2)

∣∣
=

1 + g11(x) + g22(x) + g11(x)g22(x)− g12(x)g21(x)(
1 + g11(x) + g12(x)σ

)2 |σ1 − σ2|,(5.7)

where σ in (5.7) is between σ1 and σ2.
By Lemma 3.6, |hij(x, fx)−hij(y, fy)|≤C|Θ(x, y)|+C|Θ(fx, fy)|≤3C|Θ(x, y)|.

It is easy to see by (3.6) and the linearity of Ax that |λux−λuy | ≤ 3C|Θ(x, y)|, if C is
large enough. Note that sin |Θ(x, y)| ≤ |x|−1d(x, y) and

∣∣|x|2 − |y|2∣∣ ≤ 3|x|d(x, y).
Therefore, (5.2) follows from (5.5) and (5.6).

By Lemma 2.7, |Θ(x, fx)| = O(|x|2). So (5.4) follows from (5.5) and (5.7).
Moreover, if x ∈ Eup or Esp, then Θ(x, fx) = o(|x|2). Hence hij(x, fx) = o(|x|2) as

x→ 0. So g11(x) = λux+o(|x|2), g22(x) = −λsx+o(|x|2), and g12(x), g21(x) = o(|x|2).
Thus, (5.3) holds for these x. Then we use continuity.

Let β > 0 small. For x ∈ B(p, r0), take k = k(x) such that

1 + 2β ≤
k−1∏
i=0

(
1 + |f ix|2

)
≤ 1 + 4β.

Considering Proposition 2.6, we have that there exist 0 < c1 ≤ c2 ≤ 1 such that

c1 ≤ k|x|2 ≤ c2.(5.8)

Lemma 5.3. There exists C′β > 0 such that

‖Dfkx −Dfky ‖ ≤ kC′β |x|d(x, y) ∀x ∈ B(p, r0), y ∈ B(x, |x|3).

Proof. We have

‖Dfkx −Dfky ‖ ≤
k−1∑
j=0

‖Dfk−j−1
fj+1x ‖‖Dffjx −Dffjy‖‖Df

j
y‖.

By Proposition 2.1, ‖Dffjx −Dffjy‖ ≤ C′|f jx|d(f jx, f jy) for some C′ > 0. Also,

by Corollary 2.3, ‖Df jx‖ ≤
j−1∏
i=0

(1+3η|f ix|2) ≤
j−1∏
i=0

(1+|f ix|2)3η. Since the difference

among x, |f ix| and |f iy| are of higher order, we have

‖Dfkx −Dfky ‖ ≤ kC′(1 + 4β)3η|x|d(x, y).

Suppose
(
f

(k)
ij (x)

)
is the matrix expression ofDfkx : Ξux,k⊕Ξsx,k → Ξufkx,k⊕Ξsfkx,k,

where Ξux,k and Ξsx,k are eigenspaces of
k−1∏
i=0

(
id + 1

2D
3fp(f ix, f ix, ·)

)
. It induces a

map on R by

F (k)
x σ =

(
f

(k)
21 (x) + f

(k)
22 (x)σ

)(
f

(k)
11 (x) + f

(k)
12 (x)σ

)−1 ∀σ ∈ R.(5.9)

Lemma 5.4. The map F (k)
x satisfies the following.
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i) There exists a constant Cβ > 0 such that ∀σ ∈ C̃u,∣∣F (k)
x σ − F (k)

y σ
∣∣ ≤ Cβ |x|−1d(x, y) ∀x ∈ B(p, r0), y ∈ B(x, |x|3).(5.10)

ii) There exist constants 1 > Cκ > 0, Cη > 0 such that ∀σ1, σ2 ∈ C̃ux ,∣∣F (k)
x (σ1 − σ2)

∣∣ ≤ Cκ∣∣σ1 − σ2

∣∣ ∀x ∈ Sur0 ∪ S
s
r0 ,(5.11) ∣∣F (k)

x (σ1 − σ2)
∣∣ ≤ Cη∣∣σ1 − σ2

∣∣ ∀x ∈ B(p, r0)\
(
Sur0 ∪ S

s
r0

)
.(5.12)

Proof. The matrix
(
f

(k)
ij (x)

)
can be written as(

f
(k)
11 (x) f

(k)
12 (x)

f
(k)
21 (x) f

(k)
22 (x)

)

=

(
1 + h

(k)
11 (x, fkx) h

(k)
12 (x, fkx)

h
(k)
21 (x, fkx) 1 + h

(k)
22 (x, fkx)

)(
f̄

(k)
11 (x) f̄

(k)
12 (x)

f̄
(k)
21 (x) f̄

(k)
22 (x)

)
,

(5.13)

where
(
f̄

(k)
ij (x)

)
is the matrix of Dfkx with respect to the coordinate system Ξux,k ⊕

Ξsx,k, and
(
δij + h

(k)
ij (x)

)
is the matrix of identity Ξux,k ⊕ Ξsx,k → Ξufkx,k ⊕ Ξsfkx,k.

By (5.9), ∣∣F (k)
x (σ1 − σ2)

∣∣= f
(k)
11 (x)f (k)

22 (x)− f (k)
12 (x)f (k)

21 (x)(
f

(k)
11 (x) + f

(k)
12 (x)σ

)2 |σ1 − σ2|,(5.14)

where σ is between σ1 and σ2.
Similarly, we have |h(k)

ij (x, fkx)− h(k)
ij (y, fky)| ≤ C|Θ(x, y)|+C|Θ(fkx, fky)| ≤

3C|Θ(x, y)| ≤ 4C|x|−1d(x, y). By (5.8) and Lemma 5.3, |f̄ (k)
21 (x) − f̄

(k)
21 (y)| ≤

C ′βk|x|d(x, y) ≤ C′β |x|−1d(x, y). Hence (5.10) follows from (5.13), (5.8) and (5.9).

Since f̄ (k)
ij (x) and h(k)

ij (x, fkx) are bounded, (5.12) follows from (5.13) and (5.14).
Now it remains to prove (5.11). Note that ∀v ∈ Ξufkx,k with |v| = 1,∣∣∣(k−1∏

i=0

(id +Afix)
)
v
∣∣∣ ≥ k−1∏

i=0

(1 + κu|f ix|) ≥ (1 + β)κ
u

,

where Ax = 1
2D

3fp(x, x, ·). Also note that by Proposition 2.1 and (5.8),∥∥∥Dfkx − k−1∏
i=0

(
id +Afix

)∥∥∥ = kO(|x|3) = O(|x|).

So given ε > 0, we can take r0 such that f̄ (k)
11 (x) ≥ (1 + β)κ

u − ε, and |f̄ (k)
12 (x)| ≤ ε

∀x ∈ B(p, r0). For the same reason, we have |f̄ (k)
21 (x)| ≤ ε, f̄ (k)

22 (x) ≤ (1− β)κ
s

+ ε.
Since x ∈ Sur0 ∪ Ssr0 , fx, · · · , fkx are close to Eup or Esp, and the eigenvectors

are close to Ξux and Ξsx. Hence |h(k)
ij (x, fkx)| ≤ ε. Now we obtain that the matrics(

f
(k)
ij (x)

)
satisfies the following condition:

f
(k)
11 (x) ≥ (1 + β)κ

u − cε, |f (k)
12 (x)| ≤ cε,

|f (k)
21 (x)| ≤ cε, f

(k)
22 (x) ≤ (1− β)κ

s

+ cε,

where c is a constant independent of ε. So we can take ε small enough such that
(5.14) implies (5.11).
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For r ∈ (0, r0], denote Sur = B(p, r) ∩ Sur0 , Ssr = B(p, r) ∩ Ssr0 and Scr =
B(p, r)\

(
Sur ∪ Ssr

)
.

Let Λ ⊂M . For x ∈ Λ, denote by τ±Λ (x) the maximal nonnegative integers such
that ∀k = 0, 1, · · · , τ±Λ (x), f±kx ∈ Λ.

Lemma 5.5. Let β ≥ 0. For each x ∈ Scr0 , take −τ−Scr0 (x) = n0 < n1 < · · · <

nm = τ+
Scr0

(x) such that 1 + 2β ≤
nj−1∏
i=nj−1

(
1 + |f ix|2

)
≤ 1 + 4β ∀j = 1, · · · ,m. Then

m is bounded for all x ∈ Scr0 .

Proof. Denote τ±(x) = τ±Scr0
(x). Fix an z ∈ Scr0 such that f−τ

−(z)−1(z) ∈ Ssr0 and

f τ
+(z)+1(z) ∈ Sur0 . We may assume e4|fjz|2 ≤ 1 + 4β ∀ − τ−(z)− 1 ≤ j ≤ τ+(z).
We only need to consider the case that

|f ix| ≤ 1
2

min{|f jz| : −τ−(z)− 1 ≤ j ≤ τ+(z)}, −τ−(x) − 1 ≤ i ≤ τ+(x).

