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CENTER MANIFOLDS FOR SMOOTH INVARIANT MANIFOLDS

SHUI-NEE CHOW, WEISHI LIU, AND YINGFEI YI

Abstract. We study dynamics of flows generated by smooth vector fields in
Rn in the vicinity of an invariant and closed smooth manifold Y . By apply-
ing the Hadamard graph transform technique, we show that there exists an
invariant manifold (called a center manifold of Y ) based on the information of
the linearization along Y , which contains every locally bounded solution and
is persistent under small perturbations.

1. Introduction

This paper is devoted to the study of existence and smoothness of a local center
manifold for invariant manifolds of flows. By extending the classical center manifold
theory, our primary goal is to build up a geometrical foundation which allows one to
study dynamics of a differential equation in the vicinity of an invariant set Y (e.g.
a torus or a heteroclinic cycle) in addition to an equilibrium point or a periodic
orbit.

The classical center manifolds theory of equilibria, since first introduced by Pliss
([39]) and Kelley ([30]) in the 1960’s and later developed by many others (e.g. [7],
[26], [48], [51], [53] etc.), has become an important subject and found tremendous
applications in the study of flows and diffeomorphisms (see [7], [11], [12], [17], [21],
[24] and references therein). Besides generalizations to various cases of infinite
dimensional semiflows (e.g. [3], [4], [8], [13], [25], [35], [52]), there have been several
important extensions of the classical center manifolds theory in the case of invariant
sets. Center manifolds along a trajectory of a diffeomorphism were constructed
in [26] and [47]. In [19], as part of the geometric theory of singularly perturbed
ordinary differential equations, Fenichel showed the existence of center manifolds for
invariant manifolds consisting of equilibria (see also [29], [32] for more applications
of the theory). Related to perturbation and bifurcation problems, some cases of
center manifolds for invariant tori were studied in Chenciner and Iooss ([10]), Chow
and Lu ([14]). Center manifolds for skew-product flows were studied in Chow and Yi
([15]). Recently, Homburg ([27]) and Sandstede ([45]) constructed center manifolds
for certain homoclinic orbits to study various global bifurcation problems.

We shall show in this paper that, if a smooth flow in Rn admits a connected,
invariant and closed (i.e., compact without boundary) smooth manifold Y , then
under certain exponential rate conditions on an invariant splitting of the lineariza-
tion along Y , the flow has a smooth locally invariant manifold Mc(Y ) (a center
manifold of Y ) corresponding to the splitting, which contains Y and all locally
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bounded solutions, and is persistent under small perturbations (see Section 2 for
details).

The center manifolds theory we shall present is also closely related to the theory
of normally hyperbolic invariant manifolds—a subject which has been extensively
studied (see [16], [18], [26], [31], [34], [42], [55] and references therein). In the 1970’s,
Sacker ([42]), and Fenichel ([18]) showed that an r-normally hyperbolic overflow-
ing compact invariant Cr manifold Y of a flow is Cr persistent, and the invariant
manifold obtained after perturbation is unique (see [26] for parallel results for dif-
feomorphisms, [5], [32] for infinite dimensional semiflows, and [23], [25], [44], [56] for
non-autonomous systems). Later, it was shown by Mañé ([34]), and by Bronstein
and Kopanskii ([6]) that, if Y is a Cr invariant closed manifold of a Cr flow, then
r-normal hyperbolicity is equivalent to Cr persistence and isolation. Recently, Pliss
and Sell ([40]) introduced the concept of a weakly, normally hyperbolic invariant
set and showed persistence results for such a set.

Our result can be viewed as a generalization to both the theory of normally
hyperbolic invariant manifolds and the center manifolds theory of Fenichel ([19])
and Chenciner and Iooss ([10]). Related to the former theory, our work simply
provides information when normal hyperbolicity fails. Comparing with [19] in which
the invariant manifold consists of equilibria and with [10] in which a subsystem of
the linearization along the invariant torus is independent of the points on the torus,
our center manifolds theory deals with general flows on an invariant manifold, and
the ‘center bundle’ associated to the linearization along the invariant manifold need
not have a constant structure.

Like many studies on invariant manifolds of dynamical systems, our work is
based on the standard Hadamard graph transform technique ([22]). However, with
a general invariant manifold involved, several technical difficulties need to be re-
solved when we apply the Hadamard graph transform technique. The first one is
to choose a function space to which the graph transform applies. In the equilib-
rium case, such a function space can be chosen as the space of Lipschitz functions
from the center eigenspace to the hyperbolic eigenspaces. For the general case we
consider, although an invariant splitting of the linearization along the invariant
manifold is assumed, the ‘center subspaces’ associated to the invariant splitting do
not form a manifold of desired dimension. Therefore, we need to construct an ap-
proximate center manifold which is tangent to the ‘center subspaces’. This is done
by introducing a new Riemannian structure on the tangent bundle of the invari-
ant manifold and employing the exponential map. By defining a smooth bundle
structure over the approximated center manifold in a neighborhood of the invariant
manifold, a function space is then chosen as sections of the bundle. Another key
step in applying the graph transform technique is to modify the original vector field
near the invariant manifold to satisfy the so-called ‘overflowing’ property. Unlike
the case of [19], the modified vector field in our case cannot be made to be C1

close to the original one in general—which results in a large perturbation problem.
Therefore, a careful choice and estimations on the modified vector field are crucial
in our analysis.

Besides the Hadamard graph transform, another fruitful technique which has
been frequently used in the classical center manifolds theory as well as other in-
variant manifolds (such as inertial and integral manifolds) theory is the Lyapunov-
Perron method ([33], [38]). This method allows more detailed analysis on and near
an invariant manifold especially when a natural coordinate system is available for
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a particular problem (e.g. [9], [20], [25], [30], [39], [56]). The Lyapunov-Perron
method does not seem to directly apply to our problem. On one hand, to be able
to work directly with integral equations as the Lyapunov-Perron method suggested,
one more or less needs to construct a center manifold by obtaining its invariant fo-
liations based on the invariant manifold. This is indeed the case of Chow and Lu
([14]) in a nearly integrable system and the case of Chow and Yi ([15]) for flows with
skew product structures. However, such foliations of a center manifold cannot be
generally expected, for example, in many Hamiltonian systems. On the other hand,
to apply the Lyapunov-Perron method in our current situation, a uniform separa-
tion rate associated to a linear invariant splitting should be generally assumed. But
this would be a major restriction to many interesting applications.

This paper is organized as follows. We state our main results along with several
examples in Section 2. In Section 3, we modify the original vector field near an
invariant manifold of the flow following the constructions of an approximated center-
unstable manifold and a local bundle structure. Section 4 is a rather technical
section which is devoted to the estimations of the modified flow. To avoid reading
too much technical details, one may skip most materials in this section and only
take Proposition 1 for granted. Our main theorem is proved in Section 5.

2. Main results and examples

2.1. Statement of main theorem. Consider the following ordinary differential
equation

z′ = f(z)(1)

where z ∈ Rn, f ∈ Cr (r ≥ 3).
Let Y be a smooth invariant manifold of (1). For simplicity, we denote the

induced flow on Y by y · t (y ∈ Y , t ∈ R). Consider the linearization of (1) along
Y :

z′ = A(y · t)z(2)

where A(y) = Jf(y) is the Jacobian of f at y ∈ Y . We let Φ(y, t) be the principal
matrix of (2), i.e., the fundamental matrix solution of (2) with Φ(y, 0) = I—the
identity matrix.

We make the following hypotheses.
(H1.) System (2) admits a continuous invariant splitting of the tangent spaces

TyRn (y ∈ Y ), that is,

TyRn = Vs(y)⊕ Vc(y)⊕ Vu(y),

where TyY ⊂ Vc(y), Vi(y) varies continuously in y ∈ Y and Φ(y, t)Vi(y) = Vi(y · t),
i = s, c, u, for all t ∈ R and y ∈ Y .

(H2.) With respect to a fixed Riemannian structure R on the tangent bundle
TYRn, there exist constants α, β and integer d satisfying 0 < d ≤ r, α < 0, and
0 ≤ β < 1

d such that

||Φ(y, t)|Vs(y)|| ≤ eαt, t ≥ 0;

||Φ(y, t)|Vu(y)|| ≤ e−αt, t ≤ 0;

m(Φ(y, t)|Vc(y)) ≥ ||Φ(y, t)|Vs(y)||β , t ≥ 0;

m(Φ(y, t)|Vc(y)) ≥ ||Φ(y, t)|Vu(y)||β , t ≤ 0;
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for all y ∈ Y , where, for a linear operator L, ||L|| denotes the operator norm of L
with respect to R and m(L) = min{||Lz|| : ||z|| = 1}.

For i = s, c, u, and y ∈ Y , if we denote Pi(y) : TyRn → Vi(y) as the projec-
tions associated to the invariant splitting, then Φ(y, t)|Vi(y) = Φ(y, t)Pi(y). For
simplicity, sometimes we shall also denote Φ(y, t)|Vi(y) as Φi(y, t) for i = s, c, u
respectively.

Remark 1. Since Φ(y, t)Φ−1(y, s) = Φ(y · s, t − s), Pi(y · t)Φ(y, t) = Φ(y, t)Pi(y),
one has Φ(y, t)Pi(y)Φ−1(y, s) = Φ(y · s, t − s)Pi(y · s) (i = s, c, u) for all t, s and
y ∈ Y . It follows that the first two inequalities in (H2.) are equivalent to

||Φ(y, t)Ps(y)Φ−1(y, s)|| ≤ eα(t−s), t ≥ s, y ∈ Y ;

||Φ(y, t)Ps(y)Φ−1(y, s)|| ≤ e−α(t−s), t ≤ s, y ∈ Y ;

respectively.

Definition 1. (a) A submanifold M of Rn with boundary ∂M is called locally
invariant under (1), if, for any point p ∈ M\∂M , there exists an ε > 0 such that
z(t, p) ∈M for t ∈ (−ε, ε), where z(t, p) is the solution of (1) with z(0, p) = p.

(b) A locally invariant Ck (k ≤ r) manifold M of a Cr vector field f is called Ck

persistent if there exists a neighborhood U(f) of f in the space of Ck vector fields
with the Ck topology, such that for each g ∈ U(f), there exists a locally invariant
Ck manifold M(g) (not necessarily unique) of g which is Ck close to M with respect
to the Hausdorff metric.

Our main theorem is stated as follows.

Theorem 1. Suppose Y is a connected, invariant and closed Cr manifold of (1)
for which (H1) and (H2) are satisfied. Then there exists a manifold Mc(Y ) with
the following properties.

(i) Mc(Y ) is Cd and locally invariant;
(ii) TyMc(Y ) = Vc(y) for all y ∈ Y ;
(iii) Mc(Y ) is Cd persistent;
(iv) Mc(Y ) contains all locally bounded solutions, that is, there exists a neigh-

borhood N(Y ) of Y such that Mc(Y ) contains all solutions lying entirely in
N(Y ).

The property (iv) above particularly implies that Mc(Y ) contains Y .
We refer to a manifold Mc(Y ) as a center manifold of Y if all properties (i)–(iv)

above are satisfied. By (ii) and (iii) above, if the invariant splitting in (H1) is
‘optimal’, then Mc(Y ) more or less gives a normally hyperbolic invariant manifold
containing Y with the least dimension (comparing (iii) with [6], [34]).

We shall leave the proof of this theorem to Section 5.

