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OPTIMAL FACTORIZATION OF MUCKENHOUPT WEIGHTS

MICHAEL BRIAN KOREY

Abstract. Peter Jones’ theorem on the factorization of Ap weights is sharp-
ened for weights with bounds near 1, allowing the factorization to be per-
formed continuously near the limiting, unweighted case. When 1 < p < ∞
and w is an Ap weight with bound Ap(w) = 1 + ε, it is shown that there
exist A1 weights u, v such that both the formula w = uv1−p and the estimates
A1(u), A1(v) = 1 + O(

√
ε) hold. The square root in these estimates is also

proven to be the correct asymptotic power as ε→ 0.

1. Introduction

A non-negative weight function w on Rn is in the Muckenhoupt Ap class, w ∈ Ap,
if there is a constant C such that(

1
|Q|

∫
Q

w

)(
1
|Q|

∫
Q

w1/(1−p)
)p−1

≤ C(1)

for all cubesQ in Rn with sides parallel to the coordinate axes. Here and throughout
this note |Q| denotes the Lebesgue measure of Q, integrals are evaluated with
respect to Lebesgue measure, and 1 < p <∞. The smallest constant C for which
(1) holds is termed the Ap bound of w and is denoted Ap(w); note that Ap(w) ≥ 1,
by Hölder’s inequality, with equality only when w is almost everywhere constant.
The limiting case w ∈ A1 is defined by the requirement that

1
|Q|

∫
Q

w ≤ C inf
Q
w(2)

for all cubes Q, where infQw denotes the essential infimum of w over Q.1 The least
bound C in (2), denoted A1(w), is likewise at least 1.

Products of suitable powers of A1 weights are in Ap. In fact, if u and v are in A1,
then uv1−p is in Ap, and the bound of this product satisfies the estimate

Ap(uv1−p) ≤ A1(u)A1(v)p−1,(3)

as follows directly from conditions (1) and (2). By means of a delicate stopping-
time argument, Jones [6] succeeded in proving the converse: each Ap weight w can
be decomposed as the product w = uv1−p of A1 weights u and v. Several years
later, Rubio de Francia found a much simpler proof of this decomposition (see [2],
[12], and [13]), and his “reiteration” scheme has since found many applications. It
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has been used, for example, to give a constructive proof of the duality of Hardy
space H1 and BMO, the space of functions of bounded mean oscillation (see [3]);
to prove an extrapolation theorem for operators on weighted Lp spaces (see [12]);
and to characterize the domains on which BMO functions have extensions to all Rn
(see [5]).

For the purpose to be discussed here, however, the reiteration argument has
one shortcoming: it does not give sharp quantitative information on the weight
bounds A1(u) and A1(v) of the factors that arise in the decomposition of a given
Ap weight w as uv1−p. In particular, it does not reveal whether it is possible
to factor Ap weights with bounds near 1 “continuously” into pairs of component
weights with A1 bounds near 1. By contrast, the estimate (3) immediately shows
that when the bounds A1(u) and A1(v) are near 1, then so is Ap(uv1−p).

To see how this difficulty arises, let us briefly review the reiteration argument
in the simplest case p = 2, in which we seek to factor a given A2 weight w into a
quotient of two A1 weights (see [15]).

Since w ∈ A2, the Hardy-Littlewood maximal operator M is bounded both
on L2(w dx) and, by the symmetry in (1), on L2(w−1 dx).2 It follows that the
sublinear operator S defined by

S(f) = w−1/2M(w1/2f) + w1/2M(w−1/2f)

is bounded on the unweighted space L2(dx), say ‖S(f)‖2 ≤ B‖f‖2. Now choose
a positive function f in L2(dx), as well as a number λ larger than 1. Next, set
g =

∑∞
k=1(λB)−kSk(f). Then g ∈ L2(dx) and

S(g) = (λB)
∞∑
k=2

(λB)−kSk(f) = (λB)g − S(f).