Otherwise, the result is clear.
For −τ−(z)− 1 ≤ j ≤ τ+(z), let Sj ⊂ B(p, r0) be the smaller sector bounded by

rays from the origin to f jz and f j+1z. Let ij be the smallest integer k such that
fkx ∈ Sj . Thus, |f ijx| = tj |f jz| for some 0 < tj ≤ 1

2 . By Proposition 2.8, there
are at most 2t−2

j successive f ix’s in Sj. By Proposition 2.6, each of them satisfies
|f ix| ≤

√
2 tj |f jz|. Thus,∏
fix∈Sj

(1 + |f ix|2) ≤
(
1 + 2t2j |f jz|2

)[ 2
t2j

]
≤ e4|fjz|2 ≤ 1 + 4β.

It means that m = m(x) ≤ τ+(z) + τ−(z) + 1.

Lemma 5.6. There exists D > 0 such that ∀x ∈ Scr0 ,

τ+(x)∏
i=−τ−(x)

(1 + |f−ix|2) < D,

where τ±(x) = τ±Scr0
(x).

Proof. This is a direct corollary of Lemma 5.5.

Now we construct the coordinate systems.
Choose 0 < r̂ < r0 such that for any x ∈ Ssr0\Ssr̂ with f τ

+(x)+1(x) ∈ Ssr̂ , then

τ+(x)−1∏
i=−τ−(x)+1

(1− 1
2
κ′|f ix|2) ≤ 1

D2η′
,

where τ±(x) = τ±Ssr0\S
s
r̂
(x) and κ′ and η′ are as in Lemma 5.2.ii).

Denote

Γ =
{
y ∈ B(p, r0) : ∃ − τ−B(p,r0)(y) ≤ i ≤ τ+

B(p,r0)(y) s.t. f iy ∈ Ssr̂
}
.

Choose 0 < r∗ < r̂ such that B(p, r∗)\Wu
r0(p) ⊂ Γ. In other words, for any

x ∈ B(p, r∗)\Wu
r0(p), if we iterate backwards, then the orbit of x goes to Ssr̂ before

it leaves B(p, r0). We also assume that r∗ is small enough such that ∀x 6∈ B(x, r0),
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Ĉux :=
⋃

y∈B(x,r∗3)

π−1
x πyCuy and Ĉsx :=

⋃
y∈B(x,r∗3)

π−1
x πyCsy are still bounded away from

eath other.
For x ∈ Ssr0 ∪ Scr∗/2 ∪ Sur0 , let Ẽux ⊕ Ẽsx coincide with Ξux ⊕ Ξsx. Then we extend

these coordinate systems to M\{p} in such a way that Ẽux ⊕ Ẽsx remains C1 and
with respect to these coordinate systems, ζx ≤ 1 + η′|x|2 for x ∈ Scr̂ and ζx < 1 for
x /∈ B(p, r∗), where

ζx = min{ζ :
∣∣Fxσ1 − Fxσ2

∣∣ ≤ ζ|σ1 − σ2| ∀σ1, σ2 ∈ Ĉux}.(5.15)

Since Ẽux⊕Ẽsx are C1, there exists a constant C0 > 0 such that ∀x ∈M\B(p, r∗),
y ∈ B(x, r∗3), ∣∣Fxσ − Fyσ∣∣ ≤ C0

r∗
d(x, y) ∀σ ∈ C̃ux .(5.16)

We may regard this C0 the same as that in (5.2).

6. Local Hölder condition

In this section we prove that for any x ∈M\{p}, there exists a neighborhood in
which Hölder condition holds with a constant depending on x. We call this property
local Hölder condition.

Proposition 6.1. There exist constants H > 0, θ > 0 and r∗ > 0, such that for
all x ∈M\{p},

d(Eux , E
u
y ) ≤ H

ρ3θ
x

d(x, y)θ ∀y ∈ B(x, ρ3
x),

where ρx = min{|x|, r∗}.

We will prove it by showing the following result.

Lemma 6.2. Let {Ẽux ⊕ Ẽsx : x ∈ M} be constructed as in the last section. There
exist constants H > 0, θ > 0 and r∗ > 0 such that if x ∈ M\{p}, y ∈ B(x, ρ3

x),
where ρx = min{|x|, r∗}, then∣∣σu(x)− σu(y)

∣∣ ≤ H

ρ3θ
x

d(x, y)θ .

Before we prove the lemma, we give the following fact.

Lemma 6.3. Lemma 6.2 implies Proposition 6.1.

Proof. Recall that πy is a map from the unit circle of TyM to R∪{∞}. By choosing
a suitable branch we may think π−1

y is well defined. Since C̃u and C̃s are bounded
away from each other, restricted to C̃u, both πy and π−1

y are Lipschitz with a
Lipschitz constant L ∀y ∈M . Denote eu(y) = π−1

y σu(y).
First, consider the case that x ∈ B(p, r∗). We have

d
(
eu(x), eu(y)

)
≤ L

∣∣πxeu(x) − πxeu(y)
∣∣

≤ L
(∣∣πxeu(x)− πyeu(y)

∣∣+
∣∣πyeu(y)− πxeu(y)

∣∣).
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Denote σ′ = πxe
u(y). We know πye

u(y)− πxeu(y) = πyπ
−1
x σ′ − σ′. By Lemma 3.6

and the definition of πx,

∣∣πyπ−1
x σ′ − σ′

∣∣ =
∣∣∣ h21(x, y) + h22(x, y)σ′

1 + h11(x, y) + h12(x, y)σ′
− σ′

∣∣∣
=
∣∣∣h21(x, y) + h22(x, y)σ′ − h11(x, y)σ′ − h12(x, y)σ′2

1 + h11(x, y) + h12(x, y)σ′

∣∣∣ ≤ C′∣∣Θ(x, y)
∣∣

for some C′ > 0. Since d(x, y) ≤ ρ3
x = |x|3, we have

∣∣Θ(x, y)
∣∣ ≤ d(x, y)

|x| =
d(x, y)1−θ

|x|1−3θ
· d(x, y)θ

|x|3θ ≤ |x|2 · d(x, y)θ

ρ3θ
x

.

By Lemma 6.2,

∣∣πxeu(x) − πyeu(y)
∣∣ =

∣∣σu(x)− σu(y)
∣∣ ≤ H

ρ3θ
x

d(x, y)θ .

Thus,

d
(
eu(x), eu(y)

)
≤ L(H + C′|x|2)

d(x, y)θ

ρ3θ
x

.

We get the inequality in Proposition 6.1 for x ∈ B(p, r∗) with L(H+C′r∗2) instead
of H .

Similarly, since the coordinate systems is C1 on M\B(p, r∗), we can find a con-
stant C′′ > 0 such that

∣∣πyπ−1
x σ′ − σ′

∣∣ ≤ C′′d(x, y) ≤ C′′r∗3θ d(x, y)θ

ρ3θ
x

.

The rest of the arguments are the same as above.

Proof of Lemma 6.2. Take θ > 0 such that for x ∈ B(p, r0),

(1− 3
4
κ′|x|2)(1 + η|x|2)3θ(1 + 4η|x|2)θ ≤ 1− 1

2
κ′|x|2 ∀x ∈ B(p, r0),(6.1a)

(1 +
3
2
η′|x|2)(1 + η|x|2)3θ(1 + 4η|x|2)θ ≤ 1 + 2η′|x|2 ∀x ∈ B(p, r0),(6.1b)

1 + ζx
2

∥∥Df−1|fB(x,ρ3
x)

∥∥θ ≤ 1 ∀x 6∈ B(p, r∗),(6.1c)

where κ′ and η′ are as in Lemma 5.2.ii), and ζx is as in (5.15).
Take

H ≥ max
{4C0

κ′
,

2C0

η′
,

2C0r
∗2

1− ζx
, 21+θB‖Df−1‖θ

}
,

where C0 is as in (5.2) and (5.16) and B is the bound of all σ ∈ C̃u with respect to
coordinate systems Ẽux ⊕ Ẽsx.
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Define a function s : M → [1, D2η′ ] by putting

sx =



max
{

1, D2η′
τ−B (x)∏
i=1

(
1− κ′

2 |f−ix|2
) }

x ∈ Ssr0\Ssr̂ ;

1, x ∈ Ssr̂ ;
τ−S (x)∏
i=1

(
1 + 2η′|f−ix|2

)
, x ∈ Scr̂ ∩ Γ;

D2η′ , otherwise,

where τ−B (x) = τ−B(p,r0)(x) and τ−S (x) = τ−Scr̂∩Γ(x).
Let

H =
{
σ ∈ Cu : |σu(x)− σu(y)| ≤ sxH

ρ3θ
x

d(x, y)θ ∀x ∈M, y ∈ B(x, ρ3
x)
}
.

