THE JANTZEN SUM FORMULA FOR CYCLOTOMIC q-SCHUR ALGEBRAS

GORDON JAMES AND ANDREW MATHAS

Abstract

The cyclotomic q-Schur algebra was introduced by Dipper, James and Mathas, in order to provide a new tool for studying the Ariki-Koike algebra. We here prove an analogue of Jantzen's sum formula for the cyclotomic q-Schur algebra. Among the applications is a criterion for certain Specht modules of the Ariki-Koike algebras to be irreducible.

1. Introduction

In [6] Richard Dipper and the authors introduced the cyclotomic q-Schur algebras and showed that they are quasi-hereditary cellular algebras. By definition, a cyclotomic q-Schur algebra is a certain endomorphism algebra attached to an Ariki-Koike algebra in much the same way as the q-Schur algebra 5] is defined as an endomorphism algebra of a particular module for the Iwahori-Hecke algebra of the symmetric group.

One of our motivations for defining the cyclotomic q-Schur algebras was to provide another tool for studying the Ariki-Koike algebras. In this paper we use the cyclotomic q-Schur algebras to prove a version of the Jantzen sum formula for the Ariki-Koike algebras. Most of the argument is devoted to first proving an analogue of Jantzen's sum formula for the Weyl modules of the cyclotomic q-Schur algebra. The result for the Ariki-Koike algebras is then deduced by a Schur functor argument. As a corollary of these results we obtain criteria for the Weyl modules of the cyclotomic q-Schur algebras, and for certain of the Specht modules of the Ariki-Koike algebras, to be irreducible.

We note that as a special case of our results we obtain, for the first time, an analogue of the Jantzen sum formula for Coxeter groups of type \mathbf{B}.

In the case of the q-Schur algebra it is possible to give a geometric proof of Jantzen's sum formula [1]. As yet, in the cyclotomic case there is no algebra which plays the rôle of the quantum group of type \mathbf{A}; consequently, an algebraic approach is necessary. The proof we give generalizes and extends the argument of [13].

2. The cyclotomic q-Schur algebra

We recall some definitions and results from [6].

[^0]Fix integers r and n with $r \geq 1$ and $n \geq 1$ and let R be a commutative ring with 1 and let $q, Q_{1}, Q_{2}, \ldots, Q_{r}$ be elements of R, with q invertible.

The Ariki-Koike algebra $\mathcal{H}\left[3\right.$ is the associative R-algebra with generators T_{0}, T_{1}, \ldots, T_{n-1} subject to the following relations:

$$
\begin{aligned}
\left(T_{0}-Q_{1}\right) \cdots\left(T_{0}-Q_{r}\right) & =0, & & \\
T_{0} T_{1} T_{0} T_{1} & =T_{1} T_{0} T_{1} T_{0}, & & \\
\left(T_{i}+1\right)\left(T_{i}-q\right) & =0, & & \text { for } 1 \leq i \leq n-1 \\
T_{i+1} T_{i} T_{i+1} & =T_{i} T_{i+1} T_{i}, & & \text { for } 1 \leq i \leq n-2 \\
T_{i} T_{j} & =T_{j} T_{i}, & & \text { for } 0 \leq i<j-1 \leq n-2
\end{aligned}
$$

Let \mathfrak{S}_{n} be the symmetric group on $\{1,2, \ldots, n\}$. Then \mathfrak{S}_{n} is generated by $s_{1}, s_{2}, \ldots, s_{n-1}$ where $s_{i}=(i, i+1)$ for $1 \leq i<n$. If $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ is a reduced expression for $w \in \mathfrak{S}_{n}$ (that is, k is minimal), we write $\ell(w)=k$ and define $T_{w}=T_{i_{1}} T_{i_{2}} \ldots T_{i_{k}}$. Let $\mathcal{H}\left(\mathfrak{S}_{n}\right)$ be the subalgebra of \mathcal{H} spanned by $\left\{T_{w} \mid w \in W\right\} ;$ then $\mathcal{H}\left(\mathfrak{S}_{n}\right)$ is the Iwahori-Hecke algebra of \mathfrak{S}_{n}.

Define elements $L_{1}, L_{2}, \ldots, L_{n}$ of \mathcal{H} by $L_{i}=q^{1-i} T_{i-1} \ldots T_{1} T_{0} T_{1} \ldots T_{i-1}$. We have the following well-known result (cf. [3, 3.3] and 4, (2.1), (2.2)]).
2.1. Suppose that $1 \leq i \leq n-1$ and $1 \leq j \leq n$. Then
(i) L_{i} and L_{j} commute.
(ii) T_{i} and L_{j} commute if $i \neq j-1, j$.
(iii) T_{i} commutes with $L_{i} L_{i+1}$ and with $L_{i}+L_{i+1}$.
(iv) If $a \in R$ and $i \neq j$, then T_{i} commutes with $\left(L_{1}-a\right)\left(L_{2}-a\right) \ldots\left(L_{j}-a\right)$.

A composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ is a finite sequence of non-negative integers; we denote by $|\alpha|$ the sum of the sequence. A multicomposition of n (into r components) is an ordered r-tuple $\mu=\left(\mu^{(1)}, \ldots, \mu^{(r)}\right)$ of compositions $\mu^{(k)}$ such that $\sum_{k=1}^{r}\left|\mu^{(k)}\right|=n$. We call $\mu^{(k)}$ the k th component of μ. A partition is a composition whose parts are non-increasing; a multicomposition is a multipartition if all of its components are partitions.

Definition 2.2. Suppose that μ is a multicomposition of n and let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ be an r-tuple of integers a_{k} such that $0 \leq a_{k} \leq n$ for all k.
(i) Let $u_{\mathbf{a}}^{+}=u_{\mathbf{a}, 1} u_{\mathbf{a}, 2} \cdots u_{\mathbf{a}, r}$ where $u_{\mathbf{a}, k}=\prod_{i=1}^{a_{k}}\left(L_{i}-Q_{k}\right)$ for $1 \leq k \leq r$.
(ii) Let $x_{\mu}=\sum_{w \in \mathfrak{S}_{\mu}} T_{w}$ where $\mathfrak{S}_{\mu}=\mathfrak{S}_{\mu^{(1)}} \times \mathfrak{S}_{\mu^{(2)}} \times \cdots \times \mathfrak{S}_{\mu^{(r)}}$.
(iii) Let $m_{\mu}=u_{\mathbf{a}}^{+} x_{\mu}$ where $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ and $a_{k}=\sum_{i=1}^{k-1}\left|\mu^{(i)}\right|$, for $1 \leq k \leq r$.
(iv) Let $M^{\mu}=m_{\mu} \mathcal{H}$.

Note that $u_{\mathbf{a}}^{+} x_{\mu}=x_{\mu} u_{\mathbf{a}}^{+}$by[2.1(iv) and that $a_{1}=0$ in Definition 2.2.(iii).
Given two multicompositions μ and ν write $\mu \unrhd \nu$ if for all $i \geq 0$ and k with $1 \leq k \leq r$

$$
\sum_{j=1}^{k-1}\left|\mu^{(j)}\right|+\sum_{j=1}^{i} \mu_{j}^{(k)} \geq \sum_{j=1}^{k-1}\left|\nu^{(j)}\right|+\sum_{j=1}^{i} \nu_{j}^{(k)}
$$

If $\mu \unrhd \nu$ and $\mu \neq \nu$, then we write $\mu \triangleright \nu$.
Let Λ be a finite subset of the set of all multicompositions of n which have r components such that if $\mu \in \Lambda$ and $\lambda \unrhd \mu$ for some multipartition λ, then $\lambda \in \Lambda$. Let Λ^{+}be the set of multipartitions in Λ.

The main arena for the investigations of this paper is the cyclotomic q-Schur algebra, which we now define.

Definition 2.3 (6]). The cyclotomic q-Schur algebra is the endomorphism algebra

$$
\mathcal{S}(\Lambda)=\operatorname{End}_{\mathcal{H}}\left(\bigoplus_{\mu \in \Lambda} M^{\mu}\right)
$$

Generally we omit Λ and simply write \mathcal{S}.
In order to describe a basis of \mathcal{S} and its irreducible representations we next recall the combinatorics of semistandard tableaux from [6].

Suppose that ν is a multicomposition of n and let $\mathbf{r}=\{1,2, \ldots, r\}$. The diagram of ν is the set

$$
[\nu]=\left\{(i, j, k) \in \mathbb{N} \times \mathbb{N} \times \mathbf{r} \mid 1 \leq j \leq \lambda_{i}^{(k)}\right\}
$$

The elements of $[\nu]$ are the nodes of ν; more generally, a node is any element of $\mathbb{N} \times \mathbb{N} \times \mathbf{r}$.

A ν-tableau T is a mapping from the diagram of ν into $\mathbb{N} \times \mathbf{r}$; informally, we shall regard T as an ordered r-tuple of labelled diagrams, as in the example below. In particular, we will write $\mathrm{T}=\left(\mathrm{T}^{(1)}, \ldots, \mathrm{T}^{(r)}\right)$ and will speak of the components of T and their rows and columns. We say that T is a tableau of type μ if the number of entries in T equal to (i, k) is $\mu_{i}^{(k)}$ for all $(i, k) \in \mathbb{N} \times \mathbf{r}$.

Below, and in all later examples, we write i_{k} in place of the ordered pair (i, k).
Example 2.4. (i) Suppose that ν is a multicomposition and let T^{ν} be the $\nu-$ tableau of type ν such that $\mathrm{T}^{\nu}(i, j, k)=(i, k)$ for all $(i, j, k) \in[\nu]$.
(ii) Let $\lambda=\left((3,2),(2,1),\left(1^{2}\right)\right)$. Then two λ-tableaux are

$$
\mathrm{T}^{\lambda}=\left(\begin{array}{l|l|l}
\hline 1_{1} & 1_{1} & 1_{1} \\
\hline 2_{1} & 2_{1} &
\end{array}, \begin{array}{|l|l|}
\hline 1_{2} & 1_{2} \\
\hline 2_{2} &
\end{array}, \begin{array}{l}
1_{3} \\
\hline 2_{3} \\
\hline
\end{array}\right) \text { and } \mathrm{S}=\left(\begin{array}{l|l|l|}
\hline 1_{1} & 2_{1} & 1_{2} \\
\hline 2_{2} & 3_{3} & \\
\hline
\end{array}, \begin{array}{|l|l|}
\hline 2_{2} & 1_{3} \\
\hline 2_{3} & \\
\hline 4_{3} \\
\hline
\end{array}\right)
$$

Here S is a λ-tableau of type $\left(\left(1^{2}\right),(1,2),(1,1,2,1)\right)$.
Given (i, k) and (j, l) in $\mathbb{N} \times \mathbf{r}$, we say that $(i, k)<(j, l)$ if either $k<l$, or $k=l$ and $i<j$.
Definition 2.5 ([6]). A λ-tableau $\mathrm{T}=\left(\mathrm{T}^{(1)}, \ldots, \mathrm{T}^{(r)}\right)$ of type μ is semistandard if λ is a multipartition and
(i) the entries in each row of each component $\mathrm{T}^{(k)}$ are non-decreasing; and,
(ii) the entries in each column of each component $\mathrm{T}^{(k)}$ are strictly increasing; and,
(iii) if $(a, b, c) \in[\lambda]$ and $\mathrm{T}(a, b, c)=(i, k)$, then $k \geq c$.

Let $\mathcal{T}_{0}(\lambda, \mu)$ be the set of semistandard λ-tableaux of type μ.
For example, the λ-tableau T^{λ} defined in Example 2.4(i) is the unique semistandard λ-tableau of type λ. The λ-tableau S in Example 2.4(ii) is also semistandard.

Before we can describe how the semistandard tableaux index a basis for \mathcal{S}, we first need to single out special semistandard tableaux which index a basis of the Ariki-Koike algebra \mathcal{H}.
Definition 2.6. (i) Let $\omega=\left((0), \ldots,(0),\left(1^{n}\right)\right)$, a multipartition of n.
(ii) Let λ be a multipartition. A standard λ-tableau is a semistandard λ-tableau of type ω.
(iii) Let $\operatorname{Std}(\lambda)=\mathcal{T}_{0}(\lambda, \omega)$ be the set of standard λ-tableaux.

Let T be a ν-tableau of type ω. Then, for all $x \in[\nu]$, we have $\mathrm{T}(x)=(i, r)$ for some $i \in\{1,2, \ldots, n\}$; we identify T with the map \mathfrak{t} determined by $\mathrm{T}(x)=(\mathfrak{t}(x), r)$ for all $x \in[\nu]$. Then \mathfrak{t} is a standard tableau if and only if ν is a multipartition and
in each component $\mathfrak{t}^{(k)}$ the entries are strictly increasing along each row and down each column.

We will always denote tableaux of type ω by lower case letters in order to distinguish them from tableaux of other types.

Given a multicomposition ν, let \mathfrak{t}^{ν} be the tableau with the integers $1,2, \ldots, n$ entered in order along the rows of $[\nu]$. The symmetric group \mathfrak{S}_{n} acts on the set of ν-tableaux of type ω by letter permutations; note that the Young subgroup \mathfrak{S}_{ν} is precisely the row stabilizer of \mathfrak{t}^{ν}.

If λ is a multipartition and \mathfrak{t} is a standard λ-tableau, then define $d(\mathfrak{t}) \in \mathfrak{S}_{n}$ by $\mathfrak{t}=\mathfrak{t}^{\lambda} d(\mathfrak{t})$. Then $d(\mathfrak{t})$ is a (distinguished) right coset representative of \mathfrak{S}_{λ} in \mathfrak{S}_{n}.

Let $*: \mathcal{H} \rightarrow \mathcal{H}$ be the R-linear antiautomorphism of \mathcal{H} determined by $T_{i}^{*}=T_{i}$ for all i with $0 \leq i<n$. In particular, $T_{w}^{*}=T_{w^{-1}}$ for all $w \in \mathfrak{S}_{n}$.
Definition 2.7. Suppose that λ is a multipartition of n and that \mathfrak{s} and \mathfrak{t} are standard λ-tableaux. Let $m_{\mathfrak{s t}}=T_{d(\mathfrak{s})}^{*} m_{\lambda} T_{d(\mathfrak{t})}$.

The proof of the following result can be found in [6] 3.26].
Theorem 2.8 (The Standard Basis Theorem). The Ariki-Koike algebra \mathcal{H} is a free R-module with cellular basis

$$
\left\{\left.m_{\mathfrak{s t}}\right|^{\mathfrak{s} \text { and } \mathfrak{t} \text { are standard } \lambda \text {-tableaux for }} \begin{array}{c}
\text { some multipartition } \lambda \text { of } n
\end{array}\right\} .
$$

We call this basis the standard basis of \mathcal{H}; it is a cellular basis in the sense of Graham and Lehrer [8]. Note that $m_{\mathfrak{5 t}}^{*}=m_{\mathfrak{t s}}$.

Given a standard λ-tableau \mathfrak{t} and a multicomposition μ let $\mu(\mathfrak{t})$ be the λ-tableau of type μ obtained by replacing each entry m in \mathfrak{t} by (i, k) if m appears in row i of the k th component of \mathfrak{t}^{μ}. For example, $\mathrm{T}^{\lambda}=\lambda\left(\mathfrak{t}^{\lambda}\right)$.
2.9 ([6) Proposition 6.3]). Let μ and ν be multicompositions of n. Then $M^{\mu} \cap M^{\nu^{*}}$ is a free R-module with basis

$$
\left\{m_{\mathrm{ST}} \left\lvert\, \begin{array}{c}
\mathrm{S} \in \mathcal{T}_{0}(\lambda, \mu) \text { and } \mathrm{T} \in \mathcal{T}_{0}(\lambda, \nu) \text { for some } \\
\text { multipartition } \lambda \text { of } n
\end{array}\right.\right\}
$$

where $m_{\mathrm{ST}}=\sum_{\mathfrak{s}, \mathfrak{t}} m_{\mathfrak{s t}}$ and $(\mathfrak{s}, \mathfrak{t})$ runs over all pairs of standard λ-tableaux such that $\mathrm{S}=\mu(\mathfrak{s})$ and $\mathrm{T}=\nu(\mathfrak{t})$.