Since S(f) ≥ 0, the pointwise estimate S(g) ≤ (λB)g holds. Thus

w−1/2M(w1/2g) ≤ S(g) ≤ (λB)g,

so that M(w1/2g) ≤ λB(w1/2g). Hence u = w1/2g belongs to A1 and satisfies
A1(u) ≤ λB. Similarly, v = w−1/2g is in A1, and A1(v) ≤ λB. The construction
thus quickly decomposes w as a quotient u/v of twoA1 weights; it does not, however,
sharply control the A1 bounds of the factors in this quotient. For even if the
A2 bound of the original weight w is near 1, we can only conclude from the above
argument (letting λ approach 1) that the A1 bounds of u and v are no larger than
the operator bound B, and this is at least 2.3

Thus, the reiteration scheme, while useful in numerous applications, does not
answer the question we pose here: if A2(w) is near 1, then is it possible to factor w
as a quotient of two A1 weights u and v with bounds also near 1? The affirmative
answer to this question is contained in the following theorem, the proof of which is
the focus of this paper.

2Recall that Mf(x0) = supQ(1/|Q|)
∫
Q |f |, where the supremum runs over all cubes Q con-

taining x0. For the fundamental proof that M is bounded on the weighted space L2(w dx) exactly
when w ∈ A2, see [1] or [10].

3Simply observe that for f positive, both M(w1/2f) ≥ w1/2f and M(w−1/2f) ≥ w−1/2f , so
that S(f) ≥ 2f . More significantly, the norm of each of the two terms in S, viewed as an operator
on L2(dx), is strictly greater than 1.
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Theorem. If w is an Ap weight and Ap(w) = 1 + ε < 1 + ε0, then there exist
A1 weights u and v satisfying both w = uv1−p and

A1(u) ≤ 1 + C
√
ε, A1(v) ≤ 1 + C

√
ε.(4)

The constants C and ε0 depend only on the dimension n and the index p.

The method of the proof is first to supplement the original argument of Jones [6]
in the dyadic model case with some sharp estimates in the author’s thesis [8]. The
averaging method of Garnett and Jones [4] is then adapted to handle the general
case. Sharpness of the asymptotic estimate (4) in the theorem is shown in the final
section.

2. The dyadic setting

We begin by proving the following dyadic version of the factorization theorem.
This version is stated for the collection D(Q0) of all dyadic subcubes of an arbitrary,
fixed cube Q0 in Rn: that is, all those cubes obtained by dividing Q0 into 2n

congruent cubes of half its length, dividing each of these into 2n congruent cubes,
and so on. By convention, Q0 itself belongs to D(Q0).

Lemma 1. Suppose that w satisfies the dyadic Ap condition

sup
Q∈D(Q0)

(
1
|Q|

∫
Q

w

)(
1
|Q|

∫
Q

w1/(1−p)
)p−1

= 1 + ε ≤ 1 + ε0(5)

on the cube Q0. Let f = logw. Then there exist functions g, F , and G on Q0 that
satisfy both the pointwise identity

f(x)− fQ0 = g(x) + F (x) −G(x), x ∈ Q0,(6)

and the estimates

|g| ≤ C1

√
ε,(7)

1
|Q|

∫
Q

eF ≤ (1 + C1

√
ε) inf

Q
eF , Q ∈ D(Q0),(8)

1
|Q|

∫
Q

eG/(p−1) ≤ (1 + C1

√
ε) inf

Q
eG/(p−1), Q ∈ D(Q0).(9)

The constants C1 and ε0 depend only on the dimension n and the index p.

Essential to the estimates in the lemma is the following measure-theoretic result
(see [8], [9], or [11]), which insures that the mean oscillation of the logarithm of a
weight is close to 0 when the Ap bound of the weight is near the optimal value 1.

Lemma 2. If the ratio of the arithmetic and geometric means of w on Q satisfies(
1
|Q|

∫
Q

w

)/
exp
(

1
|Q|

∫
Q

logw
)

= 1 + ε < 2

and f = logw, then

1
|Q|

∫
Q

|f − fQ| ≤ C2

√
ε.(10)
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This result holds on each single cube (and, in fact, we may take C2 = 32). The
form in which we shall apply the estimate is as follows: Let ‖ · ‖ and ‖ · ‖∗ denote
the dyadic and full BMO seminorms, i.e.,

‖f‖ = sup
Q∈D(Q0)

1
|Q|

∫
Q

|f − fQ| and ‖f‖∗ = sup
Q⊂Rn

1
|Q|

∫
Q

|f − fQ|.

When w satisfies the dyadic Ap condition (5), then Jensen’s inequality and (10)
insure that ‖ logw‖ ≤ C2

√
ε; likewise, when Ap(w) = 1 + ε, then ‖ logw‖∗ ≤ C2

√
ε.

