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CONFORMALLY INVARIANT MONGE-AMPÈRE EQUATIONS:
GLOBAL SOLUTIONS

JEFF A. VIACLOVSKY

Abstract. In this paper we will examine a class of fully nonlinear partial dif-
ferential equations which are invariant under the conformal group
SO(n+1,1). These equations are elliptic and variational. Using this structure
and the conformal invariance, we will prove a global uniqueness theorem for
solutions in Rn with a quadratic growth condition at infinity.

1. Introduction

Let u be a positive function in C2(Rn), n ≥ 3, and let k be an integer 1 ≤ k ≤ n.
We will let σk(A) denote the kth elementary symmetric function of the eigenvalues
of the matrix A, and δij will denote the Kronecker delta symbol. In this paper we
will study the following nonlinear partial differential equations:

σk

(
u · ∂2u

∂xi∂xj
− |∇u|

2

2
δij

)
= C,(1)

where C > 0 is a constant. These equations are not arbitrary, but arise naturally in
the study of conformal geometry, and they are conformally invariant: if T : Rn →
Rn is a conformal transformation, and u(x) is a solution of (1), then

v(x) = |J(x)|−1/nu(Tx)(2)

is also a solution, where J is the Jacobian of T . This property will be demonstrated
in Section 7 below.

For 1 ≤ k ≤ n − 1, a global uniqueness theorem for solutions of (1) was proved
in [5]. We will extend this uniqueness result to the case k = n:

Theorem 1.1. Let u(x) ∈ C2(Rn) be a positive solution to (1) for some k with
1 ≤ k ≤ n. Suppose that ũ(y) = |y|2 · u( y1

|y|2 , . . . ,
yn

|y|2 ) is C2 and

lim
y→0

ũ(y) > 0.

Then

u(x) = a|x|2 + bix
i + c

where a, bi, and c are constants.
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This will be proved by showing that we can use the Alexandroff reflection princi-
ple, as employed by Gidas-Ni-Nirenberg in [4], to get a priori rotational symmetry of
solutions. The equation then reduces to an ODE, and we will analyze the solutions
to arrive at the theorem.

Acknowledgements. This material is based on work supported under a Sloan
Dissertation Fellowship, and represents part of the author’s doctoral dissertation
at Princeton University.

2. Asymptotic condition

We begin with a short explanation of the geometric origin of the equations (1),
to explain why the condition in Theorem 1.1 is a natural geometric condition. We
let (Sn, g0) be the n-sphere with g0 the standard metric. If g is another metric in
the conformal class of g0, then we consider the equations

σk

(
Ric− R

2(n− 1)
· g
)

= constant,(3)

where Ric and R are the Ricci tensor and scalar curvature of g, respectively, and
σk is taken with respect to g.

We will let x = (x1, . . . , xn) be the coordinates on Sn corresponding to stere-
ographic projection from (0, . . . , 0, 1) and y = (y1, . . . , yn) be those corresponding
to projection from (0, . . . , 0,−1). In the x coordinates, we write the metric as
g = u(x)−2gflat, and the equations become (see Section 3)

σk

(
u · ∂2u

∂xi∂xj
− |∇u|

2

2
δij

)
= constant.(4)

The round metric is represented by the function 1 + |x|2.
What is the condition on the function u, so that g will give a C2 metric on Sn?

We have

g = u(x)−2gflat = u(x)−2(1 + |x|2)2 1
(1 + |x|2)2

gflat = u(x)−2(1 + |x|2)2g0,

so we require that w(x) = u(x)(1 + |x|2)−1 should extend to be a positive C2

function on Sn. We write g = w−2g0 where w is a function on Sn, and w(x) is just
the function w in the x coordinates. We will let w̃(y) be the function w expressed
in the y coordinates. We then have

w̃(y) = w(
y

|y|2 ) = u(
y

|y|2 )(1 +
1
|y|2 )−1 = u(

y

|y|2 )|y|2(1 + |y|2)−1.

So then in the y coordinates, the metric pulls back to

g = w̃−2(y)(1 + |y|2)−2gflat = (u(
y

|y|2 )|y|2)−2gflat.

So the function ũ(y) = u( y
|y|2 )|y|2 is the conformal factor to the flat metric in the

y coordinates. Therefore we have a C2 metric on Sn if and only if ũ(y) is C2 and
positive.
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3. Ellipticity

In this subsection we will show that our equations are elliptic at any global
solution, and moreover, in order to apply the version of the maximum principle
required in Theorem 4.1 below, we show that if u(x) and v(x) are global solutions,
then we have ellipticity for all functions (1− t)v(x) + tu(x) with t ∈ [0, 1].

We let

Fk(u, ui, uij) = σk

(
u · uij −

1
2

(
∑
l

u2
l )δij

)
− C.