2.2. Spectral conditions. A natural (but not necessarily optimal) linear invariant
splitting satisfying (H1) and (H2) above can be constructed by applying the well
known Sacker-Sell ([43]) spectral theory (see also [46]).

Consider for each λ ∈ R the skew-product flow on TYRn = Rn × Y :

πλ(z, y, t) = (Φλ(y, t)z, y · t),

where Φλ(y, t) = e−λtΦ(y, t) is the principal matrix of

z′ = (A(y · t)− λ)z.



CENTER MANIFOLDS FOR SMOOTH INVARIANT MANIFOLDS 5183

The flow πλ is said to admit an exponential dichotomy (ED) over Y , if there exist
a continuous family of projections P (y) : TyRn → TyRn (y ∈ Y ) and constants
K > 0, α < 0 such that

|Φλ(y, t)P (y)Φ−1
λ (y, s)| ≤ Keα(t−s), t ≥ s;

|Φλ(y, t)[I − P (y)]Φ−1
λ (y, s)| ≤ Ke−α(t−s), t ≤ s,

where | · | denotes the operator norm with respect to the Euclidean metric on Rn.
The set

Σ(Y ) = {λ ∈ R : πλ admits no ED over Y }
is called the S-S spectrum of (2).

Let

Sλ(Y ) = {(z, y) : |Φλ(y, t)z| → 0 as t→ +∞},
Uλ(Y ) = {(z, y) : |Φλ(y, t)z| → 0 as t→ −∞}.

The following was shown in [43].
1) Σ(Y ) is a union of k compact intervals, that is,

Σ(Y ) = [a1, b1] ∪ · · · ∪ [ak, bk],

where k ≤ n and a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk.
2) If λ0, λ1, · · · , λk are chosen so that

λ0 < a1 ≤ b1 < λ1 < · · · ≤ bk < λk,

then for 1 ≤ i ≤ k
Vi = Vi(Y ) = Sλi(Y ) ∩ Uλi−1(Y ) 6= {0} × Y

is an invariant subbundle (called the spectral subbundle associated to the spectral
interval [ai, bi]) of TYRn. Moreover, Vi(Y ) ∩ Vj(Y ) = {0} × Y for i 6= j and

TYRn = V1(Y )⊕ · · · ⊕ Vk(Y ).

In terms of fibers Vi(y) (y ∈ Y ) of Vi, the above is equivalent to

TyRn = V1(y)⊕ · · · ⊕ Vk(y)

for all y ∈ Y , where dim Vi(y) = ni (y ∈ Y , ni ≥ 1 and n1 + n2 + · · ·+ nk = n).
Now consider, for i ≤ j, a union of spectral intervals of form Σi,j =

⋃j
p=i[ap, bp]

and denote the corresponding spectral subbundle by Vi,j = Vi ⊕ · · · ⊕ Vj . Let

i0 = max{i : TY ⊂ Vi,k}, j0 = min{j : TY ⊂ V1,j},
where TY is the tangent bundle of Y , that is, Vi0,j0 is the smallest spectral sub-
bundle which contains TY . Clearly, i0 and j0 are uniquely defined. We refer to
Σc = Σi0,j0 , Vc = Vi0,j0 as the generalized center spectrum and the generalized
center subbundle of Y , respectively. Note that, since Y is compact and invariant,
0 ∈ Σc, and Σc may contain more than one spectral intervals (see Example 2.2).
To unify the notation, we let aj0+1 = +∞ if i0 = k and let bi0−1 = −∞ if j0 = 1.

Corollary 1. Let Y be as in Theorem 1 and let Σc = Σi0,j0 be the generalized
center spectrum of Y for which the following spectrum gap conditions are satisfied:
there is a positive integer d ≤ r such that

−ai0d < −bi0−1, bj0d < aj0+1.
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Then there exists a manifold Mc(Y ) which satisfies all properties (i)–(iv) stated in
Theorem 1.

Proof. Without loss of generality, we assume that aj0+1 and bi0−1 are finite.
Consider (2) and denote

Vs(y) = V1,i0−1(y), Vu(y) = Vj0+1,k(y) (y ∈ Y ).

Let

Pi(y) : TyRn → Vi(y), y ∈ Y, i = s, c, u,

be the associated projections. Then

TyRn = Vs(y)⊕ Vc(y)⊕ Vu(y), y ∈ Y,

is a continuous invariant splitting of (2).
We now define an equivalent metric on TYRn following the ideas of [26], [28], [42].

Fix a 0 < λ < min{(ai0 − bi0−1)/2, (aj0+1 − bj0)/2}. For y ∈ Y and z1, z2 ∈ TyRn,
we let

〈z1, z2〉y =
∫ 0

−∞
e−2(aj0+1−λ)s〈Φ(y, s)Pu(y)z1,Φ(y, s)Pu(y)z2〉ds

+
∫ 0

−∞
e−2(ai0−λ)s〈Φ(y, s)Pc(y)z1,Φ(y, s)Pc(y)z2〉ds

+
∫ +∞

0

e−2(bj0+λ)s〈Φ(y, s)Pc(y)z1,Φ(y, s)Pc(y)z2〉ds

+
∫ +∞

0

e−2(bi0−1+λ)s〈Φ(y, s)Ps(y)z1,Φ(y, s)Ps(y)z2〉ds.

Since

|Φ(y, t)Ps(y)Φ−1(y, s)| ≤ Ke(bi0−1+λ/2)(t−s), t ≥ s;
|Φ(y, t)Pc(y)Φ−1(y, s)| ≤ Ke(bj0+λ/2)(t−s), t ≥ s;
|Φ(y, t)Pc(y)Φ−1(y, s)| ≤ Ke(ai0−λ/2)(t−s), t ≤ s;
|Φ(y, t)Pu(y)Φ−1(y, s)| ≤ Ke(aj0+1−λ/2)(t−s), t ≤ s,

for some K > 0, the above integral converges and clearly defines an inner product
〈·, ·〉y on TyRn (y ∈ Y ). We denote || · ||y and || · ||, respectively, as the induced
norm on TyRn (y ∈ Y ) and its associated operator norm, respectively. To show the
uniform equivalence between || · ||y and the Euclidean norm | · | on TyRn (y ∈ Y ),
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on one hand, we have

||z0||2y =
∫ 0

−∞
e−2(aj0+1−λ)s|Φ(y, s)Pu(y)z0|2ds

+
∫ 0

−∞
e−2(ai0−λ)s|Φ(y, s)Pc(y)z0|2ds

+
∫ +∞

0

e−2(bj0+λ)s|Φ(y, s)Pc(y)z0|2ds

+
∫ +∞

0

e−2(bi0−1+λ)s|Φ(y, s)Ps(y)z0|2ds

≤
∫ 0

−∞
e−2(aj0+1−λ)sK2e2(aj0+1−λ/2)s|z0|2ds

+
∫ 0

−∞
e−2(ai0−λ)sK2e2(ai0−λ/2)s|z0|2ds

+
∫ +∞

0

e−2(bj0+λ)sK2e2(bj0+λ/2)s|z0|2ds

+
∫ +∞

0

e−2(bi0−1+λ)sK2e2(bi0−1+λ/2)s|z0|2ds

=
(

2K2

∫ 0

−∞
eλsds+ 2K2

∫ +∞

0

e−λsds

)
|z0|2

=
4K2

λ
|z0|2.

On the other hand, since Y is compact and Φ(y, 0) = I, there exists a δ > 0 such
that |Φ(y, s)| ≥ 1/2 as |s| ≤ δ. It follows that

||z0||2y ≥ 1
4

∫ 0

−δ
e−2(aj0+1−λ)s|Pu(y)z0|2ds+

1
4

∫ 0

−δ
e−2(ai0−λ)s|Pc(y)z0|2ds

1
4

+
∫ δ

0

e−2(bj0+λ)s|Pc(y)z0|2ds+
1
4

∫ δ

0

e−2(bi0−1+λ)s|Ps(y)z0|2ds

≥ c−1
2 (|Pu(y)z0|2 + |Pc(y)z0|2 + |Ps(y)z0|2) ≥ c−1

2 |z0|2,

for some c2 > 0 which is independent of y ∈ Y . This verifies the equivalence of the
two metrics.

Since

||Φ(y, t)Ps(y)z0||2y·t =
∫ +∞

0

e−2(bi0−1+λ)s|Φ(y · t, s)Φ(y, t)Ps(y)z0|2ds

=
∫ +∞

0

e−2(bi0−1+λ)s|Φ(y, s+ t)Ps(y)z0|2ds

=
∫ +∞

t

e−2(bi0−1+λ)(s−t)|Φ(y, s)Ps(y)z0|2ds

≤ e2(bi0−1+λ)t

∫ ∞
0

e−2(bi0−1+λ)s|Φ(y, s)Ps(y)z0|2ds

= e2(bi0−1+λ)t|z0|2y,
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Figure 1. Stable set W s(0) of 0 along γ

for any t ≥ 0, we have

||Φ(y, t)Ps(y)Φ−1(y, s)|| ≤ e(bi0−1+λ)(t−s)

for t ≥ s. Similarly,

||Φ(y, t)Pc(y)Φ−1(y, s)|| ≤ e(bj0+λ)(t−s), t ≥ s;

||Φ(y, t)Pc(y)Φ−1(y, s)|| ≤ e(ai0−λ)(t−s), t ≤ s;

||Φ(y, t)Pu(y)Φ−1(y, s)|| ≤ e(aj0+1−λ)(t−s), t ≤ s.

Now let α = max{bi0−1 + λ, λ − aj0+1} and choose β such that ai0−λ
bi0−1+λ ≤ β <

min
{

bj0
aj0+1

,
ai0
bi0−1

}
. It is easy to see from the above inequalities that (H2) is sat-

isfied with such α and β.

2.3. Examples. We now give some examples to illustrate certain fundamental
aspects of our results. The first is an example to which Corollary 1 is applicable.

Example 2.1. Consider a flow

z′ = f(z), z ∈ R3, f ∈ Cr,
where z = 0 is a saddle-node equilibrium with eigenvalues λi, i = 1, 2, 3, satisfying
λ3 < λ1 = 0 < λ2. Assume that γ(t) is a homoclinic orbit to z = 0 which
approaches z = 0 along the eigendirection of λ1 as t→ ±∞ (see Fig. 1).

Let Y = {γ(t); t ∈ R}∪{0}. We further assume that, in a neighborhood of γ(t),
the closure of the stable set W s(0) of z = 0 is a manifold (i.e. a cylinder or a Möbius
band). By the Lambda Lemma ([1], [49]), Wu(0) is also a manifold of the same
topology type as W s(0), and, on the stable set of 0, there exists a unique locally
invariant stable foliation of W s(0) with fibers transversal to Y (see [1], [2]). By the
Lambda Lemma again, the foliation can be extended to the entire W s(0) by using
the backward flow. Similarly, there exists an invariant unstable foliation on Wu(0).
Therefore, for y ∈ Y , the tangent lines to the fibers at y of the stable and unstable
foliations together with TyY form an invariant splitting of TyR3 of the linearization
along Y . It can be easily verified that the S-S spectrum of the linearization along
Y is Σ = {λ1, λ2, λ3} and the spectral subbundle corresponding to {λ1 = 0} is TY .
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Thus, conditions in Corollary 1 are satisfied with Vc(y) = TyY (y ∈ Y ). We then
conclude that the flow admits a one-dimensional Cr center manifold of Y , that is,
Y itself.

Next, we adopt an example from [43] to indicate the necessity of choosing the
generalized center spectrum when applying Corollary 1.