The following proof of the dyadic version of the factorization theorem combines
an iterative Calderón-Zygmund decomposition singling out those cubes on which
the mean oscillation of f is large with the bound obtained from Lemma 2.4

Proof of Lemma 1. Fix Q0, set f = logw and λ = 2n‖f‖. Let G0 = {Q0}. Define

G1 = {Qj ∈ D(Q0) : |fQj − fQ0 | > λ, Qj maximal}(11)

and, inductively,

Gm+1 = {Qj ∈ D(Q) : Q ∈ Gm, |fQj − fQ| > λ, Qj maximal}.(12)

Write G =
⋃∞
m=0 Gm and let Ωm be the union of the cubes in Gm. By construction,

Ωm+1 ⊆ Ωm ⊆ · · · ⊆ Ω0. For Q in Gm+1, let Q̃ denote the unique cube in Gm
containing Q.

Now, maximality in the selection criteria (11) and (12) and standard BMO esti-
mates give rise to the mean-value inequality

λ < |fQ − fQ̃| ≤ 2λ, Q ∈
∞⋃
m=1

Gm.(13)

They also lead to the relative density estimate

|Q ∩ Ωm+1| ≤ 2−n|Q|, Q ∈ Gm,(14)

which is valid for each non-negative integer m. Summing this last estimate over
the cubes in Gm and iterating leads to the bound

|Ωm| ≤ 2−mn|Ω0|.(15)

Furthermore, differentiation of the Lebesgue integral—in conjunction with (11)
and (12)—yields the pointwise estimate

|f(x)−
∑

Qj∈Gm
fQjχQj (x)| ≤ λ, x ∈ Ωm \ Ωm+1,(16)

which is also valid for each non-negative m. Hence, when we set

g(x) = f(x)− fQ0 −
∞∑
m=1

∑
Qj∈Gm

(fQj − fQ̃j )χQj (x),(17)

then |g| ≤ λ a.e. on Q0.5 The bound λ = 2n‖f‖ ≤ 2nC2
√
ε from Lemma 2 then

gives the desired estimate (7) for g.

4The argument follows [6] and [4] closely, with modifications introduced to get around the fact
that the proof for the dyadic model case in [4, pp. 360–361] only leads to A1 factors with bounds
which are at least 2, even when the Ap bound of the weight to be factored is nearly 1.

5Note that the intersection
⋂
m Ωm is a set of measure zero within Q0, on account of (15). So

it suffices to verify the bound for g on Ωm \ Ωm+1 separately for each non-negative m, and this
follows from (16).
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Next, to obtain suitable dyadic A1 factors of w, split the double sum in (17)
according to the sign of the difference fQj − fQ̃j . That is, let

f(x)− fQ0 = g(x) + F (x) −G(x),

where

F (x) =
∞∑
m=1

∑
Qj∈Gm

(fQj − fQ̃j )
+χQj (x)(18)

and

G(x) =
∞∑
m=1

∑
Qj∈Gm

(fQ̃j − fQj )
+χQj (x).(19)

It is important to note that the functions F and G defined in (18) and (19) are
non-negative; where they are positive, their value must, by (13), exceed λ. For later
purposes, we also wish to express F and G as sums over all the dyadic subcubes
of Q0, not just over those where the mean oscillation of f is large. Thus, we write

F (x) =
∑

Qk∈D(Q0)

akχQk(x)(20)

and

G(x) =
∑

Qk∈D(Q0)

bkχQk(x).(21)

In (20), for example, whenever Qk 6∈
⋃∞
m=1 Gm or whenever Qk ∈

⋃∞
m=1 Gm but

fQk − fQ̃k ≤ λ, then ak = 0; otherwise, ak = fQk − fQ̃k . A similar interpretation
applies to the coefficients bk.

In light of Lemma 2, it suffices to show that the dyadic A1 bounds of expF and
exp[G/(p− 1)] do not exceed 1 + Cλ, provided that λ = 2n‖f‖ is suitably small.
This means we must show that

1
|Q|

∫
Q

eF ≤ (1 + Cλ) inf
Q
eF(22)

and
1
|Q|

∫
Q

eG/(p−1) ≤ (1 + Cλ) inf
Q
eG/(p−1)(23)

for all Q ∈ D(Q0). To prove this we now consider three cases.