H is closed in the sense that for a sequence {σn}∞n=1 ⊂ H if lim
n→∞

σn = σ pointwise,
then σ ∈ H. In fact, ∀x ∈M ∀β > 0, we can find N > 0 such that for all n > N

|σn(x)− σ(x)| ≤ β.

Thus ∀y ∈ B(x, ρ3
x),

|σn(y)− σ(x)| ≤ |σn(y)− σn(x)| + |σn(x) − σ(x)| ≤ sxH

ρ3θ
x

d(x, y)θ + β.

Since lim
n→∞

σn(y) = σ(y) and β are arbitrary, |σ(y) − σ(x)| ≤ sxH

ρ3
x

d(x, y)θ. Hence

σ ∈ H.
Let σ ∈ H. Take x ∈M and y ∈ B(x, ρ3

x). We will show that∣∣(Fσ)(fx) − (Fσ)(fy)
∣∣ ≤ sfxH

ρ3θ
fx

d(fx, fy)θ.(6.2)

If it is true, then we have FH ⊂ H. So by Lemma 5.1 and the closeness of H, for
any σ ∈ H, σu = lim

n→∞
Fnσ ∈ H, which will complete the proof.

We point out here that it is enough to consider the case y ∈ B(x, ρ3
x). Because

if d(x, y) > ρ3
x, then

d(fx, fy) ≥ d(x, y)
‖Df−1‖ >

ρ3
x

‖Df−1‖ ≥
ρ3
fx

2‖Df−1‖ .

So by the choice of H we have
H

ρ3θ
fx

d(fx, fy)θ >
H

(2‖Df−1‖)θ ≥ 2B, which means

that (6.2) is always true.
Now suppose x ∈M\{p} and y ∈ B(x, ρ3

x). We have∣∣(Fσ)(fx)−
(
Fσ
)
(fy)

∣∣ =
∣∣Fxσ(x) − Fyσ(y)

∣∣
≤
∣∣Fxσ(y)− Fyσ(y)

∣∣+
∣∣Fxσ(x) − Fxσ(y)

∣∣.(6.3)

We consider the following cases.
Case I: x ∈ Ssr0 ∪ Sur0 .
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By (6.3) and Lemma 5.2,∣∣(Fσ)(fx)−
(
Fσ
)
(fy)

∣∣ ≤ C0d(x, y)
|x| + (1 − κ′|x|2)|σ(x) − σ(y)|

≤C0d(x, y)
|x| + (1− κ′|x|2)

sxH

ρ3θ
x

d(x, y)θ

=
(C0d(x, y)1−θρ3θ

x

|x| + (1− κ′|x|2)sxH
)(ρfx

ρx

)3θ( d(x, y)
d(fx, fy)

)θ 1
ρ3θ
fx

d(fx, fy)θ.

Since ρx ≤ |x|, d(x, y) ≤ |x|3 and sxκ
′H ≥ 4C0, we have

C0d(x, y)1−θρ3θ
x

|x| + (1− κ′|x|2)sxH

≤ C0|x|2 + (1− κ′|x|2)sxH ≤ (1− 3
4
κ′|x|2)sxH.

By the definition of sx and ρx, Corollary 2.3 and 2.4,(ρfx
ρx

)3θ

≤
(
1 + η|x|2

)3θ
,
( d(x, y)
d(fx, fy)

)θ
≤
(
1 + 4η|x|2

)θ
, (1− κ′

2
|x|2)sx ≤ sfx.

Therefore, (6.2) follows from (6.1a).
Case II: x ∈ Scr̂ ∩ Γ.
Similarly,∣∣(Fσ)(fx)−

(
Fσ
)
(fy)

∣∣ ≤ C0d(x, y)
|x| + (1 + η′|x|2)|σ(x) − σ(y)|

≤C0d(x, y)
|x| + (1 + η′|x|2)

sxH

ρ3θ
x

d(x, y)θ

=
(C0d(x, y)1−θρ3θ

x

|x| + (1 + η′|x|2)sxH
)(ρfx

ρx

)3θ( d(x, y)
d(fx, fy)

)θ 1
ρ3θ
fx

d(fx, fy)θ.

We get

C0d(x, y)1−θρ3θ
x

|x| + (1 + η′|x|2)sxH ≤ C0|x|2 + (1 + η′|x|2)sxH

≤ (1 +
3
2
η′|x|2)sxH.

Also,(ρfx
ρx

)3θ

≤
(
1 + η|x|2

)3θ
,
( d(x, y)
d(fx, fy)

)θ
≤
(
1 + 4η|x|2

)θ
, (1 + 2η′|x|2)sx ≤ sfx.

Therefore, (6.2) follows from (6.1b).
Case III: x ∈M\

(
Ssr0 ∪ Γ ∪ Sur0

)
.

This is the complement of the above two cases. In this case ρx = ρfx = r∗ and
sx = sfx = D2η′ . By (6.3), (5.16) and (5.15),∣∣(Fσ)(fx)−

(
Fσ
)
(fy)

∣∣ ≤ C0d(x, y)
r∗

+ ζx|σ(x) − σ(y)|

≤C0d(x, y)
r∗

+ ζx
sxH

r∗3θ
d(x, y)θ

=
(
C0d(x, y)1−θr∗3θ−1 + ζxsxH

)( d(x, y)
d(fx, fy)

)θ
· 1
r∗3θ

d(fx, fy)θ.
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By the choice of H ,

C0d(x, y)1−θr∗3θ−1 + ζxsxH ≤ C0r
∗2 + ζxsxH ≤

1 + ζx
2

sxH =
1 + ζx

2
sfxH.

Since
d(x, y)
d(fx, fy)

≤
∥∥Df−1|fB(x,ρ3

x)

∥∥, by (6.1c) we get (6.2).

7. Distortion estimates and proof of Theorem A

The main work in this section is to prove bounded distortion estimates for small
unstable curves away from p (Proposition 7.5). This result makes it possible to
prove Theorem A through standard arguments. The absolute continuity of stable
foliation is also proved (implied in Proposition 7.7) and is then applied to the proof
of the corollary. In the end of the section we give a criterion distinguishing between
the two cases in Theorem A (Proposition 7.8), which will be used in Part 2.

We fix a rectangle of the form P = [Wu
r (p),W s

r (p)], where r ∈ (0, r∗], such that
fP ∪ P ∪ f−1P ⊂ B(p, r∗).

Lemma 7.1. There exist constants H+ > 0 and θ > 0 such that if γ ⊂ fP\P is a
Wu-segment with f−iγ ⊂ P for i = 1, · · · , n− 1, then for any x, y ∈ γ,

d
(
Eu(f−nx), Eu(f−ny)

)
≤ H+ d(f−nx, f−ny)θ

r3θ
.

Proof. We assume θ < 1
2 . Take H > 0 satisfying Lemma 6.1 and

H ≥ r3θCβ
1− Cκ

,

where Cβ and Cκ are as in Lemma 5.4.
Suppose N is the minimal positive integer such that f−Nγ 6⊂ P . By the same

argument in the proof of Lemma 6.3, it is enough to show that for any x, y ∈ f−Nγ,
n = 1, · · · , N , ∣∣σu(fnx)− σu(fny)

∣∣ ≤ H+ d(fnx, fny)θ

r3θ
.

Let 1 ≤ n ≤ N . Fix β ≥ 0 such that ‖Dfz‖ ≤ 1 + β ∀ z ∈ B(p, r∗). Take

0 = n0 < n1 < · · · < nl < nl+1 = n such that 1 + 2β ≤
nj+1−1∏
i=nj

(
1 + |f ix|2

)
≤ 1 + 4β

∀j = 0, · · · , l. Then put kj = nj+1 − nj , j = 0, · · · , l.
For j = 0, · · · , l, define sj = max{1, s̄j}, and

s̄j =


1, fnjx ∈ Ssr∗ ;
sj−1Cη + r3θCβ

H , fnjx ∈ Scr∗ ;
sj−1, fnjx ∈ Sur∗ ,

where Cη and Cβ are is as in Lemma 5.4. By Lemma 5.5, there are at most m
different nj with fnjx ∈ Scr∗ . So there are at most m+ 1 different sj , and therefore
sj are bounded.

The result of the lemma follows with H+ = max
j
{sjH} if we prove that for all

0 ≤ j ≤ l + 1, ∣∣σu(fnjx) − σu(fnjy)
∣∣ ≤ sjHd(fnjx, fnjy)θ

r3θ
.(7.1)



SBR MEASURES FOR “ALMOST ANOSOV” DIFFEOMORPHISMS 2353

By Lemma 6.2, (7.1) is true for j = 0. Suppose it is true for some 0 ≤ j ≤ l.
Recall F kj

fnjx
σu(fnjx) = σu(fnj+1x). We have∣∣σu(fnj+1x) − σu(fnj+1y)

∣∣ =
∣∣F kj
fnjx

σu(fnjx)− F kj
fnj y

σu(fnjy)
∣∣

≤
∣∣F kj
fnjx

σu(fnjy)− F kj
fnj y

σu(fnjy)
∣∣+
∣∣F kj
fnjx

σu(fnjx)− F kj
fnjx

σu(fnjy)
∣∣.

