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INFINITELY RENORMALIZABLE QUADRATIC POLYNOMIALS

YUNPING JIANG

Abstract. We prove that the Julia set of a quadratic polynomial which ad-
mits an infinite sequence of unbranched, simple renormalizations with complex
bounds is locally connected. The method in this study is three-dimensional
puzzles.

1. Introduction

Let P (z) = z2 + c be a quadratic polynomial where z is a complex variable and
c is a complex parameter. The filled-in Julia set K of P is, by definition, the set
of points z which remain bounded under iterations of P . The Julia set J of P
is the boundary of K. A central problem in the study of the dynamical system
generated by P is to understand the topology of a Julia set J , in particular, the
local connectivity for a connected Julia set. A connected set J in the complex plane
is said to be locally connected if for every point p in J and every neighborhood U
of p there is a neighborhood V ⊆ U such that V ∩ J is connected.

We first give the definition of renormalizability. A quadratic-like map F : U → V
is a holomorphic, proper, degree two branched cover map, where U and V are
two domains isomorphic to a disc and U ⊂ V . Then KF =

⋂∞
n=0 F

−n(U) and
JF = ∂KF are the filled-in Julia set and the Julia set of F , respectively. We only
consider those quadratic-like maps whose Julia sets are connected. Let us assume
the only branch point of F is 0. A quadratic-like map F : U → V is said to be (once)
renormalizable if there are an integer n′ > 1 and an open subdomain U ′ containing
0 such that U ′ ⊂ U and such that F1 = F ◦n

′
: U ′ → V ′ ⊂ V is a quadratic-like

map with connected Julia set JF1 = J(n′, U ′, V ′). The choice of (U ′, V ′) is called
an n′-renormalization of (U, V ). An annulus A is a double connected domain.
The definition of the modulus mod(A) of an annulus A is defined in many books
in complex analysis (see, for example, [AL]). It is log r if A is holomorphically
diffeomorphic to the annulus Ar = Dr \ D1, where Dr is the open disk centered
at 0 with radius r > 1. The sets U \ U ′ and V \ U are annuli. In §3, we prove a
modulus inequality in renormalization as follows.
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Theorem 1. Suppose F : U → V is a renormalizable quadratic-like map. Consider
any n′-renormalization (U ′, V ′), n′ > 1. Then

mod(U \ U ′) ≥ 1
2

mod(V \ U).

A quadratic-like map F : U → V is said to be twice renormalizable if F is once
renormalizable, and there is anm1-renormalization (U ′, V ′) of (U, V ) such that F1 =
F ◦m1 : U ′ → V ′ is once renormalizable. Consequently, we have renormalizations
F1 = F ◦m1 : U1 → V1 and F2 = F ◦m2 : U2 → V2 and their Julia sets (JF1 , JF2).
Similarly, we can definite a k-times renormalizable quadratic-like map F : U →
V and renormalizations {Fi = F ◦mi : Ui → Vi}ki=1, where m1 < m2 < · · · <
mk. A quadratic-like map F : U → V is infinitely renormalizable if it is k-times
renormalizable for every k > 0.

For an n′-renormalization (U ′, V ′) of a renormalizable quadratic-like map F :
U → V , suppose that F1 = F ◦n

′
: U ′ → V ′ has two repelling fixed points α

and β in the filled-in Julia set KF1 . One fixed point β does not disconnect KF1 ,
i.e., KF1 \ {β} is still connected, and the other fixed point α disconnects KF1 ,
i.e., KF1 \ {α} is disconnected. McMullen [MC1] discovered that different types of
renormalizations can occur in the renormalization theory of quadratic-like maps.
Let K(i) = F ◦i(KF1), 1 ≤ i < n′. An n′-renormalization (U ′, V ′) is
α-type if K(i) ∩K(j) = {α} for some i 6= j, 0 ≤ i, j < n′;
β-type if K(i) ∩K(j) = {β} for some i 6= j, 0 ≤ i, j < n′;
disjoint type if K(i) ∩K(j) = ∅ for all i 6= j, 0 ≤ i, j < n′.

The β-type and the disjoint type are also called simple. If F : U → V is infinitely
renormalizable, i.e., it has an infinite sequence of renormalizations, then it will have
an infinite sequence of simple renormalizations. We will show a construction of a
most natural infinite sequence

{Fi = F ◦mi : Ui → Vi}∞i=1,

where m1 < m2 < · · · < mk < · · · , of simple renormalizations by using two-
dimensional puzzles in §2. Henceforth, we will always use this sequence as a se-
quence of renormalizations for an infinitely renormalizable quadratic-like map.

Now let F : U → V be an infinitely renormalizable quadratic-like map and
let {Fi = F ◦mi : Ui → Vi}∞i=1 be the most natural infinite sequence of simple
renormalizations in the previous paragraph. Suppose {JFi}∞i=1 is the corresponding
infinite sequence of Julia sets. (For an infinitely renormalizable quadratic-like map,
its filled-in Julia set equals its Julia set.) We prove in §2 that JFi is independent of
the choice of mi-renormalizations (Ui, Vi) (Theorem 2). Thus JFi can be denoted
as Jmi and called a renormalization of JF . The map F : U → V is said to have
complex bounds if there are an infinite subsequence of simple renormalizations

{Fis = F ◦mis : Uis → Vis}∞s=1

and a constant λ > 0 such that the modulus of the annulus Vis \Uis is greater than λ
for every s > 0 (see Definition 1). It is said to be unbranched if there are an infinite
subsequence of renormalizations {Jmil}

∞
l=1 of the Julia set JF , neighborhoods Wl

of Jmil , and a constant µ > 0, such that the modulus of the annulus Wl \ Jmil
is greater than µ and Wl \ Jmil is disjoint with the critical orbit {F ◦n(0)}∞n=0 for
every l > 0 (see Definition 2).

