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A COMPACTIFICATION OF A FAMILY
OF DETERMINANTAL GODEAUX SURFACES

YONGNAM LEE

Abstract. In this paper, we present a geometric description of the compact-
ification of the family of determinantal Godeaux surfaces, via the study of the
bicanonical pencil and using classical Prym theory. In particular, we reduce
the problem of compactifying the space of bicanonical pencils of determinantal
Godeaux surfaces to the compactification of the family of twisted cubic curves
in P3 with certain given tangent conditions.

0. Introduction

Let X → ∆ be a flat family of projective surfaces over a small disk in C. Assume
that the general fiber Xt is a minimal projective surface of general type for t ∈ ∆∗.
Then an interesting and difficult question is how to find a distinguished canonical
model for the central fiber after a possible base change, and to classify such central
fibers. There are two main difficulties in studying this problem compared to a case
of curves. One difficulty is that, in general, we cannot obtain a semistable reduction
while preserving relative ampleness. The other difficulty is that the moduli space,
MK2,χ, is unknown and the number of components is also unknown.

We study the special case in which the general fiber Xt is a numerical Godeaux
surface, namely, those with

χ(OX) = 1 and K2 = 1,(0.1)

for t ∈ ∆∗. χ(OX) = 1 and K2 = 1 imply that pg = q = 0 via the construction of
the cyclic unramified covering and some inequalities. The reason for choosing this
kind of surface for our study is that, if χ(OXt) and K2

Xt
are as small as possible,

then the quadratic polynomial h0(Xt,mKXt) = PXt(m) increases slower than other
cases. Also, if we consider the cohomology of the holomorphic tangent bundle,
which is related with the first order deformation space of Xt, we have

−χ(TXt) = 10χ(OXt)− 2K2
Xt .

Furthermore by using Bogomolov’s lemma (h0(ΩXt(−mKXt)) = 0 if m ≥ 1) and
4KXt ’s base point freeness, then h2(TXt) ≤ 14K2

Xt
(cf. [C2, §5]). So

h1(TXt) ≤ 10χ(OXt) + 12K2
Xt.
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In this paper, we study such degenerations for a special subfamily of Godeaux
surfaces (i.e. quotients of a quintic in P3 under a free Z5-action). In the 8-
dimensional family of Godeaux surfaces, there is a 4-dimensional subfamily for
which the quintic is symmetric determinantal. We call these surfaces determinan-
tal Godeaux surfaces. They were first studied systematically by Catanese in [C1].
This subfamily and its degenerations are the main object of our study. The pur-
pose of this paper is to present a geometric description of a compactification of the
family of determinantal Godeaux surfaces by studying its bicanonical pencil using
classical Prym theory. The outline of our approach is as follows.

A Godeaux surface X has a bicanonical pencil, this determines a rational curve
P1
X inM4, the Deligne-Mumford compactification of the moduli space of genus four

curves. Let τ be the generators of the fundamental group of a Godeaux surface X .
Then H0(KX + iτ) for i = 1, . . . , 4 contains a unique curve Ci of genus two and
Ci, Cj intersect transversally at one point P (Ci, Cj). Denote

P1 = P (C1, C2), P2 = P (C1, C3),

P3 = P (C4, C2), P4 = P (C4, C3),

P = P (C1, C4), Q = P (C2, C3).

Then P1 . . . P4 are base points of |2KX | and P,Q are base points of |3KX |. The
canonical sheaf KC of each member C in |2KX | can be given as the combination
of P1 . . . P4, and the two grd’s on C, r = 1, d = 3 (which we write g1

3 , h1
3 with

g1
3 + h1

3 = KC) are also given in terms of these four points. Because these points
are base points of the bicanonical pencil, g1

3 and h1
3 are both monodromy invariant.