By Lemma 4.6, d(f ix, f iy) ≤ ηC|f ix|3. So

|fnjx|−1 · d(fnjx, fnjy)1−θ ≤ η1−θC1−θ|fnjx|2−3θ) ≤ 1,

for all fnjx ∈ B(p, r∗) if r∗ is small enough.
Hence by Lemma 5.4.i), we get∣∣F kj

fnjx
σu(fnjy)− F kj

fnj y
σu(fnjy)

∣∣
≤ Cβ |fnjx|−1 · d(fnjx, fnjy) ≤ Cβd(fnjx, fnjy)θ.

To prove (7.1) for j + 1, we need use Lemma 5.4.ii). Consider two cases.
Case I: f jx ∈ Ssr∗ ∪ Sur∗ . Note that in this case, sj = sj+1. By the choice of H ,∣∣σu(fnj+1x)− σu(fnj+1y)

∣∣ ≤ Cβd(fnjx, fnjy)θ + sjCκ
H

r3θ
d(fnjx, fnjy)θ

≤
(
Cβ + sjCκ

H

r3θ

)
d(fnjx, fnjy)θ ≤ sj+1H

d(fnj+1x, fnj+1y)θ

r3θ
.(7.2)

Case II: f jx ∈ Scr∗ . By the definition of sj , we have∣∣σu(fnj+1x)− σu(fnj+1y)
∣∣ ≤ Cβd(fnjx, fnjy)θ + sjCη

H

r3θ
d(fnjx, fnjy)θ

≤
(
Cβ + sjCη

H

r3θ

)
d(fnjx, fnjy)θ ≤ sj+1H

d(fnj+1x, fnj+1y)θ

r3θ
.(7.3)

Hence, we get (7.1) for j + 1 instead of j. This completes the proof.

Lemma 7.2. There exist constants H− > 0 and θ > 0 such that if γ ⊂ f−1P\P
is a W s-segment with f iγ ⊂ P for i = 1, · · · , n− 1, then for any x, y ∈ γ,

d
(
Eu(fnx), Eu(fny)

)
≤ H−

r3θ
d(fnx, fny)θ.

Proof. The idea is the same as that in the Lemma 7.1. However, since d(fnjx, fnjy)
is decreasing, the fact d(fnjx, fnjy)θ ≤ d(fnj+1x, fnj+1y)θ cannot be used. We need
some adjustment to obtain the last inequalities in (7.2) and (7.3).

By Corollary 2.3, we have

d(fnjx, fnjy)
d(fnj+1x, fnj+1y)

≤
nj+1−1∏
i=nj

(
1 + η|f ix|2

)
≤

nj+1−1∏
i=nj

(
1 + |f ix|2

)η ≤ (1 + 4β
)η
.

So if we take θ small enough such that
(
1 + 4β

)ηθ
Cκ ≤ 1, and then take H ≥

r3θ
(
1 + 4β

)ηθ
Cβ

1−
(
1 + 4β

)ηθ
Cκ

, and set sj =
(
sj−1Cη +

r3θCβ
H

)
·
(
1+4β

)ηθ for fnjx ∈ Scr∗ , then

the last step of (7.2) and (7.3) can go through.
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Lemma 7.3. There exists constant D > 0 such that if γ ⊂ fP\P is a Wu-segment
with f−iγ ⊂ P for i = 1, · · · , n− 1, then ∀x, y ∈ γ,

n∑
i=0

d(f−ix, f−iy) ≤ D.

Proof. By Lemma 4.6,

n∑
i=0

d(f−ix, f−iy) ≤ C
n∑
i=0

d(f−ix, f−i+1x).

Choose 0 ≤ nu ≤ ns ≤ n such that f−ix ∈ Sur∗ if 0 ≤ i < nu, f−ix ∈ Ssr∗ if
ns < i ≤ n, and f ix ∈ Scr∗ if nu ≤ i ≤ ns.

Note that if z ∈ Eup with |z| small, then z ∈ Sur∗ and therefore d(z, fz) is close
to |fz|− |z|. So we may assume that the sectors Su were chosen in such a way that
for all z ∈ Sur∗ , d(z, fz) = |fz − z| ≤ K(|fz| − |z|) for some K > 0. Similarly, if
z ∈ Ssr∗ , then d(z, fz) = |fz − z| ≤ K(|z| − |fz|). Thus,

nu−1∑
i=0

d(f−ix, f−i+1x) ≤ K
nu−1∑
i=0

(
|f−i+1x| − |f−ix|

)
≤ K|fx| ≤ Kr∗.

n∑
i=ns+1

d(f−ix, f−i+1x) ≤ K
n∑

i=ns+1

(
|f−ix| − |f−i+1x|

)
≤ K|f−nx| ≤ Kr∗.

By Corollary 2.3 and Lemma 5.6,

ns∑
i=nu

d(f−ix, f−i+1x) ≤ η
ns∑
i=nu

|f−ix|3 ≤ 2ηr∗ log
( ns∏
i=nu

(1 + |f−ix|2)
)
≤ 2ηr∗ logD.

So the result follows by putting D ≥ Cr∗(2η logD + 2K).

For y ∈ Wu(x), let du(x, y) denote the distance between x and y measured along
Wu(x), and for z ∈W s(x), let ds(x, z) be defined in an analogous way.

Lemma 7.4. There exists constant I > 0 such that if γ ⊂ fP\P is a Wu-segment
with f−iγ ⊂ P for i = 1, · · · , n− 1, then ∀x, y ∈ γ,

log

∣∣Df−ny |Euy ∣∣∣∣Df−nx |Eux ∣∣ ≤ Idu(x, y)θ.

Proof. Denote xi = f−ix, yi = f−iy and γi = f−iγ.
Choose β ≥ 0 such that ‖Dfz‖ ≤ 1 + β ∀ z ∈ B(p, r∗). Take 0 = n0 < n1 <

· · · < nl = n such that 1 + 2β ≤
nj∏

i=nj−1+1

(
1 + |xi|2

)
≤ 1 + 4β ∀j = 1, · · · , l. Then

put kj = nj − nj−1, j = 1, · · · , l.
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Let e(x) = eu(x) be a unit vector in Eux . We have∣∣Df−ny |Euy ∣∣∣∣Df−nx |Eux ∣∣ =
|Dfnxne(xn)|
|Dfnxne(yn)| ·

|Dfnxne(yn)|
|Dfnyne(yn)|

=
l∏

j=1

(
1 +
|Dfkjxnj e(xnj )−Df

kj
xnj

e(ynj)|
|Dfkjynj e(ynj )|

)
·
n∏
i=1

(
1 +
|Dfxie(yi)−Dfyie(yi)|

|Dfyie(yi)|
)

≤
l∏

j=1

(
1 + ‖Dfkjxnj ‖ · |e(xnj )− e(ynj )|

)
·
n∏
i=1

(
1 + ‖Df‖d(xi, yi)

)
.

By Corollary 2.3, ‖Dfxj‖ ≤ 1+3η|xj |2. The choice of ni implies that ∀1 ≤ j ≤ l,

‖Dfkjxnj ‖ ≤
nj∏

i=nj−1+1

(1 + 3η|xi|2) ≤
nj∏

i=nj−1+1

(1 + |xi|2)3η ≤ (1 + 4β)3η.

So by Lemma 7.1,

log

∣∣Df−ny |Euy ∣∣∣∣Df−nx |Eux ∣∣ ≤ (1 + 4β)3ηH
+

r3θ

l∑
j=1

d(xnj , ynj )
θ + ‖Df‖

n∑
i=1

d(xi, yi).(7.4)

For any zi ∈ γi, |zi|2 > |xi|2
2 . Hence for all 1 ≤ j ≤ l,

∣∣Dfkjznj |Euznj ∣∣ ≥
nj∏

i=nj−1+1

(1 + κu|zi|2) ≥
nj∏

i=nj−1+1

(1 + |xi|2)
κu

2 ≥ (1 + 2β)
κu

2 .

This means that du(xnj , ynj ) and therefore d(xnj , ynj) decrease exponentially as j
increases. Thus the first sum in (7.4) is bounded. By Lemma 7.4, the second sum
is also bounded. Now it is easy to conclude that

log

∣∣Df−ny |Euy ∣∣∣∣Df−nx |Eux ∣∣ ≤ I0
for some I0 > 0 independent of the choice of γ, x and y.

Take γ̄ ⊃ γ in such a way that γ̄ ⊂ fP\P with maximal length. The arguments
above tell us that

du(xi, yi) ≤ e2I0
du(x̄i, ȳi)
du(x̄, ȳ)

du(x, y),

where x̄i and ȳi are the extreme points of γ̄i. Note that d(x, y) and du(x, y) are
equivalent for any y ∈ Wu

r0(x) and that du(x̄, ȳ) is bounded away from 0 for any
given P . Using (7.4) again we get the result.