Example 2.2. Let T 2 = R2/Z2 be the two-dimensional torus. As usual, we co-
ordinate x ∈ T 2 by x = (x1, x2) ∈ R2 (mod 1). Let x̄ = Ax be the Anosov
diffeomorphism on T 2, where

A =
(

1 1
1 2

)
.

The eigenvalues of A are σ± = (3±
√

5)/2.
Let z′ = F (z) denote the Anosov flow on a 3-manifold Y generated by the

standard suspension of the Anosov diffeomorphism. Recall that Y can be identified
as the collection of all z = (x, s) where x = (x1, x2) ∈ R2, s ∈ R, and (x, s) = (x̂, ŝ)
if and only if x̂ = Anx (mod 1) and ŝ = s+n for some integer n. Since the Anosov
diffeomorphism on T 2 is a Poincaré map of the Anosov flow, the S-S spectrum of
the linearization of the Anosov flow along Y is simply Σ(Y ) = {λ,−λ, 0} where
λ = lnσ+.

We now consider the following flow on the four-dimensional manifold W = Y ×
S1:

z′ = F (z) + h(z, θ),
θ′ = α sin θ + g(z, θ),

where (z, θ) ∈ W , α is a parameter, h and g are smooth functions satisfying
h(z, 0) = 0 and |g(z, θ)| = O(|θ|2). Clearly, Y is an invariant manifold of W
given by θ = 0 and the S-S spectrum of the linearization of this flow along Y is
{α, λ,−λ, 0}. Moreover, it follows from the suspension procedure that the spectral
subbundle corresponding to 0 is of dimension one. But Y is of dimension three,
which implies that its center manifold is at least three dimensional. Therefore, con-
sidering the spectral interval {0} alone is not sufficient to generate a desired center
manifold of Y . In fact, if |α| > λ, then Y is normally hyperbolic and the center
manifold of Y is just Y itself. If |α| < λ, then Y is not normally hyperbolic and a
center manifold of Y is of dimension four, that is, a neighborhood of Y in W .

We now give an example in which Corollary 1 fails but Theorem 1 can be still
applied to obtain an optimal center manifold for an invariant manifold.

Example 2.3. Consider a flow

z′ = f(z), z ∈ R2, f ∈ Cr,
which has two heteroclinic orbits γ1(t) and γ2(t) connecting a saddle point z1 =
(−1, 0) to a stable point z2 = (1, 0) (see Fig. 2). Denote by αi, βi as the eigenvalues
of zi (i = 1, 2) respectively, where α1 < 0 < β1, α2 < β2 < 0. For simplicity,
we assume that, for i = 1, 2, the eigendirections corresponding to αi and βi are
e1 = (1, 0) and e2 = (0, 1) respectively.

With the above assumptions, the closure Y of γ1∪γ2 is clearly a one dimensional
invariant manifold of the flow. We denote by Σc, Σ, respectively, as the generalized
center and S-S spectrum, respectively, of the linearization of the flow along Y . Since
γ′1(t) is a solution of the linearization along γ1 with β1 and β2 as the asymptotic
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Figure 2. The invariant manifold Y and the eigenvalues of the equilibria

rates, one has [β2, β1] ⊂ Σc. Hence, if α1 ≥ β2, then Σc = Σ = [α2, β1] and the
dimension of the generalized center spectral subbundle will be two. In this case, a
center manifold of Y obtained from Corollary 1 will be a neighborhood of Y in R2.

However, we can apply Theorem 1 to show that, in any case, Y is a center
manifold of itself. Similar to the argument in Example 2.1, there exists a continuous
invariant splitting of the linearization along Y , that is,

TyR2 = Vs(y)⊕ Vc(y),

where Vc(y) = TyY and Vs(y) is transversal to TyY (y ∈ Y ). Moreover, it is easy
to see that there are positive constants K(y) and K(z1) such that, for y ∈ Y \{z1},

|Φs(y, t)| ≤ K(y)eα2t, t ≥ 0;

|Φc(y, t)| ≥ K(y)eβ2t, t ≥ 0;

and

|Φs(z1, t)| ≤ K(z1)eα1t, t ≥ 0;

|Φc(z1, t)| ≥ K(z1)eβ1t, t ≥ 0;

where Φi(y, t) = Φ(y, t)|Vi(y) (i = s, c) and Φ(y, t) denotes the principal matrix of
the linearization along Y .

By the Uniformity Lemma in [18], there are constants α, β,K with α < 0, 0 <
1
β <

α2
β2
,K > 0 such that |Φs(y, t)| ≤ Keαt, |Φc(y, t)| ≥ K|Φs(y, t)|β for all y ∈ Y

and t ≥ 0. Similar to the proof of Corollary 1, one can show that, for y ∈ Y and
z1, z2 ∈ TyR2,

〈z1, z2〉y =
∫ +∞

0

e2(α+λ)s〈Φs(y, s)z1,Φs(y, s)z2〉ds

+
∫ ∞

0

||Φs(y, s)||−2β〈Φc(y, s)z1,Φc(y, s)z2〉ds

defines an equivalent metric on TYR2, where λ > 0 is a small constant. Moreover,
if || · || denotes the operator norm with respect to the new metric, then

||Φs(y, t)|| ≤ e(α+λ)t;

m(Φc(y, t)) ≥ ||Φs(y, t)||β

for t ≥ 0 (we note that, since dim Vc(y) = 1, m(Φc(y, t)) = ||Φc(y, t)|| ). This
verifies the condition (H2).



CENTER MANIFOLDS FOR SMOOTH INVARIANT MANIFOLDS 5189

3. Modification of the vector field

We shall apply the graph transform induced by a time T -map φT of the flow
to show the existence of a local center-unstable manifold. The existence of a local
center-stable manifold can be obtained similarly after reversing time, and the in-
tersection of the center-stable and the center-unstable manifolds in a neighborhood
of Y will give a desired local center manifold.

Our construction of a local center-unstable manifold will be based on the follow-
ing crucial steps: 1) To find an approximate center-unstable manifold which will
serve as a base space of graphs; 2) To define a bundle structure in a neighborhood
of Y in which graphs can be defined as sections; 3) To modify the original vector
field locally so that the overflowing property is satisfied. These constructions are
closely tied up together in a way that each later step depends heavily on the former
ones.

3.1. An approximate center-unstable manifold. By an approximate center-
unstable manifold of Y , we mean a smooth manifold which is tangent to Vcu(y) =
Vc(y)⊕ Vu(y) at all points y ∈ Y .

Since Y is smooth, such an approximate manifold can be obtained easily by using
the exponential map (see [26] for example). Let R0 be a new Riemannian metric
on TYRn under which Vs(y) is orthogonal to Vcu(y) at each y ∈ Y . For a fixed
neighborhood N(Y ) of Y , this metric can be extended smoothly to TN(Y )Rn (we
denote the extended metric again by R0). Let V ′(Y ) be the orthogonal complement
of TY Y in Vcu(Y ). For ε > 0 sufficiently small, we let B(ε) be the ε-neighborhood
of Y in TYRn. Then M̂cu(Y ) = exp(V ′(Y ) ∩ B(ε)) defines a desired approximate
center-unstable manifold since TyM̂cu(Y ) = Vcu(y) for all y ∈ Y , where exp :
TN(Y )Rn → Rn is the exponential map with respect to R0.

3.2. A local bundle structure. We now construct a fiber bundle structure over
M̂cu(Y ) in a neighborhood of Y .

By the tubular neighborhood theorem, there exists a neighborhood N0(Y ) of
M̂cu(Y ) in N(Y ) with the property that, for any z ∈ N0(Y ), there exists a unique
pz ∈ M̂cu(Y ) with dist(z, M̂cu(Y )) = dist(z, pz). Define πcu : N0(Y )→ M̂cu(Y ) by
πcu(z) = pz, πs : N0(Y )→ N0(Y ) by πs(z) = z − πcu(z) := q, and Q : M̂cu(Y )→
Y byQ(p) = yp, where yp ∈ Y is the unique point satisfying dist(p, Y ) = dist(p, yp).
By jiggling the bundle slightly if necessary, we can assume by Whitney’s Embed-
ding Theorem ([54]) that the bundle and the maps defined above are Cr (see also
[18]). Denote the differentials of πcu, πs at z by Dπcu(z) and Dπs(z) respectively.
We then have Dπcu(y) = Pcu(y), Dπs(y) = Ps(y), y ∈ Y .

The new Riemannian metric R0 under which Vcu(y), Vs(y) are orthogonal will
play an important role later in simplifying our analysis. Without loss of generality,
we may assume that R0 agrees with the Euclidean metric in Rn. This is because
of Nash’s Embedding Theorem ([36]), which says that any Riemannian n-
manifold with Cr metric, r ≥ 3, has a Cr isometric embedding in n0 = 3/2n3 +
7n2 + 11/2n dimensional Euclidean space. To be more precise, let (N0(Y ),R0) be
as above. By Nash’s Embedding Theorem, it can be Cr isometrically embedded in
Rn0 . By considering a tubular neighborhood N of N0(Y ) in Rn0 , we can extend
our vector field to N in such a way that the extended flow on the fibers of N is
unstable with sufficiently large rate. That is, the new flow in N is essentially the
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same as in N0(Y ) with some extra unstable directions, which, of course, does not
affect the existence of a center manifold.

In the sequel, we identify R0 with the Euclidean metric in Rn and denote 〈, 〉, d
and | · | as the Euclidean metric, distance and norm, respectively.

3.3. A modified vector field.

Definition 2. LetN ⊂ Rn be a submanifold of dimension n with smooth boundary
∂N , and A ⊂ ∂N . We say that a vector field f satisfies the overflowing property
with respect to (N,A) if at each point z ∈ A the vector field f is either tangent to
or points outward to ∂N .

The overflowing property is essential in performing a graph transform induced
by a flow in a neighborhood of an invariant manifold (see [18], [19], [47] etc.). This
is simply because the image of a graph under a graph transform should lie entirely
in the neighborhood. For center manifolds problems, due to the existence of center
directions in a vector field, the overflowing property cannot be generally expected.
For example, even a simple vector field like

{
x′ = x2,
y′ = −y

does not satisfy the overflowing property near O = (0, 0) for any choices of ε and δ
(see Fig. 3). Specifically, on x = −ε, the vector field points inward to the interior
of the box [−ε, ε]× [−δ, δ].

Therefore, for the sake of performing a graph transform, we need to modify
the vector field (1) so that the overflowing property will be satisfied within an
appropriate neighborhood of Y .
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For ε0 > 0 small and 0 < ε ≤ ε0, we consider the following sets:

Uε = {z ∈ M̂cu(Y ) : d(z, Y ) ≤ ε},
U(z0) = {z ∈ N0(Y ) : d(z, M̂cu(Y )) = d(z0, M̂cu(Y ))}, z0 ∈ N0(Y ),

S(z0) = {z ∈ N0(Y ) : d(z, M̂cu(Y )) = d(z, z0)}, z0 ∈ M̂cu(Y ),

Sε(z0) = {z ∈ S(z0) : d(z, z0) < ε}, z0 ∈ M̂cu(Y ),

Nε =
⋃

z0∈Uε

Sε0(z0),

∂∗Nε =
⋃

z0∈∂Uε

Sε0(z0).