Note that $m_{\lambda}=m_{\mathfrak{t}^{\lambda} \mathfrak{t}^{\lambda}}=m_{T^{\lambda} \mathfrak{t}^{\lambda}}=m_{\mathfrak{t}^{\lambda} T^{\lambda}}=m_{T^{\lambda} T^{\lambda}}$.
In particular, 2.9 shows that the maps $\varphi_{\text {ST }}$ below are well-defined elements of \mathcal{S}.
Definition 2.10. Let λ be a multipartition of n and let μ and ν be multicompositions of n. Suppose that $\mathrm{S} \in \mathcal{T}_{0}(\lambda, \mu)$ and $\mathrm{T} \in \mathcal{T}_{0}(\lambda, \nu)$. Then $\varphi_{\mathrm{ST}} \in \mathcal{S}$ is the \mathcal{H}-homomorphism such that

$$
\varphi_{\mathrm{ST}}\left(m_{\alpha} h\right)=\delta_{\alpha \nu} m_{\mathrm{ST}} h
$$

for all $\alpha \in \Lambda$ and all $h \in \mathcal{H}$.
Theorem 2.11 (The Semistandard Basis Theorem [6, 6.12]). The cyclotomic q Schur algebra \mathcal{S} is free as an R-module with cellular basis

$$
q\left\{\varphi_{\mathrm{ST}} \left\lvert\, \begin{array}{c}
\mathrm{S} \in \mathcal{T}_{0}(\lambda, \mu), \mathrm{T} \in \mathcal{T}_{0}(\lambda, \nu) \text { for some } \\
\mu, \nu \in \Lambda \text { and } \lambda \in \Lambda^{+}
\end{array}\right.\right\}
$$

We call the basis $\left\{\varphi_{\mathrm{ST}}\right\}$ the semistandard basis of \mathcal{S}. Because it is cellular, the R-linear map $*: \mathcal{S} \rightarrow \mathcal{S}$ determined by $\varphi_{\mathrm{ST}}^{*}=\varphi_{\mathrm{TS}}$ is an anti-automorphism of \mathcal{S} (see [6, 6.9]).

For each multipartition λ in Λ^{+}let $\overline{\mathcal{S}}^{\lambda}$ be the R-submodule of \mathcal{S} with basis

$$
\left\{\left.\varphi_{\mathrm{UV}}\right|^{\mathrm{U} \in \mathcal{T}_{0}(\alpha, \mu), \mathrm{V} \in \mathcal{T}_{0}(\alpha, \nu) \text { for some } \mu, \nu \in \Lambda \text { and }} \begin{array}{c}
\alpha \in \Lambda^{+} \text {with } \alpha \triangleright \lambda
\end{array}\right\}
$$

By [6, 6.11], $\overline{\mathcal{S}}^{\lambda}$ is a two-sided ideal of \mathcal{S}.
Recall the λ-tableau T^{λ} from Example[2.4(i). It is easy to see from the definitions that $\varphi_{T^{\lambda} T^{\lambda}}$ restricts to the identity map on M^{λ}.
Definition 2.12. Let $\lambda \in \Lambda^{+}$. The Weyl module W^{λ} is the submodule of $\mathcal{S} / \overline{\mathcal{S}}^{\lambda}$ given by $W^{\lambda}=\left(\overline{\mathcal{S}}^{\lambda}+\varphi_{T^{\lambda} T^{\lambda}}\right) \mathcal{S}$.

We remark that in [6] we defined the Weyl module W^{λ} to be a left \mathcal{S}-module; however it is more convenient here to define it as a right module.

By Theorem 2.11 the Weyl module W^{λ} is a free R-module with basis

$$
\left\{\varphi_{\mathrm{T}} \mid \mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu), \mu \in \Lambda\right\}
$$

where $\varphi_{\mathrm{T}}=\overline{\mathcal{S}}^{\lambda}+\varphi_{\mathrm{T}^{\lambda} \mathrm{T}}$. The cellular structure of \mathcal{S} defines a natural symmetric bilinear form \langle,$\rangle on W^{\lambda}$ which is determined by the requirement that

$$
\left\langle\varphi_{\mathrm{S}}, \varphi_{\mathrm{T}}\right\rangle \varphi_{\mathrm{T}^{\lambda} \mathrm{T}^{\lambda}} \equiv \varphi_{\mathrm{T}^{\lambda} \mathrm{S}} \varphi_{\mathrm{TT}^{\lambda}} \bmod \overline{\mathcal{S}}^{\lambda}
$$

for all semistandard λ-tableaux S and T . Note that $\left\langle\varphi_{\mathrm{S}}, \varphi_{\mathrm{T}}\right\rangle=0$ unless S and T are tableaux of the same type. Also, by Theorem 2.11

$$
\begin{equation*}
\langle x \varphi, y\rangle=\left\langle x, y \varphi^{*}\right\rangle \text { for all } x, y \in W^{\lambda} \text { and all } \varphi \in \mathcal{S} . \tag{2.13}
\end{equation*}
$$

Consequently, $\operatorname{rad} W^{\lambda}=\left\{x \in W^{\lambda} \mid\langle x, y\rangle=0\right.$ for all $\left.y \in W^{\lambda}\right\}$ is an \mathcal{S}-submodule of W^{λ}.

Because $\varphi_{T^{\lambda} T^{\lambda}}$ is the identity map on M^{λ}, one sees that $\left\langle\varphi_{T^{\lambda}}, \varphi_{T^{\lambda}}\right\rangle=1$; together with Theorem 2.11 this implies the following result.
2.14 (6, Theorem 6.16]). For each $\lambda \in \Lambda^{+}$let $F^{\lambda}=W^{\lambda} / \operatorname{rad} W^{\lambda}$. Then $F^{\lambda} \neq 0$; moreover, if R is a field, then F^{λ} is absolutely irreducible and $\left\{F^{\lambda} \mid \lambda \in \Lambda^{+}\right\}$is a complete set of non-isomorphic irreducible right \mathcal{S}-modules.

In addition to the simple \mathcal{S}-modules we will be concerned with the simple $\mathcal{H}-$ modules. Define \bar{N}^{λ} to be the R-submodule of \mathcal{H} with basis
(cf. the definition of $\overline{\mathcal{S}}^{\lambda}$). It follows from Theorem 2.8 that \bar{N}^{λ} is a two-sided ideal of \mathcal{H}.

Definition 2.15. Let λ be a multipartition. The Specht module S^{λ} is the right \mathcal{H}-module $\left(\bar{N}^{\lambda}+m_{\lambda}\right) \mathcal{H}$, a submodule of $\mathcal{H} / \bar{N}^{\lambda}$.

For $\mathfrak{t} \in \operatorname{Std}(\lambda)$ let $m_{\mathfrak{t}}=\bar{N}^{\lambda}+m_{\mathfrak{t}^{\lambda} \mathfrak{t}}$. Then, by Theorem 2.8, S^{λ} is free as an R-module with basis $\left\{m_{\mathfrak{t}} \mid \mathfrak{t} \in \operatorname{Std}(\lambda)\right\}$.

Define a bilinear form on S^{λ} by requiring that $\left\langle m_{\mathfrak{s}}, m_{\mathfrak{t}}\right\rangle m_{\lambda} \equiv m_{\mathfrak{t}^{\lambda} \mathfrak{s}} m_{\mathfrak{t t}^{\lambda}} \bmod \bar{N}^{\lambda}$. As before, $\operatorname{rad} S^{\lambda}$ is an \mathcal{H}-module and we set $D^{\lambda}=S^{\lambda} / \operatorname{rad} S^{\lambda}$.
2.16 ([6, Theorem 3.30]). Suppose that R is a field. Then

$$
\left\{D^{\lambda} \neq 0 \mid \lambda \text { is a multipartition of } n\right\}
$$

is a complete set of non-isomorphic irreducible \mathcal{H}-modules. Moreover, each D^{λ} is either absolutely irreducible or zero.

We remark that the bilinear forms defined on the modules W^{λ} and S^{λ}, and the results relating to them, fit into the general framework of cellular algebras, as devised by Graham and Lehrer [8].

Now suppose that $\omega \in \Lambda^{+}$; equivalently, assume that Λ^{+}is the set of all multipartitions of n. Then $\varphi_{\mathrm{T} \omega \mathrm{T} \omega}$ is idempotent in \mathcal{S}; indeed, if ν is a multicomposition in Λ, then $\varphi_{\mathrm{T}^{\nu} \mathrm{T}^{\nu}}$, the identity map on M^{ν}, is idempotent and the identity element of \mathcal{S} is $\sum_{\nu \in \Lambda} \varphi_{\mathrm{T}^{\nu} \mathrm{T}^{\nu}}$.

By identifying $h \in \mathcal{H}$ with the homomorphism $\rho_{h} \in \operatorname{Hom}_{\mathcal{H}}(\mathcal{H}, \mathcal{H})$ which is given by $\rho_{h}\left(h^{\prime}\right)=h h^{\prime}$ for all $h^{\prime} \in \mathcal{H}$, we see that $\mathcal{H} \cong \varphi_{\mathrm{T} \omega \mathrm{T} \omega} \mathcal{S} \varphi_{\mathrm{T} \omega \mathrm{T} \omega}$. Let ($W^{\nu}: F^{\lambda}$) denote the composition multiplicity of the simple module F^{λ} in W^{ν} and similarly for $\left(S^{\nu}: D^{\lambda}\right)$. Then, by general arguments (see, for example, ,9, §6]), we have the following.

Proposition 2.17. Assume that every multipartition of n belongs to Λ^{+}. Let U be a right \mathcal{S}-module. Then $U \varphi_{\mathrm{T} \omega \mathrm{T} \omega}$ is a right \mathcal{H}-module. In particular, if λ is a multipartition of n, then $W^{\lambda} \varphi_{\mathrm{T} \omega_{\mathrm{T}} \omega} \cong S^{\lambda}$ and $F^{\lambda} \varphi_{\mathrm{T} \omega \mathrm{T}^{\omega}} \cong D^{\lambda}$. Furthermore, if R is a field and $D^{\lambda} \neq(0)$, then $\left(S^{\nu}: D^{\lambda}\right)=\left(W^{\nu}: F^{\lambda}\right)$ for all multipartitions ν.

Thus, the decomposition matrix of \mathcal{H} embeds into the decomposition matrix of \mathcal{S}.

Finally, we also require a better understanding of the basis elements φ_{T} of the Weyl module W^{λ}. As for the Specht modules, if T is a semistandard λ-tableau of type μ we let $m_{\mathrm{T}}=\bar{N}^{\lambda}+m_{\mathrm{T}^{\lambda} \mathrm{T}}$. We claim that φ_{T} can be identified with the map (also denoted φ_{T})

$$
\begin{equation*}
\varphi_{\mathrm{T}}: M^{\mu} \rightarrow\left(\bar{N}^{\lambda}+M^{\lambda}\right) / \bar{N}^{\lambda} \text { given by } m_{\mu} h \longmapsto m_{\mathrm{T}} h \tag{2.18}
\end{equation*}
$$

for all $h \in \mathcal{H}$. In order to see this let $M=\bigoplus_{\nu \in \Lambda} M^{\nu}$ and $\bar{M}^{\lambda}=\bigoplus_{\nu \in \Lambda} \bar{N}^{\lambda} \cap M^{\nu}$. Then each φ in $\overline{\mathcal{S}}^{\lambda}$ maps M into \bar{M}^{λ}; so we may regard $\mathcal{S} / \overline{\mathcal{S}}^{\lambda}$ as a set of maps from M into M / \bar{M}^{λ}. Consequently, $\varphi_{\mathrm{T}}=\overline{\mathcal{S}}^{\lambda}+\varphi_{\mathrm{T}^{\lambda} \mathrm{T}}$ can be identified with the map from M^{μ} into $\left(\bar{M}^{\lambda}+M^{\lambda}\right) / \bar{M}^{\lambda}$ which sends m_{μ} to $\bar{M}^{\lambda}+m_{\mathrm{T}^{\lambda} \mathrm{T}}\left(\right.$ since $\left.\varphi_{\mathrm{T}^{\lambda} \mathrm{T}}\left(m_{\mu}\right)=m_{\mathrm{T}^{\lambda} \mathrm{T}}\right)$. Then, by the third isomorphism theorem,

$$
\left(\bar{M}^{\lambda}+M^{\lambda}\right) / \bar{M}^{\lambda} \cong M^{\lambda} /\left(\bar{M}^{\lambda} \cap M^{\lambda}\right)=M^{\lambda} /\left(\bar{N}^{\lambda} \cap M^{\lambda}\right) \cong\left(\bar{N}^{\lambda}+M^{\lambda}\right) / \bar{N}^{\lambda}
$$

justifying our claim.

3. The Gram determinant of W_{μ}^{λ}

Throughout this section, fix a multipartition $\lambda \in \Lambda^{+}$and a multicomposition $\mu \in \Lambda$. The μ-weight space of W^{λ} is the R-submodule $W_{\mu}^{\lambda}=W^{\lambda} \varphi_{\mathrm{T}^{\mu}{ }_{\mathrm{T}}} ;$ thus W_{μ}^{λ} is R-free with basis $\left\{\varphi_{\mathrm{T}} \mid \mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)\right\}$.

Definition 3.1. The Gram determinant of W_{μ}^{λ} with respect to the semistandard basis is $G_{\mu}(\lambda)=\operatorname{det}\left(\left\langle\varphi_{\mathrm{S}}, \varphi_{\mathrm{T}}\right\rangle\right)$, where S and T run over the elements of $\mathcal{T}_{0}(\lambda, \mu)$. If $\mathcal{T}_{0}(\lambda, \mu)$ is empty, we set $G_{\mu}(\lambda)=1$.
(We determine the sign of $G_{\mu}(\lambda)$ by fixing a total ordering of $\mathcal{T}_{0}(\lambda, \mu)$ which is compatible with the partial ordering of Definition 3.6 below.)

The purpose of this section is to compute $G_{\mu}(\lambda)$; we do this by first constructing an orthogonal basis for W_{μ}^{λ} when $R=\mathbb{F}\left(q, Q_{1}, \ldots, Q_{r}\right)$ and q, Q_{1}, \ldots, Q_{r} are independent transcendental elements over a field \mathbb{F}.

Definition 3.2. Given $i \geq 1$ and $k \in \mathbf{r}$ let $y, y+1, \ldots, z$ be the entries in row i of $\mathfrak{t}^{\mu^{(k)}}$. Then $L_{i, k}^{\mu}$ is the element of $\operatorname{Hom}_{\mathcal{H}}\left(M^{\mu}, M^{\mu}\right)$ given by

$$
L_{i, k}^{\mu}\left(m_{\mu} h\right)=\left(L_{y}+L_{y+1}+\cdots+L_{z}\right) m_{\mu} h
$$

for all $h \in \mathcal{H}$.
The homomorphism $L_{i, k}^{\mu}$ maps into M^{μ} because 2.1(ii) and (iii) imply the following result.

Lemma 3.3. Suppose that $(i, k) \in \mathbb{N} \times \mathbf{r}$ and let $y, y+1, \ldots, z$ be the entries in row i of $\mathfrak{t}^{\mu^{(k)}}$. Then $L_{y}+L_{y+1}+\cdots+L_{z}$ commutes with every element of $\mathcal{H}\left(\mathfrak{S}_{\mu}\right)$. In particular, $\left(L_{y}+L_{y+1}+\cdots+L_{z}\right) m_{\mu}=m_{\mu}\left(L_{y}+L_{y+1}+\cdots+L_{z}\right)$.

Note that $L_{i, k}^{\mu}=0$ if $\mu_{i}^{(k)}=0$. Furthermore, using[2.1]again, the homomorphisms $L_{i, k}^{\mu}$ and $L_{j, l}^{\mu}$ commute for all (i, k) and (j, l) in $\mathbb{N} \times \mathbf{r}$.