Proposition 7.5. There exist constants δ > 0 and Ju > 1, depending on P , such
that if γ is a Wu-segment with l(γ) ≤ δ and γ ∩ P = ∅, then ∀x, y ∈ γ and n > 0,

J−1
u ≤

∣∣Df−ny |Euy ∣∣∣∣Df−nx |Eux ∣∣ ≤ Ju.
Proof. Use Lemma 7.4 and the fact that Dfx|Eux is uniformly expanding outside P .
See the proof in [HY], Proposition 3.1 for more details.
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Lemma 7.6. There exist constants δ > 0 and Js > 1, depending on P , such that
if γ is a W s-segment with diam(γ) ≤ δ and γ ∩ P = ∅, then ∀x, z ∈ γ and n > 0,

J−1
s ≤

∣∣Dfnz |Euz ∣∣∣∣Dfnx |Eux ∣∣ ≤ Js.
Proof. By using Lemma 7.2, we can prove a result parallel to Lemma 7.4. The rest
is the same as in the proof of the previous proposition.

Proof of Theorem A. Take a rectangle P as in [HY], Lemma 5.1. Define the first
return map g : M\P → M\P . Using the same proof as in [HY], Lemma 5.2, we
know that there exists a g-invariant Borel probability measure µ̄ with the property
that µ̄ has absolutely continuous conditional measures on the unstable manifolds
of f . By pushing forward, we can extend µ̄ to an f -invariant measure on M . That
is, let

µ =
∞∑
i=0

f i∗(µ̄|Qi),(7.5)

where f∗µ̄ = µ̄ ◦ f−1, Q0 = M\P and Qi = {x ∈ M\P : fx, · · · , f ix ∈ P} ∀i ≥ 1.
It is easy to see that µ also has absolutely continuous conditional measures on the
unstable manifolds of f . So if the series in (7.5) converges, then µM is finite, and
after normalization we get an SBR measure of f . Otherwise, µ is a σ-finite measure
on M and therefore is an infinite SBR measure of f .

Let Σ1 and Σ2 be two Wu−leaves, and let ι : Σ1 → Σ2 be a continuous map
defined by sliding along the W s−leaves, i.e., for x ∈ Σ1, ι(x) ∈ Σ2 ∩W s(x).

Proposition 7.7. The W s-foliation is locally Lipschitz away from p. More pre-
cisely, for any rectangle P = [Wu

r (p),W s
r (p)], there exist constants L > 0 and

ε > 0 such that ∀x ∈ M\P with [Wu
ε (x),W s

ε (x)] ∩ P = ∅, and ∀z ∈ W s
ε (x),

ι : Wu
ε (x)→Wu(z) is Lipschitz with Lipschitz constant L.

Proof. Let γ be an arbitrarily short segment in Wu
ε (x). We will prove l(ιγ) ≤ L·l(γ)

for some L > 0 independent of γ, where l(γ) denote the length of γ.
Denote by γs the stable curve connecting x1 ∈ γ and ιx ∈ W s

ε (x1). Take n > 0
such that l(fnγs) ≤ min{l(fnγ), l(fn(ιγ))}. Without loss generality we assume the
lengths of fnγ ∩ P and fn(ιγ) ∩ P are 0 and l(fnγ), l(fnγs) ≤ δ, where δ is as in
Proposition 7.5 and Lemma 7.6. This is possible because, otherwise, we can take a
shorter γ and larger n.

By the continuity of Eux and Esx, there is an L′ > 0 such that l
(
fn(ιγ)

)
≤

L′ · l
(
fn(γ)

)
. The distorsion estimates in Proposition 7.5 and Lemma 7.6 imply

that

l(ιγ) ≤ L′JsJu · l(γ).

Proof of the Corollary of Theorem A. The Lipschitzness of the W s−foliation is
given by Proposition 7.7. This enables us to follow the proof of Lemma 5.3 and
Theorem B in [HY] to get the desired results.

The following facts will be used in the proof of Theorem B in the next part.
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Take p+, p− ∈Wu
r∗(p) in such a way that p+ and p− are in different components

of Wu
r∗(p)\{p}, and take q+, q− ∈ W s

r∗(p) similarly. We have [q, f−ip±] ∈ Wu
r∗(q)

and lim
n→∞

[q, f−ip±] = q for q = q+ or q−. Put

∆++ =
∞∑
n=1

du(q+, [q+, f−np+]) and ∆ = ∆++ + ∆+− + ∆−+ + ∆−−,(7.6)

where ∆+−, ∆−+ and ∆−− are understood in a similar way as ∆++. It is clear
whether ∆ <∞ is independent of the choice of p±. Since W s-foliation is Lipschitz
away from p, whether ∆ <∞ is also independent of the choice of q±.

Proposition 7.8. If ∆ <∞, then f admits an SBR measure. Otherwise, f admits
an infinite SBR measure.

Proof. We may assume p± and q± are in the boundary of P . Denote by P++ the
quarter of P bounded by Wu

r∗(p), W
s
r∗(p), W

u
r∗(q

+) and W s
r∗(p

+). It is enough to
show that µP++ <∞ if and only if ∆++ <∞.

Put Q++
i = {x ∈ Q : fx, · · · , f ix ∈ P}. By (7.5) µP++ =

∞∑
i=1

µQ++
i . Denote

qi = [q+, f−ip+]. Clearly, Q++
i is a rectangle whose unstable direction is bounded

by W s
r∗(q

+) and W s
r∗(qi). The distortion estimates imply that the densities of the

conditional measures of µ on unstable manifolds are bounded away from 0 and ∞
(see e.g. the proof of [HY], Lemma 5.2). So, µQ++

i is proportional to d(q+, qi), i.e.
there exists Ju ≥ 1 such that Ju−1d(q+, qi) ≤ µQ++

i ≤ Jud(q+, qi) for all i ≥ 1.
Now the result becomes clear.

PART 2: Proof of Theorem B

In this part we assume that Assumption A holds. Therefore f can be expressed
as (1.3) and (1.4) in some neighborhood B(p, r) of the fixed point p.

Take z = (x, y) ∈ B(p, r) and denote z̄ = (x̄, ȳ) = [z, fz]. To determine whether
the series in (7.6) converges, we should estimate the order of x̄− x as x→ 0. Since
both z̄ and fz are in W s

r (fz), we need to know the slope of W s
r (fz). Let vsz be a

real number or ∞ such that (vsz , 1) is a tangent vector of W s
r (z). Most of the work

in this part is estimating vsz for z near the y−axis.

8. Preliminaries

We assume that vsz has the form −ρxy , where ρ = ρ(x, y). Results in Lemma
8.3 and Proposition 8.4 imply that ρ(x, y) = a2

b2
+ ρ̂(y) + Rρ(x, y), where ρ̂(y) is

determined by equations (8.6) and (8.7) in Proposition 8.4, and Rρ(x, y) → 0 as
x→ 0. These facts allow us to estimate the bounds of ρ(x, y) in §9 and §10.

By (1.3) we know that for z = (x, y) ∈ B(p, r),

Dfz =
(

1 + φ(x, y) + xφx(x, y) xφy(x, y)
−yψ(x, y) 1− ψ(x, y)− yψy(x, y)

)
(8.1)

where φx denotes the partial derivative of φ with respect to x, etc. The nondegen-
eracy condition (1.1) implies that on B(p, r), φ(x, y) + xφx(x, y) ≥ κu|(x, y)|2 and
ψ(x, y) + yψy(x, y) ≥ κs|(x, y)|2. In other words, for all z = (x, y) ∈ B(p, r),

3a0x
2 + 2a1xy + a2y

2 ≥ κu(x2 + y2),

b0x
2 + 2b1xy + 3b2y2 ≥ κs(x2 + y2).

(8.2)
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Therefore

a0, a2, b0, b2 > 0.(8.3)

In this part we always assume that z = (x, y) ∈ B(p, r). We also assume that r
is small enough such that all higher order terms can be controlled by corresponding
lower order terms. We will denote zn = (xn, yn) = fnz, φn = φ(xn, yn), ψn =
ψ(xn, yn), etc. Without loss generality we only consider the case that z is in the
first quarter. So we have xn, yn ≥ 0 except for the opposite statement. Also we
may assume

−1 ≤ vsz ≤ 1 ∀z ∈ B(p, r).(8.4)

Otherwise, we can rescale the x-axis and y-axis by constant factors. This does not
change the conditions of Theorem B because by (1.3) and (1.4) the ratio of ai/bi
and the signs of ai and bi, i = 0, 1, 2, remain the same.