The general member C in the bicanonical pencil of a determinantal Godeaux surface
X has an invariant unbranched double cover C̃ induced from a distinguished double
cover of X . So determinantal Godeaux surface X determines two rational curves
P1
X,g1

3
, P1

X,h1
3

in R7 ×M4
W1

3 where R7 is the compactification of the space of
unbranched double covers of curves of genus four, and W1

3 represents the family
of the linear system of degree 3 with projective dimension one on curves of genus
four. The Prym construction of Donagi gives a birational morphism Φ,

P1
X,g1

3
⊆ R7 ×M4

W1
3 ⊇ P1

X,h1
3

Φ

y
P1
X,g1

4
⊆ Pic43 ⊇ P1

X,h1
4

where Pic43 is the family of degree 4 line bundles on curves of genus 3. Let X̃ be
the blow up of X at the base points of |2KX | and |3KX |. Then the geometry of
Φ−1 allows us to describe the image of mapping

X̃
|2KX |×|3KX |−−−−−−−−−→ P1 × P3

as the pull back surface induced by a degree 3 map

P1 → P(H0(Segre cubic, O(2)))

passing through two fixed points with fixed skew tangent direction. Thus the degen-
erations of the surfaces are given by two possible degenerations of the corresponding
twisted cubics.

It is hoped that further study will lead to similar geometric conclusions for other
families of numerical Godeaux surfaces.



DETERMINANTAL GODEAUX SURFACES 5015

1. The family of Godeaux curves

Let (x, y, z, w) be the coordinates of P3, and consider a natural Z5-action on P3

via

(x, y, z, w)→ (εx, ε2y, ε3z, ε4w)

where ε is the primitive 5-th root of unity. The Z5-invariant quintics form an
irreducible 8-dimensional family M [Mi]:

x5 + y5 + z5 + w5 + t1x
3zw + t2xyw

3 + t3xy
3z + t4yz

3w

+ t5x
2yz2 + t6y

2zw2 + t7x
2y2w + t8xz

2w2.

Since the four fixed points of Z5-action are not in Σ, the quotient X is a smooth
projective surface of general type, with pg = q = 0, K2 = 1, and π1(X) = Z5.
We will denote these surfaces as Godeaux surfaces. For a Godeaux surface, the bi-
canonical pencil (resp. the tricanonical linear system) is given by H0(2KΣ)Z5 (resp.
H0(3KΣ)Z5). H0(2KΣ)Z5 is generated by xw, yz, and H0(3KΣ)Z5 is generated by
xy2, x2z, yw2, z2w. |2KΣ|Z5 has 20 base points on Σ:

(1, 0,−εi, 0), (1,−εi, 0, 0), (0,−εi, 0, 1), (0, 0,−εi, 1).

Also, |3KΣ|Z5 has 10 base points on Σ: (1, 0, 0,−εi), (0, 1,−εi, 0).
The author proves the following three lemmas in [L2].

Lemma 1. Choose a generic element X in the moduli space of Godeaux surfaces.
Then |2KX | has no base components, and has four simple base points. Let p : S →
X be the blow-up of four base points of |2KX |. Then each fiber of f : S → P1 is a
stable curve of genus four, and has at most one node.

Consider Deligne-Mumford compactification of the moduli space of curves of
genus four,M4. In this paper,M4 is mostly a moduli functor instead of a moduli
space, because we are usually interested in numerical data associated with the pull
back to the pencil. The Hodge class λ and the boundary classes δ0,δ1,δ2 are the
standard basis of PicM4⊗Q [AC]. f : S → P1 induces a morphism q̃ : P1 →M4.
Then we obtain

f∗ωS/P1 = OP1(1)4.

Lemma 2. Let f : S → P1 be the bicanonical pencil of a general Godeaux surface.
Then λ.P1 = 4, δ0.P1 = 25, δ1.P1 = 0 and δ2.P1 = 2.

Lemma 3. Let us call a stable curve C of genus four a “Godeaux curve” if it occurs
as a fiber of the bicanonical pencil for a smooth Godeaux surface. Then the family
of Godeaux curves has five dimensions.