To simplify the notation, we let

uij = u · uij −
1
2

(
∑
l

u2
l )δij .(5)

Definition 3.1. Let aij be the components of an n×nmatrix. Then for 0 ≤ q ≤ n,
the qth Newton transformation associated with aij is defined to be

T ijq (a∗∗) =
1
q!
δ
i1...iqi
j1...jqj

ai1j1 · · ·aiqjq ,

where δi1...iqij1...jqj
is the generalized Kronecker delta symbol, and we sum on all repeated

indices.

We then have
∂

∂uij
Fk = u · T ijk−1(u∗∗).(6)

We now claim that, at u, this is positive definite, i.e., the equations are elliptic
at u.

Definition 3.2. Let (λ1, . . . , λn) ∈ Rn. We view the elementary symmetric func-
tions as functions on Rn

σk(λ1, . . . , λn) =
∑

i1<···<ik

λi1 · · ·λik ,

and we let

Γ+
k = component of {σk > 0} containing the positive cone.

For a symmetric n×n matrix A, the notation A ∈ Γ+
k will mean that the eigenvalues

lie in the set.

We have the following proposition, whose proof may be found in [1], [2], and [6].

Proposition 3.3. Each set Γ+
k is an open convex cone with vertex at the origin,

and we have the following sequences of inclusions :

Γ+
n ⊂ Γ+

n−1 ⊂ · · · ⊂ Γ+
1 .

For symmetric matrices A ∈ Γ+
k , B ∈ Γ+

k , and t ∈ [0, 1], we have the following
inequality:

{σk((1− t)A+ tB)}1/k ≥ (1− t){σk(A)}1/k + t{σk(B)}1/k.

Furthermore, if aij ∈ Γ+
k , then T ijk−1(a∗∗) is positive definite.
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Since our solution u is positive, and u→∞ as |x| → ∞, there is a minimum. At
this minimum, uij is positive semi-definite. By continuity we must have uij ∈ Γ+

k

everywhere. From the above proposition, and (6), we have that equations (1) are
elliptic at u.

We let wt(x) = (1 − t)v(x) + tu(x). We will now show that if uij ∈ Γ+
k and

vij ∈ Γ+
k , then (wt)ij ∈ Γ+

k , i.e., Fk is elliptic at wt for t ∈ [0, 1]. We have

(wt)ij = wt(wt)ij −
|∇wt|2

2
δij

= ((1 − t)v + tu)((1− t)vij + tuij)−
|∇((1 − t)v + tu)|2

2
δij

= (1 − t)2vvij + t2uuij + t(1− t)(vuij + uvij)

− ((1− t)2 |∇v|2
2

+ t(1− t)∇u · ∇v + t2
|∇u|2

2
)δij

= (1 − t)2vij + t2uij + t(1− t)(v
u

(uuij −
|∇u|2

2
δij +

|∇u|2
2

δij)

+
u

v
(vvij −

|∇v|2
2

δij +
|∇v|2

2
δij)−∇u · ∇vδij)

= (1 − t)((1− t)vij + t
u

v
vij) + t(tuij + (1 − t)v

u
uij)

+
t(1 − t)

2uv
(v2|∇u|2 + u2|∇v|2 − 2v∇u · u∇v)δij

= (1 − t)((1− t)vij + t
u

v
vij) + t(tuij + (1 − t)v

u
uij)

+
t(1 − t)

2uv
(|v∇u − u∇v|2δij).

From Proposition 3.3, the first two terms together are in Γ+
k . It is easy to see that

if aij ∈ Γ+
k and λ ≥ 0, then aij + λδij ∈ Γ+

k , so we are done.

4. Rotational symmetry

We will now show how to apply the ideas of [4] to prove

Theorem 4.1. Suppose that u(x) satisfies the conditions in Theorem 1.1. Then u
is rotationally symmetric at some point and ur > 0 for r > 0 where r is the radial
coordinate at that point.

Proof. Let v(x) = u−1(x). From the assumption we have that ṽ(y) = v( y
|y|2 )|y|−2 is

C2 and positive. Since the equations are invariant under translation, and ṽ(y)→ 0
and y →∞, we may assume that v(y) has a global maximum at 0. From Taylor’s
Theorem near the origin we have

ṽ(y) = a0 +
1
2
ṽij(0)yiyj + o(|y|2), and

ṽi(y) = ṽij(0)yj + o(|y|).
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From this it follows that v(x) satisfies the following asymptotic expansions for large
|x|:

v =
1
|x|2

(
a0 +

ajkxjxk
|x|4 + o

(
1
|x|2

))
,

vxi = − 2a0

|x|4 xi −O
(

1
|x|5

)
.