For a quadratic polynomial P (z) = z2 + c, let U be a fixed domain bounded
by an equipotential curve of P (see §2) and let V = P (U). Then P : U → V is a
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quadratic-like map whose Julia set is always J . We say P is infinitely renormalizable
if P : U → V is infinitely renormalizable. The main result in this paper is

Theorem 3. The Julia set of an unbranched infinitely renormalizable quadratic
polynomial having complex bounds is locally connected.

Two quadratic-like maps F : U → V and G : W → X are hybrid equivalent if
there is a quasiconformal homeomorphism H : V → X such that H ◦F = G◦H and
H |KF , the restriction of H on the filled-in Julia set KF of F , is conformal. The
reader may refer to Ahlfors’ book [AL] about definitions of quasiconformal and con-
formal maps. Any quadratic-like map with connected Julia set is hybrid equivalent
to a unique quadratic polynomial, as shown in [DH]. Therefore, Theorem 3 applies
to quadratic-like maps too. An example of an unbranched infinitely renormaliz-
able quadratic polynomial having complex bounds is a real quadratic polynomial of
bounded type (for example, the Feigenbaum polynomial) (see [SU], [MV], [MC2],
[JI]). Before going into the next section, we mention some background information
about renormalization and local connectivity in the study of the dynamics of qua-
dratic polynomials. The renormalization technique was introduced into the study of
dynamical systems by physicists Feigenbaum [FE1], [FE2] and Coullet and Tresser
[CT] when the period doubling bifurcations following a universal law in any fam-
ily of one-dimensional maps like the family of quadratic polynomials was observed
about two decades ago. The technique is extensively used in the recent study of one-
dimensional and complex dynamical systems (see, for example, [SU], [MV], [MC1],
[MC2], [JI]). During this same period, computer-generated pictures of Julia sets
of quadratic polynomials and the Mandelbrot set, which is the set of parameters c
such that the Julia sets Jc of quadratic polynomials Pc(z) = z2 + c are connected,
showed a fascinating world of fractal geometry (see [MA]). Douady and Hubbard
(see [CG]) proved that the Mandelbrot set is connected. The next important prob-
lem in this direction is to show that the Mandelbrot set is locally connected. This
has been a long-standing conjecture. The study of the local connectivity of the
connected Julia set of a quadratic polynomial will give some important information
on this conjecture. Moreover, if the Julia set of a quadratic polynomial is locally
connected, then the combinatorics of this polynomial, that is the landing pattern
of external rays (see §2 for the definition), determines completely the topology of
the Julia set. Recently Yoccoz constructed a puzzle for the connected Julia set of a
quadratic polynomial. Using these puzzles, he showed that the connected Julia set
of a quadratic polynomial having no indifferent periodic points (see §2 for the defi-
nition) is locally connected if it is not infinitely renormalizable (see [HU]). Further,
he translated these puzzles into a puzzle on the parameter space and showed that
the Mandelbrot set is locally connected at all non-infinitely-renormalizable points
(see [HU]). The remaining points to be verified are all infinitely renormalizable ones
in the Mandelbrot set. We study these infinitely renormalizable quadratic polyno-
mials. We construct a three-dimensional puzzle for the Julia set of an infinitely
renormalizable quadratic polynomial. By using these three-dimensional puzzles we
prove in this paper that the Julia set of a quadratic polynomial which admits an
infinite sequence of unbranched, simple renormalizations with complex bounds is
locally connected. The local connectivity of the Julia set of an infinitely renor-
malizable quadratic polynomial is not always guaranteed. Actually, Douady and
Hubbard have constructed an infinitely renormalizable quadratic polynomial whose
Julia set is not locally connected by a method called tuning (see [MI2]). Combining
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Figure 1. A computer picture of the Julia set of the Feigenbaum
polynomial and three enlargements around 0.
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this method and the Yoccoz inequality (see [HU]), Douady constructed a generic
set of infinitely renormalizable points on the boundary of the Mandelbrot set such
that the Mandelbrot set is locally connected at this set of points and such that the
corresponding Julia sets are not locally connected (see [PM]). Douady’s construc-
tion can be summarized as follows: In any copy of the Mandelbrot set, the rational
limb p/q with q >> p are small due to the Yoccoz inequality. Considering a nested
sequence of copies of the Mandelbrot set which belong to an infinite number of limbs
as described above, one sees that the intersection is a singular point at which the
Mandelbrot set is locally connected. By further choosing orders of tunings higher
and higher in the construction, one can make such a set such that the corresponding
Julia sets are not locally connected. On the other hand, by translating the three-
dimensional puzzles in this paper into a three-dimensional puzzle on the parameter
space, we proved in [JIM] that there is a subset of infinitely renormalizable points
in the Mandelbrot set such that the subset is dense on the boundary of the Mandel-
brot set, and the Mandelbrot set is locally connected at this set of points, and the
corresponding Julia sets are also locally connected. The reader may also refer to
McMullen’s recent book [MC2] for the latest developments in this direction and for
an excellent dictionary between the study of complex dynamical systems and the
study of Kleinian groups and hyperbolic geometry. The series of computer pictures
in Figure 1 shows us how complicated the Julia set of an infinitely renormalizable
quadratic-like map can be.