Case I: The initial cube. We first verify (22) in the case when Q = Q0, the original
cube. In this case, infQ F = 0, for the choice of λ in the stopping-time argument
insures that the set Ω0 \ Ω1 has positive measure; see (15). Changing variables in
the standard integral formula

∫
Q

(eF − 1) =
∫∞

0
et|{x ∈ Q : F (x) > t}| dt leads to

the equation

1
|Q|

∫
Q

eF = 1 +
λ

|Q|

∫ ∞
0

|Eτ |eλτ dτ,(24)

in which

Eτ = {x ∈ Q : F (x) > λτ}.
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Estimating the dyadic A1 bound of expF then reduces to estimating the size of the
set Eτ . But condition (13) insures that Eτ ⊆ Ω1, when 0 ≤ τ < 2, and, in general,
that Eτ ⊆ Ωk, when 2(k − 1) ≤ τ < 2k (for each k in N). Thus, by (15) and (24),

1
|Q|

∫
Q

eF ≤ 1 + 2λ
∞∑
k=1

|Ωk|
|Q| e

2λk ≤ 1 + 2λ
∞∑
k=1

2−nke2λk.(25)

The latter sum is less than 2, when λ = 2n‖f‖ is sufficiently small. Consequently,
|Q|−1

∫
Q e

F ≤ 1 + 4λ, which is (22) for Q = Q0.

Case II: A cube with a large jump in mean value. Suppose now that Q ∈ Gm for
some positive m and that fQ − fQ̃ > λ.6 Then

(inf
Q
eF )−1 1

|Q|

∫
Q

eF =
1
|Q|

∫
Q

eF−infQ F = 1 +
λ

|Q|

∫ ∞
0

|Ẽτ |eλτ dτ,

where

Ẽτ = {x ∈ Q : F (x)− inf
Q
F > λτ}.

In analogy to the first case, we find from (13) and (16) that Ẽτ ⊂ Q ∩ Ωm+k, when
2(k − 1) ≤ τ < 2k (for each k in N). So for τ in this range, |Ẽτ | ≤ 2−nk|Q|, from
which the desired estimate (22) once again follows.

Case III: Cubes with no large jump in the mean. In Case I, we considered Q0; in
Case II, we treated those dyadic cubes Q within Q0 for which fQ − fQ̃ > λ. To
handle the remaining case efficiently, we first introduce a bit of further notation:
for each proper dyadic subcube Q of Q0, let Q̃ denote the minimal cube in G that
strictly contains it7 and set

P(Q) = {Qj ∈ D(Q) : fQj − fQ̃ > λ, Qj maximal},
N (Q) = {Qj ∈ D(Q) : fQj − fQ̃ < −λ, Qj maximal}.

Note that the union of P(Q) and N (Q) is exactly the set of the cubes in
⋃∞
m=1 Gm

that lie within Q. In this notation, the remaining case now consists of proving (22)
on each dyadic cube Q for which Q 6∈ P(Q).

Fix such a cube Q. To estimate
∫
Q expF we split Q into the union of its subcubes

in P(Q) and the complement of this union. On the one hand, if Qj ∈ P(Q), then
Q̃j = Q̃; Case II then applies, so that∫

Qj

eF ≤ (1 + 4λ)(inf
Qj
eF )|Qj |.

But infQj F = infQ̃ F + (fQj − fQ̃j ), hence

λ < inf
Qj
F − inf

Q̃
F = fQj − fQ̃j ≤ 2λ,

6Unlike in (12), the sign of the difference is important here.
7That is, Q̃ =

⋂
{Qj ∈ G : Q ⊂ Qj}. This is consistent with the earlier notation, in which

Q ∈ Gm+1 and Q̃ ∈ Gm.
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by (13). On the other hand, on the complement in Q of
⋃
Qj the value of F is

exactly infQ̃ F . All together, then,∫
Q

eF ≤ (1 + 4λ)
∑

Qj∈P(Q)

(inf
Qj
eF )|Qj |+ (inf

Q̃
eF )|Q \

⋃
Qj∈P(Q)

Qj|

≤ (1 + 4λ)e2λ(inf
Q̃
eF )

∑
Qj∈P(Q)

|Qj |+ (inf
Q̃
eF )|Q \

⋃
Qj∈P(Q)

Qj|

≤ (1 + 4λ)e2λ(inf
Q̃
eF )|Q|.