A general curve C in the bicanonical pencil of a Godeaux surface is not a hyper-
elliptic curve [L1, §3.1]. In fact, there is no hyperelliptic curve in the bicanonical
pencil of a Godeaux surface [L1, §4.3]. Let X be a numerical Godeaux surface
(surface of general type, with pg = q = 0, and K2 = 1). Let τi be a nonzero torsion
element of H2(X,Z). Then there is a unique effective divisor Ci corresponding to
KX + τi. Ci, Cj intersect transversally at one point P (Ci, Cj), by the following
lemma of Reid in [Re].

Lemma 4. Let X be a numerical Godeaux surface and Ci = KX + τi. Then
1. h0(KX + τi) = 1,
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2. Ci, Cj intersect transversally at one point P (Ci, Cj).
3. If Ci, Cj , Ck are distinct, then P (Ci, Cj) and P (Ci, Ck) are distinct.

For a Godeaux surface X , H2(X,Z)tor = Z5. So we have two special members
of |2KX |, related to δ2. Write D1 = C1 + C4 and D2 = C2 + C3. Also denote

P1 = P (C1, C2), P2 = P (C1, C3),

P3 = P (C4, C2), P4 = P (C4, C3),

P = P (C1, C4), Q = P (C2, C3).

Then P1 . . . P4 are base points of |2KX | and P,Q are base points of |3KX |.

Lemma 5. Let C be a general member of the bicanonical pencil of a Godeaux
surface. Then KC can be written as the combination of base points P1 . . . P4 in the
following way:

KC = 2P1 + 3P2 + P4

= 3P1 + P2 + 2P3

= 2P2 + P3 + 3P4

= P1 + 3P3 + 2P4.

Also, we have g1
3 and h1

3 as the combination of base points, where g1
3 + h1

3 = KC .

Proof. Since KX = 2(KX + τi) − (KX + τj) where 2τi = τj , then we can write
KX |C as the combination of base points.

KX |C = P1 + 2P2 − P3

= 2P1 + P3 − P4

= P2 + 2P4 − P1

= 2P3 + P4 − P2.

So KC = 3KX |C = 2KX |C +KX |C = P1 + · · ·+ P4 +KX |C .
Since 2P1 + P2 ∼ (2P3 + P4 − P2) + (P4 − P3) + P2 = P3 + 2P4, we have

2P2 + P4 ∼ P1 + 2P3, so

g1
3 : 2P1 + P2 ∼ P3 + 2P4,

h1
3 : 2P2 + P4 ∼ P1 + 2P3

and their sum is KC .

Theorem 6. The generic curve that is in the bicanonical pencil of a Godeaux sur-
face can be constructed in the following way (see Figure 1.1).

Fix general four points P1 . . . P4 in P3. Draw four lines L12 = P1P2, L13 = P1P3,
L24 = P4P2, L34 = P4P3, and consider the pencil of quadrics {Q} containing these
lines. Then consider the space {W} of cubic surfaces in P3 which meet Lij doubly at
Pi. The intersection curves Q∩W are shown in Figure 1.1. So 2P1 +P2 ∼ P3 +2P4

gives g1
3 and P1 + 2P3 ∼ 2P2 + P4 gives h1

3, and their sum is KC .

Proof. According to Lemma 5, the curves related with Godeaux surfaces satisfy the
condition of Theorem 6. So we need to prove that the dimension of the family of
curves satisfying the above condition is five.

Let C be a canonical curve with genus four in P3. Let (s1, . . . , s4) be coordinates
of P3 and P1 = (1, 0, 0, 0), P2 = (0, 1, 0, 0), P3 = (0, 0, 1, 0), P4 = (0, 0, 0, 1). Since C



DETERMINANTAL GODEAUX SURFACES 5017

Figure 1.1. Generic curve in the bicanonical pencil

is a complete intersection of quadric Q and cubic F , we have the following exact
sequence and commutative diagrams, between the cohomology of tangent sheaf and
the normal sheaf (see (1.2)).