This paper is organized as follows: We study some properties of renormalizable
quadratic polynomials in §2, and prove Theorem 2. In §3, we prove Theorem 1 and
Theorem 3.

Acknowledgment. The author thanks Dennis Sullivan and Curt McMullen for com-
ments.

2. Renormalization on quadratic polynomials

2.1. Equipotential curves and external rays. Let P (z) = z2+c be a quadratic
polynomial and let J be its Julia set. A point p in C is called a periodic point of P
of period n, where n ≥ 1 is an integer, if P ◦i(p) 6= p for 1 ≤ i < n and P ◦n(p) = p.
The number Ep = (P ◦n)′(p) is called the multiplier of P at a periodic point p
of period n. Then p is called attractive if |Ep| < 1; repelling if |Ep| > 1; and
indifferent if |Ep| = 1. The point 0 is the critical point of P in the complex plane
C. Let ci = P ◦i(0), i ≥ 1, be the ith critical value of P . Then PCO = {ci}∞i=1

is the post-critical orbit and CO = PCO ∪ {0} is the critical orbit. The critical
point 0 is said to be recurrent if for any neighborhood W of 0 there is a critical
value ci, i ≥ 1, in W . Henceforth we will only consider those quadratic polynomials
whose critical points are recurrent. We will also assume that P has no attractive
and indifferent periodic points. These are assumed for a quadratic-like map too.
Therefore all periodic points of P will be repelling, and the Julia set J is connected
and equal to its filled-in Julia set K.

Let D1 be the open unit disk in the complex plane C, and let P0(z) = z2. There
is a Riemann mapping h from C \D1 onto C \ J such that h(z)/z → 1 as z tends
to infinity and

h ◦ P0 = P ◦ h
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on C \D1 (see [MC1], [MI1]). The image St of a circle st = {te2πiθ | 0 ≤ θ < 1} for
1 < t <∞ under h is called an equipotential curve of P . If we consider the Green’s
function G(z) = log |h−1(z)| = limn→∞(log+ |P ◦n(z)|)/2n defined on C \ J , then
G(P (z)) = 2G(z), and it takes the constant value log t when it is restricted on St,
where log+ x = max{logx, 0}. This implies that

P (St) = St2 .

Let Ut be the open domain bounded by St. Then P : Ut → Ut2 is a quadratic-like
map. The image Rθ of a ray rθ = {te2πiθ | 1 < t <∞} under h is called an external
ray of angle θ. Thus,

P (Rθ) = R2θ (mod 1).

An external ray Rθ is called periodic if P ◦k(Rθ) = Rθ for some k, and the smallest
such k is called the period of Rθ. Douady and Yoccoz proved that every repelling
periodic point of P is a landing point of finitely many periodic external rays of the
same period, and furthermore, these landing rays are in the same orbit because P
is a quadratic polynomial (see [HU], [MI2]).

2.2. Construction of Yoccoz puzzles. Take a quadratic polynomial P (z) =
z2 + c as in §2.1. Let us fix an equipotential curve St and the domain U = Ut
bounded by St. Then we have a quadratic-like map F = P : U → V = P (U) whose
Julia set is J . Then F has two fixed points. One of them, say β, is non-separating,
and the other, say α, is separating, i.e., J \{β} is still connected and J \{α} is not.
There are at least two, but a finite number, external rays of P landing at α. Let
Γ0

0 be the union of a cycle of external rays landing at α. Then Γ0
0 cuts U0

0 = U into
finitely many domains. Let η0 be the collection of the closure of these domains.
Let Γ0

n = F−n(Γ0
0) for any n > 0. Then Γ0

n cuts U0
n = F−n(U0

0 ) into finitely many
domains. Let ηn be the collection of the closures of these domains. The sequence
ξ0 = {ηn}∞n=0 is called the Yoccoz puzzle for J (refer to [BH], [HU], [MI2], [JI]).
The domain Cn in ηn containing 0 is called the critical piece in ηn. It is clear that
P restricted to all domains but Cn is bijective to domains in ηn−1, and P |Cn is a
degree two branched cover map onto a domain in ηn−1. Let

J1 =
∞⋂
n=0

Cn.

The following result follows directly from the result of Yoccoz about local connec-
tivity of nonrenormalizable quadratic polynomials (refer to [HU], [MI2], [JI]), and
gives an equivalent definition of renormalizability:

Theorem A (Yoccoz). Suppose P (z) = z2 + c has recurrent critical orbit. Then
P is renormalizable if and only if J1 consists of more than one point.

We will use N(X, ε) = {x ∈ C | d(x,X) < ε} to denote the ε-neighborhood of
X in the complex plane in this paper. Suppose P is renormalizable. We have two
integers n1 ≥ 0, m1 > 1 such that F1 = Fm1 : Cm1+n1 → Cn1 is a degree two
branched cover map and such that Cm1+n1 ⊂ N(J1, 1) (refer to [HU], [MI2], [JI]).
We can further take domains Cn1+m1 ⊆ U1 ⊂ U and Cn1 ⊆ V1 ⊂ V such that

F1 = F ◦m1 : U1 → V1

is a quadratic-like map. Then its Julia set is J1. (Note that F1 = F ◦m1 : U1 → V1

is a simple renormalization of F : U → V .)
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Theorem 2. Suppose G = P ◦m1 : U ′ → V ′ is any m1-renormalization of P . Then
its filled-in Julia set is always J1.