Since infQ̃ F ≤ infQ F , the bound (22) thus also holds for the cubes Q in this, the
last case.

The justification of the dyadic A1 bound (23) is similar, with G/(p− 1) in place
of F , N (Q) in place of P(Q), etc. This completes the proof of Lemma 1.

3. The general setting

The proof of the theorem follows the argument in [4, pp. 361–364], except for
certain technical modifications which are introduced to keep all bounds as small
as possible. For completeness, the full proof is given here. Let SN be the cube
{x ∈ Rn : |xi| ≤ 2N , 1 ≤ i ≤ n}.

Lemma 3. Suppose that w ∈ Ap and that Ap(w) = 1 + ε < 1 + ε0. Let f = logw.
For each natural number N there exist functions gN , FN , and GN on the cube SN
satisfying both the pointwise identity

f(x)− fSN = gN (x) + FN (x) −GN (x), x ∈ SN ,(26)

and the bounds

|gN | ≤ C3

√
ε,(27)

1
|Q|

∫
Q

eFN ≤ (1 + C3

√
ε) inf

Q
eFN , Q ⊆ SN ,(28)

1
|Q|

∫
Q

eGN/(p−1) ≤ (1 + C3

√
ε) inf

Q
eGN/(p−1), Q ⊆ SN .(29)

The constants C3 and ε0 depend only on the dimension n and the index p.

Note that (28) and (29) are valid for all (not just dyadic) subcubes of SN .
Let us first show how this last lemma implies the theorem. The identity (26)

can be re-written, after subtracting off the mean value of each side on S0, as

f(x)− fS0 = [gN(x) − (gN )S0 ] + [FN (x) − (FN )S0 ]− [GN (x)− (GN )S0 ](30)

= g̃N(x) + F̃N (x) − G̃N (x).(31)

Then |g̃N | ≤ 2C3
√
ε a.e. on SN , by (27). Taking the logarithm of (28) readily yields

a bound on the mean oscillation of FN :
1
|Q|

∫
Q

|FN − (FN )Q| ≤
2
|Q|

∫
Q

(FN − inf
Q
FN ) ≤ 2C3

√
ε, Q ⊆ SN .(32)

The same estimate applies to F̃N , since it differs from FN only by an additive con-
stant. The John-Nirenberg inequality in [7] then allows us to convert this statement
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into a bound on the quadratic mean oscillation of F̃N , namely

1
|Q|

∫
Q

|F̃N − (F̃N )Q|2 ≤ C′ε, Q ⊆ SN .

Suppose now that M ≤ N . When Q = SM , the last estimate becomes
1
|SM |

∫
SM

|F̃N |2 ≤ C′ε+ |(F̃N )SM |2.(33)

To control the right-hand side, form a telescoping sum of mean values:

(F̃N )SM = (F̃N )S0 + [(F̃N )S1 − (F̃N )S0 ] + · · ·+ [(F̃N )SM − (F̃N )SM−1 ].(34)

Since |S1|/|S0| = · · · = |SM |/|SM−1| = 2n, the magnitude of each of the M brack-
eted differences is no more than the fixed quantity 2n(C3

√
ε), by (32). In fact,

as (F̃N )S0 = 0, (34) becomes |(FN )SM | ≤M2nC3
√
ε. Conditions (33) and (34)

together then yield the quadratic bound

1
|SM |

∫
SM

|F̃N |2 ≤ C′ε + (M2nC3

√
ε)2 <∞,

which holds uniformly for N = M,M + 1,M + 2, . . . , and an analogous bound is
also valid for G̃N . For each M , the sequences {F̃N : N ≥M} and {G̃N : N ≥M}
are thus bounded in L2(SM ); we have also already seen that {g̃N : N ≥M} is a
bounded sequence in L∞(SN ). Using a diagonal argument, we may therefore choose
a subsequence Nj → ∞, so that F̃Nj ⇀ F, G̃Nj ⇀ G weakly in L2(SM ) and so
that g̃Nj ⇀ g in the weak-star topology on L∞(SM ), with this convergence holding
simultaneously for all M .8 Moreover, on each cube SM there is a sequence of finite
convex combinations