Below, often without mention, we will identify an element h of \mathcal{H} with the homomorphism $\rho_{h} \in \operatorname{Hom}_{\mathcal{H}}(\mathcal{H}, \mathcal{H})$ given by $\rho_{h}\left(h^{\prime}\right)=h h^{\prime}$ for all $h^{\prime} \in \mathcal{H}$. Under this identification we have that $L_{i}=L_{i, r}^{\omega}$ for $i=1,2, \ldots, n$.
Definition 3.4. (i) Let $x=(a, b, c) \in[\lambda]$. Then the residue of x is

$$
\operatorname{res}(x)=q^{b-a} Q_{c}
$$

(ii) Let $(i, k) \in \mathbb{N} \times \mathbf{r}$ and suppose that $\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)$. Then

$$
\operatorname{res}_{\mathrm{T}}(i, k)=\sum_{x \in[\lambda]: \mathrm{T}(x)=(i, k)} \operatorname{res}(x)
$$

Similarly, given a standard tableau $\mathfrak{t} \in \operatorname{Std}(\lambda)$ we write $\operatorname{res}_{\mathfrak{t}}(i)=\operatorname{res}(x)$ where x is the unique node in $[\lambda]$ such that $\mathfrak{t}(x)=i$.
(iii) Let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$, with $0 \leq a_{k} \leq n$ for all k, and suppose that $\mathfrak{t} \in \operatorname{Std}(\lambda)$. Then

$$
\operatorname{res}_{\mathfrak{t}}(\mathbf{a})=\prod_{k=1}^{r} \prod_{i=1}^{a_{k}}\left(\operatorname{res}_{\mathfrak{t}}(i)-Q_{k}\right)
$$

(cf. Definition 2.2(i)).
Note that if $L_{i, k}^{\mu}=0$, then $\operatorname{res}_{\mathrm{T}}(i, k)=0$ for all $\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)$.
Example 3.5. Let $\lambda=((3,1),(1)), \mu=((2),(2,1))$, and let

$$
\mathfrak{t}=\left(\begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 5 & & 3 \\
\hline
\end{array}\right) \quad \text { and } \quad \mathrm{T}=\left(\begin{array}{|l|l|l|}
\hline 1_{1} & 1_{1} & 1_{2} \\
\hline 2_{2} & & 1_{2} \\
\hline
\end{array}\right)
$$

Then $\mathfrak{t} \in \operatorname{Std}(\lambda), \mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)$ and $\mathrm{T}=\mu(\mathfrak{t})$. The residues in the diagram of λ are

Thus, $\operatorname{res}_{T}\left(1_{1}\right)=\operatorname{res}_{\mathfrak{t}}(1)+\operatorname{res}_{\mathfrak{t}}(2)=Q_{1}+q Q_{1}, \operatorname{res}_{T}\left(1_{2}\right)=\operatorname{res}_{\mathfrak{t}}(4)+\operatorname{res}_{\mathfrak{t}}(3)=$ $q^{2} Q_{1}+Q_{2}$ and $\operatorname{res}_{\mathrm{T}}\left(2_{2}\right)=\operatorname{res}_{\mathfrak{t}}(5)=q^{-1} Q_{1}$. Let $\mathbf{a}=(0,2)$; then $m_{\mu}=u_{\mathbf{a}}^{+} x_{\mu}$ and $\operatorname{res}_{\mathfrak{t}}(\mathbf{a})=\left(Q_{1}-Q_{2}\right)\left(q Q_{1}-Q_{2}\right)$.

Definition 3.6. (i) Suppose that $\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)$ and $(i, k) \in \mathbb{N} \times \mathbf{r}$. Let $\mathrm{T}_{i, k}$ denote the subtableau of T consisting of all entries $(j, l) \leq(i, k)$, and let $\mathrm{T}_{i, k}^{\#}$ be the multipartition whose diagram is determined by $\mathrm{T}_{i, k}$.
(ii) Given S and $\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)$ write $\mathrm{S} \unrhd \mathrm{T}$ if $\mathrm{S}_{i, k}^{\#} \unrhd \mathrm{~T}_{i, k}^{\#}$ for all $(i, k) \in \mathbb{N} \times \mathbf{r}$.
(iii) If $\mathrm{S} \unrhd \mathrm{T}$ and $\mathrm{S} \neq \mathrm{T}$, we write $\mathrm{S} \triangleright \mathrm{T}$.

Proposition 3.7. Suppose that \mathfrak{t} is a standard λ-tableau and let i be an integer with $1 \leq i \leq n$. Then for each $\mathfrak{s} \in \operatorname{Std}(\lambda)$ there exists $a_{\mathfrak{s}} \in R$ such that

$$
m_{\mathfrak{t}} L_{i}=\operatorname{res}_{\mathfrak{t}}(i) m_{\mathfrak{t}}+\sum_{\mathfrak{s} \triangleright \mathfrak{t}} a_{\mathfrak{s}} m_{\mathfrak{s}}
$$

Proof. First consider the case where $\mathfrak{t}=\mathfrak{t}^{\lambda}$; then $m_{\mathfrak{t}}=\bar{N}^{\lambda}+m_{\lambda}$. Suppose that i appears in row a and column b of the c th component of \mathfrak{t}^{λ} and let j be the smallest integer appearing in $\mathfrak{t}^{\lambda^{(c)}}$; then $j \leq i$. Write $m_{\lambda}=x_{\lambda} u_{\mathbf{a}}^{+}$as in Definition 2.2 and let $T_{j, i}=T_{j} T_{j+1} \ldots T_{i-1}$ (set $T_{j, i}=1$ if $\left.j=i\right)$ and $T_{i, j}=T_{j, i}^{*}$.

Working modulo \bar{N}^{λ} and using [2.1(ii) and 2.1(iii), we find that

$$
\begin{aligned}
m_{\mathbf{t}^{\lambda}} L_{i} & \equiv m_{\lambda} L_{i}=x_{\lambda} u_{\mathbf{a}}^{+} L_{i}=q^{j-i} x_{\lambda} u_{\mathbf{a}}^{+} T_{i, j} L_{j} T_{j, i}=q^{j-i} x_{\lambda} T_{i, j} u_{\mathbf{a}}^{+} L_{j} T_{j, i} \\
& =q^{j-i} Q_{c} x_{\lambda} T_{i, j} u_{\mathbf{a}}^{+} T_{j, i}+q^{j-i} x_{\lambda} T_{i, j} u_{\mathbf{a}}^{+}\left(L_{j}-Q_{c}\right) T_{j, i} \\
& =q^{j-i} Q_{c} u_{\mathbf{a}}^{+} x_{\lambda} T_{i, j} T_{j, i}+q^{j-i} x_{\lambda} T_{i, j} u_{\mathbf{b}}^{+} T_{j, i}
\end{aligned}
$$

where $\mathbf{b}=\left(a_{1}, \ldots, a_{c-1}, a_{c}+1, a_{c+1}, \ldots, a_{r}\right)$. Therefore,

$$
m_{\mathfrak{t}^{\lambda}} L_{i} \equiv q^{j-i} Q_{c} u_{\mathbf{a}}^{+} x_{\lambda} T_{i, j} T_{j, i} \quad \bmod \bar{N}^{\lambda}
$$

because $x_{\lambda} T_{i, j} u_{\mathbf{b}}^{+} \in \mathcal{H} m_{\lambda} \mathcal{H} \cap \mathcal{H} u_{\mathbf{b}}^{+} \mathcal{H} \subseteq \bar{N}^{\lambda}$ by Theorem 2.8. Now $q^{j-i} T_{i, j} T_{j, i}$ is a q-Murphy operator in the Iwahori-Hecke algebra of the symmetric group on $\{j, j+1, \ldots, i\} ;$ consequently, by [17, Theorem 4.6],

$$
m_{\mathbf{t}^{\lambda}} L_{i} \equiv q^{b-a} Q_{c} u_{\mathbf{a}}^{+} x_{\lambda}=\operatorname{res}_{\mathbf{t}^{\lambda}}(i) u_{\mathbf{a}}^{+} x_{\lambda} \equiv \operatorname{res}_{\mathbf{t}^{\lambda}}(i) m_{\mathbf{t}^{\lambda}} \quad \bmod \bar{N}^{\lambda} .
$$

This completes the proof when $\mathfrak{t}=\mathfrak{t}^{\lambda}$. If $\mathfrak{t} \neq \mathfrak{t}^{\lambda}$, then there exists an integer k such that $\mathfrak{s}=\mathfrak{t}(k, k+1) \triangleright \mathfrak{t}$ (and $1 \leq k<n)$. Then $m_{\mathfrak{t}}=m_{\mathfrak{s}} T_{k}$ and the result follows by the argument of 4, Theorem 3.15].

Recalling the definitions of $u_{\mathbf{a}}^{+}$and $\operatorname{res}_{\mathfrak{t}}(\mathbf{a})$ from (2.2) and (3.4) respectively, we obtain the next result.

Corollary 3.8. Let \mathfrak{t} be a standard λ-tableau. Then for each $\mathfrak{s} \in \operatorname{Std}(\lambda)$ there exists $a_{\mathfrak{s}} \in R$ such that

$$
m_{\mathfrak{t}} u_{\mathbf{a}}^{+}=\operatorname{res}_{\mathfrak{t}}(\mathbf{a}) m_{\mathfrak{t}}+\sum_{\mathfrak{s} \triangleright \mathfrak{t}} a_{\mathfrak{s}} m_{\mathfrak{s}}
$$

Lemma 3.9. Let $\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)$. There exist unique standard λ-tableaux first(T$)$ and last(T) such that
(i) $\mu(\operatorname{first}(\mathrm{T}))=\mu(\operatorname{last}(\mathrm{T}))=\mathrm{T}$; and,
(ii) $\operatorname{first}(\mathrm{T}) \unrhd \mathfrak{t} \unrhd \operatorname{last}(\mathrm{T})$ for all $\mathfrak{t} \in \operatorname{Std}(\lambda)$ such that $\mu(\mathfrak{t})=\mathrm{T}$.

Furthermore, if $d=d(\operatorname{first}(\mathrm{~T}))$ and $m_{\lambda}=u_{\mathbf{b}}^{+} x_{\lambda}$, then

$$
m_{\mathrm{T}^{\lambda} \mathrm{T}}=\sum_{w \in \mathfrak{S}_{\lambda} d^{-1} \mathfrak{S}_{\mu}} u_{\mathbf{b}}^{+} T_{w}
$$

and $\mathfrak{S}_{\lambda} \cap d \mathfrak{S}_{\mu} d^{-1}=\mathfrak{S}_{\nu_{\mathrm{T}}}$ for some multicomposition ν_{T} of n.
Proof. Parts (i) and (ii) follow easily from the definitions; see 6] 4.7]. The final statements are a consequence of the definition of $m_{T^{\lambda} \mathrm{T}}$ and well-known properties of distinguished double coset representatives (see, for example, [4, 1.6]).

We remark that if \mathfrak{t} is a standard λ-tableau, then $\mathfrak{t}=\operatorname{first}(\mathfrak{t})=\operatorname{last}(\mathfrak{t})$ and $\nu_{\mathrm{t}}=\omega$.

Theorem 3.10. Suppose that T is a semistandard λ-tableau of type μ and let $(i, k) \in \mathbb{N} \times \mathbf{r}$. Then for each $\mathrm{S} \in \mathcal{T}_{0}(\lambda, \mu)$ there exists $a_{\mathrm{S}} \in R$ such that

$$
\varphi_{\mathrm{T}} L_{i, k}^{\mu}=\operatorname{res}_{\mathrm{T}}(i, k) \varphi_{\mathrm{T}}+\sum_{\mathrm{S} \triangleright \mathrm{~T}} a_{\mathrm{S}} \varphi_{\mathrm{S}}
$$

Proof. Recalling our conventions for φ_{T} from 2.18, and using Lemma 3.3, we have

$$
\varphi_{\mathrm{T}} L_{i, k}^{\mu}\left(m_{\mu}\right)=\varphi_{\mathrm{T}}\left(m_{\mu}\left(L_{y}+L_{y+1}+\cdots+L_{z}\right)\right)=m_{\mathrm{T}}\left(L_{y}+L_{y+1}+\cdots+L_{z}\right)
$$

where $y, y+1, \ldots, z$ are the entries in row i of $\mathfrak{t}^{\mu^{(k)}}$. Let $\mathfrak{t}=$ first(T); then, by Lemma 3.9 $m_{\mathrm{T}}=m_{\mathfrak{t}} h$ for some $h \in \mathcal{H}\left(\mathfrak{S}_{\mu}\right)$. Therefore, by Proposition 3.7

$$
\begin{aligned}
\varphi_{\mathrm{T}} L_{i, k}^{\mu}\left(m_{\mu}\right) & =m_{\mathfrak{t}}\left(L_{y}+L_{y+1}+\cdots+L_{z}\right) h \\
& =\operatorname{res}_{\mathrm{T}}(i, k) m_{\mathfrak{t}} h+\sum_{\mathfrak{s} \triangleright \mathfrak{t}} a_{\mathfrak{s}} m_{\mathfrak{s}} h \\
& =\operatorname{res}_{\mathrm{T}}(i, k) m_{\mathrm{T}}+\sum_{\mathrm{s} \in \mathcal{T}_{0}(\lambda, \mu)} a_{\mathrm{S}} m_{\mathrm{S}}
\end{aligned}
$$

for some $a_{\mathfrak{s}}, a_{\mathrm{S}} \in R$, by 2.9 Since $\mathfrak{t}=\operatorname{first}(\mathrm{T})$, we deduce that $a_{\mathrm{S}}=0$ unless $\mathrm{S} \triangleright \mathrm{T}$. Therefore,

$$
\varphi_{\mathrm{T}} L_{i, k}^{\mu}=\operatorname{res}_{\mathrm{T}}(i, k) \varphi_{\mathrm{T}}+\sum_{\mathrm{S} \triangleright \mathrm{~T}} a_{\mathrm{S}} \varphi_{\mathrm{S}}
$$

as required.
Until further notice we assume that R is the rational function field $\mathbb{F}\left(q, Q_{1}, \ldots, Q_{r}\right)$ for some field \mathbb{F}. We will compute the Gram determinant of W_{μ}^{λ} as an element of this field and derive the general case from this.
Definition 3.11 (cf. [13, 3.18]). Let $T \in \mathcal{T}_{0}(\lambda, \mu)$.
(i) Let $E_{\mathrm{T}}=\prod_{\substack{ \\(i, k) \in \mathbb{N} \times \mathbf{r}}} \prod_{\substack{\mathrm{s} \in \mathcal{T}_{\mathcal{O}}(\lambda, \mu) \\ \operatorname{ress}(i, k) \neq \operatorname{ress}_{\mathrm{T}}(i, k)}} \frac{L_{i, k}^{\mu}-\operatorname{res}_{\mathrm{S}}(i, k)}{\operatorname{res}_{\mathrm{T}}(i, k)-\operatorname{res}_{\mathrm{S}}(i, k)}$.
(ii) Let $\psi_{\mathrm{T}}=\varphi_{\mathrm{T}} E_{\mathrm{T}}$.

In the above definition we adopt the convention that empty products are 1. In particular, only finitely many terms are non-trivial in the definition of E_{T} because the second product is empty whenever $L_{i, k}^{\mu}=0$. We also do not need to specify the order of the terms in the product since all of the terms commute.

The main reason why we have assumed that $R=\mathbb{F}\left(q, Q_{1}, \ldots, Q_{r}\right)$ is because of the following crucial lemma. The lemma is false for general R.

Lemma 3.12. Suppose that $R=\mathbb{F}\left(q, Q_{1}, \ldots, Q_{r}\right)$ and let S and T be distinct semistandard tableaux in $\mathcal{T}_{0}(\lambda, \mu)$. Then $\operatorname{res}_{\mathbf{S}}(i, k) \neq \operatorname{res}_{\mathrm{T}}(i, k)$ for some $(i, k) \in \mathbb{N} \times \mathbf{r}$.

Proof. Since $\mathrm{S} \neq \mathrm{T}$ we may choose $(i, k) \in \mathbb{N} \times \mathbf{r}$ minimal such that $\mathrm{S}_{i, k} \neq \mathrm{T}_{i, k}$. Then $\operatorname{res}_{\mathbf{s}}(i, k) \neq \operatorname{res}_{\mathrm{T}}(i, k)$.

Standard arguments using Theorem 3.10 and Lemma[3.12] now prove the following (cf. [16, (3.4)-(3.11)] or [15, Prop. 3.35]).
Theorem 3.13. Suppose that $R=\mathbb{F}\left(q, Q_{1}, Q_{2}, \ldots, Q_{r}\right)$ and let $\mathrm{S}, \mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)$ and $(i, k) \in \mathbb{N} \times \mathbf{r}$. Then the following hold:
(i) $\psi_{\mathrm{T}} L_{i, k}^{\mu}=\operatorname{res}_{\mathrm{T}}(i, k) \psi_{\mathrm{T}}$,
(ii) $E_{\mathrm{T}} L_{i, k}^{\mu}=\operatorname{res}_{\mathrm{T}}(i, k) E_{\mathrm{T}}$,
(iii) $\psi_{\mathrm{T}}=\varphi_{\mathrm{T}}+\sum_{\mathrm{S} \triangleright \mathrm{T}} a_{\mathrm{S}} \varphi_{\mathrm{S}}$ for some $a_{\mathrm{S}} \in R$,
(iv) $\varphi_{\mathrm{S}} E_{\mathrm{T}}=0$ if $\mathrm{S} \triangleright \mathrm{T}$,
(v) $\psi_{\mathrm{S}} E_{\mathrm{T}}=\delta_{\mathrm{ST}} \psi_{\mathrm{T}}$,
(vi) $\left\{\psi_{\mathrm{T}} \mid \mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)\right\}$ is an orthogonal basis of W_{μ}^{λ}.