Proof. The point 0 is in the intersection U ′ ∩ U1. Suppose U ′′ is the connected
component of U ′ ∩ U1 containing 0. Then H = P ◦m1 : U ′′ → V ′′ ⊂ V ′ ∩ V1 is also
a renormalization of P , and its Julia set JH is connected. It is easy to check that
JH ⊆ JG ∩JF1 . Let βF1 and αF1 be the non-separating and separating fixed points
of F1, and let βG and αG be the non-separating and separating fixed points of G.
All βF1 , αF1 , βG, and αG are in JH , since each of G, F and H has exactly two fixed
points in its domain, and every fixed point of H has to be a common fixed point of
G and F . Since F1 = P ◦m1 : U1 → V1 and G = P ◦m1 : U ′ → V ′ are both degree
two branched cover maps and βF1 is in both U ′ and U1, all preimages of βF1 under
iterates of G and F1 are in both U ′ and U1. But each of JH , J1, and JG is the
closure of the set of all preimages of βF1 under iterates of H , G, and F1. Therefore,
JH = JG = J1.

Remark 1. From Theorem 2, for any m1-renormalization (U ′, V ′) of F : U → V ,
there is Cm1+n ⊂ U ′ such that F1 = Fm1 : Cm1+n → Cn ⊂ V ′ is a degree two
branched cover map.

Remark 2. From the Douady and Hubbard theorem [DH] that every quadratic-like
map F : U → V whose Julia set is connected is hybrid equivalent to a unique
quadratic polynomial, all arguments in this section can be applied to quadratic-
like maps (by considering induced external rays and equipotential curves from the
hybrid equivalent quadratic polynomial).

2.3. Construction of three-dimensional puzzles. Now we assume P (z) =
z2 + c is an infinitely renormalizable quadratic polynomial. Let k1 = m1, α1 = α,
β1 = β, η0

n = ηn, C0
n = Cn, and let n1, J1, Γ0

n, U0
n, ξ0, F : U → V be as in

the previous subsection. Suppose β2 and α2 are the non-separating and separating
fixed points of F1, i.e., J1 \ {β2} is still connected and J1 \ {α2} is not. The points
β2 and α2 are also repelling periodic points of P . There are at least two, but finitely
many, external rays of P landing at α2. Let Γ1

0 be the union of a cycle of external
rays landing at α2. Then Γ1

0 cuts U1
0 = C0

n1+m1
into finitely many domains. Let η1

0

be the collection of the closures of these domains. Let Γ1
n = F−n1 (Γ1

0) for any n > 0.
Then Γ1

n cuts U1
n = F−n1 (U1

0 ) into finitely many domains. Let η1
n be the collection

of the closures of these domains. The sequence ξ1 = {η1
n}∞n=0 is the two-dimensional

puzzle for J1. We call it the first puzzle. (We also call ξ0 the 0th puzzle.)
The domain C1

n in η1
n containing 0 is called the critical piece in η1

n. It is clear
that F1 restricted to all domains but C1

n is bijective to domains in η1
n−1, and P |C1

n

is a degree two branched cover map onto a domain in η1
n−1. Let

J2 =
∞⋂
n=0

C1
n.

There are two integers n2 ≥ 0, k2 > 1 such that

F2 = F ◦k2
1 : C1

n2+k2
→ C1

n2

is a degree two branched cover map and such that C1
n2+k2

⊂ N(J2, 1/2). We take
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domains C1
n2+k2

⊆ U2 ⊂ U1 and C1
n2
⊆ V2 ⊂ V1 such that

F2 = F ◦k2
1 : U2 → V2

is a quadratic-like map. Then its Julia set is J2.
Inductively, for every i ≥ 2, suppose we have constructed

Fi = F ◦kii−1 : Ci−1
ni+ki

→ Ci−1
ni and Fi = F ◦kii−1 : Ui → Vi,

whose Julia set is Ji. Let βi+1 and αi+1 be the non-separating and separating
fixed points of Fi; i.e., Ji \ {βi+1} is still connected and Ji \ {αi+1} is not. The
points βi+1 and αi+1 are also repelling periodic points of P . There are at least
two, but a finite number of, external rays of P landing at αi+1. Let Γi0 be the
union of a cycle of external rays landing at αi+1. Then Γi0 cuts U i0 = Ci−1

ni+ki
into

finitely many domains. Let ηi0 be the collection of the closures of these domains.
Let Γin = F−ni (Γi0) for any n > 0. Then Γin cuts U in = F−ni (U i0) into finitely many
domains. Let ηin be the collection of the closures of these domains. The domain
Cin in ηin containing 0 is called the critical piece in ηin. It is clear that Fi restricted
to all domains but Cin is bijective to domains in ηin−1, and P |Cin is a degree two
branched cover map onto a domain in ηin−1. Let

Ji+1 =
∞⋂
n=0

Cin.

There are two integers ni+1 ≥ 0, ki+1 > 1 such that

Fi+1 = F
◦ki+1
i : Cini+1+ki+1

→ Cini+1

is a degree two branched cover map and such that Cini+1+ki+1
⊂ N(Ji+1, 1/(i+ 1)).

We take domains Cini+1+ki+1
⊆ Ui+1 ⊂ Ui and Cini+1

⊆ Vi+1 ⊂ Vi such that

Fi+1 = F
◦ki+1
i : Ui+1 → Vi+1

is a quadratic-like map. Then its Julia set is Ji+1. Let ξi = {ηin}∞n=0. It is the
two-dimensioanl puzzle for Ji. We call it the ith partition.