(7)

Following [4], we will prove that u(x) is rotationally symmetric at the origin and
that ur > 0 for r > 0. Since the equation is invariant under rotations, we just need
to prove symmetry under reflection in the hyperplane x1 = 0 and that ux1 > 0 if
x1 > 0. As in [4], we let Tλ denote the hyperplane x1 = λ. For λ > 0 and for any
x = (x1, x

′) we denote by xλ the reflection of x in the plane x1 = λ.

Lemma 4.2. For any λ > 0, ∃R = R(λ) depending only on min(1, λ) (as well as
on u) such that for x = (x1, x

′), y = (y1, y
′) satisfying

x1 < y1, x1 + y1 ≥ 2λ, |x| ≥ R,
we have

u(x) < u(y).

Proof. Since v(x) satifies the expansions (7), Lemma 4.1 of [4] applies to v, to
conclude that v(x) > v(y). Therefore u(x) < u(y).

We then have the following lemma, analogous to Lemma 4.2 of [4]

Lemma 4.3. There exists λ0 ≥ 1 such that ∀λ ≥ λ0,

u(x) < u(xλ) if x1 < λ.(8)

The following lemma is where ellipticity and the invariance of the equation under
reflection in Tλ enter the argument.

Lemma 4.4. Assume that for some λ > 0

u(x) ≤ u(xλ), u(x) 6≡ u(xλ), for x1 < λ.

Then u(x) < u(xλ) if x1 < λ, and

u1(x) > 0 on Tλ.(9)

Proof. From invariance under reflections, the function w(x) = u(xλ) is also a solu-
tion in x1 < λ and w ≥ u there. We have that

z(x) = u(x)− w(x) ≤ 0, z(x) 6≡ 0.

From the discussion of ellipticity above, we then have that z(x) satisfies a linear
elliptic equation of the form

Lz = 0 in x1 ≤ λ.
On compact subsets, L is uniformly elliptic, therefore the lemma follows from the
maximum principle and the Hopf boundary point lemma.

Using the above lemmas, as in [4], we can conclude that the reflection property
(8) holds for all λ ∈ (0,∞). We then have that u(x) ≤ u(x0), and u1 < 0, for all x
with x1 < 0. Since the direction was arbitrary, the theorem follows.
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5. Radial solutions

In this section we will analyze the radial solutions of (1). We assume u(x) is a
solution and u = u(r). We let r = et, and

φ(t) = e−tu(et).

The equations (1) become

σk

(
φφ′′ − φ2

2 −
(φ′)2

2 0
0 (φ

2

2 −
(φ′)2

2 )In−1

)
= Ck,(10)

where Ck is a constant. This can be verified by direct computation, but it is easier
to use cylindrical coordinates; see [5]. Note that φ(t) = cosh(t) is a solution for all
k. This corresponds to u(x) = 1 + |x|2. We will now fix Ck = 2−k

(
n
k

)
corresponding

to this solution in order to get rid of scaling.
From [5], we know that equations (10) are variational, with Lagrangian given by

(k 6= n/2)

L =
1
φn

(
1

(n− 2k)
σk

(
φφ′′ − φ2

2 −
(φ′)2

2 0
0 (φ

2

2 −
(φ′)2

2 )In−1

)
− Ck

n

)
.

For any one-dimensional functional of the form∫
L(φ, φ′, φ′′)dt,

then we have the first integral (see [3])

L− φ′(Lφ′ −
d

dt
Lφ′′)− φ′′Lφ′′ = constant.

To compute the conservation law, since we are at a solution we use (10) for
solving φ′′ and substitute this in to get a first order Hamiltonian involving only φ
and φ′. The conservation law takes the form

1− (φ2 − (φ′)2)k = Dk,nφ
n,(11)

where Dk,n is a constant parametrizing the solutions. Instead of computing it this
way, we will just show directly that this is indeed a conservation law by substitu-
tion. Note that the above Lagrangian is valid for k 6= n/2, but for k = n/2 the
conservation law still works.

In the following we consider only positive solutions. Assume we have a function
φ that satisfies the conservation law (11). Since (11) is invariant under φ′ → −φ′,
we may also assume that φ′ ≥ 0, i.e., we just need to do the computation in the
upper half phase space. Solving (11) for φ′ (see below why taking the kth root is
justified) we get

φ′ =
√
φ2 − (1−Dk,nφn)1/k.(12)

Differentiating this, we find

φ′′ =
1
2
· 1√

φ2 − (1−Dk,nφn)1/k
· d
dt

(φ2 − (1−Dk,nφ
n)1/k)

=
1

2φ′
(2φ+

1
k

(1 −Dk,nφ
n)

1
k−1 · nDk,nφ

n−1)φ′

= φ+
n

2k
(1−Dk,nφ

n)
1−k
k Dk,nφ

n−1.