Corollary 3.14. Let $\mathfrak{t} \in \operatorname{Std}(\lambda)$ and suppose that there exists $\mathfrak{s} \in \operatorname{Std}(\lambda)$ such that $\mathfrak{t}=\mathfrak{s}(i, i+1)$ and $\mathfrak{s} \triangleright \mathfrak{t}$ for some i with $1 \leq i<n$. Then $\psi_{\mathfrak{t}}=\psi_{\mathfrak{s}}\left(T_{i}+\alpha\right)$ where $\alpha=\frac{(q-1) \text { rest }_{t}(i)}{\text { ress }_{s}(i)-\text { rest }_{t}(i)}$.
Proof. By definition $\psi_{\mathrm{t}}=\varphi_{\mathrm{t}} E_{\mathrm{t}}$ and $\varphi_{\mathrm{t}}=\varphi_{\mathrm{s}} T_{i}$. Furthermore, by assumption $\operatorname{res}_{\mathfrak{s}}(i)=\operatorname{res}_{\mathfrak{t}}(i+1)$ and $\operatorname{res}_{\mathfrak{s}}(i+1)=\operatorname{res}_{\mathfrak{t}}(i) ;$ consequently, $E_{\mathfrak{s}}+E_{\mathfrak{t}}$ is symmetric in L_{i} and L_{i+1} and so T_{i} commutes with $E_{\mathfrak{s}}+E_{\mathrm{t}}$ by 2.1 Therefore,

$$
\begin{aligned}
\psi_{\mathfrak{t}}\left(\operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)\right) & =\varphi_{\mathfrak{t}} E_{\mathfrak{t}}\left(L_{i+1}-\operatorname{res}_{\mathfrak{t}}(i)\right), & & \text { by (Theorem 3.13)(i), } \\
& =\varphi_{\mathfrak{t}}\left(E_{\mathfrak{s}}+E_{\mathfrak{t}}\right)\left(L_{i+1}-\operatorname{res}_{\mathfrak{t}}(i)\right), & & \text { by (Theorem 3.13)(ii), } \\
& =\varphi_{\mathfrak{s}} T_{i}\left(E_{\mathfrak{s}}+E_{\mathfrak{t}}\right)\left(L_{i+1}-\operatorname{res}_{\mathfrak{t}}(i)\right) & & \\
& =\varphi_{\mathfrak{s}}\left(E_{\mathfrak{s}}+E_{\mathfrak{t}}\right) T_{i}\left(L_{i+1}-\operatorname{res}_{\mathfrak{t}}(i)\right), & & \text { by 2.1(iii), } \\
& =\psi_{\mathfrak{s}} T_{i}\left(L_{i+1}-\operatorname{res}_{\mathfrak{t}}(i)\right), & & \text { by (Theorem 3.13)(iv). }
\end{aligned}
$$

Now $T_{i} L_{i+1}=(q-1) L_{i+1}+L_{i} T_{i}$, so

$$
\psi_{\mathfrak{t}}\left(\operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)\right)=(q-1) \operatorname{res}_{\mathfrak{t}}(i) \psi_{\mathfrak{s}}+\left(\operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)\right) \psi_{\mathfrak{s}} T_{i}
$$

and the result follows.
Our next aim is to compute the inner products $\left\langle\psi_{\mathrm{T}}, \psi_{\mathrm{T}}\right\rangle$. This will require a considerable amount of combinatorial machinery.

Recall the definition of the tableau $\mathrm{T}_{i, k}$ from (Definition 3.6)(i). We say that a node $y \notin\left[\mathrm{~T}_{i, k}^{\#}\right]$ is an addable node of $\mathrm{T}_{i, k}$ if $\left[\mathrm{T}_{i, k}^{\#}\right] \cup\{y\}$ is the diagram of a multipartition. Similarly, a node $y \in\left[\mathrm{~T}_{i, k}^{\#}\right]$ is removable from $\mathrm{T}_{i, k}$ if $\left[\mathrm{T}_{i, k}^{\#}\right] \backslash\{y\}$ is the diagram of a multipartition.

Given nodes $x=(i, j, k)$ and $y=(a, b, c)$ define $x<y$ if $k<c$ or $k=c$ and $j>b$.
Definition 3.15 (cf. [13, 2.8] and [7] 4.1]). Let $\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)$ and for $x \in[\lambda]$ suppose that $\mathrm{T}(x)=(i, k)$ and let $(j, l) \in \mathbb{N} \times \mathbf{r}$ be maximal such that $(j, l)<(i, k)$.
(i) Let $A_{\mathrm{T}}(x)=\prod_{y}(\operatorname{res}(x)-\operatorname{res}(y))$ where the product is over the addable nodes y of $\mathrm{T}_{i, k}$ such that $x<y$ and an (i, k) can be added to $\mathrm{T}_{i, k}$ at y to give a semistandard tableau.
(ii) Let $R_{\mathrm{T}}(x)=\prod_{y}(\operatorname{res}(x)-\operatorname{res}(y))$ where the product is over the removable nodes y of $\mathrm{T}_{j, l}$ such that $x<y$ and (i, k) does not appear in the column of T containing y.
(iii) Let $\gamma_{\mathrm{T}}=\prod_{x \in[\lambda]} \frac{A_{\mathrm{T}}(x)}{R_{\mathrm{T}}(x)}$.

Example 3.16. As in Example 3.5, let $\lambda=((3,1),(1))$ and $\mu=((2),(2,1))$. Then $\mathcal{T}_{0}(\lambda, \mu)$ consists of the three tableaux

$$
\begin{aligned}
& \mathrm{T}_{1}=\left(\begin{array}{l|l|l|}
\hline 1_{1} & 1_{1} \mid 1_{2} \\
\hline 1_{2} & \left., \quad \begin{array}{|l|l|}
\hline 2_{2} \\
\hline 1_{1} & 1_{1} \mid 1_{2} \\
\hline 2_{2} & \\
\hline 1_{2} \\
\end{array}\right), \quad \mathrm{T}_{2}
\end{array}\right) \\
& \text { and } \quad \mathrm{T}_{3}=\left(\begin{array}{|l|l|l|}
\hline 1_{1} & 1_{1} & 2_{2} \\
\hline 1_{2} & & 1_{2} \\
\hline
\end{array}\right) .
\end{aligned}
$$

Recall that we are currently assuming that q, Q_{1}, \ldots, Q_{r} are indeterminates. We find that
$\gamma_{\mathrm{T}_{1}}=\left\{\frac{q^{2} Q_{1}-Q_{1}}{q^{2} Q_{1}-q Q_{1}} \frac{q^{2} Q_{1}-Q_{2}}{\}}\right\}\left\{\frac{q^{-1} Q_{1}-Q_{2}}{\}, ~}\right.$

and
$\gamma_{\mathrm{T}_{3}}=\left\{\frac{q^{2} Q_{1}-Q_{1}}{q^{2} Q_{1}-q Q_{1}} \frac{q^{2} Q_{1}-q^{-2} Q_{1}}{q^{2} Q_{1}-q^{-1} Q_{1}} \frac{q^{2} Q_{1}-q Q_{2}}{} \frac{q^{2} Q_{1}-q^{-1} Q_{2}}{q^{2} Q_{1}-Q_{2}}\right\}\left\{\frac{q^{-1} Q_{1}-q Q_{2}}{\} .}\right.$
Inspection shows that $\gamma_{\mathrm{T}_{1}} \gamma_{\mathrm{T}_{2}} \gamma_{\mathrm{T}_{3}} \in \mathbb{F}\left[q, q^{-1}, Q_{1}, \ldots, Q_{r}\right] ; c f$. Corollary 3.29
Lemma 3.17. Let $\mathfrak{t} \in \operatorname{Std}(\lambda)$ and suppose that there exists a tableau $\mathfrak{s} \in \operatorname{Std}(\lambda)$ such that $\mathfrak{s} \triangleright \mathfrak{t}$ and $\mathfrak{t}=\mathfrak{s}(i, i+1)$ for some i with $1 \leq i<n$. Then

$$
\gamma_{\mathfrak{t}}=\frac{\left(\operatorname{res}_{\mathfrak{s}}(i)-q \operatorname{res}_{\mathfrak{t}}(i)\right)\left(q \operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)\right)}{\left(\operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)\right)^{2}} \gamma_{\mathfrak{s}}
$$

Proof. The proof of this result is straightforward and essentially identical to 13 , 2.11]. We leave the details to the reader.

If m is an integer, let $[m]_{q}=1+q+\cdots+q^{m-1}$ and $\{m\}_{q}=[1]_{q}[2]_{q} \ldots[m]_{q}$. For a multicomposition ν, let $\{\nu\}_{q}=\prod_{k \in \mathbf{r}} \prod_{i \geq 1}\left\{\nu_{i}^{(k)}\right\}_{q}$.

Given two rational functions f and g in R we write $f \simeq g$ if $f=q^{z} g$ for some integer z. Since q^{z} is always a unit in the rings we consider, there is no loss in restricting our attention to R / \simeq. We extend this relation to elements of \mathcal{H} and \mathcal{S} in the obvious way.

Lemma 3.18. Suppose that $m_{\lambda}=u_{\mathbf{b}}^{+} x_{\lambda}$. Then $\gamma_{\mathbf{t}^{\lambda}} \simeq \operatorname{res}_{\mathbf{t}^{\lambda}}(\mathbf{b})\{\lambda\}_{q}$.
Proof. Remove n from \mathfrak{t}^{λ} and apply induction (cf. [13, 2.10]).
Proposition 3.19. Suppose that \mathfrak{t} is a standard λ-tableau. Then $\left\langle\psi_{\mathfrak{t}}, \psi_{\mathfrak{t}}\right\rangle \simeq \gamma_{\mathfrak{t}}$.

Proof. First suppose that $\mathfrak{t}=\mathfrak{t}^{\lambda}$ and write $m_{\lambda}=u_{\mathbf{b}}^{+} x_{\lambda}$ as in Definition [2.2 Then $\psi_{\mathfrak{t}}=\varphi_{\mathfrak{t}^{\lambda}}$ by Theorem 3.13(iii), so $\left\langle\psi_{\mathfrak{t}}, \psi_{\mathfrak{t}}\right\rangle=\left\langle\varphi_{\mathfrak{t}^{\lambda}}, \varphi_{\mathfrak{t}^{\lambda}}\right\rangle$. By definition, $\left\langle\varphi_{\mathrm{t}^{\lambda}}, \varphi_{\mathrm{t}^{\lambda}}\right\rangle \varphi_{\mathrm{T}^{\lambda} T^{\lambda}} \equiv \varphi_{\mathrm{T}^{\lambda} \mathfrak{t}^{\lambda}} \varphi_{\mathrm{t}^{\lambda} T^{\lambda}} \bmod \overline{\mathcal{S}}^{\lambda}$ and
$\varphi_{T^{\lambda} \mathbf{t}^{\lambda}} \varphi_{\mathbf{t}^{\lambda} T^{\lambda}}\left(m_{\lambda}\right)=\varphi_{T^{\lambda} \mathbf{t}^{\lambda}}\left(m_{\lambda}\right)=m_{\lambda} m_{\lambda}=m_{\lambda} x_{\lambda} u_{\mathbf{b}}^{+}=\{\lambda\}_{q} m_{\lambda} u_{\mathbf{b}}^{+} \equiv \gamma_{\mathbf{t}^{\lambda}} m_{\lambda} \bmod \bar{N}^{\lambda}$
by Corollary 3.8 and Lemma 3.18. Thus, $\left\langle\varphi_{\mathrm{t}^{\lambda}}, \varphi_{\mathrm{t}^{\lambda}}\right\rangle \simeq \gamma_{\mathrm{t}^{\lambda}}$ as required.
Now assume that $\mathfrak{t} \neq \mathfrak{t}^{\lambda}$. Then there exists a standard λ-tableau \mathfrak{s} such that $\mathfrak{s} \triangleright \mathfrak{t}$ and $\mathfrak{s}=\mathfrak{t}(i, i+1)$ where $1 \leq i<n$. By Corollary 3.14] $\psi_{\mathfrak{t}}=\psi_{\mathfrak{s}}\left(T_{i}+\alpha\right)$ where $\alpha=\frac{(q-1) \mathrm{res}_{\mathrm{t}}(i)}{\operatorname{res}_{\mathfrak{s}}(i)-\mathrm{res}_{\mathrm{t}}(i)}$. Therefore, using the facts that $T_{i}^{2}=(q-1) T_{i}+q$ and that ψ_{t} and ψ_{5} are orthogonal, we see that

$$
\begin{aligned}
\left\langle\psi_{\mathfrak{t}}, \psi_{\mathfrak{t}}\right\rangle & =\left\langle\psi_{\mathfrak{s}} T_{i}+\alpha \psi_{\mathfrak{s}}, \psi_{\mathfrak{s}} T_{i}+\alpha \psi_{\mathfrak{s}}\right\rangle \\
& =\left\langle\psi_{\mathfrak{s}} T_{i}, \psi_{\mathfrak{s}} T_{i}\right\rangle+2 \alpha\left\langle\psi_{\mathfrak{s}} T_{i}, \psi_{\mathfrak{s}}\right\rangle+\alpha^{2}\left\langle\psi_{\mathfrak{s}}, \psi_{\mathfrak{s}}\right\rangle \\
& =\left\langle\psi_{\mathfrak{s}} T_{i}^{2}, \psi_{\mathfrak{s}}\right\rangle+2 \alpha\left\langle\psi_{\mathfrak{s}} T_{i}, \psi_{\mathfrak{s}}\right\rangle+\alpha^{2}\left\langle\psi_{\mathfrak{s}}, \psi_{\mathfrak{s}}\right\rangle \\
& =(2 \alpha+q-1)\left\langle\psi_{\mathfrak{s}} T_{i}, \psi_{\mathfrak{s}}\right\rangle+\left(\alpha^{2}+q\right)\left\langle\psi_{\mathfrak{s}}, \psi_{\mathfrak{s}}\right\rangle \\
& =(2 \alpha+q-1)\left\langle\psi_{\mathfrak{t}}-\alpha \psi_{\mathfrak{s}}, \psi_{\mathfrak{s}}\right\rangle+\left(\alpha^{2}+q\right)\left\langle\psi_{\mathfrak{s}}, \psi_{\mathfrak{s}}\right\rangle \\
& =(q+\alpha)(1-\alpha)\left\langle\psi_{\mathfrak{s}}, \psi_{\mathfrak{s}}\right\rangle
\end{aligned}
$$

The reader will easily verify that $(q-\alpha)(1+\alpha)=\frac{\left(\operatorname{res}_{\mathfrak{s}}(i)-q \operatorname{res}_{\mathfrak{t}}(i)\right)\left(q \operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)\right)}{\left(\operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)\right)^{2}}$; so induction and Lemma 3.17 complete the proof.

Remark 3.20. The Proposition is really a statement about the orthogonal basis of the Specht module S^{λ}. Indeed, if we let $f_{\mathfrak{t}}=\psi_{\mathfrak{t}}\left(m_{\lambda}\right)$, then $\left\{f_{\mathfrak{t}} \mid \mathfrak{t} \in \operatorname{Std}(\lambda)\right\}$ is an orthogonal basis of S^{λ} (see Proposition 2.17) and $\left\langle f_{\mathfrak{t}}, f_{\mathfrak{t}}\right\rangle \simeq \gamma_{\mathfrak{t}}$ where \langle,$\rangle now$ denotes the standard inner product on S^{λ}. It follows that, up to a power of q, the determinant of the Gram matrix of S^{λ} is $\prod_{t \in \operatorname{Std}(\lambda)} \gamma_{\mathbf{t}}$.

In order to compute the inner products $\left\langle\psi_{\mathrm{T}}, \psi_{\mathrm{T}}\right\rangle$, for arbitrary semistandard tableaux T, we compare the homomorphisms ψ_{t} and ψ_{T}.