Remark 3. For any ki+1-renormalization (U ′, V ′) of Fi : Ui → Vi, we have an
integer n > 0 such that Cin+ki+1

⊂ U ′ ∩N(Ji+1, 1/(i+ 1)) and Cin ⊂ V ′, and such

that Fi+1 = F
◦ki+1
i : Cin+ki+1

→ Cin is a degree two branched cover map. We
will still use ξi to mean ξi ∩ Cin+ki+1

. Therefore, (Ui+1, Vi+1) can be an arbitrary
ki+1-renormalization of Fi : Ui → Vi.

Let mi =
∏i
j=1 ki, 1 ≤ i <∞. We have thus constructed a most natural infinite

sequence of simple renormalizations of F : U → V ,

{Fi = F ◦mi : Ui → Vi}∞i=1,

and the nested-nested sequence {ξi}∞i=0 of partitions for {Ji}∞i=0 (where J0 = J),
which we call a three-dimensional puzzle. Henceforth, we will fix all notations in
this subsection.

Definition 1. We say an infinitely renormalizable quadratic polynomial P (z) =
z2 + c has complex bounds if there are a constant λ > 0 and an infinite sequence
of simple renormalizations {Fis = F ◦mis : Uis → Vis}∞s=1 such that the modulus
mod(Vis \ U is) is greater than λ for every s ≥ 1.



INFINITELY RENORMALIZABLE QUADRATIC POLYNOMIALS 5085

V

V’

U
U’ F(U’)

0
c1

Figure 2. Modulus inequality in renormalization

Definition 2. We say an infinitely renormalizable quadratic polynomial P (z) =
z2+c is unbranched if there are an infinite subsequence of renormalizations {Jil}∞l=1

of the Julia set J of P , neighborhoods Wl of Jil for every l > 0, and a constant
µ > 0 such that the modulus mod(Wl \ Jil) is greater than µ and Wl \ Jil contains
no point in the critical orbit CO of P .

Remark 4. For the same reason as that in Remark 2, all arguments in this section
can be applied to an infinitely renormalizable quadratic-like map.

3. Three-dimensional puzzles and local connectivity

Before we use the three-dimensional puzzle for the Julia set J of an infinitely
renormalizable quadratic polynomial P (z) = z2 + c to study the local connectivity
of J , we first prove the following result, which we call a modulus inequality in
renormalization (see Figure 2). Remember that an n′-renormalization (U ′, V ′) of a
quadratic-like map F : U → V means a pair of domains U ′ ⊂ U and V ′ ⊂ V such
that F1 = F ◦n

′
: U ′ → V ′ is a quadratic-like map with connected filled-in Julia set.

Theorem 1. Suppose F : U → V is a renormalizable quadratic-like map. Consider
any n′-renormalization (U ′, V ′), n′ > 1 (which may or may not be simple). Then

mod(U \ U ′) ≥ 1
2

mod(V \ U).

Proof. Since F1 = F ◦n
′

: U ′ → V ′ is quadratic-like, its only critical point is 0. So
the first critical value c1 = F (0) of F is not in V ′. (Otherwise, there will be a point
x 6= 0 in U ′ such that F ◦(n

′−1)(x) = 0, since c1 has only one preimage 0 under F
and 0 is not a periodic point of F as we assumed in §2.1. Then x will be a critical
point of F1.) Since V ′ is simply connected, F has two analytic inverse branches,

g0 : V ′ → g0(V ′) ⊂ U and g1 : V ′ → g1(V ′) ⊂ U.

One of them is F ◦(n
′−1)(U ′). Therefore F (U ′) is a domain inside U and containing

c1. Consider the annuli U \ U ′ and V \ F (U ′). Then

F : U \ U ′ → V \ F (U ′)
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is a degree two cover map. This implies that

mod(U \ U ′) =
1
2

mod(V \ F (U ′)).

Since F (U ′) is a subset of U , the annulus V \ U is a sub-annulus of the annulus
V \ F (U ′), i.e., V \ U ⊆ V \ F (U ′). Thus we have that

mod(U \ U ′) ≥ 1
2

mod(V \ U).

Now we prove the main result about local connectivity by using three-dimensional
puzzles.

Theorem 3. The Julia set of an unbranched infinitely renormalizable quadratic
polynomial having complex bounds is locally connected.

We break the proof of the theorem into four lemmas. We use the same notations
as in the previous section.

Suppose P (z) = z2 + c is an infinitely renormalizable quadratic polynomial. Let
J be its Julia set and {ξi = {ηin}∞n=0}∞i=0 be the three-dimensional puzzle. We first
classify points in J into two categories. For a point x in J , let O(x) = {P ◦n(x)}∞n=0

be its orbit and O(x) the closure of its orbit. Then x is non-recurrent to 0 in the
three-dimensional puzzle if O(x)∩Ji = ∅ for some i ≥ 1; otherwise it is recurrent to
0 in the three-dimensional puzzle. For examples, all non-separating and separating
fixed points αj+1 and βj+1 of Fj , 1 ≤ j <∞, and their preimages under iterations
of P are non-recurrent, and the critical orbit and its preimages under iterations of
P are recurrent. There are many other non-recurrent and recurrent points.

Lemma 1. For any domain D in ηin, i, n ≥ 0, D ∩ J is connected.