0→ TC → TP3|C → OC(2) +OC(3)→ 0

H0(OF (1))4y
H0(TP3|F ) −−−−→ H0(OF (3))∥∥∥ y
H0(TP3|C) −−−−→ H0(OC(3))

H0(OQ(1))4y
H0(TP3|Q) −−−−→ H0(OQ(2))∥∥∥ ∥∥∥
H0(TP3|C) −−−−→ H0(OC(2))

(1.2)

In (1.2), the composition of two maps from H0(OF (1))4 to H0(OF (3)) and from
H0(OQ(1))4 to H0(OQ(2)) are the simple sum of si times partial derivatives of F
and Q.

It is clear that the pencil of quadrics containing
⋃
Lij is generated by s1s4, s2s3.

Fix one smooth quadric Q in the above pencil, and consider the cubics containing⋃
Lij . These spaces are parameterized by the P7, generated by sis1s4, sis2s3 for

i = 1 . . . 4. Then for given Q and W , changing the cubic W by an element of this
P7 provides a trivial deformation of C for the following reason.

Let F be a cubic containing four lines,

Q ∩ F = (3, 3) = (2, 2) + (1, 1)

as a divisor in Q. Consider the following long exact sequence:

0→ H0(TP3|C)→ H0(OC(2)) +H0(OC(3))→ H1(TC)→ .

We may assume that Q = s1s4 + s2s3. Then the partial derivative

(
∂Q

∂si
) = (Qi) = (s4, s3, s2, s1).

So the image of the map from H0(TP3|C) to H0(OC(2)) +H0(OC(3)) is generated
by

(sis4|C , siF1|C), (sis3|C , siF2|C), (sis2|C , siF3|C), (sis1|C , siF4|C)

where Fi = ∂F
∂si
· s1s4|C = s2s3|C = 3(P1 + · · · + P4). Therefore there is a four-

dimensional subspace of H0(TP3|C) which fixes H0(OC(3P1 + · · ·+3P4)). When we
fix Q, and deform Q∩W by changing W in the direction of cubics containing four
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lines, we obtain the subspace H0(OC(3P1 + · · ·+ 3P4 + q1 + · · ·+ q6) of H0(OC(3)),
varied only by q1 . . . q6. That is the same as H0(OC(KC)). So the image of the four-
dimensional subspace of H0(TP3|C) goes surjectively to H0(OC(KC)). Therefore
there is no deformation of C by varying W by an element of the space of cubics
containing four lines.

Then g1
3 , h

1
3, the tangent conditions at Pi give a 13-dimensional projective space

of cubics. In this case four-tangent conditions do not give eight conditions, they give
seven conditions by g1

3 , h
1
3 (four points and three tangent directions determine the

fourth tangent direction). So for fixing Q, we have a four-dimensional deformation
of H1(TC) by changing of cubics. By changing the quadrics in the pencil, we have
a five-dimensional family of curves of genus four.

2. The associated Prym curves

By Lemma 3, each curve in this five-dimensional family of Godeaux curves occurs
in a four-dimensional family of Godeaux surfaces (because Godeaux surfaces have
eight moduli). The author finds a four-dimensional subfamily of Godeaux surfaces
on which each of these curves occurs with finite frequency in [L1, §3.2], namely
Godeaux surfaces coming from Z5-invariant symmetric determinantal quintics in
P3. A general symmetric determinantal quintic has an even set of twenty nodes
[C1] (an even set of nodes means that there is a double cover branched of only
those nodal points).

Each determinantal Godeaux surface X has a double covering. The four fixed
points of a Z2-action are exactly the four nodes of X . Since these four nodes are not
four base points of |2KX |, the general member C of |2KX | has a double covering
C̃ without fixed points. So then it is possible to construct a “Prym curve” D for
(C̃, C) [Mu]. The Prym curve D associated to (C̃, C) is a curve of genus three with
two distinguished linear series g1

4 , h
1
4 (associated to the two g1

3 ’s on C) for which
g1

4 + h1
4 = 2KD. We characterized this subfamily of curves in M4 in Theorem 6 by

using the base points of |2KX |. In this section, we will characterize the subfamily of
Prym curves inM3 generated by this construction. Also we can construct reversely.
These constructions are given in [Rc].