Note that ∂∗Nε is the portion of ∂Nε over ∂Uε, and dim ∂∗Nε = n− 1.
Our goal is to construct a modified vector field of (1) which satisfies the overflow-

ing property with respect to (Nε0 , ∂∗Nε0). To do so, we let χi : R → R, i = 1, 2,
be cut-off functions satisfying the following properties:

χ1(x) =
{

1, x ≥ ε0/2,
0, x ≤ 0,

with χ′1(x) ≥ 0, |χ′1(x)| ≤ 4ε−1
0 , and

χ2(x) =
{

0, x ≤ −ε20,
1, x ≥ 0,

with χ′2(x) ≥ 0, |χ′2(x)| ≤ 2ε−2
0 .

For z ∈ ∂∗Nε, let {vj(z)}nj=1 be an orthonormal basis of TzNε such that v(z) =
v1(z), v2(z), . . . , vm0(z) ∈ TzU(z), where v(z) is the inward normal vector to Tz∂∗Nε
and vm0+1, . . . , vn(z) ∈ TzSε0(πcuz). Using the orthonormal basis, we can decom-
pose f(z) = Dπs(z)f(z) +Dπcu(z)f(z) as

Dπcu(z)f(z) =
m0∑
j=1

ξj(z)vj(z),

Dπs(z)f(z) =
n∑

j=m0+1

ξj(z)vj(z),

where ξj(z)’s are coordinates of f(z) with respect to the basis. Note that ξ(z) =
ξ1(z) = 〈f(z), v(z)〉 is independent of the choices of vj(z) for j = 2, · · · , n.

We now modify the vector field (1) to the following:

z′ = f̂(z) = f(z)− (1− χ1(η(z)))χ2(ξ(z))ξ(z)v(z),(3)

where η(z) = d(πcuz, ∂Uε0). This new vector field clearly coincides with (1) in
Nε0/2. Moreover, this modified vector field satisfies the overflowing property with
respect to (Nε0 , ∂∗Nε0). Indeed, if z ∈ ∂∗Nε0 , then χ1(η(z)) = 0, and therefore

〈f̂(z), v(z)〉 = 〈f(z), v(z)〉 − χ2(ξ(z))ξ(z)〈v(z), v(z)〉
= (1− χ2(ξ(z)))ξ(z).

Since χ2(ξ(z)) = 1 if ξ(z) ≥ 0, and (1 − χ2(ξ(z))) ≥ 0 if ξ(z) < 0, we see that
〈f̂(z), v(z)〉 ≤ 0 for z ∈ ∂∗Nε0 , that is, the vector field (3) is either tangent to or
points outward to ∂∗Nε0.
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Remark 2. Unlike the equilibrium case, the modified vector field (3) is in general
not a regular perturbation of the original one in the sense that, within Nε0 , it differs
from the original vector field by an order of ε0 with respect to the C0 but not C1

norm. To give an example, let us consider{
x′ = λ1x+ g1(x, y),
y′ = λ2y + g2(x, y),

where λ2 < λ1 < 0 and g1, g2 are higher order terms of x and y. It is known that,
near O = (0, 0), there exists a locally invariant manifold Y which is tangent to the
x-axis at O = (0, 0). If the above vector field is to be modified similarly to (3), say
in a small box [−ε, ε]× [−δ, δ] near Y , then the modified vector field would be{

x′ = χ(x)(λ1x+ g1(x, y)),
y′ = λ2y + g2(x, y)

where χ(x) = 0 for |x| ≥ ε. Now, the Jacobian of the new vector field is(
χ′(x)(λ1x+ g1) + (λ+ ∂xg1)χ(x) χ(x)∂yg1

∂xg2 λ2 + ∂yg2

)
,

which, at (±ε, 0), reduces to(
0 + h.o.t 0 + h.o.t
∂xg2 λ2 + ∂yg2

)
.

But the Jacobian of the original vector field at (±ε, 0) is simply(
λ1 + h.o.t h.o.t
∂xg2 λ2 + ∂yg2

)
,

where h.o.t stands for higher order terms of x and y. Therefore, Jacobians for the
two vector fields are not close to each other, that is, the new vector field is not C1

close to the original one.
Although non-regular perturbations seem to be an unavoidable problem in the

modification of vector fields of this type, our modified vector field (3) was chosen to
single out the non-regular factors. Roughly speaking, near ∂∗Nε0 , we have projected
the vector field f(z) to Tz∂∗Nε0 for z ∈ Nε0 and left the component along Vs(Y )
and Y unchanged. Therefore, the components of the new vector field along the
stable directions still remain as a regular perturbation to the original ones, that is,
these components and their associated derivatives differ from the original ones by
an order of ε20, and order of ε0, respectively (see Proposition 1 a) and Lemma 4).
Consequently, the lower bound of the decay rate along these non-regular directions
is close to the one associated to the original vector field (see Proposition 1 b)). The
non-regular perturbation will only arise in the modification of the center-unstable
directions, which however results in a slowing down of the modified flow when
entering Uε0 . As we shall see in Section 4, such a ‘slowing down’ will actually
provide a positive effect to our analysis.

4. Analysis on the modified vector field

Recall that for 0 < ε ≤ ε0, Nε admits a bundle structure Nε =
⋃
z0∈Uε Sε0(z0)

over the approximate center-unstable manifold M̂cu(Y ). Throughout rest of the
paper, for z = p + q ∈ Nε, where p ∈ M̂cu(Y ) and q ∈ Sε0(p), we simply use the
notation z = (p, q).
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In this section, we shall prove the following proposition which gives the key
estimates to the modified flow.

Proposition 1. Given T > 0, C > 0 and ε0 small. If (pi, qi) ∈ Nε0 and zi(t) =
(pi(t), qi(t)) are solutions of (3) with zi(0) = (pi, qi) (i = 1, 2) and |p2− p1| < Cε0,
then there exists a C(T ) > 0 such that, as long as zi(t) ∈ Nε0 for t ∈ [0, T ], the
following holds.

(a) (stable contracting rate)

|q2(T )− q1(T )| ≤
(
eC(T )ε0 ||Φs(y, T )||+ C(T )ε0

)
|q2 − q1|

+C(T )ε0|p2 − p1|,(4)

where y = Q(p1).
In particular,

||Dz(πsφT )|TSε0 (z)|| ≤ eC(T )ε0 ||Φs(y, T )||+ C(T )ε0,

and

||Dz(πsφT )|TU(z)|| ≤ C(T )ε0,

where y = Qπcuz.
(b) (center-unstable expending rate)

|p2(T )− p1(T )| ≥
(
eC(T )ε0||Φs(y, T )||β − C(T )ε0

)
|p2 − p1|

−C(T )ε0|q2 − q1|,(5)

where y = Q(p1).
In particular,

‖Dz(πcuφT )|TU(z)‖ ≥ eC(T )ε0 ||Φs(y, T )||β − C(T )ε0,

where y = Qπcuz.

We first study some properties of v(z), η(z) and ξ(z).

Lemma 1. There is a C > 0 depending only on Y such that for any z ∈ ∂∗Nε0 the
following holds.

(i) v>(z)Jv(z) = 0, |Jv(z)vj(z)| ≤ Cε0 for j ≤ k0 or j > m0,
|v>j (z)Jv(z)vj(z)− ε−1

0 | ≤ C for k0 < j ≤ m0;
(ii) |∇η(z)− v(z)| ≤ Cε0;
(iii) |ξj(z)| ≤ Cε0 for j = 1 and j > k0;
(iv) |∇ξ(z)| ≤ C.

Proof. We identify Ty0Y , V ′(y0) and Vs(y0) with Rk0 , Rm0−k0 and Rn−m0 , respec-
tively. Let

G : N(y0) ⊂ Rn → Rk0 × Rm0−k0 × Rn−m0

be the inverse of expy0
: Ty0Rn → Rn. Then DG is ε0 close to the identity and D2G

is bounded. Moreover,
G(y0) = 0,G(z) = (0, · · · , 0, ε0, 0, · · · , 0),
G : N(y0) ∩ Y → Rk0 × {0} × {0}, and
G : N(y0) ∩ Uε0 → Rk0 × Rm0−k0 × {0},
G(∂Uε0) = Cε0 ,
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(see Fig. 4) where

Cε =

x = (x1, x2, · · · , xm0 , 0, · · · , 0) :
m0∑

j=k0+1

x2
j = ε2

 .

To prove (i), we note that the inward normal vector at x ∈ Cε is

n(x) =
1
|x| (0, · · · , 0,−xk0+1, · · · ,−xm0 , 0, · · · , 0).

Therefore,

Jn(x) =
1
|x|3

 Ok0×k0 O O
O D(m0−k0)×(m0−k0) O
O O O(n−m0)×(n−m0)

 ,

where D = (dij) with dii = x2
i − |x|2 and dij = xixj for i 6= j, k0 + 1 ≤ i, j ≤ m0.

The matrix D has zero as a simple eigenvalue with n(x) as the corresponding
eigenvector and has − 1

|x| as the other eigenvalues. If we assume, without loss of
generality, that xj = 0 for j 6= k0 + 1, then dij = 0 for i 6= j, dk0+1,k0+1 = 0
and dii = −|x|−1 for i 6= k0 + 1, that is, D has a Jordan form with the desired
eigenvalues. The property (i) easily follows.

Next, let η̄(x) = ε0 − |x|, for x ∈ Cε, which is related to η by G. Since

∇η̄(x) = − 1
|x| (0, · · · , 0, xk0+1, · · · , xm0 , 0, · · · , 0)> = n>(x),

and DG is ε0 close to the identity, we have |∇(η(z)) − v(z)| ≤ Cε0. The property
(ii) is proved.

The property (iii) clearly holds by the choice of vj ’s.
It remains to prove (iv). Note that

f(z) = ξ(z)v(z) +
n∑
j=2

ξj(z)vj(z).
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Then

Jf(z) = v(z)(∇ξ(z))> + ξ(z)Jv(z)

+
n∑
j=2

(vj(z)(∇ξj(z))> + ξj(z)Jvj(z)).

Multiplying the above equation by v>(z) on the left, we obtain

v>(z)A(z) = (∇ξ(z))> + ξ(z)v>(z)Jv(z) +
n∑
j=2

ξj(z)v>(z)Jvj(z).

Since 〈vi(z), vj(z)〉 = δij , we have

v>(z)Jv(z) = 0 and (Jvj(z))>v(z) = −(Jv(z))>vj(z).

Therefore,

∇ξ(z) = A>(z)v(z)−
n∑
j=2

ξj(z)(Jvj(z))>v(z)

= A>(z)v(z) +
n∑
j=2

ξj(z)(Jv(z))>vj(z).

(6)

By (i) and (iii), |∇ξ(z)| ≤ C.

The following generalized Gronwall’s inequality will be frequently used later.

Lemma 2. If β(t) ≥ 0, α(t) and φ(t) are continuous functions on [a, b] and

φ(t) ≤ α(t) +
∫ t

a

β(s)φ(s)ds, a ≤ t ≤ b,

holds, then

φ(t) ≤ α(t) +
∫ t

a

β(s)α(s)e
∫ t
s
β(µ)dµds, a ≤ t ≤ b.

If, in addition, α′(t) ≥ 0, then φ(t) ≤ α(t)e
∫ t
a
β(s)ds, a ≤ t ≤ b.

Proof. See [24].

Lemma 3. Let z1(t) and z2(t) be trajectories of (1) and (3) respectively. For any
T , if z2(t) ∈ Nε0 and λz2(t) + (1 − λ)z1(t) ∈ N0(Y ), for all |t| ≤ T and λ ∈ [0, 1],
then

|z1(t)− z2(t)| ≤ (|z2(0)− z1(0)|+ Cε0|t|)e|Df ||t|

for all |t| ≤ T , where |Df | = |Df |N0(Y ) and C is the constant defined in Lemma 1.