Proof. Since the domain D is bounded by finitely many external rays Π = {rθj}mj=1

and by some equipotential curve, then ∂D ∩ J consists of a finite number of points
{pi}m

′

j=1. Every pi is a landing point of two external rays in Π. Suppose D ∩ J is
not connected for some D in ηin. Then there are two disjoint open sets X and Y
such that D ∩ J = (D ∩ J ∩X)∪ (D ∩ J ∩ Y ). Suppose that p1, . . . , pm′′ are in X
and that pm′′+1, . . . , pm′ are in Y . The two external rays in Π landing at pj cut C
into two domains. One of them, denoted by Zj , is disjoint with D, i.e., D∩Zj = ∅.
Then U ′ = ∪

⋃m′′
j=1 Zj and V ′ = V ∪

⋃m′
j=m′′+1 Zj are two disjoint open sets, and

J = (U ′ ∩ J) ∪ (V ′ ∩ J). This contradicts the fact that J is connected.

Lemma 2. The Julia set J is locally connected at any non-recurrent point.

Proof. Suppose x in J is non-current. Take n0 = 0, k0 = 1, and C−1
n0+k0

= U . We
also have Cj−1

nj+kj
for all j ≥ 1. Then there is the smallest integer i ≥ 0 such that

O(x)∩Ci−1
ni+ki

6= ∅ and O(x)∩Ji+1 = ∅. Consider the ith puzzle ξi = {ηin}∞n=0 inside
Ci−1
ni+ki

. Since Ji+1 =
⋂∞
n=0 C

i
n, there is an integer N ≥ 0 such that O(x)∩CiN = ∅.

First let us assume that x is in Ci−1
ni+ki

. Consider

ηiN = {CiN , BN,1, BN,2, . . . , BN,q}

in the ith puzzle ξi. Assume that BN,1 contains P (0). (Then P (0) is an interior
point of BN,1.) The orbit P (O(x)) is disjoint with BN,1, since O(x) is disjoint
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with CiN+1 ⊆ CiN and P (CiN+1) = BN,1. Suppose x ∈ D is a domain in ηiN+1 in
the ith puzzle ξi. Suppose D ⊆ BN,j and P (D) = BN,i for 2 ≤ i, j ≤ q. Then
P : D → BN,i has the inverse gij : BN,i → D. Therefore for each pair (BN,i, BN,j),
2 ≤ i, j ≤ q, satisfying gij(BN,i) ⊆ BN,j, we can thicken BN,i and BN,j to simply
connected domains B̃N,i,ij and B̃N,j,ij such that BN,i ⊂ B̃N,i,ij and BN,j ⊂ B̃N,j,ij
and such that gij can be extended to a schlicht function from B̃N,i,ij into B̃N,j,ij.
We still use gij to denote this extended function. Now consider B̃N,i,ij and B̃N,j,ij
as hyperbolic Riemann surfaces with hyperbolic distances dH,i,ij and dH,j,ij . Then
gij on BN,i strictly contracts these hyperbolic distances; more precisely, there is a
constant 0 < λij < 1 such that dH,i,ij(gij(x), gij(y)) < λijdH,j,ij(x, y) for x and
y in BN,i. Since there are only a finite number of such pairs, we have a constant
0 < λ < 1 such that dH,i,ij(gij(x), gij(y)) < λdH,j,ij(x, y) for all such pairs. Let

x ∈ · · · ⊆ Di
n(x) ⊆ Di

n−1(x) ⊆ · · · ⊆ Di
1(x) ⊆ Di

0(x)

be any x-end in the ith puzzle ξi, where Di
n(x) ∈ ηin. Then P ◦m(Di

n(x)) for
n −m > N is in BN,j for some 2 ≤ j ≤ q. Therefore, there is a constant C > 0
such that for any Di

n(x) and for any n > N ,

d(Di
n(x)) = max

y,z∈Din(x)
|y − z| ≤ Cλn−N .

Thus d(Di
n(x)) tends to zero as n goes to infinity. From Lemma 1, J ∩ Di

n(x) is
connected. If x is an interior point of Di

n(x) for all n, then {Di
n(x)}∞i=1 is a basis

of connected neighborhoods of J at x. Thus J is locally connected at x.
If x is on the boundary of Di

n(x) but in the interior of Ci−1
ni+ki

, then we consider
all x-ends

x ∈ · · · ⊆ Di
s,n(x) ⊆ Di

s,n−1(x) ⊆ · · · ⊆ Di
s,1(x) ⊆ Di

s,0(x)

in the ith puzzle ξi. The number of these ends is finite. Then x is an interior point of
the domain

⋃
sD

i
s,n(x) for all n ≥ 1. Also, since

⋃
sD

i
s,n(x) is bounded by external

rays and equipotential curves of P , J∩(
⋃
sD

i
s,n(x)) is connected, following a similar

proof for Lemma 1. Thus {
⋃
sD

i
s,n(x)}∞i=1 is a basis of connected neighborhoods

of J at x, and J is locally connected at x.
If x is on the boundary of Ci−1

ni+ki
, then i ≥ 1, and x is a preimage of the

separating fixed point αi of Fi−1 : Ui−1 → Vi−1 under some iterates of Fi−1.
(Denote F0 = F , U0 = U , V0 = V .) Suppose P ◦q(x) = αi. Then P ◦q restricted
on a small neighborhood of x is homeomorphic. Thus we have sequences of nested
domains