Lemma 3.21. Suppose that $\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)$ and let $\mathfrak{t}=\operatorname{last}(\mathrm{T})$. Then there exist $b_{\mathfrak{s}} \in R$ such that

$$
\psi_{\mathrm{T}} \varphi_{\mathrm{T}^{\mu} \mathrm{T} \omega}=\psi_{\mathfrak{t}}+\sum_{\mathfrak{s} \triangleright \mathfrak{t}} b_{\mathfrak{s}} \psi_{\mathfrak{s}} .
$$

Proof. By Theorem 3.13(iii), there exist $a_{\mathrm{S}} \in R$ such that

$$
\begin{aligned}
\psi_{\mathrm{T}} \varphi_{\mathrm{T}^{\mu} \mathrm{T}^{\omega}}(1) & =\psi_{\mathrm{T}}\left(m_{\mu}\right)=\varphi_{\mathrm{T}}\left(m_{\mu}\right)+\sum_{\mathrm{S} \triangleright \mathrm{~T}} a_{\mathrm{S}} \varphi_{\mathrm{S}}\left(m_{\mu}\right) \\
& =m_{\mathrm{T}}+\sum_{\mathrm{S} \triangleright \mathrm{~T}} a_{\mathrm{S}} m_{\mathrm{S}} \\
& =m_{\mathfrak{t}}+\sum_{\mathfrak{s} \triangleright \mathfrak{t}} a_{\mathfrak{s}} m_{\mathfrak{s}}
\end{aligned}
$$

for some $a_{\mathfrak{s}} \in R$ since $\mathfrak{t}=\operatorname{last}(\mathrm{T})$. The lemma now follows from parts (iii) and (vi) of Theorem 3.13

Given a semistandard tableau T recall the multicomposition ν_{T} from Lemma 3.9

Lemma 3.22. Suppose that \mathfrak{t} is a standard λ-tableau and let $\mathrm{T}=\mu(\mathfrak{t})$. Write $m_{\mu}=u_{\mathbf{a}}^{+} x_{\mu}$. Then there exist $c_{\mathrm{S}} \in R$ such that

$$
\varphi_{\mathrm{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}=c_{\mathrm{T}} \varphi_{\mathrm{T}}+\sum_{\mathrm{S} \triangleright \mathrm{~T}} c_{\mathrm{S}} \varphi_{\mathrm{S}}
$$

and where $c_{\mathrm{T}} \simeq \operatorname{res}_{\mathfrak{t}}(\mathbf{a})\left\{\nu_{\mathrm{T}}\right\}_{q}$ if T is semistandard and $c_{\mathrm{T}}=0$ otherwise.
Proof. We have

$$
\varphi_{\mathfrak{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}\left(m_{\mu}\right)=\varphi_{\mathfrak{t}}\left(m_{\mu}\right)=\varphi_{\mathfrak{t}}(1) m_{\mu}=m_{\mathfrak{t}} u_{\mathbf{a}}^{+} x_{\mu}=\operatorname{res}_{\mathfrak{t}}(\mathbf{a}) m_{\mathfrak{t}} x_{\mu}+\sum_{\mathfrak{s} \triangleright \mathfrak{t}} a_{\mathfrak{s}} m_{\mathfrak{s}} x_{\mu}
$$

for some $a_{\mathfrak{s}} \in R$ by Corollary 3.8 If T is semistandard, then $m_{\mathrm{T}^{\lambda} \mathrm{t}} x_{\mu} \simeq\left\{\nu_{\mathrm{T}}\right\}_{q} m_{\mathrm{T}^{\lambda} \mathrm{T}}$ by Lemma 3.9, cf. [13, 3.9]. On the other hand, if T is not semistandard, then $m_{T^{\lambda} t} x_{\mu}$ is a linear combination of terms $m_{T^{\lambda} \mathrm{S}}$ where $\mathrm{S} \triangleright \mathrm{T}$ by 2.9. Either way, if we define c_{T} as in the statement of the lemma, then

$$
\varphi_{\mathfrak{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}\left(m_{\mu}\right)=c_{\mathrm{T}} m_{\mathrm{T}}+\sum_{\mathrm{S} \triangleright \mathrm{~T}} c_{\mathrm{S}} m_{\mathrm{S}}
$$

for some $c_{\mathrm{S}} \in R$ since $\varphi_{\mathrm{T}^{\lambda} \mathrm{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}\left(m_{\mu}\right) \in M^{\lambda} \cap M^{\mu^{*}}$. Hence, $\varphi_{\mathrm{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}=c_{\mathrm{T}} \varphi_{\mathrm{T}}+$ $\sum_{\mathrm{S} \triangleright \mathrm{T}} c_{\mathrm{S}} \varphi_{\mathrm{S}}$ as required.
Definition 3.23. Suppose that \mathfrak{t} is a standard λ-tableau such that $T=\mu(\mathfrak{t})$ is semistandard. We define

$$
P_{\mathfrak{t}}^{\mu}=\{(x, y) \mid x<y \text { and } \mathfrak{t}(x)<\mathfrak{t}(y) \text { and } \mathrm{T}(x)=\mathrm{T}(y)\}
$$

and

$$
\pi_{\mathfrak{t}}^{\mu}=\operatorname{res}_{\mathfrak{t}}(\mathbf{a}) \prod_{(x, y) \in P_{\mathfrak{t}}^{\mu}} \frac{q \operatorname{res}(x)-\operatorname{res}(y)}{\operatorname{res}(x)-\operatorname{res}(y)}
$$

where $m_{\mu}=u_{\mathbf{a}}^{+} x_{\mu}$.
Example 3.24. Let λ, μ and T be as in Example 3.5 and let $\mathfrak{t}_{1}=\operatorname{first}(T)$ and $\mathfrak{t}_{2}=\operatorname{last}(\mathrm{T})$. Then

$$
\mathfrak{t}_{1}=\left(\begin{array}{|l|l|l}
\hline 1 & 2 & 3 \\
\hline 5 & & 4 \\
\hline
\end{array}\right), \quad \mathfrak{t}_{2}=\left(\begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 5 & & \boxed{3} \\
\hline
\end{array}\right)
$$

$\operatorname{res}_{\mathfrak{t}_{1}}(\mathbf{a})=\operatorname{res}_{\mathfrak{t}_{2}}(\mathbf{a})=\left(Q_{1}-Q_{2}\right)\left(q Q_{1}-Q_{2}\right)$ and

$$
\pi_{\mathfrak{t}_{1}}^{\mu}=\operatorname{res}_{\mathfrak{t}_{1}}(\mathbf{a}) \frac{q^{2} Q_{1}-Q_{1}}{q Q_{1}-Q_{1}} \quad \text { and } \quad \pi_{\mathfrak{t}_{2}}^{\mu}=\operatorname{res}_{\mathfrak{t}_{2}}(\mathbf{a}) \frac{q^{2} Q_{1}-Q_{1}}{q Q_{1}-Q_{1}} \frac{q^{3} Q_{1}-Q_{2}}{q^{2} Q_{1}-Q_{2}}
$$

Recall that q, Q_{1}, \ldots, Q_{r} are currently indeterminates. The reader may check that $\gamma_{\mathrm{t}_{2}} \simeq \pi_{\mathrm{t}_{2}}^{\mu} \gamma_{\mathrm{T}}$ (use Example 3.16 where $\mathrm{T}=\mathrm{T}_{2}$).

Lemma 3.25. Let T be a semistandard λ-tableau of type μ and write $m_{\mu}=u_{\mathbf{a}}^{+} x_{\mu}$.
(i) If $\mathfrak{t}=\operatorname{first}(\mathrm{T})$, then $\pi_{\mathfrak{t}}^{\mu}=\operatorname{res}_{\mathfrak{t}}(\mathbf{a})\left\{\nu_{\mathrm{T}}\right\}_{q}$.
(ii) If $\mathfrak{t}=\operatorname{last}(\mathrm{T})$, then $\gamma_{\mathfrak{t}} \simeq \pi_{\mathfrak{t}}^{\mu} \gamma_{\mathrm{T}}$.

Proof. (i) Since $\mathfrak{t}=$ first(T), the elements of $P_{\mathfrak{t}}^{\mu}$ are ordered pairs (x, y) such that x and y are in the same row of $[\lambda]$ and $\mathrm{T}(x)=\mathrm{T}(y)$. Therefore, the nodes in P_{t}^{μ} contribute a factor of $\left\{\nu_{\mathrm{T}}\right\}_{q}$ to π_{t}^{μ} (cf. [13, 2.15]).
(ii) This is a routine exercise in induction (cf. [13, 2.16]).

Lemma 3.26. Let $\mathfrak{t} \in \operatorname{Std}(\lambda)$ and suppose that there exists an integer i with $1 \leq$ $i<n$ and $\mathfrak{s} \in \operatorname{Std}(\lambda)$ such that $\mathfrak{s}=\mathfrak{t}(i, i+1)$, $\mathfrak{s} \triangleright \mathfrak{t}$ and $\mu(\mathfrak{s})=\mu(\mathfrak{t}) \in \mathcal{T}_{0}(\lambda, \mu)$. Then

$$
\pi_{\mathfrak{t}}^{\mu}=\frac{q \operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)}{\operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)} \pi_{\mathfrak{s}}^{\mu}
$$

Proof. Let x and y be the nodes in the diagram of λ such that $\mathfrak{t}(x)=i$ and $\mathfrak{t}(y)=i+1$. Then $\mathfrak{s}(x)=i+1$ and $\mathfrak{s}(y)=i$ and, since $\mathfrak{s} \triangleright \mathfrak{t}$, we have $x<y$. Therefore, $P_{\mathfrak{t}}^{\mu}=P_{\mathfrak{s}}^{\mu} \cup\{(x, y)\}$ and the result follows.
Lemma 3.27. Suppose that \mathfrak{t} is a standard λ-tableau such that $\mathrm{T}=\mu(\mathfrak{t})$ is semistandard. Then $\psi_{\mathrm{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}} \simeq \pi_{\mathfrak{t}}^{\mu} \psi_{\mathrm{T}}$.
Proof. We first show that $\psi_{\mathfrak{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}$ is an R-multiple of ψ_{T}. Let $(i, k) \in \mathbb{N} \times \mathbf{r}$ and suppose that $y, y+1, \ldots, z$ are the entries in row i of $\mathfrak{t}^{\mu^{(k)}}$. Then, by Lemma 3.3 and Theorem 3.13(i),

$$
\psi_{\mathfrak{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}} L_{i, k}^{\mu}=\psi_{\mathfrak{t}}\left(L_{y}+\cdots+L_{z}\right) \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}=\operatorname{res}_{\mathrm{T}}(i, k) \psi_{\mathfrak{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}
$$

Hence, by Lemma3.12, if $\mathrm{S} \in \mathcal{T}_{0}(\lambda, \mu)$ and $\mathrm{S} \neq \mathrm{T}$, then $\psi_{\mathrm{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}} E_{\mathrm{S}}=0$. However, by Theorem3.13 vi), $\psi_{\mathfrak{t}} \varphi_{\mathrm{T}^{\top} \mathrm{T}_{\mathrm{T}} \mu}=\sum_{\mathrm{S} \in \mathcal{T}_{0}(\lambda, \mu)} a_{\mathrm{tS}} \psi_{\mathrm{S}}$ for some $a_{\mathrm{tS}} \in R$; so $\psi_{\mathrm{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}=a_{\mathrm{tT}} \psi_{\mathrm{T}}$ by Theorem 3.13(v). Hence, $\psi_{\mathrm{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}$ is an R-multiple of ψ_{T} as claimed and it remains to show that $a_{\mathrm{tT}} \simeq \pi_{\mathrm{t}}^{\mu}$ for all \mathfrak{t}.

Suppose first that $\mathfrak{t}=\operatorname{first}(\mathrm{T})$. By Theorem 3.13 (iii) there exist $b_{\mathfrak{s}} \in R$ such that $\psi_{\mathfrak{t}}=\varphi_{\mathfrak{t}}+\sum_{\mathfrak{s} \triangleright \mathfrak{t}} b_{\mathfrak{s}} \varphi_{\mathfrak{s}}$. Write $m_{\mu}=u_{\mathrm{a}}^{+} x_{\mu}$. Then, by Lemma 3.22 there exist $c_{\mathrm{S}} \in R$ such that

$$
\psi_{\mathfrak{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}=\varphi_{\mathrm{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}+\sum_{\mathfrak{s} \triangleright \mathfrak{t}} b_{\mathfrak{s}} \varphi_{\mathfrak{s}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}} \simeq \operatorname{res}_{\mathfrak{t}}(\mathbf{a})\left\{\nu_{\mathrm{T}}\right\}_{q} \varphi_{\mathrm{T}}+\sum_{\mathrm{S} \triangleright \mathrm{~T}} c_{\mathrm{S}} \varphi_{\mathrm{S}}
$$

However, $\pi_{\mathfrak{t}}^{\mu} \simeq \operatorname{res}_{\mathfrak{t}}(\mathbf{a})\left\{\nu_{\mathrm{T}}\right\}_{q}$ by Lemma 3.25(i); so $\psi_{\mathfrak{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}} \simeq \pi_{\mathfrak{t}}^{\mu} \psi_{\mathrm{T}}$ by Theorem 3.13(iii) as required.

Finally, suppose that $\mathfrak{t} \neq \operatorname{first}(\mathrm{T})$. Then by Lemma 3.9 there exists a standard λ-tableau \mathfrak{s} such that $\mathfrak{s}=\mathfrak{t}(i, i+1), \mathfrak{s} \triangleright \mathfrak{t}$ and $\mu(\mathfrak{s})=\mu(\mathfrak{t})$. Now $\varphi_{\mathfrak{t}}=\varphi_{\mathfrak{s}} T_{i}$ and $\varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}} T_{i}=q \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}$ since $(i, i+1) \in \mathfrak{S}_{\mu}$. Once again by Corollary 3.14, $\psi_{\mathfrak{t}}=$ $\psi_{\mathfrak{s}}\left(T_{i}+\alpha\right)$ where $\alpha=\frac{(q-1) \operatorname{res}_{\mathfrak{t}}(i)}{\operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)}$. Therefore,

$$
\psi_{\mathfrak{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}=\psi_{\mathfrak{s}}\left(T_{i}+\alpha\right) \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}=(q+\alpha) \psi_{\mathfrak{s}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}} \simeq\left(\frac{q \operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)}{\operatorname{res}_{\mathfrak{s}}(i)-\operatorname{res}_{\mathfrak{t}}(i)}\right) \pi_{\mathfrak{s}}^{\mu} \psi_{\mathrm{T}}
$$

since $\psi_{\mathfrak{s}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}} \simeq \pi_{\mathfrak{s}}^{\mu} \psi_{\mathrm{T}}$ by induction. To complete the proof it remains to apply Lemma 3.26.
Theorem 3.28. Let T be a semistandard λ-tableau of type μ. Then $\left\langle\psi_{\mathrm{T}}, \psi_{\mathrm{T}}\right\rangle \simeq \gamma_{\mathrm{T}}$.
Proof. Let $\mathfrak{t}=\operatorname{last}(\mathrm{T})$. By $3.27 \pi_{\mathfrak{t}}^{\mu} \psi_{\mathrm{T}} \simeq \psi_{\mathfrak{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}$ and, by Lemma 3.21, there exist $b_{\mathfrak{s}} \in R$ such that $\psi_{\mathrm{T}} \varphi_{\mathrm{T}^{\mu} \mathrm{T}^{\omega}}=\psi_{\mathfrak{t}}+\sum_{\mathfrak{s} \triangleright \mathfrak{t}} b_{\mathfrak{s}} \psi_{\mathfrak{s}}$. Therefore, using 2.13 and Theorem 3.13(vi),

$$
\begin{aligned}
\pi_{\mathfrak{t}}^{\mu}\left\langle\psi_{\mathrm{T}}, \psi_{\mathrm{T}}\right\rangle & \simeq\left\langle\psi_{\mathrm{T}}, \psi_{\mathfrak{t}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}\right\rangle=\left\langle\psi_{\mathrm{T}} \varphi_{\mathrm{T}^{\omega} \mathrm{T}^{\mu}}^{*}, \psi_{\mathfrak{t}}\right\rangle=\left\langle\psi_{\mathrm{T}} \varphi_{\mathrm{T}^{\mu} \mathrm{T}^{\omega}}, \psi_{\mathfrak{t}}\right\rangle \\
& =\left\langle\psi_{\mathfrak{t}}, \psi_{\mathfrak{t}}\right\rangle+\sum_{\mathfrak{t}} b_{\mathfrak{s}}\left\langle\psi_{\mathfrak{s}}, \psi_{\mathfrak{t}}\right\rangle=\left\langle\psi_{\mathfrak{t}}, \psi_{\mathfrak{t}}\right\rangle
\end{aligned}
$$

However, $\left\langle\psi_{\mathfrak{t}}, \psi_{\mathfrak{t}}\right\rangle \simeq \gamma_{\mathfrak{t}}$ by Proposition 3.19 and $\gamma_{\mathfrak{t}} \simeq \pi_{\mathfrak{t}}^{\mu} \gamma_{\mathrm{T}}$ by Lemma 3.25(ii), so the theorem follows.

Corollary 3.29. Suppose that $\lambda \in \Lambda^{+}$and $\mu \in \Lambda$. Then $G_{\mu}(\lambda) \simeq \prod_{\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)} \gamma_{\mathrm{T}}$.
Proof. By definition, $G_{\mu}(\lambda)=\operatorname{det}\left(\left\langle\varphi_{\mathrm{S}}, \varphi_{\mathrm{T}}\right\rangle\right)$, where S and T run over $\mathcal{T}_{0}(\lambda, \mu)$. By Theorem 3.13 $\left\{\psi_{\mathrm{T}}\right\}_{\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)}$ is also a basis of W_{μ}^{λ} and the transition matrix between this basis and the semistandard basis is unitriangular.

Remark 3.30. By definition, $G_{\mu}(\lambda) \in \mathbb{F}\left[q, q^{-1}, Q_{1} \ldots, Q_{r}\right]$; however, a priori, there is no reason why the rational function $\prod_{\mathrm{T}} \gamma_{\mathrm{T}}$ should belong to this ring (cf. Example 3.16).