Lemma 8.1. Let {tn} be a sequence of positive numbers, and let C > 0 and α > 0.
i) If ∀n ≥ 1, tn−1 ≥ tn + Ct1+α

n , then there exist D > 0, k0 ≥ 1 such that

tn ≤ D(n− k0)−
1
α for all large n. Therefore

∞∑
n=1

tn converges as α < 1.

ii) If ∀n ≥ 1, tn−1 ≤ tn + Ct1+α, then there exist D > 0, k0 ≥ 1 such that

tn ≥ D(n+ k0)−
1
α for all large n. Therefore

∞∑
n=1

tn diverges as α ≥ 1.

Proof. i) Take D > 0 such that αCDα ≥ 2. Suppose tn ≥ Dk−
1
α for some integer

k > 1. Then

tn−1 ≥ Dk−
1
α

(
1 + C · (Dk− 1

α )α
)

= Dk−
1
α

(
1 + CDαk−1

)
.

It is easy to see that if k is large enough , then (1 − k−1)(1 + CDαk−1)α > 1 or
k−

1
α

(
1 + CDαk−1

)
≥ (k − 1)−

1
α . So tn−1 ≥ D(k − 1)−

1
α .

The arguments show that if tn−1 ≤ D(n − k0 − 1)−
1
α for some k0 ≥ 1, then

tn ≤ D(n− k0)−
1
α .

ii) The proof is similar.

Lemma 8.2. Let z = (0, y) and zn = (0, yn) = fnz. Then
∞∑
n=0

y3
n ≤ 2

b2
y0 and the

convergence is uniform for all y0 ∈ [0, r].

Proof. Since yn+1 = yn−ynψ(0, yn), (1.3) and (1.4) imply yn−yn+1 = ynψ(0, yn) ≥
b2
2 y

3
n. So

∞∑
n=0

y3
n ≤

2
b2

∞∑
n=0

(
yn − yn+1

)
=

2
b2

y.

The uniformity is clear.

Denote z1 = fz and ρ1 = ρ(z1). Note that ρ1 = ρ
(
x(1 + φ), y(1 − ψ)

)
is also a

function of z = (x, y). Let

∆ρ(x, y) =(ρ− ρ1)(1 + φ)(1 − ψ) + ρ1y(1 + φ)ψy − y(1− ψ)φy
−ρ1ρx(1 + φ)ψx + ρx(1− ψ)φx.(8.5)

Lemma 8.3. If vsz ≤ −ρ(z)
x

y
and 0 ≤ ∆ρ(x, y), then vsz1

≤ −ρ(z1)
x1

y1
. The result

also holds if all “≤” are replaced by “≥”.
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Proof. Since the map v → (1 + c11)v + c12

c21v + (1 − c12)
is increasing as cij small, by (8.1),

vsz1
≤ −(1 + φ+ xφx) · ρx+ xφy · y
−yψx · ρx+ (−ψ − yψy) · y .

To get the result, use the fact that 0 ≤ ∆ρ(x, y) is equivalent to

−(1 + φ+ xφx) · ρx+ xφy · y
−yψx · ρx+ (1− ψ − yψy) · y

≤ −ρ1
x(1 + φ)
y(1− ψ)

.

The next proposition plays a key role for the proof of Theorem B.

Proposition 8.4. There exist a Lipschitz function ρ̂ on [0, r] with ρ̂(0) = 0 satis-
fying the following two equations:

∆ a2
b2

+ρ̂(0, y) =
(
ρ̂(y)− ρ̂(y(0)

1 )
)
(1 + φ)(1 − ψ)

+
(a2

b2
+ ρ̂(y(0)

1 )
)
y(1 + φ)ψy − y(1− ψ)φy = 0

and

b2 log(1 + φ) + a2 log(1 − ψ)− b2
∫ y

y
(0)
1

ρ̂(t)
t
dt = 0,(8.7)

where φ = φ(0, y), ψ = ψ(0, y) and y(0)
1 = y(1− ψ(0, y)).

Proof. Denote z = (0, y), zn = fnz = (0, yn), φn = φ(0, yn), etc. So y
(0)
1 can be

written as y1. Define ρ̂(0) = 0 and for y 6= 0 define

ρ̂(y) =
∞∑
n=0

b2yn(1− ψn)φy(0, yn)− a2yn(1 + φn)ψy(0, yn)
b2(1 + φn)(1− ψn)

n−1∏
k=0

(
1− ykψy(0, yk)

1− ψk

)
.

(8.8)

By (1.4) b2ynφy(0, yn) − a2ynψy(0, yn) = O(y3
n). The product in each term in

(8.8) is less than 1 because yψy > 0. So by Lemma 8.2,

|ρ̂(y)| ≤ Lρ̂y(8.9)

for some Lρ̂ > 0.
It is easy to check

ρ̂(y1) =
∞∑
n=1

b2yn(1− ψn)φy(0, yn)− a2yn(1 + φn)ψy(0, yn)
b2(1 + φn)(1− ψn)

n−1∏
k=1

(
1− ykψy(0, yk)

1− ψk

)
.

Therefore,

ρ̂(y) =
(

1− yψy(0, y)
1− ψ

)
ρ̂(y1) +

b2y(1− ψ)φy(0, y)− a2y(1 + φ)ψy(0, y)
b2(1 + φ)(1 − ψ)

.

Multiplying by (1 + φ)(1 − ψ), we get (8.6).
Note y1 = y(1−ψ). Differentiating the left-hand side of (8.7) with respect to y,

we get

b2φy
1 + φ

− a2ψy
1− ψ + b2

ρ̂(y)
y
− b2

ρ̂(y1)
y(1− ψ)

(1− ψ − yψy).
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By (8.6) it is equal to 0. This means that the left-hand side of (8.7) is a constant.
Since ρ̂(y), φ(0, y), ψ(0, y)→ 0 as y → 0, this constant must be zero.

Now we prove Lipschitzness of ρ̂. We will prove that the derivative of ρ̂ is
bounded by a constant for y 6= 0. This combined with (8.9) implies Lipschitzness
of ρ̂ on [0, r].

By (1.4) we can write

b2yn(1 − ψn)φy(0, yn)− a2yn(1 + φn)ψy(0, yn)
b2(1 + φn)(1 − ψn)

= C′y3
n + o(y3

n)

and

1− ykψy(0, yk)
1− ψk

= (1− ψk)2 1− ψk − ykψy(0, yk)
(1− ψk)3

= (1− ψk)2
(
1 + C′′y3

k + o(y3
k)
)

for some constants C′ and C′′. Clearly,
n−1∏
k=0

(1−ψk) = yn
y . Hence we can write (8.8)

as

ρ̂(y) =
∞∑
n=0

[
C′y3

n + o(y3
n)
] n−1∏
k=0

(1− ψk)2
(
1 + C′′y3

k + o(y3
k)
)

=
∞∑
n=0

C′y5
n + o(y5

n)
y2

n−1∏
k=0

(
1 + C′′y3

k + o(y3
k)
)
.

Since
dyk+1

dyk
= 1 − ψk − ykψy(0, yk) ≤ 1 − ψk =

yk+1

yk
, we get

dyk
dy
≤ yk

y
≤ 1.

Thus, ∣∣∣ d
dy

C′y5
n + o(y5

n)
y2

∣∣∣ ≤ C1
y5
n

y3
≤ C1

y3
n

y

for some C1 > 0. By Lemma 8.2,
n−1∏
k=0

(
1 + C′′y3

k + o(y3
k)
)
≤ C2. Hence,

∣∣∣ d
dy

n−1∏
k=0

(
1 + C′′y3

k + o(y3
k)
)∣∣∣

=
∣∣∣n−1∑
k=0

3C′′y2
k + o(y2

k)
1 + C′′y3

k + o(y3
k)
· yk
y
·
n−1∏
k=0

(
1 + C′′y3

k + o(y3
k)
)∣∣∣

≤
n−1∑
k=0

4|C′′|y2
k ·

yk
y
· C2 ≤

4|C′′|C2

y

n−1∑
k=0

y3
k ≤ C3.

From these inequalities we get∣∣∣ ∞∑
n=0

d

dy

[C′y5
n + o(y5

n)
y2

n−1∏
k=0

(
1 + C′′y3

k + o(y3
k)
)] ∣∣∣ ≤ ∞∑

n=0

(
C1
y3
n

y
· C2 + 2C′y3

n · C3

)
.

Now it is easy to see by Lemma 8.2 that the convergence is uniform. Thus, we

know that
∣∣dρ̂(y)
dy

∣∣ is bounded by
2
b2

(C1C2 + 2C′C3r) for all y ∈ (0, r]. This proves

the result.
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9. Existence of SBR measures

In this section we prove the first part of Theorem B. We estimate the upper
bounds of |vsz | in Lemma 9.1 and then show that the general terms of the series in
(7.6) decrease at a rate faster than n−

1
α (implied in Lemma 9.2).