αi ∈ · · · ⊆ P ◦q(Di
s,n(x)) ⊆ P ◦q(Di

s,n−1(x)) ⊆ · · · ⊆ P ◦q(Di
s,N0

(x))

for some big N0 > 0 such that the domains En =
⋃
s P
◦q(Di

s,n(x)) are bounded by
external rays and equipotential curves of P and the diameter diam(En) tends to
0 as n goes to ∞. Since αi is the repelling periodic point of P of period mi, we
have a finite number of domains En,i = P ◦imi(En) cyclically around αi such that
the domain

⋃
iEn,i has x as an interior point and is bounded by external rays and

equipotential curves. The diameter diam(
⋃
iEn,i) tends to 0 as n goes to∞. Thus,

similarly to Lemma 1, J ∩ (
⋃
iEn,i) is connected and {

⋃
i En,i}∞n=N1

for some large
N1 ≥ N0 is a basis of connected neighborhoods of J at αi. This basis can be pulled
back by the local homeomorphism P ◦q on a small neighborhood of x to get a basis
of connected neighborhoods of J at x. Therefore, J is locally connected at x.
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If x is not in Ci−1
ni+ki

, let r ≥ 1 be the smallest integer such that y = P ◦r(x) is
in Ci−1

ni+ki
. The above argument says J is locally connected at y. Since x is not a

critical point of P ◦r, P ◦r restricted on a small neighborhood of x is homeomorphic.
Thus J is also locally connected at x.

Lemma 3. If P has complex bounds, then the Julia set J is locally connected at 0.

Proof. To make notations simple, we assume {Fi = F ◦mi : Ui → Vi}∞i=1 is the
infinite sequence of simple renormalizations in Definition 1. Let λ > 0 be the
constant in Definition 1. Then {Ui}∞i=1 is a sequence of nested domains containing
0. From the modulus inequality, Theorem 1, we have

mod(Ui \ U i+1) ≥ 1
2

mod(Vi \ U i) >
λ

2
.

Let Ai = Ui \ U i+1 for i ≥ 1 and X =
⋂∞
i=1 Ui. Since U1 \X =

⋃∞
i=1 Ai,

mod(U1 \X) ≥
∞∑
i=1

mod(Ai) =∞.

Thus, X = {0}. This implies that the diameter d(Ui) tends to 0 as i goes to infinity.
Consider the ith puzzle ξi = {ηin}∞n=0 for every i ≥ 0. Remember that Cin is the

member in ηin containing 0. Consider the corresponding critical end

0 ∈ · · · ⊆ Cin ⊆ Cin−1 ⊆ · · · ⊆ Ci1 ⊆ Ci0
in the ith-puzzle ξi. Since Ji+1 =

⋂∞
j=0 C

i
j is the Julia set of Fi+1 : Ui+1 → Vi+1,

there is a Cin(i) contained in Ui+1. The diameter d(Cin(i)) of Cin(i) tends to zero as i
goes to infinity. But Cin(i) ∩J is connected from Lemma 1. So {Cin(i)}∞i=1 is a basis
of connected neighborhoods of J at 0, and J is locally connected at 0.

Corollary 1. Suppose {Ji}∞i=1 is the infinite sequence of renormalizations of the
Julia set J . If P has complex bounds, then

⋂∞
i=1 Ji = {0}.

Proof. It follows that Ji ⊆ Cin(i) and
⋂∞
i=1 C

i
n(i) = {0}.

Lemma 4. If
⋂∞
i=1 Ji = {0} and if P is unbranched, then J is locally connected at

all recurrent points.

Proof. Consider the ith puzzle ξi = {ηin}∞n=0 for every i ≥ 0, and the corresponding
critical end

0 ∈ · · · ⊆ Cin ⊆ Cin−1 ⊆ · · · ⊆ Ci1 ⊆ Ci0.

Consider Fi+1 = F
ki+1
i : Cini+1+ki+1

→ Cini+1
. Let k(i) = ni+1 + ki+1. Since⋂∞

i=1 Ji = {0} and Cik(i) ⊂ N(Ji+1, 1/(i + 1)), {Cik(i)}∞i=0 is a basis of connected
neighborhoods of J at 0.

Let µ > 0 be a constant and let {Wl}∞l=1 be domains satisfying Definition 2.
Without loss of generality, we assume in Definition 2 that l = i and il = i + 1.
Since mod(Wi \ Ji+1) ≥ µ and Ji+1 =

⋂∞
n=0 C

i
n, by choosing k(i) large enough, we

can assume that

mod(Wi \ Cik(i)) ≥
µ

2
.

for all i ≥ 1. Also, by modifying Wi, we can assume the diameter diam(Wi) tends
to zero as i goes to ∞.
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We first construct a sequence of partitions for the Julia set J from the three-
dimensional puzzle {ξi}∞i=0. Denote by τ1 the first partition, which will be con-
structed as follows: Consider the 0th puzzle ξ0 = {η0

n}∞n=0. Take C0
k(0) ∈ η0

k(0) ∈ ξ0.
Put all domains in ηk(0)+1 which are the preimages of C0

k(0) under F in τ1, and
let ηck(0)+1 be the rest of the domains. Consider ηk(0)+2 ∩ ηck(0)+1, consisting of
all domains in ηk(0)+2 which are subdomains of the domains in ηck(0)+1. Put all
domains in ηk(0)+2 ∩ ηck(0)+1 which are the preimages of C0

k(0) under F ◦2 in τ1,
and let ηck(0)+2 be the rest of the domains. Suppose we already have ηck(0)+s for
s ≥ 2. Consider ηk(0)+s+1 ∩ ηck(0)+s, consisting of all domains in ηk(0)+s+1 which
are subdomains of the domains in ηck(0)+s. Put all domains in ηk(0)+s+1 ∩ ηck(0)+s

which are the preimages of C0
k(0) under F ◦(s+1) in τ1, and let ηck(0)+s+1 be the rest

of the domains. Thus we can construct the partition τ1 inductively. This partition
covers the Julia set J minus all points not entering the interior of C0

k(0) under all
iterations of F .