Now that we have computed $G_{\mu}(\lambda)$ we rewrite it in a more usable form. To do this we introduce beta numbers for multipartitions.

Definition 3.31. Suppose that ν is a multipartition of n and let $c \in\{1,2, \ldots, r n\}$ and write $c=(r-k) n+j$ where $j \in\{1,2 \ldots, n\}$.
(i) Define column c of ν to be column j of $\nu^{(k)}$.
(ii) Let $s(c)=k$.
(iii) Let $\beta_{c}=n-j+\nu_{j}^{(k)^{\prime}}$. Then the sequence

$$
\beta=\left(\beta_{1}, \ldots, \beta_{n}, \beta_{n+1}, \ldots, \beta_{2 n}, \ldots, \beta_{(r-1) n+1}, \ldots, \beta_{r n}\right),
$$

is the sequence of beta numbers for ν.
Note that, in the sense of [11, p. 77], $\left(\beta_{1} \ldots, \beta_{n}\right)$ are beta numbers for $\nu^{(r)^{\prime}}$, the partition which is conjugate to $\nu^{(r)}$, and $\left(\beta_{n+1}, \ldots, \beta_{2 n}\right)$ are beta numbers for $\nu^{(r-1)^{\prime}}$ and so on.

Definition 3.32. Given a sequence of integers $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r n}\right)$ and a multicomposition τ of n, define the integer $d_{\tau}(\alpha)$ as follows.
(i) If $\alpha_{b}=\alpha_{c}$ for some $b \neq c$ with $s(b)=s(c)$, or $\alpha_{c}<0$ for any c, then $d_{\tau}(\alpha)=0$.
(ii) If α does not satisfy (i), then there exists a unique multipartition ν and unique elements w_{1}, \ldots, w_{r} of \mathfrak{S}_{n} such that if β is the sequence of beta numbers for ν, then

$$
\beta=\left(\alpha_{1 w_{1}}, \ldots, \alpha_{n w_{1}}, \alpha_{n+1 w_{2}}, \ldots, \alpha_{n+n w_{2}}, \ldots, \alpha_{(r-1) n+n w_{r}}\right) .
$$

Define $d_{\tau}(\alpha)=(-1)^{\ell\left(w_{1}\right)+\cdots+\ell\left(w_{r}\right)}\left|\mathcal{T}_{0}(\nu, \tau)\right|$.
Given a multipartition $\nu \in \Lambda^{+}$we also define $d_{\tau}(\nu)=\left|\mathcal{T}_{0}(\nu, \tau)\right|$.
Now fix $\lambda \in \Lambda^{+}$and $\mu \in \Lambda$ and let $\beta=\left(\beta_{1}, \ldots, \beta_{r n}\right)$ be the sequence of beta numbers for λ. Then $d_{\mu}(\beta)=\left|\mathcal{T}_{0}(\lambda, \mu)\right|$.

Let $(i, k) \in \mathbb{N} \times \mathbf{r}$ be maximal such that $\mu_{i}^{(k)} \neq 0$ and set $z=\mu_{i}^{(k)}$. Then every semistandard tableau $\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)$ has precisely z entries equal to (i, k) and these entries are at the feet of distinct columns of T. Indexing the columns of λ by $1,2 \ldots, r n$ as in (3.31)(ii), let the columns which contain an entry (i, k) be labelled by $C=\left\{c_{1}<c_{2}<\cdots<c_{z}\right\}$ and let λ^{C} be the multipartition of $n-z$ whose sequence of beta numbers is

$$
\beta^{C}=\left(\beta_{1}, \ldots, \beta_{c_{1}}-1, \ldots, \beta_{c_{2}}-1, \ldots, \beta_{c_{z}}-1, \ldots, \beta_{r n}\right) .
$$

Then the tableau $\overline{\mathrm{T}}$ obtained from T by deleting all of the entries (i, k) is a semistandard λ^{C}-tableau of weight $\bar{\mu}$, where $\bar{\mu}$ is the multicomposition of $n-z$ with $\bar{\mu}_{j}^{(l)}=\mu_{j}^{(l)}$, if $(j, l) \neq(i, k)$, and $\bar{\mu}_{i}^{(k)}=0$.

Since $d_{\mu}(\beta)=\left|\mathcal{T}_{0}(\lambda, \mu)\right|$, by letting T range over the elements of $\mathcal{T}_{0}(\lambda, \mu)$, the above argument shows that $d_{\mu}(\beta)=\sum_{C} d_{\bar{\mu}}\left(\beta^{C}\right)$ where the sum is over all subsets of $\{1,2, \ldots, r n\}$ with z elements. Similarly, with the help of Definition 3.32, for any sequence of integers $\alpha=\left(\alpha_{1}, \ldots, \alpha_{r n}\right)$ we have that

$$
\begin{equation*}
d_{\mu}(\alpha)=\sum_{\substack{C \subseteq\{1,2, \ldots, r n\} \\|C|=z}} d_{\bar{\mu}}\left(\alpha^{C}\right), \tag{3.33}
\end{equation*}
$$

where the sequence α^{C} is defined in the same way as β^{C}.
Now consider the Gram determinant $G_{\mu}(\lambda)$. Applying Corollary 3.29 and Definition 3.15 ,

$$
\begin{aligned}
G_{\mu}(\lambda) & \simeq \prod_{\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)} \gamma_{\mathrm{T}}=\prod_{\mathrm{T} \in \mathcal{I}_{0}(\lambda, \mu)} \prod_{x \in[\lambda]} \frac{A_{\mathrm{T}}(x)}{R_{\mathrm{T}}(x)} \\
& =\prod_{\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)}\left\{\prod_{\substack{x \in[\lambda] \\
\mathrm{T}(x) \neq(i, k)}} \frac{A_{\mathrm{T}}(x)}{R_{\mathrm{T}}(x)}\right\}\left\{\prod_{\substack{x \in[\lambda] \\
\mathrm{T}(x)=(i, k)}} \frac{A_{\mathrm{T}}(x)}{R_{\mathrm{T}}(x)}\right\} \\
& \simeq \prod_{\substack{C \subseteq\{1,2, \ldots, r n\} \\
|C|=z}} G_{\bar{\mu}}\left(\lambda^{C}\right) \times \prod_{\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)} \prod_{\substack{x \in[\lambda] \\
\mathrm{T}(x)=(i, k)}} \frac{A_{\mathrm{T}}(x)}{R_{\mathrm{T}}(x)} .
\end{aligned}
$$

Let $\mathrm{T} \in \mathcal{T}_{0}(\lambda, \mu)$ and fix a node $x \in[\lambda]$ with $\mathrm{T}(x)=(i, k)$. By definition, both $R_{\mathrm{T}}(x)$ and $A_{\mathrm{T}}(x)$ are products of the form $\prod_{y}(\operatorname{res}(x)-\operatorname{res}(y))$. For each node y appearing in the product $R_{\mathrm{T}}(x)$ there exists a unique y^{\prime} in $A_{\mathrm{T}}(x)$ such that y^{\prime} is in the row below y; moreover, this gives a one-to-one correspondence between the factors of $R_{\mathrm{T}}(x)$ and the factors of $A_{\mathrm{T}}(x)$ which are indexed by nodes which are not in the first row of some component. Given such a triple x, y, y^{\prime}, suppose that x is in column c of λ and that y and y^{\prime} are in columns b and b^{\prime} respectively. Then $c>b \geq b^{\prime}, s(b)=s\left(b^{\prime}\right)$ and $A_{\mathrm{T}}(x) / R_{\mathrm{T}}(x)$ contains the factor

$$
\frac{\operatorname{res}(x)-\operatorname{res}\left(y^{\prime}\right)}{\operatorname{res}(x)-\operatorname{res}(y)}=\frac{q^{-\beta_{c}} Q_{s(c)}-q^{-\beta_{b^{\prime}}-1} Q_{s(b)}}{q^{-\beta_{c}} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}} \simeq \prod_{j=b^{\prime}}^{b} \frac{q^{-\beta_{c}+1} Q_{s(c)}-q^{-\beta_{j}} Q_{s(b)}}{q^{-\beta_{c}} Q_{s(c)}-q^{-\beta_{j}} Q_{s(b)}}
$$

In this way, each column $b<c$ which does not contain an entry (i, k), and such that $n \nmid b$, contributes a factor to $A_{\mathrm{T}}(x) / R_{\mathrm{T}}(x)$. The restriction that b is not divisible by n is due to the fact that, if $n \mid b$ and $b<c$, then column b cannot contain a removable node. The columns $b<c$ with n dividing b correspond to the as yet unaccounted for factors of $A_{\mathrm{T}}(x)$; thus such columns contribute a factor only to the numerator of γ_{T}. Hence, we obtain the following "branching rule" for $G_{\mu}(\lambda)$.

$$
\begin{equation*}
G_{\mu}(\lambda) \simeq \prod_{\substack{C \subseteq\{1,2, \ldots, r n\} \\|C|=z}} G_{\bar{\mu}}\left(\lambda^{C}\right) \prod_{c \in C}\left\{\frac{\prod_{\substack{b<c \\ b \notin C}}\left(q^{-\beta_{c}+1} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)}{\prod_{\substack{b<c \\ n \nmid b \notin C}}\left(q^{-\beta_{c}} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)}\right\}^{d_{\bar{\mu}}\left(\beta^{C}\right)} \tag{3.34}
\end{equation*}
$$

We are now ready to give our first reformulation of Corollary 3.29, For convenience, we let $\mathbf{r n}=\{1,2 \ldots, r n\}$ and given integers $h \geq 0$ and $c \in \mathbf{r n}$ define

$$
S(h, c)=\left\{b \in \mathbf{r n} \mid s(b)>s(c) \text { or } s(b)=s(c) \text { and } \beta_{b} \geq \beta_{c}+h\right\} .
$$

Theorem 3.35. Let $\lambda \in \Lambda^{+}, \mu \in \Lambda$ and let β be the sequence of beta numbers for λ. Then

$$
G_{\mu}(\lambda) \simeq \prod_{h \geq 1} \prod_{c=1}^{r n} \prod_{b \in S(h, c)}\left(q^{-\beta_{c}+h} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)^{d_{\mu}\left(\beta_{1}, \ldots, \beta_{b}+h, \ldots, \beta_{c}-h, \ldots, \beta_{r n}\right)}
$$

Proof. If $n=0$, then $G_{\mu}(\lambda)=1$ and, by virtue of Definition 3.32, the right hand side is also 1. Consequently, we may assume by induction that $\prod_{C} G_{\bar{\mu}}\left(\lambda^{C}\right) \simeq$ $G_{1} G_{2} G_{3} G_{4}$ where

$$
\begin{aligned}
& G_{1}=\prod_{h \geq 1} \prod_{\substack{C \subseteq \mathbf{r n} \\
|C|=z}} \prod_{\substack{c \in \mathbf{r n} \\
c \notin C}} \prod_{\substack{b \in S(h, c) \\
b \notin C}}\left(q^{-\beta_{c}+h} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)^{d_{\bar{\mu}}\left(\beta_{1}^{C}, \ldots, \beta_{b}^{C}+h, \ldots, \beta_{c}^{C}-h, \ldots, \beta_{r n}^{C}\right)}, \\
& G_{2}=\prod_{h \geq 1} \prod_{\substack{C \subseteq \mathbf{r n} \\
|C|=z-1}} \prod_{\substack{c \in \mathbf{r n} \\
c \notin C}} \prod_{\substack{\begin{subarray}{c}{ \\
c \mid c(h, c) \\
b \notin C} }}\end{subarray}}\left(q^{-\beta_{c}+1+h} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)^{d_{\bar{\mu}}\left(\beta_{1}^{C}, \ldots, \beta_{b}^{C}+h, \ldots, \beta_{c}^{C}-1-h, \ldots, \beta_{r n}^{C}\right)} \\
& =\prod_{h \geq 2} \prod_{\substack{C \subseteq \mathbf{r n} \\
|C|=z-1}} \prod_{\substack{c \in \mathbf{r} \\
c \notin C}} \prod_{\substack{b \in S(h, c) \\
b \notin C}}\left(q^{-\beta_{c}+h} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)^{d_{\bar{\mu}}\left(\beta_{1}^{C}, \ldots, \beta_{b}^{C}+h-1, \ldots, \beta_{c}^{C}-h, \ldots, \beta_{r n}^{C}\right)}, \\
& G_{3}=\prod_{h \geq 1} \prod_{\substack{C \subseteq \mathbf{r n} \\
|C|=z-1}} \prod_{\substack{c \in \mathbf{r n} \\
c \notin C}} \prod_{\substack{b \in S(h, c) \\
b \notin C}}\left(q^{-\beta_{c}+h} Q_{s(c)}-q^{-\beta_{b}+1} Q_{s(b)}\right)^{d \bar{\mu}\left(\beta_{1}^{C}, \ldots, \beta_{b}^{C}-1+h, \ldots, \beta_{c}^{C}-h, \ldots, \beta_{r n}^{C}\right)} \\
& \simeq \prod_{h \geq 0} \prod_{\substack{C \subseteq \mathbf{r n} \\
|C|=z-1}} \prod_{\substack{c \in \mathbf{r n} \\
c \notin C}} \prod_{\substack{b \in S(h, c) \\
b \notin C}}\left(q^{-\beta_{c}+h} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)^{d_{\bar{\mu}}\left(\beta_{1}^{C}, \ldots, \beta_{b}^{C}+h, \ldots, \beta_{c}^{C}-h-1, \ldots, \beta_{r n}^{C}\right)}, \\
& \text { and } \\
& G_{4}=\prod_{h \geq 1} \prod_{\substack{C \subseteq \mathbf{r n} \\
|C|=z-2}} \prod_{\substack{c \in \mathbf{r n} \\
c \notin C}} \prod_{\substack{b \in S(h, c) \\
b \notin C}}\left(q^{-\beta_{c}+h} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)^{d_{\bar{\mu}}\left(\beta_{1}^{C}, \ldots, \beta_{b}^{C}-1+h, \ldots, \beta_{c}^{C}-1-h, \ldots, \beta_{r n}^{C}\right)} .
\end{aligned}
$$

Note, that in all of the products above, the sets $S(h, c)$ should really depend upon β^{C}; however, the reader may check that the additional factors that this introduces (in G_{3} and G_{4}) all have exponent 0 and hence are trivial.

By our branching rule 3.34, $G_{\mu}(\lambda) \simeq B_{2} B_{3} \prod_{C} G_{\bar{\mu}}\left(\lambda^{C}\right)$ where

$$
B_{2}=\prod_{\substack{C \subset \mathbf{r n} \\|C|=z b \notin C}} \prod_{\substack{b<c}}\left(q^{-\beta_{c}+1} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)^{d_{\bar{\mu}}\left(\beta^{C}\right)}
$$

and

$$
B_{3}=\prod_{\substack{C \subseteq \mathbf{r n} \\|C|=z}} \prod_{\substack{b<c \\ n \nmid b \notin}}\left(q^{-\beta_{c}} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)^{-d_{\bar{\mu}}\left(\beta^{C}\right)} .
$$

Now if $s(b)=s(c)$, then $b<c$ if and only if $\beta_{b}>\beta_{c}$ and this is if and only if $\beta_{b} \geq \beta_{c}+1$. Therefore,

$$
B_{2} G_{2}=\prod_{h \geq 1} \prod_{\substack{C \subset \subset \mathbf{n} \\|C|=z-1}} \prod_{\substack{c \in \mathbf{r n} \\ c \notin C}} \prod_{\substack{b \in h, c) \\ b \notin C}}\left(q^{-\beta_{c}+h} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)^{d_{\bar{\mu}}\left(\beta_{1}^{C}, \ldots, \beta_{b}^{C}+h-1, \ldots, \beta_{c}^{C}-h \ldots \beta_{r n}^{C}\right)},
$$

Similarly, we find that

$$
B_{3} G_{3} \simeq \prod_{h \geq 1} \prod_{\substack{C \subseteq \mathbf{r n} \\|C|=z-1}} \prod_{\substack{c \in \mathbf{r n} \\ c \notin C}} \prod_{\substack{b \in S(h, c) \\ b \notin C}}\left(q^{-\beta_{c}+h} Q_{s(c)}-q^{-\beta_{b}} Q_{s(b)}\right)^{d_{\bar{\mu}}\left(\beta_{1}^{C}, \ldots, \beta_{b}^{C}+h, \ldots, \beta_{c}^{C}-h-1, \ldots, \beta_{r n}^{C}\right)} .
$$

Note that the restriction that $n \nmid b$ in B_{3} is not important because if $n \mid b$ and $b \in S(0, c)$, then $\beta_{b}=0$ and so $\beta_{c}-1<0$ and $d_{\bar{\mu}}\left(\beta^{C}\right)=0$; consequently, neither B_{3} nor G_{3} has a non-trivial factor indexed by column b.