∑J
j=1 tjF̃Nj , with tj ≥ 0 and

∑J
j=1 tj = 1, that converges to

F both in L2 and (taking a further subsequence, if necessary) pointwise a.e.9 From
(31), then, f(x)− fS0 = g(x) + F (x)−G(x), with

|g| ≤ C3

√
ε a.e. on Rn.(35)

To obtain the desired A1 bound on expF , fix an arbitrary cube Q in Rn, and
choose M so large that Q ⊆ SM . Apply Fatou’s lemma and Hölder’s inequality to
the sequence {exp

∑J
j=1 tjF̃Nj : Nj ≥M} to obtain the bound10

1
|Q|

∫
Q

eF ≤ lim inf
J→∞

J∏
j=1

(
1
|Q|

∫
Q

eF̃Nj
)tj
≤ (1 + C3

√
ε) inf

Q
eF(36)

from (28). Set u = exp[fS0 + g + F ]. Thanks to (35) and (36), u ∈ A1 and
A1(u) ≤ exp[2C3

√
ε] (1 + C3

√
ε) = 1 +O(

√
ε), as desired. The corresponding A1

bound for v = exp[G/(p− 1)] follows similarly from (29). The proof of the theorem
is now complete.

8The John-Nirenberg inequality has been invoked to move from uniform boundedness in L1

to that in L2; otherwise, weak compactness would have only guaranteed the existence of a subse-
quence converging to a measure.

9See Theorem 3.13 in [14] or Theorem V.1.2 in [16]; in the latter work, this result is attributed
to S. Mazur.

10Suppose that {ϕJ} is a sequence of non-negative, measurable functions that converges a.e.
to ϕ. What is needed here are both the (standard) L1 form of Fatou’s lemma,

∫
ϕ ≤ lim infJ

∫
ϕJ ,

as well as its L∞ form: lim infJ (inf ϕJ ) ≤ inf ϕ; the latter can be verified via a simple proof by
contradiction. Recall that we write inf ϕ for ess infϕ, as indicated in the introduction.
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Proof of Lemma 3. We use the averaging procedure of [4] to move from the dyadic
version of the theorem (Lemma 1) to the general, local version (Lemma 3). Fix
N and assume, without loss of generality, that fSN = 0. Set Q0 = SN+1 and
λ = 2n‖f‖∗. For each α ∈ SN , apply Lemma 1 on Q0 to the translate Tαf of f ,
where Tαf(x) = f(x− α); note that condition (5) holds uniformly for eTαf (in place
of w = ef) as α varies, due to the assumption that Ap(ef ) = 1 + ε. The result is

Tαf(x)− (Tαf)SN+1 = g(α)(x) + F (α)(x)−G(α)(x),

where g(α), F (α), and G(α) satisfy (7), (8), and (9), respectively.11 Next, for a.e. x
within the cube SN , we know that

f(x) =
1
|SN |

∫
SN

T−α(Tαf)(x) dα

=
1
|SN |

∫
SN

T−α
(
g(α) + (Tαf)SN+1 + F (α) −G(α)

)
(x) dα

= gN (x) + FN (x) −GN (x),

where, in the last line, gN(x) = |SN |−1
∫
SN

T−α
(
g(α) + (Tαf)SN+1

)
(x) dα and

FN (x) = |SN |−1
∫
SN

T−α(F (α))(x) dα, and where GN is defined analogously to FN .
Now, since f is in BMO, then

|(Tαf)SN+1| ≤ |(Tαf)SN+1 − fSN+1|+ |fSN+1 − fSN |+ |fSN | ≤ cn
√
ε,

as follows from (10) and the assumption fSN = 0.12 The uniform boundedness of
g(α) in (7) then insures that |gN | ≤ C3

√
ε a.e. on SN . In addition, the expan-

sion (20) guarantees that there are non-negative coefficient functions a(α)
k , depend-

ing measurably on α,13 such that

F (α)(x) =
∑

Qk∈D(SN+1)

a
(α)
k χQk(x).

Note that this sum runs over D(SN+1), a fixed, countable collection of cubes which
is indexed by k and independent of α; as in §2, each coefficient a(α)

k is either 0
or a number between λ and 2λ. Condition (21) leads to a similar representation
for G(α).