Let C be a curve of genus four with a g1
3 and σ : C̃ → C an unbranched double

cover, then the 23 liftings of P +Q+R ∈ g1
3 to a divisor of degree three on C̃ break

up into two components according to the parity of how many come from the “top”
sheet. This induces a curve D̃ in C̃(3). The involution on D̃ coming from parity
gives a curve D of genus three and D̃ → D is the reducible unbranched double
covering. Also D has its natural g1

4 coming from the four liftings. Conversely, let
D be a curve of genus three with a g1

4 . Then let C̃ be the set of pairs {p, q} on
D such that there exist r, s on D with p + q + r + s ∈ g1

4 . Then C̃ has a natural
involution {p, q} ⇔ {r, s}, and quotient C has genus four with a g1

3 , we have

Jac(D) = Prym(C̃, C).

The following theorem is due to Donagi in [Do].

Theorem 7. The above construction gives a birational morphism between trigonal
curves C of genus g with a double cover C̃ and tetragonal curves D of genus g− 1.

Consider C and g1
3 , h1

3 in Lemma 5.

g1
3 : 2P1 + P2 ∼ P3 + 2P4,
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h1
3 : 2P2 + P4 ∼ P1 + 2P3

and their sum is KC . Let P 1
1 , P

2
1 , . . . P

1
4 , P

2
4 denote the liftings of P1, P2, P3, P4 in

C̃.
For convenience let us assume that the odd parity induces the curve D. We

denote the points of D built from these lifting as follows:

(P 1
1 , P

1
1 , P

1
2 )→ y1, (P 1

2 , P
1
2 , P

1
4 )→ y2,

(P 1
1 , P

2
1 , P

2
2 )→ x1, (P 1

2 , P
2
2 , P

2
4 )→ x2,

(P 2
1 , P

2
1 , P

1
2 )→ z1, (P 2

2 , P
2
2 , P

1
4 )→ z2,

(P 1
4 , P

1
4 , P

1
3 )→ y4, (P 1

3 , P
1
3 , P

1
1 )→ y3,

(P 1
4 , P

2
4 , P

2
3 )→ x4, (P 1

3 , P
2
3 , P

2
1 )→ x3,

(P 2
4 , P

2
4 , P

1
3 )→ z4, (P 2

3 , P
2
3 , P

1
1 )→ z3.

Denote D to be a canonical curve of genus three, i.e., smooth quartic plane curve.
Then all g1

4 ’s can be understood in the following way. Consider four fixed points
in D and a pencil of conics through these four fixed points. Then the other four
intersection points give a g1

4 . By the bijectiveness of Theorem 7 and duality, we
have g1

4 , h1
4 = 2KD − g1

4 on D such that

g1
4 : 2x1 + y1 + z1 ∼ 2x4 + y4 + z4,

h1
4 : 2x2 + y2 + z2 ∼ 2x3 + y3 + z3.

And we have four conics C12, C13, C24, C34:
C12|D :2x1 + y1 + z1 + 2x2 + y2 + z2,

C13|D :2x1 + y1 + z1 + 2x3 + y3 + z3,

C24|D :2x2 + y2 + z2 + 2x4 + y4 + z4,

C34|D :2x3 + y3 + z3 + 2x4 + y4 + z4.

There is a natural map from D(2) to D(2) by KD − x − y for {x, y} ∈ D(2).
Consider two constructions C̃g in D(2) using g1

4 and C̃h using h1
4. Taking the

quotients by the respective involutions we have curves Cg and Ch. The natural
map x + y → KD − x − y gives an isomorphism between Cg and Ch. Working
out this correspondence explicitly with respect to the points P ji above, we conclude
that x3z3 passes through x1, x1z1 through x2, x4z4 through x3, x2z2 through x4.
Then this property and 2KD = g1

4 + h1
4 gives that each conic Cij is the union of

two lines,

C12 = x1x2 + x1z2, C34 = x3x4 + x4z3,

C24 = x2x4 + x2z4, C13 = x1x3 + x3z1.

This induces the following theorem.

Theorem 8. The family of Prym curves of determinantal Godeaux surfaces can
be constructed in the following way. Fix four points {xi} and four lines in P2 as
shown in Figure 2.1.