Now $G_{\mu}(\lambda) \simeq G_{1}\left(B_{2} G_{2}\right)\left(B_{3} G_{3}\right) G_{4}$; so using 3.33 we deduce the result.
Finally, we reinterpret Theorem 3.35 in terms of moving nodes in the diagram of λ. For each node $x=(i, j, k)$ in [λ] let r_{x} denote the corresponding rim hook (in $\left.\lambda^{(k)}\right)$; see [10, §18]. Let $\ell \ell\left(r_{x}\right)=\lambda_{i}^{(k)^{\prime}}-i$ be the leg length of r_{x} and $\operatorname{res}\left(r_{x}\right)=\operatorname{res}\left(f_{x}\right)$ where f_{x} is the foot node of r_{x} (that is, f_{x} is the last node in the column of $\lambda^{(k)}$ which contains x).
Definition 3.36. Suppose that λ and ν are multipartitions in Λ^{+}. If $\lambda \not{ }^{2}$ let $g_{\lambda \nu}=1$; otherwise let $g_{\lambda \nu}$ be the element of $\mathbb{Q}\left(q, Q_{1}, \ldots, Q_{r}\right)$ given by

$$
g_{\lambda \nu}=\prod_{x \in[\lambda]} \prod_{\substack{y \in[\nu] \\[\nu] \backslash r_{y}=[\lambda] \backslash r_{x}}}\left(\operatorname{res}\left(r_{x}\right)-\operatorname{res}\left(r_{y}\right)\right)^{\varepsilon_{x y}}
$$

where $\varepsilon_{x y}=(-1)^{\ell \ell\left(r_{x}\right)+\ell \ell\left(r_{y}\right)}$.
Remark 3.37. These functions are not as complicated as their definition suggests. First, note that $g_{\lambda \nu}=1$ unless $\lambda^{(k)}=\nu^{(k)}$ for all but at most two $k \in \mathbf{r}$. If $g_{\lambda \nu} \neq 1$ and $\lambda^{(k)} \neq \nu^{(k)}$ and $\lambda^{(l)} \neq \nu^{(l)}$ for $k \neq l$, then $g_{\lambda \nu} \simeq\left(q^{d} Q_{k}-Q_{l}\right)^{ \pm 1}$ for some integer d with $-n<d<n$. If λ and ν differ only on the k th component, then $g_{\lambda \nu} \simeq\left(q^{a} Q_{k}-Q_{k}\right) /\left(q^{b} Q_{k}-Q_{k}\right) \simeq[a]_{q} /[b]_{q}$ for some integers a and b in $\{1,2, \ldots, n\} ; c f$. [13, 2.30].

Given an integral domain R containing parameters $\hat{q}, \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}$ we can consider $g_{\lambda \nu}$ as an element of the field of fractions of R by evaluating the indeterminates in $g_{\lambda \nu}$ appropriately and replacing 1 by the identity of R.
Corollary 3.38. Let R be an integral domain. Then

$$
G_{\mu}(\lambda) \simeq \prod_{\nu \in \Lambda^{+}}\left(g_{\lambda \nu}\right)^{d_{\mu}(\nu)}
$$

considered as an element of R.
Proof. By general arguments, if R is an integral domain, then the Gram determinant $G_{\mu}(\lambda)$ can be computed by evaluating the polynomial $\prod_{\mathrm{T}} \gamma_{\mathrm{T}}$ at appropriate values of the indeterminates. Thus it suffices to consider the case where $R=\mathbb{F}\left[q, q^{-1}, Q_{1}, \ldots, Q_{r}\right]$.

Consider the expression we have obtained for $G_{\mu}(\lambda)$ in Theorem 3.35, As in the proof of [13, 2.30], the only time that $d_{\mu}\left(\beta_{1}, \ldots, \beta_{b}+h, \ldots, \beta_{c}-h, \ldots, \beta_{r n}\right)$ is non-zero is when a rim hook with foot node in column c of λ can be moved to a rim hook with foot node in column b. Hence $G_{\mu}(\lambda)$ can be expressed as in the statement of the corollary.

This formula for $G_{\mu}(\lambda)$ is the nicest of the three we have obtained. It is not hard to apply; for each node $x \in[\lambda]$ we have to move the rim hook r_{x} down in the diagram in all possible ways.

Example 3.39. Consider once more the case where $\lambda=((3,1),(1))$ and $\mu=$ $((2),(2,1))$. In the diagrams below, we label the nodes x and y, their rim hooks, and we have circled the corresponding foot nodes. We list the factors res $\left(r_{x}\right)-$
res $\left(r_{y}\right)$ rather than the functions $\left(g_{\lambda \nu}\right)^{d_{\mu}(\nu)}$. In the last column we have given the numbers $d_{\mu}(\nu)=\left|\mathcal{T}_{0}(\nu, \mu)\right|$.

$$
\left(\begin{array}{lll}
\varnothing, \begin{array}{|l|l|l|l}
\hline & y & \times & \times \\
\hline
\end{array} & \left(q^{-1} Q_{1}-q Q_{2}\right)^{-d_{\mu}((0),(5))} & 0 \\
\left.\varnothing, \begin{array}{|l|l|l|}
\hline y & \times & \times \\
\hline \varnothing & \times &
\end{array}\right) & \left(q^{-1} Q_{1}-q^{-1} Q_{2}\right)^{d_{\mu}((0),(3,2))} & 0
\end{array}\right.
$$

$$
\left(\varnothing, \begin{array}{|c|c|}
\hline y & \times \\
\hline \times & \times \\
\hline \propto & \\
\hline
\end{array}\right) \quad\left(q^{-1} Q_{1}-q^{-2} Q_{2}\right)^{-d_{\mu}\left((0),\left(2^{2}, 1\right)\right)} 0
$$

$$
\left(\varnothing, \begin{array}{|}
\square \tag{0}\\
\hline y
\end{array}\right) \quad\left(q^{-1} Q_{1}-q^{-4} Q_{2}\right)^{d_{\mu}\left((0),\left(1^{5}\right)\right)}
$$

$$
\left(\begin{array}{|l|l|}
\hline & - \\
\hline & \square
\end{array}\right) \rightarrow\left(\begin{array}{|c||}
\hline \\
\hline
\end{array}|\square, \square|(\mid) ~\left(q^{-1} Q_{1}-q Q_{2}\right)^{d_{\mu}((3),(2))} \quad 2\right.
$$

$$
\left(\square, \square \square \quad\left(q^{-1} Q_{1}-q^{-1} Q_{2}\right)^{d_{\mu}\left((3),\left(1^{2}\right)\right)} \quad 1\right.
$$

If it is raining, the reader might like to check that the answer this gives for $G_{\mu}(\lambda)$ agrees with that of Example 3.16 (it does).

Motivated by the theory of Coxeter groups, we make our next definition.
Definition 3.40. The Poincaré polynomial of the generic Ariki-Koike algebra \mathcal{H} is the element of $\mathbb{Z}\left[q, q^{-1}, Q_{1}, \ldots, Q_{r}\right]$ given by

$$
P\left(q ; Q_{1}, \ldots, Q_{r}\right)=\{n\}_{q} \prod_{1 \leq k<l \leq r} \prod_{-n<d<n}\left(q^{d} Q_{k}-Q_{l}\right)
$$

If R is an integral domain, let $P_{R}\left(q ; Q_{1}, \ldots, Q_{r}\right)$ denote the corresponding specialization of $P\left(q ; Q_{1}, \ldots, Q_{r}\right)$.

Note that it is possible that $P_{R}\left(q ; Q_{1}, \ldots, Q_{r}\right) \neq 0$ even if $Q_{k}=0$ for some $k \in \mathbf{r}$. It is for this reason that we had to introduce the rational functions $g_{\lambda \nu}$ above.

Corollary 3.41. Suppose R is an integral domain such that $P_{R}\left(q ; Q_{1}, \ldots, Q_{r}\right)$ is a non-zero element of R. Then $G_{\mu}(\lambda) \neq 0$ for all $\lambda \in \Lambda^{+}$and all $\mu \in \Lambda$.

Proof. By 3.37, for all λ and μ, each factor of the polynomial $g_{\lambda \nu}$ divides $P\left(q ; Q_{1}, \ldots, Q_{r}\right)$; hence the result.

Suppose that R is a field and that Λ^{+}is the set of all multipartitions of n. Then it is easy to see that the converse of Corollary 3.41 is true. Furthermore, $G_{\mu}(\lambda) \neq 0$ for all λ and μ if and only if each Weyl module is irreducible, so this is equivalent to \mathcal{S} being semisimple by [$8,3.8]$. However, \mathcal{S} is semisimple if and only if \mathcal{H} is semisimple by Proposition 2.17, so we see that \mathcal{H} is semisimple if and only if $P_{R}\left(q ; Q_{1}, \ldots, Q_{r}\right) \neq 0$. Thus we recover the main result of [2].

We also note that with a little more care the proof of Lemma 3.12, and hence Theorem 3.13, goes through for any field R provided that $q \neq 1, P_{R}\left(q ; Q_{1}, \ldots, Q_{r}\right)$ $\neq 0$ and $Q_{k} \neq 0$ for all $k \in \mathbf{r}$.

4. The sum formula and irreducibility

We now apply the results of the previous section to describe the Jantzen filtration of the Weyl modules W^{λ} and the Specht modules S^{λ}. First we need some preparation.

Throughout this section we assume that R is a principal ideal domain and that \mathfrak{p} is a prime in R. Let $\mathbb{F}=R / \mathfrak{p} R$. Then given an $R-$ module U_{R} its reduction modulo \mathfrak{p} is the \mathbb{F}-module $U_{\mathbb{F}}=\left(U_{R}+\mathfrak{p} U_{R}\right) / \mathfrak{p} U_{R} \cong U_{R} \otimes_{R} \mathbb{F}$.

Suppose that U_{R} is a free $R-$ module of finite rank equipped with a symmetric bilinear form \langle,$\rangle . For each i \geq 0$ let

$$
U_{R}(i)=\left\{u \in U_{R} \mid \mathfrak{p}^{i} \text { divides }\left\langle u, u^{\prime}\right\rangle \text { for all } u^{\prime} \in U_{R}\right\}
$$

The Jantzen filtration of the \mathbb{F}-module $U_{\mathbb{F}}$ is

$$
U_{\mathbb{F}}=U_{\mathbb{F}}(0) \supseteq U_{\mathbb{F}}(1) \supseteq \cdots
$$

where $U_{\mathbb{F}}(i)=U_{R}(i) \otimes_{R} \mathbb{F}$ for all $i \geq 0$. Since $U_{\mathbb{F}}$ is finite dimensional, $U_{\mathbb{F}}(i)=0$ for all sufficiently large i.

Let $e_{1}, e_{2}, \ldots, e_{N}$ be an R-basis of U_{R} and let $G=\operatorname{det}\left(\left\langle e_{i}, e_{j}\right\rangle\right)$ be the determinant of the associated Gram matrix (an element of R).

Let $\nu_{\mathfrak{p}}: R^{\times} \rightarrow \mathbb{N}$ be the \mathfrak{p}-adic valuation map. Then an argument due to Jantzen proves the following.
4.1 ([14) Lemma 3]). Suppose that the bilinear form \langle,$\rangle is non-degenerate. Then$

$$
\nu_{\mathfrak{p}}(G)=\sum_{i>0} \operatorname{dim}_{\mathbb{F}} U_{\mathbb{F}}(i)
$$

Fix $\hat{q}, \widehat{Q}_{1}, \ldots, \widehat{Q}_{r} \in R$ and let $q=\hat{q}+\mathfrak{p} R, Q_{1}=\widehat{Q}_{1}+\mathfrak{p} R, \ldots, Q_{r}=\widehat{Q}_{r}+\mathfrak{p} R$ be their canonical images in \mathbb{F}. Let \mathcal{S}_{R} be the associated cyclotomic \hat{q}-Schur algebra over R with parameters $\hat{q}, \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}$. Then its reduction modulo $\mathfrak{p}, \mathcal{S}_{\mathbb{F}}=\mathcal{S}_{R} \otimes_{R} \mathbb{F}$, is the cyclotomic q-Schur algebra with parameters q, Q_{1}, \ldots, Q_{r}. If $\lambda \in \Lambda^{+}$, then W_{R}^{λ} will denote the corresponding Weyl module of \mathcal{S}_{R} and $W_{\mathbb{F}}^{\lambda} \cong W_{R}^{\lambda} \otimes_{R} \mathbb{F}$ the Weyl module of $\mathcal{S}_{\mathbb{F}}$.

As we did in [13, §3], given a right $\mathcal{S}_{\mathbb{F}}-$ module $U_{\mathbb{F}}$ and integers $a_{\lambda} \in \mathbb{Z}$ we write $U_{\mathbb{F}} \longleftrightarrow \sum_{\lambda \in \Lambda^{+}} a_{\lambda} W_{\mathbb{F}}^{\lambda}$ if

$$
U_{\mathbb{F}} \oplus \bigoplus_{\substack{\lambda \in \Lambda^{+} \\ a_{\lambda}<0}}\left(-a_{\lambda}\right) W_{\mathbb{F}}^{\lambda} \quad \text { and } \quad \bigoplus_{\substack{\lambda \in \Lambda^{+} \\ a_{\lambda}>0}} a_{\lambda} W_{\mathbb{F}}^{\lambda}
$$

have the same composition factors. Using the cellular structure of $\mathcal{S}_{\mathbb{F}}$ we obtain the following result.

Lemma 4.2. Suppose that $U_{\mathbb{F}}$ is an $\mathcal{S}_{\mathbb{F}}$-module such that for all $\mu \in \Lambda^{+}$we have

$$
\operatorname{dim} U_{\mathbb{F}} \varphi_{\mathrm{T}^{\mu} \mathbb{T}^{\mu}}=\sum_{\lambda \in \Lambda^{+}} a_{\lambda} \operatorname{dim} W_{\mathbb{F}}^{\lambda} \varphi_{\mathrm{T}^{\mu} \mathrm{T}^{\mu}}
$$

for some $a_{\lambda} \in \mathbb{Z}$. Then $U_{\mathbb{F}} \longleftrightarrow \sum_{\lambda \in \Lambda^{+}} a_{\lambda} W_{\mathbb{F}}^{\lambda}$.
Let R_{f} be the field of fractions of R and extend $\nu_{\mathfrak{p}}$ to a map $R_{f}^{\times} \longrightarrow \mathbb{Z}$ in the natural way. Recall the rational functions $g_{\lambda \nu} \in R_{f}$ and $P_{R}\left(\hat{q} ; \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}\right)$ from the end of the previous section. We can now state one of our main results.

Theorem 4.3. Let $\lambda \in \Lambda^{+}$and suppose that $P_{R}\left(\hat{q} ; \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}\right) \neq 0$. Then

$$
\sum_{i>0} W_{\mathbb{F}}^{\lambda}(i) \longleftrightarrow \sum_{\substack{\nu \\ \lambda \triangleright \nu}} \nu_{\mathfrak{p}}\left(g_{\lambda \nu}\right) W_{\mathbb{F}}^{\nu}
$$

Remark 4.4. Note that we may omit the condition that λ dominates ν from the second sum, since $\nu_{\mathfrak{p}}\left(g_{\lambda \nu}\right)=0$ unless $\lambda \triangleright \nu$; however we have included this condition to emphasize that only these multipartitions matter.

Proof. Suppose that $\mu \in \Lambda^{+}$with $\lambda \unrhd \mu$ and recall that $G_{\mu}(\lambda)$ is the Gram determinant of the μ-weight space $W_{R}^{\lambda} \varphi_{\mathrm{T}^{\mu} \mathrm{T}^{\mu}}$ with respect to the semistandard basis. Because $P_{R}\left(\hat{q} ; \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}\right) \neq 0$ we know by Corollary 3.41 that $G_{\mu}(\lambda) \neq 0$ in R. Therefore, we can apply 4.1 to $W_{R}^{\lambda} \varphi_{\mathrm{T}^{\mu}{ }_{\mathrm{T}}{ }^{\mu} \text { to deduce that }}$

$$
\nu_{\mathfrak{p}}\left(G_{\mu}(\lambda)\right)=\sum_{i>0} \operatorname{dim}_{\mathbb{F}} W_{\mathbb{F}}^{\lambda} \varphi_{\mathrm{T}^{\mu} \mathrm{T}^{\mu}}(i)
$$

Since $d_{\mu}(\lambda)=\operatorname{dim}_{\mathbb{F}} W_{\mathbb{F}}^{\lambda} \varphi_{\mathbb{T}^{\mu} \mathrm{T}^{\mu}}$, the result follows by Corollary 3.38 and Lemma 4.2

As our first application of this result we describe the irreducible Weyl modules. Recall that if $\lambda \in \Lambda^{+}$, then $F_{\mathbb{F}}^{\lambda}=W_{\mathbb{F}}^{\lambda} / \operatorname{rad} W_{\mathbb{F}}^{\lambda}$.