Proof. We only prove the case when t ≥ 0. By (1) and (3),

(z1(t)− z2(t))′ = f(z1(t))− f̂(z2(t))
= f(z1(t))− f(z2(t))

+(1− χ1(η(z2(t))))χ2(ξ(z2(t)))ξ(z2(t))v(z2(t)).
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It follows that

|z1(t)− z2(t)| − |z2(0)− z1(0)|

≤
∫ t

0

|f(z1(s))− f(z2(s))|ds+
∫ t

0

|ξ(z2(s))v(z2(s))|ds

≤ |Df |
∫ t

0

|z1(s)− z2(s)|ds+
∫ t

0

|ξ(z2(s))v(z2(s))|ds.

Since |ξ(z2(s))| ≤ Cε0, Lemma 2 implies that

|z1(t)− z2(t)| ≤ (|z2(0)− z1(0)|+ Cε0t)e|Df |t, 0 ≤ t ≤ T.

This completes the proof.

Lemma 4. For a given T > 0, there exists C(T ) > 0 such that if

z(t) = (p(t), q(t)) ≡ (πcuz(t), πsz(t))

is the solution of (3) with z(0) = (p0, q0) ∈ Nε0 , then

|q(t)| ≤ eαt|z(0)− y|+ C(T )ε20

for 0 ≤ t ≤ T , where y = Q(p0) ∈ Y .

Proof. Below, we fix a T > 0 and let 0 ≤ t ≤ T .
Denote F (z, y) = f(z)− f(y)−A(y)(z − y). Then

z′(t) = f(y · t) +A(y · t)(z(t)− y · t) + F (z(t), y · t)
−(1− χ1(η(z)))χ2(ξ(z))ξ(z(t))v(z(t)).

The variation of constant formula yields that

z(t)− y · t = Φ(y, t)(z(0)− y) +
∫ t

0

Φ(y, t)Φ−1(y, s)F (z(s), y · s)ds

−
∫ t

0

Φ(y, t)Φ−1(y, s)(1 − χ1(η(z)))χ2(ξ(z))ξ(z(s))v(z(s))ds.

Therefore, by noting that y · t ∈ Y ⊂ M̂cu(Y ), there exists a C0(T ) > 0 such that

|q(t)| = |πsz(t)| = |πsz(t)− πs(y · t)|
≤ |Dπs(y · t)(z(t)− y · t)|+ C0(T )|z(t)− y · t|2

= |Ps(y · t)(z(t)− y · t)|+ C0(T )|z(t)− y · t|2

≤ |Ps(y · t)Φ(y, t)(z(0)− y)|

+|
∫ t

0

Φ(y, t)Ps(y)Φ−1(y, s)F (z(s), y · s)ds|

+
∣∣∣∫ t

0

Φ(y, t)Ps(y)Φ−1(y, s)(1− χ1(η(z(s))))χ2(ξ(z(s)))ξ(z(s))

·Ps(y · s)v(z(s))ds
∣∣∣+ C0(T )|z(t)− y · t|2.

By Lemma 3, |z(s) − y · s| = O(ε0) and hence |F (z(s), y · s)| = O(ε20). Since
v is tangent to M̂cu(Y ), we also have |Ps(y · s)v(z(s))| = O(ε0). The lemma then
follows easily from the above inequality, (H2) and Remark 1, and Lemma 1.
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Let T > 0 and zi(t) = (pi(t), qi(t)) be solutions of (3) with zi(0) = (pi, qi) ∈ Nε0
(i = 1, 2) such that |p2 − p1| = O(ε20). Denote y = Q(p1) ∈ Y . By Lemma 3, there
is a C(T ) such that |y · t− zi(t)| ≤ C(T )ε0 for t ∈ [0, T ].

Set w(t) = z2(t)− z1(t). Since, by (3),

(zi(t)− y · t)′ = f̂(zi(t))− f(y · t)
= A(y · t)(zi(t)− y · t) + F (zi(t), y · t)
−(1− χ1(η(zi)))χ2(ξ(zi))ξ(zi(t))v(zi(t)),

where F (z, y) = f(z)− f(y)−A(y)(z − y), we have

w′ = A(y · t)w +B(y · t)w +O(ε0w),(7)

where

B(y · t)w = 〈∇(χ1(η(z̄))), w〉χ2(ξ(z̄))ξ(z̄)v(z̄)
−(1− χ1(η(z̄)))〈∇(χ2)(ξ(z̄)), w〉ξ(z̄)v(z̄)
−(1− χ1(η(z̄)))χ2(ξ(z̄)))〈∇ξ(z̄), w〉v(z̄)
−(1− χ1(η(z̄)))χ2(ξ(z̄))ξ(z̄)Jv(z̄)w,

with z̄(t) = λ(t)z2(t) + (1− λ(t))z1(t) for some λ(t) ∈ [0, 1].
Since, for i = s, c, u,

(Pi(y · t)Φ(y, t))′ = (Pi(y · t))′Φ(y, t) + Pi(y · t)A(y · t)Φ(y, t),

(Φ(y, t)Pi(y))′ = A(y · t)Φ(y, t)Pi(y) = A(y · t)Pi(y · t)Φ(y, t),

we have

(Pi(y · t))′ = A(y · t)Pi(y · t)− Pi(y · t)A(y · t).
By (7),

(Pi(y · t)w)′ = A(y · t)Pi(y · t)w − Pi(y · t)A(y · t)w + Pi(y · t)w′

= A(y · t)Pi(y · t)w + Pi(y · t)B(y · t)w +O(ε0Pi(y · t)w).(8)

Lemma 5. Let w,B be as above. Then, for T > 0, there is a C(T ) > 0 such that

|Ps(y · t)B(y · t)w(t)| ≤ C(T )ε0|w(t)|,(9)
|B(y · t)Ps(y · t)w(t)| ≤ C(T )ε0|w(t)|,(10)
|Pcu(y · t)B(y · t)w(t)| ≤ C(T )|w(t)|(11)

for all y ∈ Y and t ∈ [0, T ].

Proof. We only prove (9). Let y ∈ Y, t ∈ [0, T ] and let w = w(t), z̄ = z̄(t) be as
above. We note that

|Ps(y · t)B(y · t)w(t)| ≤ |〈∇(χ1(η(z̄))), w〉χ2(ξ(z̄))ξ(z̄)Psv(z̄)|
+|(1− χ1(η(z̄))〈∇(χ2(ξ(z̄))), w〉ξ(z̄)Psv(z̄)|
+|(1− χ1(η(z̄)))χ2(ξ(z̄))〈∇ξ(z̄), w〉Psv(z̄)|
+|(1− χ1(η(z̄)))χ2(ξ(z̄))ξ(z̄)PsJv(z̄)w|.

By Lemma 1 and the definitions of χ1, χ2, there is a C > 0 such that |∇ξ(z̄)| ≤ C,
|∇(χ1(η(z̄)))| ≤ 4ε−1

0 , |χ2(ξ(z̄))ξ(z̄)| ≤ Cε0, |∇η(z̄)−v(z̄)| ≤ Cε0, |∇χ2(ξ(z̄))| ≤ C,
|ξ(z̄)| ≤ Cε0, and |PsJv(z̄)vj(z̄)| ≤ C for j = 1, · · · , n. Since v(z̄) is tangent to
M̂cu(Y ), we also have |Psv(z̄)| ≤ C0(T )ε0 for a constant C0(T ) > 0. It follows
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that there is a constant C1(T ) > 0 such that all terms above are bounded by
C1(T )ε0|w(t)|.

Proof of Proposition 1. Below, for simplicity, we denote all constants which depend
only on T as C(T ). Let w, B be as above and let t ∈ [0, T ], y = Q(p1).

To prove (a), let z̃(t) be such that

|q2(t)− q1(t)| = |πsz2(t)− πsz1(t)| = |Dπs(z̃(t))(z2(t)− z1(t))|.

By Lemma 3, |z̃(t)− y · t| ≤ C(T )ε0. Therefore,

|q2(t)− q1(t)| = |πsz2(t)− πsz1(t)|
≤ |Ps(y · t)w(t)| + C(T )ε0|w(t)|.(12)

Applying the variation of constant formula to (8), we have

Ps(y · t)w(t) = Φ(y, t)Ps(y)w(0)

+
∫ t

0

Φ(y, t)Φ−1(y, s)Ps(y · s)B(y · t)w(s)ds

+
∫ t

0

Φ(y, t)Φ−1(y, s)O(ε0Ps(y · s)w(s))ds.(13)

By (9),

|Ps(y · t)w(t)| ≤ eαt|Ps(y)w(0)|+
∫ t

0

eα(t−s)C(T )ε0|Ps(y · s)w(s)|ds

+
∫ t

0

eα(t−s)C(T )ε0|Pcu(y · s)w(s)|ds.

It follows from Lemma 2 that

|Ps(y · t)w(t)| ≤ eαt+C(T )ε0

(
|Ps(y)w(0)| + C(T )ε0

∫ t

0

eα(t−s)|Pcu(y · s)w(s)|ds
)
.

(14)

Similarly,

|Pcu(y · t)w(t)| ≤ eγt+C(T )

(
|Pcu(y)w(0)|+ C(T )

∫ t

0

eα(t−s)|Ps(y · s)w(s)|ds
)
,

(15)

where γ > 0 is such that |Φ(y∗, t)| ≤ Ceγt (y∗ ∈ Y ) for some C > 0.
Substituting (15) into (14) and applying Lemma 2, we have

|Ps(y · t)w(t)| ≤ eαt+C(T )ε0 (|Ps(y)w(0)| + C(T )ε0|Pcu(y)w(0)|) .(16)

Substituting (16) into (15) and applying Lemma 2 again, we have

|Pcu(y · t)w(t)| ≤ eγt+C(T )ε0|Pcu(y)w(0)|+ C(T )|Ps(y)w(0)|.(17)

Finally, applying (11), (16) and (17) to (13), we conclude that

|q2(T )− q1(T )| ≤
(
eC(T )ε0|Φs(y, T )|+ C(T )ε0

)
|q2 − q1|+ C(T )ε0|p2 − p1|.

This completes the proof of (a).
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Next we prove (b). Similar to the proof of (a), we have

|p2(t)− p1(t)| = |πcuz2(t)− πcuz1(t)|
= |Dπcu(z̃(t))(z2(t)− z1(t))|
≥ |Pcu(y · t)w(t)| − C(T )ε0|w(t)|,(18)

where z̃(t) is such that |z̃(t)−y ·t| ≤ C(T )ε0. It remains to estimate |Pcu(y ·t)w(t)|.
By (7), (9) and (10),

(Pcu(y · t)w)′ = A(y · t)Pcu(y · t)w + Pcu(y · t)B(y · t)w +O(ε0Pcu(y · t)w)
= (A(y · t) +B(y · t))Pcu(y · t)w + Pcu(y · t)B(y · t)Ps(y · t)w
−Ps(y · t)B(y · t)Pcu(y · t)w +O(ε0Pcu(y · t)w)

= (A(y · t) +B(y · t))Pcu(y · t)w
+O(ε0Pcu(y · t)w) +O(ε0Ps(y · t)w).

A direct computation yields(
1
2
|Pcu(y · t)w|2

)′
= 〈A(y · t)Pcu(y · t)w,Pcu(y · t)w〉

+〈B(y · t)Pcu(y · t)w,Pcu(y · t)w〉(19)
+O(ε0|Pcu(y · t)w|2).