On each line pick a point {zi}. Consider four conics C12, C34, C24, C13 as above.
Then consider the pencil of quartics,

λ(C12C34) + µ(C13C24).
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Figure 2.1. Associated Prym curves

The set of all such quartic plane curves, obtained by moving zi on the line, forms
a five-dimensional family.

Proof. Figure 2.1 determines four points y1, . . . y4 such that y1 ∈ x1z2 ∩ x3z1,
y2 ∈ x1z2 ∩ x2z4, y3 ∈ x4z3 ∩ x3z1, y4 ∈ x4z3 ∩ x2z4.

Then 2x1 +y1 +z1 ∼ 2x4 +y4 +z4, 2x2 +y2 +z2 ∼ 2x3 +y3 +z3 are the elements
of g1

4, h1
4 in Prym curve D. We show that these g1

4, h1
4 correspond to the elements

of g1
3 and h1

3 in C (Theorem 6) for the determinantal Godeaux surfaces. Since
the family of determinantal Godeaux curves has five dimensions and the family of
curves constructed above has no more than five dimensions, we obtain Theorem
8.

3. The reverse construction

Consider the linear system of conics in P2. Let Π be a general three-dimensional
linear subspace of P(H0(P2,OP2(2))) ∼= P5. Let V4 denote the set of conics in P2 of
rank≤ 2 (two lines). V4 is an irreducible variety of dimension 4 and degree 3. Let V2

denote the set of conics in P2 of rank ≤ 1 (double line). V2 is an irreducible variety
of dimension 2 and degree 4. Then Π∩V4 is a cubic surface with four nodes (Segre
cubic surface). This cubic surface has a natural double covering that is branched
over the four nodal points.

Consider four double lines in P2 (Figure 2.1): 2x1x2, 2x1x3, 2x2x4, 2x3x4. These
four double lines give four points P12 = P21, P13 = P31, P24 = P42, P34 = P43 in V2

and determine Π = P3 in P5. Also these four points are exactly the node points of
Segre cubic S0 = Π ∩ V4.

Consider a pencil of conics (union of two lines) in Figure 2.1, x1x2 ∪ x1z2 given
by moving of z2 and fixing of x1, x2. This gives a line that connects P12, P13. By the
same construction of the other three lines, we have a configuration of four lines and
four points. The quartic curve in the associated pencil of Prym curves determined
by z1, z2, z3, z4 is given by λ(C12C34)+µ(C13C24) for some (λ, µ) ∈ P1(see Theorem
8). These four points zi determine four points P1, P2, P3, P4 where Pi is on the line
PijPik. Then draw four lines,

P1P2, P1P3, P2P4, P3P4
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Figure 3.1. reverse construction in Segre cubic surface

(see Figure 3.1).
Choose the quadric of the pencil containing the four lines PiPj which is given by

(λ, µ). Then Q∩S0 gives the reverse construction of the genus four curve. Consider
now the quadric linear system in P3:

P(H0(P3,O(2))) = P9.

Inside of the bicanonical pencil of a Godeaux surface or a determinantal Godeaux
surface there are two special quadrics xw, yz. The general quadric associated to a
bicanonical pencil lies in

s(λ1x+ λ2y)(λ3z + λ4w) + t(µ1x+ µ2z)(µ3y + µ4w).

Therefore we have a morphism

ϕ : P1 → P5 ⊂ P9,

where P5 is given by xz, xw, yz, yw, xy, zw. Also we have a genus four fibration V
over P5, whose fiber at x ∈ P5 is S0 ∩Qx. So we have the following commutative
diagram:

VP1 −−−−→ V ⊂ P5 × S0
p2−−−−→ P3

g

y p1

y
P1 ϕ−−−−→ P5

(3.2)

Lemma 9. Let S0 be a Segre cubic surface and ` a line through two nodes. Then
the rank of the Hessian matrix at a generic point in the line is two.

Proof. Let (x, y, z, w) be the coordinates of P3. Then the equation of Segre cubic
is the determinant of x 0 0

0 y 0
0 0 z

+ w

1 1 1
1 1 1
1 1 1

 .