Consider the first puzzle ξ1 = {η1
n}∞n=0. Take C1

k(1) ∈ η1
k(1) ∈ ξ1. We can use

arguments similar to those in the previous paragraph by considering F1 : C0
k(0) →

C0
k(0)−m1

to get a partition τ1,1 in C0
k(0). Then we use all iterations of F to pull

back this partition following τ1 to get a partition τ2. It is a sub-partition of τ1,
and covers the Julia set J minus all points not entering the interior of C1

k(1) under
iterations of F .

Suppose we have already constructed the (j−1)th partition τj−1 for j > 2. Con-
sider the puzzle ξj = {ηjn}∞n=0. Take Cjk(j) ∈ η

j
k(j) ∈ ξj . Similarly, by considering

Fj : Cj−1
k(j−1) → Cj−1

k(j−1)−mj , we get a partition τj,1 in Cj−1
k(j−1). Then we use all

iterations of Fj−1 to pull back this partition following τj−1 to get a partition τj,2
in Cj−2

k(j−2), and all iterations of Fj−2 to pull back this partition following τj−1 to

get a partition τj,3 in Cj−3
k(j−3), and so on, to obtain a partition τj = τj,j in U . It is

a sub-partition of τj−1, and covers the Julia set minus all points not entering the
interior of Cjk(j) under iterations of F . By induction, we have a sequence of nested
partitions {τj}∞j=1, which covers the Julia set J minus all non-recurrent points. We
call {τj}∞j=1 the (extended) three-dimensional puzzle for the Julia set J .

Suppose x 6= 0 in J is recurrent. Then the orbit O(x) = {P ◦n(x)}∞n=0 enters
every Cik(i) infinitely many times. Consider the (extended) three-dimensional puzzle
{τj}∞j=1 and the x-end in this puzzle,

x ∈ · · · ⊆ Dj(x) ⊆ Dj−1(x) ⊆ · · · ⊆ D1(x),

where Dj(x) ∈ τj . Let qj(x) ≥ 0 be the unique integer such that

F ◦qj(x) : Dj+1(x)→ Cjk(j)

is a proper holomorphic diffeomorphism (see Figure 3). Let

gj,x : Cjk(j) → Dj+1(x)

be its inverse. At this point we use the unbranched condition. Since there are no
critical values {cr = P ◦r(0)}∞r=1 in Wj \ Cjk(j), gj,x can be extended to a proper
holomorphic diffeomorphism on Wj which we still denote by gj,x.



5090 YUNPING JIANG

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

x

xi 2 C
i
k(i) � Wi xj 2 C

j

k(j) � Wj

P qi(x) P j+1�qi(x)

Dj+1�qi(x)(xi) � Wij

Di+1(x) � Xi

P qi(x) P qj(x)

Dj+1(x) � Xj Dj+1(x) � Xj

i-plane j-plane

Figure 3. The (extended) three-dimensional puzzle

For each i ≥ 1, since the diameter d(Wj) tends to 0 as j goes to ∞, we can find
an integer j = j(i) > i such that Wj ⊂ Cik(i). Let xi = P ◦qi(x)(x) ∈ Cik(i) and

xj = P ◦qj(x)(x) = P ◦qj(xi)(xi) ∈ Cjk(j).

Consider the xi-end in the (extended) three-dimensional puzzle,

xi ∈ · · · ⊆ Dl(xi) ⊆ Dl−1(xi) ⊆ · · · ⊆ D1(xi),

where Dl(xi) ∈ τl. Then P ◦qj+1−qi(x)(xi) : Dj+1−qi(x)(xi) → Cjk(j) is a proper
holomorphic diffeomorphism (see Figure 3). Let gij be its inverse. Then gij can be
extended to Wj because of the unbranched condition. We still use gij to denote this
extension. Since Cik(i) is bounded by external rays landing at some pre-images of αi
under iterations of P and by equipotential curves of P , it follows that Wij = gij(Wj)
is contained in Cik(i). Thus

mod(Wi \Wij) ≥
µ

2
.

Consider Xi = gi,x(Wi) and Xj = gj,x(Wj) = gi,x(Wij). Then

mod(Xi \Xj) ≥
µ

2
,

since gi,x is conformal.
Therefore, inductively, we find an infinite sequence of nested domains {Xit}∞t=1

such that

mod(Xit \Xit+1) ≥ µ

2
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for t ≥ 1. Thus the diameter of Xit tends to zero as t goes to infinity. Since
Dit+1(x) = gi,x(Citk(it)

), we have that

Dit+1(x) ⊆ Xit .

So the diameter d(Dit+1(x)) tends to zero as t goes to infinity. Since each Dit+1(x)
is bounded by external rays and equipotential curves of P , similarly to Lemma 1,
Dit+1(x) ∩ J is connected. Therefore, {Dit+1(x)}∞t=1 forms a basis of connected
neighborhoods of J at x, and J is locally connected at x.
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