We claim that the following inequality holds:(
1
2
|Pcu(y · t)w|2

)′
≥ min{〈A(y · t)Pcu(y · t)w,Pcu(y · t)w〉, 0}

+O(ε0|Pcu(y · t)w|2).(20)

Let z̄ = z̄(t) be as in (8).
Case 1: ξ(z̄) = 0.
In this case,

〈B(y · t)Pcu(y · t)w,Pcu(y · t)w〉
= −(1− χ1(η(z̄)))〈∇ξ(z̄), Pcu(y · t)w〉〈Pcuv(z̄), Pcuw〉.

By expressing Pcu(y · t)w as a linear combination of Pcu(y · t)v(z̄) and its orthog-
onal complement, we see that either (i) Pcu(y · t)w ⊥ Pcu(y · t)v(z̄) or (ii) Pcuw =
λPcuv for some λ.

If (i) holds, then 〈B(y · t)Pcuw,Pcuw〉 = 0 and (20) is clearly true.
If (ii) holds, then by (6)

〈∇ξ(z̄), Pcuw〉 = 〈A>(z̄)v(z̄), Pcuw〉+
n∑
j=2

ξj(z̄)〈(Jvj(z̄))>v(z̄), Pcuw〉

= 〈A(z̄)Pcuw, v(z̄)〉 −
n∑
j=2

ξj(z̄)〈(Jv(z̄))>vj(z̄), Pcuw〉,

where Jv(z̄)Pcuw = λJv(z̄)Pcuv(z̄) = O(ε0). It follows that

〈(A(y · t) +B(y · t))Pcu(y · t)w,Pcu(y · t)w〉
= χ1(η(z̄))〈A(y · t)Pcu(y · t)w,Pcu(y · t)w〉+O(ε0|Pcu(y · t)w|2).
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If 〈A(y · t)Pcu(y · t)w,Pcu(y · t)w〉 > 0, then the first term above is nonnegative. If
〈A(y · t)Pcu(y · t)w,Pcu(y · t)w〉 ≤ 0, then the first term above is greater than or
equal to 〈A(y · t)Pcuw,Pcuw〉. Hence, (20) holds.

Case 2: ξ(z̄) > 0.
In this case, χ2(ξ(z̄)) = 1. Therefore,

〈B(y · t)Pcu(y · t)w,Pcu(y · t)w〉 =〈∇(χ1(η(z̄))), Pcuw〉ξ(z̄)〈Pcuw,Pcuv(z̄)〉
− (1− χ1(η(z̄)))〈∇ξ(z̄), Pcuw〉〈Pcuw,Pcuv(z̄)〉
− (1− χ1(η(z̄)))ξ(z̄)〈PcuJv(z̄)Pcuw,Pcuw〉
+ 〈Pcu(y · t)JF (z̄, y · t)Pcuw,Pcuw〉.

By Lemma 1 and the fact that ∇(χ1(η(z̄))) = χ′1(η(z̄))∇η(z̄), the first term above
is a sum of a nonnegative term and a term of order ε0. The second term above is
of order ε0 as in (ii) above. By Lemma 1 (i), the third term above is positive. The
last term is of higher order in ε0. Therefore,

〈(A(y · t) +B(y · t))Pcu(y · t)w,Pcu(y · t)w〉
≥ min{〈A(y · t)Pcu(y · t)w,Pcu(y · t)w〉, 0} +O(ε0|Pcu(y · t)w|2),

that is, (20) holds.
Case 3: ξ(z̄) < 0.
In this case, |χ2(ξ(z̄))ξ(z̄)| = O(ε20). Therefore,

|〈∇(χ1(η(z̄))), Pcuw〉χ2(ξ(z̄))ξ(z̄)〈Pcu(y · t)v(z̄), Pcuw〉|
≤ C(T )(ε0)−1ε20|Pcuw|2 = C(T )ε0|Pcuw|2,

and

|(1− χ1(η(z̄)))χ2(ξ(z̄))ξ(z̄)〈Pcu(y · t)Jv(z̄)Pcuw,Pcuw〉|
≤ C(T )ε20(ε0)−1|Pcuw|2 = C(T )ε0|Pcuw|2.

Thus,

〈(A(y · t) +B(y · t))Pcu(y · t)w,Pcu(y · t)w〉
= 〈A(y · t)Pcu(y · t)w,Pcu(y · t)w〉 +O(ε0|Pcu(y · t)w|2).

Therefore, (20) holds in any case.
Now let θ(t), C(t) be nonnegative continuous functions on t ∈ [0, T ] such that(

1
2
|Pcuw|2

)′
= min{〈A(y · t)Pcu(y · t)w,Pcu(y · t)w〉, 0}

+(θ(t) + C(t)ε0)|Pcu(y · t)w|2.(21)

Denote

I = {t ∈ [0, T ] : 〈A(y · t)Pcuw(t), Pcuw(t)〉 < 0}

and Ic = [0, T ]\I. Since I is open, we can express I as a countable union of non-
overlapping intervals, say, I =

⋃+∞
j=1(tj , t̄

j). It can be verified directly that, for any
t ∈ (tj , t̄

j),

exp

(∫ t

tj

(θ(τ) + C(τ)ε0)dτ

)
Φ(y · tj , t− tj)Pcu(y · tj)w(tj)
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is a solution of (21). Since Pcu(y · t)w(t) is also a solution, we have

|Pcu(y · t)w(t)|

≥ exp

(∫ t

tj

(θ(τ) + C(τ)ε0)dτ

)
|Φ(y · tj , t− tj)Pcu(y · tj)w(tj)|

≥ eC(t)ε0|Φ(y · tj , t− tj)Pcu(y · tj)w(tj)|
≥ eC(t)ε0m(Φcu(y · tj , t− tj))|w(tj)|.(22)

By (21), for [s, t] ∈ Ic, we have

|Pcu(y · t)w(t)| ≥ eO(ε)(t−s)|Pcu(y · s)w(s)|.(23)

Applying (22) and (23), and also using (H2) and Lemma 1, we have

|Pcu(y · t)w(t)| ≥ eC(T )ε0m(Φcu(y · tn, t− tn)) · · ·m(Φcu(y, t1))|p2 − p1|
−C(T )ε0(|q2 − q1|+ |p2 − p1|)

≥ eC(T )ε0||Φs(y · tn, t− tn)||β · · · ||Φs(y, t1)||β |p2 − p1|
−C(T )ε0(|q2 − q1|+ |p2 − p1|)

≥ (eC(T )ε0 ||Φs(y, t)||β − C(t)ε0)|p2 − p1| − C(T )ε0|q2 − q1|.
This completes the proof.

5. Proof of main theorem

5.1. Existence of center-unstable manifold. Using the bundle structure con-
structed in Section 3, we first choose a function space to which the graph transform
will apply.

Define

Γ := {h : Uε0 → Nε0 ; h(p) ∈ Sε0(p), ∀ p ∈ Uε0 , |h|C0 <∞}
and

Γρ := {h ∈ Γ : Lip(h) ≤ ρ},(24)

where ρ > 0,

Lip(h) = sup
p∈Uε0

Lipp(h), and Lipp(h) = lim sup
p′→p,p′∈Uε0

|h(p′)− h(p)|
|p′ − p| .

Lemma 6. Γρ is closed in Γ.

Proof. Suppose hn ∈ Γρ and hn → h in C0-norm. We shall show that Lipp(h) ≤ ρ
for any p ∈ Uε0 . For p′, p′′ ∈ Uε0 , let d̃(p′, p′′) denote the induced Euclidean distance
between p′ and p′′ in Uε0 (i.e., the length of the shortest path in Uε0 joining p′ and
p′′). Then for any ε > 0, there exists δ > 0 such that

(1 − ε)d̃(p′, p′′) ≤ |p′ − p′′| ≤ d̃(p′, p′′)

whenever |p′ − p′′| ≤ δ.
For any p1 ∈ Uε0 with |p1 − p| ≤ δ, we let γ be the shortest path in Uε0 from p1

to p. Then for any p′ ∈ γ, there exists δ(p′) > 0 such that

|hn(p′′)− hn(p′)| ≤ (ρ+ ε)|p′′ − p′|
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for all n and p′′ ∈ γ with |p′′ − p′| ≤ δ(p′). Since
⋃
p′∈γ(Bδ(p′)/2(p′) ∩ γ) covers γ,

there exist

p2, p3, · · · , pm = p ∈ γ,
ordered from p1 to p, such that

⋃m
i=1(Bδ(pi)/2(pi) ∩ γ) covers γ. By choosing δ

sufficiently small, we may assume that

pi 6∈ Bδ(pi+2)/2(pi+2) ∪Bδ(pi−2)/2(pi−2) for i = 3, · · · ,m− 2.

Thus,

|pi − pi+1| < δ(pi)/2 + δ(pi+1)/2 < max{δ(pi), δ(pi+1)},
which implies that either pi ∈ Bδ(pi+1)(pi+1) or pi+1 ∈ Bδ(pi)(pi) (i = 1, · · · ,m−1).
In any case,

|hn(pi)− hn(pi+1)| ≤ (ρ+ ε)|pi − pi+1|
for all n and i = 1, · · · ,m− 1. Therefore,

|hn(p1)− hn(p)| ≤
m∑
i=1

|hn(pi)− hn(pi+1)|

≤ (ρ+ ε)
m∑
i=1

|pi − pi+1|

≤ (ρ+ ε)
m∑
i=1

d̃(pi, pi+1)

= (ρ+ ε)d̃(p1, p)

≤ ρ+ ε

1− ε |p1 − p|.

By taking n→ +∞ in the above, we have

|h(p1)− h(p)| ≤ ρ+ ε

1− ε |p1 − p|.

Since ε is arbitrary, Lipp(h) ≤ ρ.

For each h ∈ Γρ, the graph, graph(h) := {(p, h(p)) : p ∈ Uε0}, of h is a section
of the fiber bundle Nε0 with base space Uε0 . We now define the graph transform.

Let Γρ (0 < ρ ≤ 1) be as in (24) for a prescribed ε0 > 0 and let φT (T > 0)
denote the time T map of the modified flow (3). Define the graph transform

φ∗ : Γρ → Γρ by φ∗h = H, where graph(H) = φT (graph(h)) ∩Nε0 .

Remark 3. Let σh(p) = πcu · φT · (id, h)(p) for p ∈ Uε0 . Then φ∗(h) = πs · φT ·
(id, h) · σ−1

h , provided that σh maps Uε0 to itself and is invertible.

The existence of a center-unstable manifold for the modified system (3) is an
immediate consequence of the following proposition.

Proposition 2. Fix 0 < ρ ≤ 1. There exist T > 0, ε0 = ε0(T ) > 0 such that the
following holds.

(i) φ∗ : Γρ → Γρ is well-defined.
(ii) φ∗ is a contraction mapping with respect to the C0-norm.
(iii) Let h ∈ Γρ be the fixed point of φ∗. Then Mcu(Y ) := graph(h) is an invariant

Lipschitz manifold of (3).
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Proof. First, by (H2), we can fix a T > 0 such that

||Φs(y, T )||1−β < 1
16
, ||Φs(y, T )||β < 1

8
.

Let C(T ) be as in Proposition 1. We choose an ε0 = ε0(T ) such that

0 < ε0 <
||Φs(y, T )||β

2C(T )
.