Set w = 1 and choose the affine coordinates (x, y, z). The four nodal points are

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)

and the intersection at x = 0 is yz = 0. In the affine coordinate (w = 1) quadric:
x+ λyz for degree of λyz = 3, cubic|x=0 = yz.

So the Hessian of the intersection has rank two.

Theorem 10. Degree of ϕ = 3.



5022 YONGNAM LEE

Proof. Theorem 10 can be proved by an adjunction formula. Since KP5×P3 =
p∗1OP5(−6)⊗ p∗2OP3(−4), so we have

KP5×S0 = p∗1OP5(−6)⊗ p∗2OS0(−1).

Let N be the normal bundle of P1 in P5, and d the degree of ϕ. Then

OP5(−6)⊗ detN |P1 = −2,

we have detN = 6d− 2 and

KVP1 = p∗1OP1(d− 2)⊗ p∗2OS0(1).

So g∗KVP1 = OP1(d − 2)4, and g∗KVP1/P1 = OP1(d)4. Let p : S → X be a blow-up
of four base points of the bicanonical pencil and p′ : S′ → S denote a blow-up of
the two base points of p∗(3KX). Consider the following diagram.

S′
ωS′/P1⊗O(−1)
−−−−−−−−−→ VP1y

P1

(3.3)

Because we have two multiple fibers with multiplicity two in VP1 → P1 and by
Lemma 9, the tangent cone through the line is a generically normal crossing, so the
relative dualizing sheaf of the normalization is the pull back of the relative dualizing
sheaf tensored with the ideal sheaf of the two special fibers of the Godeaux surface.
Therefore g∗KVP1/P1 ⊗OP1(−2) = OP1(1)4, so d = 3.

According to Theorem 10, the degree of the map from the bicanonical pencil to
each line PijPik is one, i.e.

KV = p∗1OP5(−5)⊗ p∗2OP3(1)|V .
This implies that the degree of the map from the pencil of associated Prym curves,
related with a determinantal Godeaux surface, to each of the four lines

(x1x2, x1x3, x4x2, x4x3)

is one (see Figure 2.1).

Remark. The family of twisted cubics in P5 through the two marked points, xw, yz,
is via projection from these points, a bundle over the Grassmannian variety G of
lines in P3. In affine coordinates the general twisted cubic coming from a determi-
nantal Godeaux surface is of the form

(x+ c1ty)(c2tz + w) + t(x+ c3tz)(c4ty + w)

From this it is easy to check that these twisted cubics fiber over

H = {xz, yw} × {xy, zw} = P1 × P1 ⊆ G ⊆ P5

where H is just the intersection of two tangent hyperplane sections of G. Thus
the problem of compactifying the space of “Godeaux twisted cubics” is reduced to
studying the compactification of the following space:

Let p = {xw}, q = {yz}, p′ = {c2xz+ c1yw},= q′ = {c4xy+ c3zw}. Let L = pp′,
M = qq′. We compactify the surface of twisted cubics in P3 tangent to L at p
and tangent to M at q with osculating plane at p given by 〈p, p′, q′〉 and osculating
plane at q given by 〈q, q′, p′〉.
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This compactification is worked out in [PS]. The associated relative dualizing
sheaf can be computed easily. So if we let S∗ → ∆∗ × P1 be a family of four point
blow-ups of determinantal Godeaux surfaces over the punctured disk, this family
determines an associated family T ∗ of canonical curves

T ∗ ⊆ ∆∗ × P1 × S0 ⊆ ∆∗ × P1 × P3.

The relative dualizing sheaf of T ∗ over ∆∗ is

OP1(3)⊗OP3(1)

by Theorem 10, and by Lemma 9, the relative dualizing sheaf is

OP1(1)⊗OP3(1).

Then we compactify ∆∗ × P1 in the above space of twisted cubics and use the
relative dualizing sheaf to compute the dualizing sheaf of the compactified families

S → T → ∆.

We intend to study this compactification in detail in a future work.
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