Corollary 4.5. Let $\lambda \in \Lambda^{+}$and suppose that $P_{R}\left(\hat{q} ; \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}\right) \neq 0$. Then $W_{\mathbb{F}}^{\lambda}$ is irreducible if and only if $\nu_{\mathfrak{p}}\left(g_{\lambda \nu}\right)=0$ for all multipartitions $\nu \in \Lambda^{+}$such that $\lambda \triangleright \nu$.

Proof. Because $\operatorname{rad} W_{\mathbb{F}}^{\lambda}=W_{\mathbb{F}}^{\lambda}(1)$, the Weyl module $W_{\mathbb{F}}^{\lambda}$ is irreducible if and only if $W_{\mathbb{F}}^{\lambda}(1)=(0)$. If there exists a multipartition $\nu \in \Lambda^{+}$with $\nu_{\mathfrak{p}}\left(g_{\lambda \nu}\right) \neq 0$, then we may assume that ν is minimal in the dominance ordering with this property. Then $F_{\mathbb{F}}^{\nu}$ is a composition factor of the right hand side of Theorem4.3 (in particular, we must have $\left.\nu_{\mathfrak{p}}\left(g_{\lambda \nu}\right)>0\right)$; consequently, $W_{\mathbb{F}}^{\lambda}(1) \neq(0)$ and so $W_{\mathbb{F}}^{\lambda}$ is reducible.

Conversely, if $\nu_{\mathfrak{p}}\left(g_{\lambda \nu}\right)=0$ for all $\nu \in \Lambda^{+}$such that $\lambda \triangleright \nu$, then $\operatorname{rad} W_{\mathbb{F}}^{\lambda}=(0)$ by Theorem 4.3: hence, $W_{\mathbb{F}}^{\lambda}$ is irreducible.

We extend the relation \longleftrightarrow to $\mathcal{H}_{\mathbb{F}^{-}}$modules in the obvious way. By considering the case where Λ^{+}is the set of all multipartitions and using Proposition 2.17 we obtain the following.
Theorem 4.6. Let λ be a multipartition of n and suppose that $P_{R}\left(\hat{q} ; \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}\right)$ is a non-zero element of R. Then

$$
\sum_{i>0} S_{\mathbb{F}}^{\lambda}(i) \longleftrightarrow \sum_{\substack{\nu \\ \lambda \triangleright \nu}} \nu_{\mathfrak{p}}\left(g_{\lambda \nu}\right) S_{\mathbb{F}}^{\nu} .
$$

As in Corollary 4.5. Theorem 4.6 automatically gives sufficient conditions for $S_{\mathbb{F}}^{\lambda}=D_{\mathbb{F}}^{\lambda}$. In order to obtain necessary conditions we need to work a little harder.
Theorem 4.7. Suppose that $\lambda \in \Lambda^{+}$.
(i) If $S_{\mathbb{F}}^{\lambda}=D_{\mathbb{F}}^{\lambda}$, then $W_{\mathbb{F}}^{\lambda}$ is irreducible.
(ii) Suppose $W_{\mathbb{F}}^{\lambda}$ is irreducible, $P_{R}\left(\hat{q} ; \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}\right) \neq 0$ and that every multipartition of n is contained in Λ^{+}. Then $S_{\mathbb{F}}^{\lambda}=D_{\mathbb{F}}^{\lambda}$.
(iii) Suppose that $P_{R}\left(\hat{q} ; \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}\right) \neq 0$. Then $S_{\mathbb{F}}^{\lambda}=D_{\mathbb{F}}^{\lambda}$ if and only if $\nu_{\mathfrak{p}}\left(g_{\lambda \nu}\right)=0$ for all multipartitions ν of n such that $\lambda \triangleright \nu$.

Remark 4.8. Notice that when $D_{\mathbb{F}}^{\lambda} \neq(0)$ part (iii) gives necessary and sufficient conditions for $S_{\mathbb{F}}^{\lambda}$ to be irreducible; however, it can happen that $S_{\mathbb{F}}^{\lambda}$ is irreducible when $D_{\mathbb{F}}^{\lambda}=(0)$. Even for the symmetric group (that is, the case where $r=1$ and $q=1$), the complete classification of the irreducible Specht modules $S_{\mathbb{F}}^{\lambda}$ is an open problem (except in characteristic 2 ; see [12]). If $\omega \notin \Lambda^{+}$, then there also exist examples where $W_{\mathbb{F}}^{\lambda}$ is irreducible and $S_{\mathbb{F}}^{\lambda} \neq D_{\mathbb{F}}^{\lambda}$.

Proof. (i) Suppose that $S_{\mathbb{F}}^{\lambda}=D_{\mathbb{F}}^{\lambda}$. Then $\operatorname{rad} S_{\mathbb{F}}^{\lambda}=(0)$, so the Gram determinant of $S_{\mathbb{F}}^{\lambda}$, with respect to its standard basis $\left\{m_{\mathfrak{t}} \mid \mathfrak{t} \in \operatorname{Std}(\lambda)\right\}$ must be a non-zero element of \mathbb{F}. However, by Remark 3.20 and Corollary 3.38 this determinant is equal to

$$
G_{\omega}(\lambda)+\mathfrak{p} R \simeq \prod_{\nu \in \Lambda^{+}}\left(g_{\lambda \nu}\right)^{d_{\omega}(\nu)}+\mathfrak{p} R
$$

Hence, $S_{\mathbb{F}}^{\lambda}=D_{\mathbb{F}}^{\lambda}$ if and only if $\left(g_{\lambda \nu}\right)^{d_{\omega}(\nu)} \notin \mathfrak{p} R$ for all multipartitions ν of n. On the other hand, the Gram determinant of $W_{\mathbb{F}}^{\lambda}$, with respect to its semistandard basis, is equal to

$$
\prod_{\mu \in \Lambda} G_{\mu}(\lambda)+\mathfrak{p} R \simeq \prod_{\nu \in \Lambda^{+}} \prod_{\mu \in \Lambda}\left(g_{\lambda \nu}\right)^{d_{\mu}(\nu)}+\mathfrak{p} R
$$

Therefore, $W_{\mathbb{F}}^{\lambda}=F_{\mathbb{F}}^{\lambda}$ if and only if $\left(g_{\lambda \nu}\right)^{d_{\mu}(\nu)} \notin \mathfrak{p} R$ for all $\nu \in \Lambda^{+}$and all $\mu \in \Lambda$. However, it is easy to see that if $\nu \in \Lambda^{+}$and $\mu \in \Lambda$, then $d_{\mu}(\nu) \neq 0$ only if $d_{\omega}(\nu) \neq 0$ so the result follows.
(ii) Suppose that $W_{\mathbb{F}}^{\lambda}$ is irreducible and let ν be a multipartition of n such that $D_{\mathbb{F}}^{\nu} \neq(0)$ and $\left(S_{\mathbb{F}}^{\lambda}: D_{\mathbb{F}}^{\nu}\right)>0$. By Proposition 2.17, $\left(W_{\mathbb{F}}^{\lambda}: F_{\mathbb{F}}^{\nu}\right)=\left(S_{\mathbb{F}}^{\lambda}: D_{\mathbb{F}}^{\nu}\right)>0$. However, $W_{\mathbb{F}}^{\lambda}$ is irreducible, so $\nu=\lambda$ and $S_{\mathbb{F}}^{\lambda}=D_{\mathbb{F}}^{\lambda}$ as claimed.

Part (iii) now follows from parts (i), (ii) and Corollary 4.5
The last four results apply to fields \mathbb{F} of the form R / \mathfrak{p} where R is a principal ideal domain, \mathfrak{p} is a prime in R and $P_{R}\left(\hat{q} ; \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}\right) \neq 0$. At first sight the requirement that $P_{R}\left(\hat{q} ; \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}\right) \neq 0$ appears to be very restrictive; however, given any field \mathbb{F} containing $0 \neq q, Q_{1}, \ldots, Q_{r}$ we can always find suitable R and \mathfrak{p}.

Notation 4.9. Fix a field \mathbb{F} containing elements q, Q_{1}, \ldots, Q_{r}, with $q \neq 0$, and let $\mathcal{S}_{\mathbb{F}}$ be the cyclotomic q-Schur algebra over \mathbb{F} with these parameters. Let $R=\mathbb{F}[\hat{q}]$, where \hat{q} is an indeterminate over \mathbb{F}, and $\mathfrak{p}=\hat{q}-q$. Define \mathcal{S}_{R} to be the cyclotomic \hat{q}-Schur algebra over R with parameters $\hat{q}, \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}$ where

$$
\widehat{Q}_{k}=\left\{\begin{array}{cc}
Q_{k}(\hat{q}-q+1)^{k n}, & \text { if } Q_{k} \neq 0 \\
(\hat{q}-q)^{k n}, & \text { if } Q_{k}=0
\end{array}\right.
$$

Let \mathcal{H}_{R} and $\mathcal{H}_{\mathbb{F}}$ be the associated Ariki-Koike algebras.
Notice that R is a principal ideal domain, \mathfrak{p} is prime in R and $\mathbb{F} \cong R / \mathfrak{p}$. Moreover, if $\pi: R \rightarrow \mathbb{F}$ is the canonical projection, then $\pi(\hat{q})=q$ and $\pi\left(\widehat{Q}_{k}\right)=Q_{k}$ for $k=1,2 \ldots, r$. Therefore, $\mathcal{S}_{\mathbb{F}} \cong \mathcal{S}_{R} \otimes_{R} \mathbb{F}$ and $\mathcal{H}_{\mathbb{F}} \cong \mathcal{H}_{R} \otimes_{R} \mathbb{F}$. Finally, $P_{R}\left(\hat{q} ; \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}\right) \neq 0$ because by construction every factor of $P_{R}\left(\hat{q} ; \widehat{Q}_{1}, \ldots, \widehat{Q}_{r}\right)$ is non-zero. Thus we are in a situation where we can apply Theorem 4.3 and its corollaries. Note that the Jantzen filtrations of the Weyl modules and Specht modules depend upon R and \mathfrak{p} rather than on \mathbb{F}.

In [13, Theorem 4.19] we gave a purely combinatorial classification of those partitions λ such that $W_{\mathbb{F}}^{\lambda}$ is irreducible (this is the case $r=1$). We build upon this to give such a criterion for the general case.

In addition to using the notation of (4.9), we write res_{R} and $\operatorname{res}_{\mathbb{F}}$ for residues in the rings R and \mathbb{F} respectively. We also write $\mathcal{S}_{\mathbb{F}}^{(1)}(n)$ for the q-Schur algebra $\mathcal{S}_{\mathbb{F}}(\Lambda)$ where Λ is the set of all partitions of n and $Q_{1}=1$ (that is, the case $r=1$).

Theorem 4.10. Let $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(r)}\right) \in \Lambda^{+}$be a multipartition of n. Then $W_{\mathbb{F}}^{\lambda}$ is reducible if and only if
(i) for some $k \in \mathbf{r}$ the $\mathcal{S}_{\mathbb{F}}^{(1)}\left(n_{k}\right)$-module $W_{\mathbb{F}}^{\lambda^{(k)}}$ is reducible where $n_{k}=\left|\lambda^{(k)}\right|$; or,
(ii) for some ν in Λ^{+}there exist $x=(i, j, k) \in[\lambda]$ and $y=(a, b, c) \in[\nu]$ such that $c>k,[\lambda] \backslash r_{x}=[\nu] \backslash r_{y}$ and $\operatorname{res}_{\mathbb{F}}\left(r_{x}\right)=\operatorname{res}_{\mathbb{F}}\left(r_{y}\right)$.

Remark 4.11. Less formally, condition (ii) says that it is possible to unwrap a rim hook from $[\lambda]$ and wrap it back on to a later component without changing the residue of the foot node.

Proof. By Corollary $4.5 W_{\mathbb{F}}^{\lambda}$ is reducible if and only if there exists a multipartition $\nu \in \Lambda^{+}$such that $\nu_{\mathfrak{p}}\left(g_{\lambda \nu}\right) \neq 0$. By Remark 3.37] $\nu_{\mathfrak{p}}\left(g_{\lambda \nu}\right) \neq 0$ if and only if $\lambda \triangleright \nu$ and there exist $x=(i, j, k) \in[\lambda]$ and $y=(a, b, c) \in[\nu]$ such that $c \geq k,[\lambda] \backslash r_{x}=[\nu] \backslash r_{y}$ and \mathfrak{p} divides $\operatorname{res}_{R}\left(r_{x}\right)-\operatorname{res}_{R}\left(r_{y}\right)$. Now, $\mathfrak{p}=\hat{q}-q$, so \mathfrak{p} divides $\operatorname{res}_{R}\left(r_{x}\right)-\operatorname{res}_{R}\left(r_{y}\right)$
if and only if $\operatorname{resF}_{\mathbb{F}}\left(r_{x}\right)=\operatorname{res}_{\mathbb{F}}\left(r_{y}\right)$. By [13, Theorem 4.15], $W_{\mathbb{F}}^{\lambda^{(k)}}$ is reducible if and only if there exists a partition μ of n_{k} (where $\left.n_{k}=\left|\lambda^{(k)}\right|\right)$ such that $\lambda^{(k)}$ dominates μ and there exists $x \in\left[\lambda^{(k)}\right]$ and $y \in[\mu]$ with $\left[\lambda^{(k)}\right] \backslash r_{k}=[\mu] \backslash r_{y}$ and $\operatorname{res}_{\mathbb{F}}\left(r_{x}\right)=\operatorname{res}_{\mathbb{F}}\left(r_{y}\right)$. The theorem now follows.

References

[1] H. Andersen, P. Polo, and K. Wen, Representations of quantum algebras, Invent. Math., 104 (1991), 1-59. MR 92e:17011 MR 96c:17016
[2] S. Ariki, On the semi-simplicity of the Hecke algebra of $(\mathbb{Z} / r \mathbb{Z})$ 乙 \mathfrak{S}_{n}, J. Algebra, 169 (1994), 216-225. MR 95h:16020
[3] S. Ariki and K. Koike, A Hecke algebra of $(\mathbb{Z} / r \mathbb{Z})$ \ \mathfrak{S}_{n} and construction of its irreducible representations, Adv. Math, 106 (1994), 216-243. MR 95h:20006
[4] R. Dipper and G. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3), 54 (1987), 57-82. MR 88m:20084
[5] _, The q-Schur algebra, Proc. London Math. Soc. (3), 59 (1989), 23-50. MR 90g:16026
[6] R. Dipper, G. James, and A. Mathas, Cyclotomic q-Schur algebras, Math. Z., 229 (1998), 385-416. CMP 99:05
[7] R. Dipper, G. James, and E. Murphy, Gram determinants of type B_{n}, J. Algebra, 189 (1997), 481-505. MR 98a:20010
[8] J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math., 123 (1996), 1-34. MR 97h:20016
[9] J. A. Green, Polynomial representations of $G L_{n}$, Lecture Notes in Math., 830, SpringerVerlag, New York, 1980. MR 83j:20003
[10] G. D. James, The representation theory of the symmetric groups, Lecture Notes in Math., 682, Springer-Verlag, New York, 1978. MR 80g:20019
[11] G. D. James and A. Kerber, The representation theory of the symmetric group, 16, Encyclopedia of Mathematics, Addison-Wesley, Massachusetts, 1981. MR 83k:20003
[12] G. D. James and A. Mathas, The irreducible Specht modules in characteristic 2, Bull. London Math. Soc. 31 (1999), 457-462. CMP 99:13
[13] _, A q-analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3), 74 (1997), 241-274. MR 97j:20013
[14] J. C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie Algebren, Math. Ann., 226 (1977), 53-65. MR 55:12783
[15] A. Mathas, Hecke algebras and Schur algebras of the symmetric group, Univ. Lecture Notes, 15, A.M.S., Providence, R.I., 1999.
[16] G. E. Murphy, A new construction of Young's semi-normal representation of the symmetric groups, J. Algebra, 69 (1981), 287-297. MR 82h:20014
[17] _, On the representation theory of the symmetric groups and associated Hecke algebras, J. Algebra, 152 (1992), 492-513. MR 94c:17031

Department of Mathematics, Imperial College, Queen's Gate, London SW7 2BZ, United Kingdom

E-mail address: g.james@ic.ac.uk
School of Mathematics, University of Sydney, Sydney NSW 2006, Australia
E-mail address: a.mathas@maths.usyd.edu.au

[^0]: Received by the editors March 18, 1998 and, in revised form, December 1, 1998.
 2000 Mathematics Subject Classification. Primary 16G99; Secondary 20C20, 20 G 05.
 The authors would like to thank the Isaac Newton Institute for its hospitality. The second author also gratefully acknowledges the support of the Sonderforschungsbereich 343 at the Universität Bielefeld.