Let h ∈ Γρ. We wish to show that φ∗h ∈ Γρ; that is, φT (graph(h)) ∩ Nε0 is a
function H with Lip(H) ≤ ρ. Equivalently, we shall show that, for any (p0, q0) ∈
φT (graph(h)) ∩ Nε0 , there exists a δ > 0 such that if (p, q) ∈ φT (graph(h)) ∩Nε0
and |(p, q)− (p0, q0)| ≤ δ, then |q−q0||p−p0| ≤ ρ.

Fix a (p0, q0) ∈ φT (graph(h)) ∩Nε0 and define (p∗, q∗) = φ−T (p, q) for (p, q) ∈
φT (graph(h))∩Nε0 . Clearly, p∗, q∗ are continuous functions of (p, q). It follows that
there exists a δ > 0 such that if |(p, q)− (p0, q0)| ≤ δ, then |(p∗, q∗)− (p∗0, q

∗
0)| ≤ ε0.

Now let (p, q) ∈ φT (graph(h))∩Nε0 with |(p, q)−(p0, q0)| ≤ δ and denote (p1, q1) =
(p∗0, q

∗
0), (p2, q2) = (p∗, q∗). Due to the overflowing property of the modified flow,

we have φt(pi, qi) ∈ Nε0 (i = 1, 2) for all 0 ≤ t ≤ T . By (4) and (5),

|q − q0|
|p− p0|

=
|q2(T )− q1(T )|
|p2(T )− p1(T )|

≤
(
eC(T )ε0||Φs(y, T )||+ C(T )ε0

)
|q2 − q1|+ C(T )ε0|p2 − p1|(

eC(T )ε0 ||Φs(y, T )||β − C(T )ε0
)
|p2 − p1| − C(T )ε0|q2 − q1|

≤
(
eC(T )ε0||Φs(y, T )||1−β + C(T )ε0

)
ρ ≤ ρ.

This proves (i).
We now prove (ii). Let h1, h2 ∈ Γρ and denote Hi = φ∗(hi), for i = 1, 2. For

any p ∈ Uε0 , we let p1, p2 ∈ Uε0 be such that πcu · φT (pi, hi(pi)) = p (i = 1, 2). By
Proposition 1, |p2 − p1| = O(ε0). Denote y = Q(p1). Then,

|H2(p)−H1(p)| = |πsφT (p2, h2(p2))− πsφT (p1, h1(p1))|
≤ |πsφT (p1, h1(p1))− πsφT (p1, h2(p1))|

+|πsφT (p1, h2(p1))− πsφT (p2, h2(p2))|.(25)

By (4),

|πsφT (p1, h1(p1))− πsφT (p1, h2(p1))|
≤
(
eC(T )ε0||Φs(y, T )||+ C(T )ε0

)
|h2(p1)− h1(p1)|

≤
(
eC(T )ε0||Φs(y, T )||+ C(T )ε0

)
|h2 − h1|,(26)

and

|πsφT (p1, h2(p1))− πsφT (p2, h2(p2))|
≤
(
eC(T )ε0||Φs(y, T )||+ C(T )ε0

)
|h2(p1)− h2(p2)|+ C(T )ε0|p2 − p1|

≤
(
eC(T )ε0||Φs(y, T )||ρ+ C(T )ε0

)
|p2 − p1|.(27)
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Since

πcuφ
T (p2, h2(p2))− πcuφT (p1, h2(p1)) + πcuφ

T (p1, h2(p1))− πcuφT (p1, h1(p1))

= πcuφ
T (p2, h2(p2))− πcuφT (p1, h1(p1)) = 0,

we have

|πcuφT (p2, h2(p2))− πcuφT (p1, h2(p1))| = |πcuφT (p1, h2(p1))− πcuφT (p1, h1(p1))|.
(28)

By (5),

|πcuφT (p2, h2(p2)) − πcuφ
T (p1, h2(p1))|

≥
(
eC(T )ε0 ||Φs(y, T )||β − C(T )ε0

)
|p2 − p1|.(29)

By (28), (29) and (5),

|p2 − p1| ≤
|πcuφT (p2, h2(p2))− πcuφT (p1, h2(p1))|

eC(T )ε0||Φs(y, T )||β − C(T )ε0

=
|πcuφT (p1, h2(p1))− πcuφT (p1, h1(p1))|

eC(T )ε0||Φs(y, T )||β − C(T )ε0

≤ C(T )ε0|h2(p1)− h1(p1)|
eC(T )ε0 ||Φs(y, T )||β − C(T )ε0

.(30)

Substituting (26), (27) and (30) into (25), we see that

|H2(p)−H1(p)| ≤
(
eC(T )ε0 ||Φs(y, T )||+ C(T )ε0

)
·
(

1 +
C(T )ε0

eC(T )ε0||Φs(y, T )||β − C(T )ε0

)
|h2 − h1|.

Let λ denote the coefficient of |h2 − h1| in the above. By our choice of T and ε0, it
is clear that 0 < λ < 1. This proves (ii).

To prove (iii), we fix a small τ0 > 0 such that φτMcu(Y ) is a graph for 0 ≤ τ ≤ τ0.
Since

φT (φτMcu(Y )) = φτ (φTMcu(Y )) = φτMcu(Y ),

by the uniqueness of the fixed point of φ∗, φτMcu(Y ) = Mcu(Y ) for 0 ≤ τ ≤ τ0.
Now for any t, we write t = [ tτ0 ] + τ , where 0 ≤ τ < τ0. Then

φtMcu(Y ) = φ[ tτ0
]+τMcu(Y ) = φτ (φ[ tτ0

]Mcu(Y )) = φτMcu(Y ) = Mcu(Y ),

that is, Mcu(Y ) is invariant to (3).

Hereafter, Mcu(Y ) will be referred to as a center-unstable manifold of Y .

5.2. Smoothness of center-unstable manifold. We now discuss the smooth-
ness of Mcu(Y ) following the ideas of [18], [26], [47]. Namely, we first show that
Mcu(Y ) is C1 following the arguments of [18] and then use the Cr Section Theorem
in [26], [47] to improve the smoothness inductively. For other approaches to prove
the smoothness of an invariant manifold (for example, the application of Henry’s
Lemma and the use of a scale of Banach spaces), we refer the readers to [13], [41],
[53], [51], [56].

Recall that, for p ∈ Uε0 ,

h(σh(p)) = πs · φT · (id, h)(p),

where σh = πcu · φT · (id, h).
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Let Dp denote the differential operator with respect to p. Formally, we obtain

Dph(σh(p))Dpσh(p) = Dz(πsφT )(p, h(p))(id,Dph)(p),

or

Dph(σh(p)) = Dz(πsφT )(p, h(p))(id,Dph)(p)[Dp(πcuφT )(p, h(p))(id,Dph)(p)]−1.

Motivated by the above formula, we define Lh : TpUε0 → T(σh(p),h(σh(p)))Sε0(σh(p))
as

(Lhl)(σh(p)) = Dz(πsφT )(p, h(p))(id, l(p))[Dp(πcuφT )(p, h(p))(id, l(p))]−1.

Let E be the vector bundle over Uε0 for which the fiber at p ∈ Uε0 is the
space of bounded linear maps from TpUε0 to T(p,h(p))Sε0(p). Define the bundle map
Fh : E → E:

(p, l(p))→ (σh(p), (Lhl)(σh(p))).

Then the following diagram

E
Fh //

Π

��

E

Π

��

Uε0
σh // Uε0

commutes. Denote L0 as the zero section of E (that is, L0 : Uε0 → E is such that
L0(p) = 0 for all p ∈ Uε0) and let Ln+1(p) = LhLn(p), n = 0, 1, · · · . Define the
norm of a section L by |L| = supp∈Uε0 |L(p)| where |L(p)| is the operator norm of
L(p).

Lemma 7. |Ln| ≤ 1
5 for all n ≥ 0.

Proof. Clearly, |L0| = 0 ≤ 1
5 . Assume |Ln| ≤ 1

5 for some n > 0. If T and ε0 are as
in Proposition 1, then

|Ln+1(σh(p))| = |(LhLn)(σh(p))|
≤ |Dz(πsφT )(p, h(p))(id, Ln(p))||Dp(πcuφT )(p, h(p))(id, Ln(p))|−1

≤
(1 + 1

5 )
(
eC(T )ε0||Φs(y, T )||+ C(T )ε0

)
(1− 1

5 )
(
eC(T )ε0 ||Φs(y, T )||β − C(T )ε0

) ≤ 1
5

for all p ∈ Uε0 . The proof is then complete by induction.

Lemma 8. {Ln}+∞n=0 is a Cauchy sequence.

Proof. Let p ∈ Uε0 . For each n = 1, 2, · · · , we have

Ln+1(σh(p))− Ln(σh(p)) = (LhLn)(p)− (LhLn−1)(p)

= Dz(πsφT )(p, h(p))(id, Ln(p))[Dp(πcuφT )(p, h(p))(id, Ln(p))]−1

−Dz(πsφT )(p, h(p))(id, Ln−1(p))[Dp(πcuφT )(p, h(p))(id, Ln−1(p))]−1

= Dz(πsφT )(p, h(p))(0, Ln(p)− Ln−1(p))[Dp(πcuφT )(p, h(p))(id, Ln(p))]−1

+Dz(πsφT )(p, h(p))(id, Ln−1(p))([Dp(πcuφT )(p, h(p))(id, Ln(p))]−1

−[Dp(πcuφT )(p, h(p))(id, Ln−1(p))]−1).
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Let y = Q(p). Then

|Dz(πsφT )(p, h(p))(0, Ln(p)− Ln−1(p))[Dp(πcuφT )(p, h(p))(id, Ln(p))]−1|
≤ |Dz(πsφT )(p, h(p))||Ln(p)− Ln−1(p)||Dp(πcuφT )(p, h(p))(id, Ln(p))|−1

≤ (eC(T )ε0 ||Φs(y, T )||+ C(T )ε0)(eC(T )ε0 ||Φs(y, T )||β − C(T )ε0)−1

·(1− 1
5

)−1|Ln(p)− Ln−1(p)|

≤ ρ(1− 1
5

)−1|Ln(p)− Ln−1(p)|,

and

|[Dp(πcuφT )(p, h(p))(id, Ln(p))]−1 − [Dp(πcuφT )(p, h(p))(id, Ln−1(p))]−1|
≤ |Dp(πcuφT )(p, h(p))|−1|(id, Ln(p))−1 − (id, Ln−1(p))−1|
≤ |Dp(πcuφT )(p, h(p))|−1|(id, Ln(p))|−1|Ln(p)− Ln−1(p)||(id, Ln−1(p))|−1

≤ (eC(T )ε0 ||Φs(y, T )||β − C(T )ε0)−1(1− 1
5

)−2|Ln(p)− Ln−1(p)|.

Therefore,

|Ln+1 − Ln| ≤
5
16
ρ|Ln − Ln−1| ≤

5
16
|Ln − Ln−1|,

and {Ln} is a Cauchy sequence.

Lemma 9. h is C1 and Dph = L1, where L1 = limn→∞ Ln and p ∈ Uε0 .

Proof. We need to show that

|h(p′)− h(p)− L1(p)v(p′, p)| = o(|p′ − p|),
as p′ → p in Uε0 , where expp v(p′, p) = p′. We note that p′ − p is not necessarily in
TpUε0 , but p′ − p− v(p′, p) = O(|p′ − p|2) (see [50]).

Following [18], define an increasing function γ : (0, 1)→ R by

γ(a) = sup
0<|p′−p|<a

|h(p′)− h(p)− L1(p)v(p′, p)|
|p′ − p| .