(13)
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We will now show that φ necessarily solves the original equations (10). Expand out
(10) to get(

n− 1
k − 1

)
(
φ2

2
− φ′

2

2
)k−1(φφ′′ − φ2

2
− φ′

2

2
) +

(
n− 1
k

)
(
φ2

2
− φ′

2

2
)k = Ck.

Notice that for k > 1, φ2 − φ′2 factors out of this equation. Since Ck > 0, we must
have φ2 > φ′

2. This is why we were able to take the kth root above. Therefore
solving this for φ′′ we have

φ′′ =
1
φ

(
−(n− 2k)

2k
φ2 +

n

2k
φ′

2 +
Ck(
n−1
k−1

) · 1

(φ
2

2 −
φ′2

2 )k−1

)
.

We substitute (12) into this to get

φ′′ =
1
φ

(
2k − n

2k
φ2 +

n

2k
(φ2 − (1 −Dk,nφ

n)1/k) +
2k−1Ck(
n−1
k−1

) · (1−Dk,nφ
n)

k−1
k

)

=
1
φ

(
φ2 − n

2k
(1 −Dk,nφ

n)1/k + 2k−1 Ck(
n−1
k−1

) · (1−Dk,nφ
n)

1
k−1

)

=
1
φ

(
φ2 − (1−Dk,nφ

n)
1
k−1

(
n

2k
(1−Dk,nφ

n)− 2k−1Ck(
n−1
k−1

) ))

=
1
φ

(
φ2 − (1 −Dk,nφ

n)
1
k−1

(
n

2k
(−Dk,nφ

n)
))

= φ+
n

2k
(1−Dk,nφ

n)
1−k
k Dk,nφ

n−1,

which equals (13) above.

6. Completion of Proof of Theorem 1.1

We have that u(r) = rφ(lnr). In order for u(r) to give a valid solution, we need
it to be positive at zero, and that ur(0) = 0. For the first condition, we need

∞ > lim
r→0

u(r) = lim
r→0

rφ(lnr) = lim
t→−∞

etφ(t) > 0.

So we must have for some constant c1 > 0

φ(t) = (c1 + o(1))
e−t

2
as t→ −∞.(14)

In particular, we must have φ(t)→∞ as t→ −∞.
For the second condition we have

0 = lim
r→0

ur(r) = lim
r→0

(rφ(lnr))r = lim
r→0

(φ(lnr) + φ′(lnr)) = lim
t→−∞

(φ(t) + φ′(t)).

Therefore we must have

φ′(t) = −φ(t) + ε(t),(15)

where

ε(t)→ 0 as t→ −∞.(16)
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Plugging this into the conservation law (11) we have

(φ2 − φ′2)k =
(
φ2 −

(
−φ+ ε

)2)k
=
(
φ2 − (φ2 − 2εφ+ ε2)

)k
=
(

2εφ− ε2
)k

= 1−Dk,nφ
n.

Since φ > 0, dividing by φn we have

1
φn−k

(
2ε− ε2

φ

)k
=

1
φn
−Dk,n.

Since φ(t)→∞ and ε(t)→ 0 as t→ −∞, the left hand side goes to zero. The right
hand side approaches Dk,n, therefore we must have Dk,n = 0. It follows easily that
φ(t) = cosh(t − t0), or u(x) = r0 + |x|2

r0
. The images of this under the conformal

group are all of the form

u(x) = a|x|2 + bix
i + c

where a, bi, and c are constants. This proves Theorem 1.1.

7. Conformal geometry

In this section we will explain the geometric origin of the equations and prove
the invariance property (2). If (N, g0) is a Riemannian manifold, we consider the
equations

σk

(
Ric− R

2(n− 1)
g

)
= constant(17)

for metrics g in the conformal class of g0, where Ric and R are the Ricci tensor and
scalar curvature of the metric g, respectively (note that we are using the metric to
view the tensor as a (1, 1) tensor). If we let g = u−2g0, then we have the following
transformation formula (see [5]):

1
n− 2

(
Ric− R

2(n− 1)
g

)
= w∇2w +

w2

n− 2

(
Ric0 −

R0

2(n− 1)
g0

)
− |∇w|

2

2
g0.

Letting N = Rn, and g0 be the flat metric, we get the equations (1).
If T : N → N is a conformal transformation, we have that T ∗g0 = λ(x)g0 for

some positive function λ. The Jacobian of T with respect to the metric g0 is defined
by T ∗vol0 = J · vol0. It is easy to verify that λ = J2/n. If g = u−2g0 is a metric
solving (17), we let g = T ∗g. The map T is then an isometry from (N, g) to (N, g),
therefore g also solves the equations (17). We then have

g = T ∗g = T ∗(u−2g0) = (u ◦ T )−2J2/ng0 = (u ◦ T · |J |−1/n)−2g0,

which is the invariance property (2).
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