Lemma 9.1. Suppose αa2 > 2b2, a1 = 0 = b1 and a0b2 − a2b0 > 0. Then for any
point q = (0, yq) with yq > 0 small, there exists ε > 0 such that ∀z0 = (x0, y0) ∈
Wu
ε (q) with x0 > 0,

vsz0
≥ −

( a2

b2
+ ρ̂(y0)

)
(1− xα)

x0

y0
.(9.1)

Proof. For each z0 = (x0, y0) ∈ Wu
r (q), zn = (xn, yn) = fnz0, we denote

ρi = ρ(zi) =
(a2

b2
+ ρ̂(y)

)(
1− xαi

)
∀i ≥ 0.(9.2)

We show that for yq > 0 small, there exists ε > 0 such that ∀z0 = (x0, y0) ∈
Wu
ε (q) with x0 > 0,

vszi ≤ −ρi
xi
yi

and ρixi ≤ yi

imply

vszi+1
≤ −ρi+1

xi+1

yi+1
.

This proves the result of the lemma. In fact, if (9.1) is not true, then for some large
n, ρnxn ≥ yn and therefore vszn ≤ −ρn ·

xn
yn

< −1, contradicting to (8.4).

By Lemma 8.3, it is enough to show for such zi = (xi, yi),

∆ρi(xi, yi) = (ρi − ρi+1)(1 + φi)(1 − ψi)
+ ρi+1yi(1 + φi)ψy(xi, yi)− yi(1− ψi)φy(xi, yi)

− ρiρi+1xi(1 + φi)ψx(xi, yi) + ρixi(1 − ψi)φx(xi, yi) ≥ 0.(9.3)

Note that xαi+1 − xαi = xαi (1 + φi)α − xαi = αxαi
(
φi + O(φ2

i )
)

= αa2x
α
i y

2
i +

xαi O(x2
i + y3

i ). By (9.2) we have

ρi − ρi+1 =
(
ρ̂(yi)− ρ̂(yi+1)

)
(1− xαi+1) +

(a2

b2
+ ρ̂(yi)

)
(xαi+1 − xαi )

=ρ̂(yi)− ρ̂(yi+1) +
a2

b2
αa2x

α
i y

2
i + xαi O(x2

i + y3
i ).

Since a1 = 0 = b1, by (1.4) we see that φy(x, y) = φy(0, y)+xO(x+y), ψy(x, y) =
ψy(0, y) + xO(x + y) = 2b2y +O(x2 + y2). So

ρi+1yiψy(xi, yi) =
(a2

b2
+ ρ̂(yi+1)

)
yi
(
ψy(0, yi)+xiO(xi+yi)

)
−a2

b2
xαi
(
2b2y2

i + yiO(x2
i +y2

i )
)
,

and

yiφy(xi, yi) = yi
(
φy(0, yi) + xiO(xi + yi)

)
.
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By Lemma 8.4,(
ρ̂(yi)− ρ̂(y(0)

i+1)
)
(1 + φi)(1 − ψi)

+
(a2

b2
+ ρ̂(y(0)

i+1)
)
yi(1 + φi)ψy(xi, yi)− yi(1− ψi)φy(xi, yi) = 0,

where y(0)
i+1 = yi(1−ψ(0, yi)). Note that yi+1 = yi(1−ψ(xi, yi)). So both yi+1−y(0)

i+1

and ρ̂(yi+1)− ρ̂(y(0)
i+1) have order O(x2

i yi). Hence

(ρi − ρi+1)(1 + φi)(1− ψi) + ρi+1yi(1 + φi)ψy(xi, yi)− yi(1− ψi)φy(xi, yi)

=
a2

b2
(αa2 − 2b2)xαi

(
y2
i +O(x2

i + y3
i )
)

+ xiyiO(xi + yi).

Also, since ψx(x, y) = 2a0x+O(x2 + y2) and ψx(x, y) = 2b0x+O(x2 + y2),

−ρiρi+1xiψx(xi, yi) + ρixiφx(xi, yi) = 2ρi(−ρi+1b0 + a0)x2
i + xiO(x2

i + y2
i ).

By (9.2), we have

−ρi+1b0 + a0 =
a0b2 − a2b0

b2
+
a2

b2
xαi+1 +O(yi+1).

So
− ρiρi+1xiψx(xi, yi) + ρixiφx(xi, yi)

= 2ρi
(a0b2 − a2b0

b2
+
a2

b2
xαi+1

)
x2
i + xiO(x2

i + y2
i ).

Therefore, (9.3) can be written as

∆ρi(xi, yi) =
a2

b2
(αa2 − 2b2)xαi

(
y2
i +O(x2

i + y3
i )
)

+2ρi
(a0b2 − a2b0

b2
+
a2

b2
xαi+1

)
x2
i + xiO(x2

i + y2
i ).

Now the assumptions a2 > 4b2 and a0b2 − a2b0 > 0 imply ∆ρ(xi, yi) ≥ 0 if y0 and
x0 are small.

Lemma 9.2. Let z0 = (x0, y0) with x0, y0 > 0. If for all z = (x, y) in the stable
curve that joins z̄0 and z1,

vsz ≥ −
( a2

b2
+ ρ̂(y)

)(
1− xα

)x
y
,(9.4)

then

x̄0 ≥ x0 + Cx1+α
0(9.5)

for some constant C = C(yq) > 0.

Proof. We regard W s
r (x) as the graph of a function x = x(y). Then (9.6) gives

dx

dy
≥ −

(a2

b2
+ ρ̂(y)

)
(1− xα)

x

y
,

i.e.,

dx

x(1 − xα)
+
(a2

b2
+ ρ̂(y)

)dy
y
≥ 0.
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Integrating it from z1 = (x1, y1) to z̄0 = (x̄0, ȳ0), we get

log
x̄0

x1
− 1
α

log
1− x̄α0
1− xα1

+
a2

b2
log

ȳ0

y1
+
∫ ȳ0

y1

ρ̂(y)
y
dy ≥ 0.

From now on we omit subscript 0 in the rest of proof. This inequality implies

x̄ ≥ x1

(1− x̄α
1− xα1

) 1
α
(y1

ȳ

)a2
b2 exp

[
−
∫ ȳ

y1

ρ̂(y)
y
dy
]
.

Since x1 = x(1 + φ) and y1 = y(1− ψ), we can write

x̄

x
≥(1 + φ)(1 − ψ)

a2
b2

(1− x̄α
1− xα1

) 1
α
(y
ȳ

) a2
b2 exp

[
−
∫ ȳ

y1

ρ̂(y)
y
dy
]

= exp
1
b2

{
b2 log(1 + φ) + a2 log(1− ψ)− b2

∫ y

y1

ρ̂(y)
y
dy
}

·
(1− x̄α

1− xα1

) 1
α
(y
ȳ

) a2
b2 exp

∫ y

ȳ

ρ̂(y)
y
dy.

The first factor on the right-side is of the form 1 +O(x), because by Lemma 8.4
and (8.9),

b2 log(1 + φ) + a2 log(1 − ψ)− b2
∫ y

y1

ρ̂(y)
y
dy = b2

∫ y1

y
(0)
1

ρ̂(y)
y
dy = O(x),

where y(0)
1 = y

(
1− ψ(0, y)

)
.

Note that x1 = x+ xφ. We have

1− x̄α
1− xα1

= 1 +
xα(1 + φ)α − x̄α

1− xα1
= 1 +

xα + αxαφ− x̄α +O(φ2)
1− xα1

.

Without loss of generality, we may assume x̄α − xα ≤ 1
2
xαφ; otherwise, we have

x̄

x
>
(
1 +

1
2
φ
) 1
α ≥ 1 + Cxα for some C = O(y2) > 0 and therefore (9.5) is true.

Thus, we get (1− x̄α
1− xα1

) 1
α ≥

(
1 +

αxαφ+O(φ2)
2(1− xα1 )

) 1
α ≥ 1 +

1
4
xαφ.

Since both z̄ = (x̄, ȳ) and z = (x, y) are in the same local unstable manifold,
|ȳ − y| ≤ N(x̄− x) ≤ N(x1 − x) = Nxφ for some N > 0. So,∣∣∣(y

ȳ

) a2
b2
∣∣∣ ≤ (1 +

Nxφ

ȳ

) a2
b2 = 1 +O(x).

By (8.9) we have

exp
∫ y

ȳ

ρ̂(y)
y
dy ≤ exp

(
Lρ̂|y − ȳ|

)
≤ exp

(
Lρ̂Nxφ

)
= 1 +O(x).

Summarizing these results, we get that if x is small enough, then

x̄

x
≥ 1 +

1
4
xαφ+O(x) ≥ 1 +

a2y
2

8
xα.
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Proof of Theorem B(I). By Lemmas 9.1, 9.2 and 8.1.i) we know that the sum ∆++

in (7.6) converges. Similary, we have ∆−+, ∆−−, ∆+− ≤ ∞. Thus the result
follows from Proposition 7.8.