Then it suffices to show that γ(a)→ 0 as a→ 0.
Note that

h(σh(p′))− h(σh(p)) = πsφ
T (p′, h(p′))− πsφT (p, h(p))

= Dz(πsφT )(p, h(p))(p′ − p, h(p′)− h(p))
+O(|p′ − p|2),

and

σh(p′)− σh(p) = πcuφ
T (p′, h(p′))− πcuφT (p, h(p))

= Dp(πcuφT )(p, h(p))(p′ − p, h(p′)− h(p))

+O(|p′ − p|2).

Since

L1(σh(p)) = Dz(πsφT )(p, h(p))(id, L1(p))[Dp(πcuφT )(p, h(p))(id, L1(p))]−1,

we have

L1(σh(p))v(σh(p′), σh(p)) = Dz(πφT )(p, h(p))(id, L1(p))v(p′, p)
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and

|h(σh(p′))− h(σh(p)) − L1(σh(p))v(σh(p′), σh(p))|
= |Dz(πsφT )(p, h(p))(p′ − p− v(p′, p), h(p′)− h(p)− L1(p)v(p′, p))|

+O(|p′ − p|2)

≤
(
eC(T )ε0 ||Φs(y, T )||+ C(T )ε0

)
|h(p′)− h(p)− L1(p)v(p′, p)|

+O(|p′ − p|2).

But by Proposition 1,

Lipp(σh) ≥ eC(T )ε0||Φs(y, T )||β − C(T )ε0.

Therefore,

|h(σh(p′))− h(σh(p))− L1(σh(p))v(σh(p′), σh(p))|
|σh(p′)− σh(p)|

≤
(
eC(T )ε0 ||Φs(y, T )||+ C(T )ε0

) |h(p′)− h(p)− L1(p)v(p′, p)|+O(|p′ − p|2)
|σh(p′)− σh(p)|

≤ eC(T )ε0 ||Φs(y, T )||+ C(T )ε0
eC(T )ε0||Φs(y, T )||β − C(T )ε0

|h(p′)− h(p)− L1(p)v(p′, p)|
|p′ − p| +O(|p′ − p|)

≤ ρ |h(p′)− h(p)− L1(p)v(p′, p)|
|p′ − p| +O(|p′ − p|).

That is, there are δ > 0 and β(a) = O(a) such that

γ(a) ≤ ργ(δa) + β(a).(31)

Now, if δ ≤ 1, then γ(a) ≤ (1− ρ)−1β(a)→ 0 as a→ 0. If δ > 1, by (30), then

γ(aδ−m) ≤ ρmγ(a) + β(aδ−m) + · · ·+ ρm−1β(aδ−1)
≤ ρmγ(a) + (1 − ρ)−1β(aδ−1).

It follows that γ(a)→ 0 as a→ 0. This completes the proof.

The following lemma is an immediate consequence of the general Cr Section
Theorem (see [26], [47]).

Lemma 10. Let B be the disc bundle of radius δ in E. Suppose Lh : Bp → Bσh(p)

is Lipschitz with constant k, σh and F are Cs, DjF and Djσ−1
h are bounded for

1 ≤ j ≤ s. If kµs < 1, where µ = Lip(σ−1
h ), then L1 is Cs; hence h is Cs+1.

Proposition 3. There exists ε0 such that, if h ∈ Γρ is the fixed point of φ∗ in
Proposition 2, then h is Cd, where d is the integer defined in Theorem 1.

Proof. By Lemma 9, h is C1. Now assume that h is Cs, for s ≤ d− 1. Since d ≤ r,
σh and F are Cs. Let T and ε0(T ) be as in Proposition 1, and let ε0 ≤ ε0(T ). We
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then have

k ≤ sup
y∈Y
{ e

C(T )ε0||Φs(y, T )||+ C(T )ε0
eC(T )ε0 ||Φs(y, T )||β − C(T )ε0

},

and

µ ≤ sup
y∈Y

(eC(T )ε0||Φs(y, T )||β − C(T )ε0)−1.

Hence

kµs ≤ eC(T )ε0||Φs(y, T )||+ C(T )ε0
(eC(T )ε0 ||Φs(y, T )||β − C(T )ε0)s+1

.

The right-hand side above approaches to ‖Φ(y, T )‖1−β(s+1) as ε0 → 0, which is less
than 1 because s + 1 ≤ d < 1

β . So, if we choose ε0 small (smaller than ε0(T ) in
general), then kµs < 1. It follows from Lemma 10 that h is Cs+1. By induction, h
is Cd.

5.3. Proof of Theorem 1.

Proof. Proposition 3 implies that there exists a Cd center-unstable manifoldMcu(Y )
of the modified flow (3). Since, in a small neighborhood of Y , f̂ agrees with f ,
Mcu(Y ) is also a locally invariant manifold of (1) and TyMcu(Y ) = Vcu(y) for
y ∈ Y . By reversing the time, we similarly obtain a locally invariant Cd mani-
fold Mcs(Y ) of (1) in a neighborhood of Y with TyMcs(Y ) = Vcs(y) for y ∈ Y .
The intersection Mc(Y ) = Mcu(Y ) ∩Mcs(Y ) therefore gives a locally invariant Cd

manifold of (1) with TyMc(Y ) = Vc(y) for y ∈ Y , which is a desired center manifold.
If g ∈ Cr is such that |g − f |Cr is small, then so is |ĝ − f̂ |Cr , where ĝ is

the modification of g in the same fashion as that of f . By arguments of [18]
and [6], there exists a locally invariant Cd manifold Mcu(ĝ) for ĝ which is Cd

close to Mcu(Y ). Moreover, Mcu(ĝ) is clearly a locally invariant manifold for g
when restricting to a small neighborhood of Y . Similarly, there exists a locally
invariant Cd manifold Mcs(g) for g which is Cd close to Mcs(Y ). The intersection
Mc(g) = Mcu(g) ∩Mcs(g) is then a Cd invariant manifold for g which is Cd close
to Mc(Y ). This shows that Mc(Y ) is Cd persistent.

Clearly, Mcu(Y ) carries all the solutions locally bounded in negative time, and
Mcs(Y ) carries all the solutions locally bounded in positive time. We then conclude
that Mc(Y ) carries all solutions which are locally bounded in R. The proof of
Theorem 1 is now complete.

Acknowledgments

We would like to thank Jack Hale for encouragement and for challenging ques-
tions. We are grateful to C. Chicone, K. Lu, J. Mallet-Paret, K. Palmer, B. Sand-
stede for many valuable discussions. We also wish to thank the referees for com-
ments and suggestions which led to significant improvements of the present paper.
During the preparation of this paper, the first author was supported by NSF grants
DMS 9306265, DMS 9404199 and NIST grant 60NANB2D1276; the last author
was supported by NSF grant DMS 9501412 and a Rosenbaum fellowship. All au-
thors were supported in part by the Center for Dynamical Systems and Nonlinear
Studies, Georgia Institute of Technology.



CENTER MANIFOLDS FOR SMOOTH INVARIANT MANIFOLDS 5209

References

[1] Afraimovich, V., Chow, S.-N. and Liu, W. (1995). Lorenz-type attractors from co-dimension
one bifurcations. J. Dyn. Diff. Eqn. 7, 375-407. MR 96c:58097

[2] Afraimovich, V., and Shilnikov, L. (1974). On Some Global Bifurcations Connected with
the Disappearance of a Fixed Point of Saddle-node Type. Doklady Akad. Nauk. SSSR 219,
1281-1285 (in Russian). English translation in Sov. Math. Doklady.

[3] Ball, J.M. (1973). Saddle point analysis for an ordinary differential equation in a Banach
space and an application to dynamic buckling of a beam. Nonlinear Elasticity (R. W. Dickey,
ed.), Academic Press, New York, 93-160. MR 48:3342

[4] Bates, P.W. and Jones, C.K.R.T. (1989). Invariant manifolds for semilinear partial differ-
ential equations. Dyn. Reported 2, 1-38, Wiley. MR 90g:58017

[5] Bates, P., Lu, K. and Zeng, C. Existence and persistence of invariant manifolds for semiflows
in Banach space. Mem. Amer. Math. Soc. to appear. MR 97:11

[6] Bronstein, I. U. and Kopanskii, A. Ya. Smooth Invariant Manifolds and Normal Forms.
World Scientific Series on Nonlinear Science. Series A, 7, 1994. of center manifolds. Proc.
Roy. Soc. Edinburgh. 120 A, 61-77. MR 96d:58123

[7] Carr, J. Applications of Center Manifold Theory. Applied Mathematical Sciences, 35,
Springer-Verlag, New York, 1981. MR 83g:34039

[8] Chafee, N. (1971). A bifurcation problem for functional differential equations of finitely
retarded type. J. Math. Anal. Appl. 35, 312-348. MR 49:10997

[9] Chen, X.-Y., Hale, J. and Tan, B. (1997). Invariant foliations of C1 semigroups in Banach
spaces. J. Diff. Eqn. 139, 293-318. MR 98m:47109

[10] Chenciner, A. and Iooss, G. (1979). Bifurcations des tores invariants. Arch. Rat. Mech. Anal.

71, 301-306. MR 81c:58049
[11] Chow, S.-N. and Hale, J. Method of Bifurcation Theory. Springer-Verlag, 1982.

MR 84e:58019
[12] Chow, S-N., Li, C. and Wang, D. Normal Forms and Bifurcation of Planar Vector Fields.

Cambridge University Press, 1994. MR 95i:58161
[13] Chow, S-N. and Lu, K. (1988). Ck Center unstable manifolds. Proc. Roy. Soc. Edinburgh.

79, 189-231. MR 90a:58148
[14] Chow, S-N. and Lu, K. (1995). Invariant manifolds and foliations for quasiperiodic systems.

J. Diff. Eqn. 117, 1-27. MR 96b:34064
[15] Chow, S-N. and Yi, Y. (1994). Center manifold and stability for skew-product flows. J. Dyn.

Diff. Eqn. 6, 543-582. MR 95k:58142
[16] Diliberto, S.P. (1960). Perturbation theorems for periodic surfaces, I. Rend. Circ. Mat.

Palermo, Ser. 2, 9, 265-299. MR 26:420a
[17] Dumoritier, F., Roussarie, R., Sotomayor, J. and Zoladek, H. Bifurcations of planar

vector fields. Lect. Notes in Math. No. 1480, Springer-Verlag Berlin Heidelberg, 1991.
MR 93f:58165

[18] Fenichel, N. (1971). Persistence and smoothness of invariant manifolds for flows. Indiana
Univ. Math. J. 21, 193-226. MR 44:4313

[19] Fenichel, N. (1979). Geometric singular perturbation theory for ordinary differential equa-
tions. J. Diff. Eqn. 31, 53-98. MR 80m:58032

[20] Foias, C., Sell, G. and Temam, R. (1988). Inertial manifolds for nonlinear evolutionary
equations. J. Diff. Eqn. 73, 309-353. MR 89e:58020

[21] Guckenheimer, J. and Holmes, P. Nonlinear Oscillators, Dynamical Systems and Bifurca-
tions of Vector Fields. Springer-Verlag, 1985. MR 85f:58002
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4 (part 1), 785-797. MR 49:9342

[32] Li, Y., McLaughlin, D., Shatah, J. and Wiggins, S. (1996). Persistent homoclinic orbits
for perturbed nonlinear Schrödinger equations. Comm. Pure Appl. Math. 49, 1175-1255.
MR 98d:35208
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