Remark 9.3. By Lemma 9.2 and 8.1.i), we can see that under the assumptions of
the theorem, the rate of convergence of the series in (7.6) is faster than n−

1
α .

10. Existence of infinite SBR measures

We prove the second part of Theorem B. We get the lower bounds of |vsz | in
Lemma 10.2 and then prove in Lemma 10.3 that there is at least one series in (7.6)
whose general terms decrease at a rate slower than n−

1
2 .

Lemma 10.1. Suppose 2a2 < αb2. Then for any constants K,N > 0, point q =
(0, yq) with yq > 0 small, there exists ε > 0 such that ∀z0 = (x0, y0) ∈ Wu

ε (q) with
x0 > 0, the inequalities

x0y0

n∏
j=0

(
1− 7

8
yiψy(0, yi)

)−1

≥ N and Kxn ≤ yn

hold simultaneously for some n = n(z0) > 0.

Proof. We may assume that K is large enough such that if Kx ≤ y, then

1− 7
8
yψy(0, y) ≤ 1− 13

8
b2y

2 ≤ (1 − ψ)
3
2

and

(1 + φ)2(1− ψ)α+ ≤ 1

for some α < α+ < 1. Hence for any z0 = (x0, y0) with Kx0 < y0, we have
x2

1y
α+
1 ≤ x2

1(1 + φ1)2y
α+
1 (1− ψ1)α+ ≤ x2

0y
α+
0 . Let n = n(z0) be the largest integer

such that Kxn ≤ yn. Thus Kxn+1 > yn+1. So we have

x2
0y
α+
0 ≥ x2

n+1y
α+
n+1 ≥ K−2y

2+α+
n+1

and therefore

x0y0
n∏
j=0

(
1− 7

8yiψy(0, yi)
) ≥ y

3
2
0 · x0y0

y
3
2
0 ·

n∏
j=0

(1− ψj)
3
2

≥ x0y
5
2
0

y
3
2
n+1

≥ y
(5−α+)/2
0

Ky
(1−α+)/2
n+1

.

Since yn+1 → 0 as z0 = (x0, y0)→ q = (0, yq), we get the result.

Lemma 10.2. Suppose 2a2 < αb2 and b1 < 0 < a1. Then for any point q = (0, yq)
with yq > 0, there exists ε > 0 such that ∀z0 = (x0, y0) ∈Wu

ε (q) with x0 > 0,

vsz0
≤ −

( a2

b2
+ ρ̂(y0)

)x0

y0
.(10.1)

Proof. For each z0 = (x0, y0) ∈ Wu
r (q), define c0 = 0 and

ci =
a2

b2
(a1 −

a2

b2
b1)x0y0

i−1∏
j=1

(
1− 7

8
yiψy(0, yi)

)−1

∀i > 0.(10.2)

We have

ci+1 − ci = ci+1 ·
7
8
yiψy(0, yi) ∀i > 0.(10.3)



SBR MEASURES FOR “ALMOST ANOSOV” DIFFEOMORPHISMS 2365

Put

ρi = max
{
−1

3
,
a2

b2
+ ρ̂(yi)− ci

}
∀i ≥ 0.(10.4)

We prove that for each small yq > 0, these exists ε > 0 such that ∀z0 = (x0, y0) ∈
Wu
ε (q), q = (0, yq), with x0 > 0,

vszi ≥ −ρi
xi
yi

(10.5)

implies

vszi+1
≥ −ρi+1

xi+1

yi+1
.(10..6)

This will prove the result of the lemma. In fact, if (10.1) is not true, then for some

large n,
xn
yn

> 3 and vszn ≥
1
3
· xn
yn

> 1, contradicting to (8.4).

By Lemma 8.3, to prove that (10.5) implies (10.6), it is enough to show that

∆ρi(xi, yi) = (ρi − ρi+1)(1 + φi)(1 − ψi)
+ ρi+1yi(1 + φi)ψy(xi, yi)− yi(1− ψi)φy(xi, yi)

− ρiρi+1xi(1 + φi)ψx(xi, yi) + ρixi(1 − ψi)φx(xi, yi) ≤ 0.

By (10.3) and (10.4),

ρi − ρi+1 =


ρ̂(y0)− ρ̂(y1) + c1, if i = 0;
ρ̂(yi)− ρ̂(yi+1) + 7

8ci+1yiψy(0, yi)− di+1, if i > 0 & ρi > − 1
3 ;

0, if i > 0 & ρi = − 1
3 ,

where di+1 = ρ(yi+1)−
(
a2
b2

+ ρ̂(yi+1)− ci+1

)
≥ 0, and di+1 = 0 except for the case

ρi > − 1
3 and a2

b2
− ρ̂(yi+1) + ci+1 <

1
3 .

If ρi+1 > − 1
3 , we write

ρi+1yiψy(xi, yi)−yiφy(xi, yi) =
(a2

b2
+ ρ̂(yi+1)

)
yiψy(0, yi)− yiφy(0, yi)

−(ci+1 − di+1)yiψy(0, yi) + (ρi+1b1 − a1)xiyi + xiyiO(xi + yi);

otherwise,
ρi+1yiψy(xi, yi)− yiφy(xi, yi)

= 2
(
ρi+1b2 − a2

)
y2
i +

(
ρi+1b1 − a1

)
xiyi + xiyiO(xi + yi).

Also,
− ρiρi+1xiψx(xi, yi) + ρixiφx(xi, yi)

=− ρi(ρi+1b1 − a1)xiyi − 2ρi(ρi+1b0 − a0)x2
i + xiyiO(xi + yi).

Similarly, as in the proof of Lemma 9.1, we use Lemma 8.4 to get
∆ρi(xi, yi) = Di(xi, yi) + (1 − ρi)(ρi+1b1 − a1)xiyi

− 2ρi(ρi+1b0 − a0)x2
i + xiyiO(xi + yi),

where

Di(xi, yi) ≤


a2
b2

(a1 − a2
b2
b1)x0y0 if i = 0;

− 1
8ci+1yiψy(0, yi) if i > 0 & ρi > − 1

3 ;
2(ρi+1b2 − a2)y2

i if i > 0 & ρi = − 1
3 .
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Recall 2a2 < αb2 and b1 < 0 < a1.
Since ρ0 = a2

b2
+ O(y0) ≤ α

2 + O(y0) and ρ1 = ρ0 + O(y2
0), we have ρ1b1 − a1 =

a2
b2
b1 − a1 +O(y0) ≤ 0 and 1− ρ0 − a2

b2
> 0 if y0 is small. So if Kx0 ≤ y0 for some

large K, then ∆ρ0(x0, y0) ≤ 0.
For the case i > 0 and ρi > − 1

3 , by Lemma 10.1, we can choose ε small enough
such that Kxi ≤ yi for some large K. Also, yiψy(0, yi) = 2b2y2

i + O(y3
i ). So if

ρi+1 ≥ 0, then both y2
i and xiyi terms has negative sign, and if ρi+1 ≤ 0, then

ci+1 >
a2
2b2

and therefore the first term can control other terms.
For the case ρi = − 1

3 , we can see that ∆ρi(xi, yi) is equal to

2(−1
3
b2 − a2)y2

i +
4
3

(−1
3
b1 − a1)xiyi +

2
3

(−1
3
b0 − a0)x2

i + xiyiO(xi + yi)

=− 2
3

(3a2y
2
i + 2a1xiyi + a0x

2
i )−

2
9

(3b2y2
i + 2b1xiyi + b0x

2
i ) + xiyiO(xi + yi).

By (8.2) it is less than 0. This proves the lemma.

Lemma 10.3. Let z0 = (x0, y0) with x0, y0 > 0. If for all z = (x, y) in the stable
curve that joins z̄0 and z1,

vsz0
≤ −

( a2

b2
+ ρ̂(y0)

)x0

y0
,

then

x̄0 ≤ x0 + Cx2
0

for some constant C = C(yq) > 0, where x̄ satisfies z̄ = (x̄, ȳ) = [z, fz].

Proof. Using a similar way as in the proof of Lemma 9.3, we can get

x̄0

x0
≤ exp

1
b2

[
b2 log(1 + φ0) + a2 log(1− ψ0)− b2

∫ y0

y1

ρ̂(y)
y
dy
](y0

ȳ0

)a2
b2

· exp
∫ y0

ȳ0

ρ̂(y)
y
dy ≤ 1 +O(x0).

Therefore the result follows.

Proof of Theorem B(II). First we assume that b1 < 0 < a1. By Lemma 10.3 and
8.1.ii), ∆++ = ∞, where ∆++ is defined in (7.6). Therefore by Proposition 7.8 f
has an infinite SBR measure.

By (1.3) and (1.4), the signs of a1 and b1 change under the transformation
x→ −x and y → −y respectively. So under the assumption of Theorem B (II), we
can always find a suitable coordinate system such that b1 < 0 < a1.
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