It remains to show that FN satisfies the desired A1 estimate on SN . Fix an
arbitrary cube Q within SN . Our goal is to show (28), i.e.,

1
|Q|

∫
Q

eFN ≤ (1 + C3

√
ε) inf

Q
eFN .(37)

11Symbols such as Gm,(α), G(α), and Ωm,(α) will likewise denote the sets within Q0 obtained
when f is replaced by its translate Tαf in the definitions of Gm, G, and Ωm in §2.

12Compare the bound obtained from (34).
13Choose a dyadic subcube Qk of Q0, with |Qk| = 2−n|Q0|. By definition, the coefficient a

(α)
k

satisfies a
(α)
k = [(Tαf)Qk − (Tαf)Q0 ]χEk , where Ek = {α ∈ SN : [(Tαf)Qk − (Tαf)Q0 ] > λ}.

Since f ∈ L1(SN+2), then [· · · ] is a continuous function of α, and Ek is consequently an open set

within SN . This proves the measurability in α of the coefficient functions a
(α)
k associated to each

first-generation subcube Qk of Q0. The argument for cubes of a later generation within D(Q0) is
analogous.
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To reach this we will make a number of reductions. First, on the cube Q, write
F (α) = F

(α)
1 + F

(α)
2 , with

F
(α)
1 =

∑
`(Qk)≥`(Q)

a
(α)
k χQk , F

(α)
2 =

∑
`(Qk)<`(Q)

a
(α)
k χQk ,

where `(Q) denotes the side-length of Q. Note that only finitely many terms enter
into the first sum. Next, define the averaged forms

FN,1(x) =
1
|SN |

∫
SN

F
(α)
1 (x+ α) dα, FN,2(x) =

1
|SN |

∫
SN

F
(α)
2 (x + α) dα;

thus, FN = FN,1 + FN,2. On account of Lemma 1, to prove (37) it suffices to show
the two bounds

sup
Q
FN,1 − inf

Q
FN,1 ≤ Cλ(38)

and
1
|Q|

∫
Q

eFN,2 ≤ (1 + Cλ) inf
Q
eFN,2,(39)

where λ = 2n‖f‖∗.
Now, (38) is a consequence of the following Lipschitz estimate14 on the contri-

bution to FN of the terms arising from cubes of a fixed size:

Lemma 4. Let

F̂j(x) =
1
|SN |

∫
SN

∑
`(Qk)=2−j`(SN)

a
(α)
k χQk(x),

so that FN (x) =
∑∞

j=0 F̂j(x). If sup1≤i≤n |xi − yi| ≤ 2−j`(SN), then

|F̂j(x) − F̂j(y)| ≤ C42j‖f‖∗
`(SN )

|x− y|,

with C4 dependent only on the dimension n (and, in particular, not on j).

In fact, if x, y ∈ Q and r is the integer satisfying 2−r−1`(SN ) < `(Q) ≤ 2−r`(SN ),
then sup1≤i≤n |xi − yi| ≤ 2−r`(SN ). Hence

|FN,1(x)− FN,1(y)| ≤
r∑
j=0

|F̂j(x)− F̂j(y)| ≤ C4‖f‖∗
r∑
j=0

2j
|x− y|
`(SN )

.(40)

The latter sum is no more than 2
√
n, so that (38) holds.

What about (39)? We can, in fact, further simplify the right-hand side there
by noting that FN,2 ≥ 0. As for the left-hand side, from Jensen’s inequality and
Fubini’s theorem it follows that

1
|Q|

∫
Q

eFN,2 =
1
|Q|

∫
Q

exp
[

1
|SN |

∫
SN

T−α(F (α)
2 )(x) dα

]
dx

≤ 1
|Q||SN |

∫
Q

∫
SN

exp[T−α(F (α)
2 )(x)] dα dx

=
1
|SN |

∫
SN

1
|Q|

∫
Q+α

exp(F (α)
2 )(y) dy dα.

14This is Lemma 3.2 in [4].
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For the proof of (37), it thus suffices to obtain a suitable estimate on the inner
integral in the last line, i.e., to show that

1
|Q|

∫
Q+α

exp(F (α)
2 )(y) dy = 1 +O(λ)(41)

uniformly for all α ∈ SN . The last integral average can be written, as in (24), in
the form

1 +
λ

|Q|

∫ ∞
0

|E(α)
τ,2 |eλτ dτ,

where

E
(α)
τ,2 = {y ∈ Q+ α : F (α)

2 (y) > λτ}.

But Q + α is contained within a union of 2n dyadic subcubes of SN+1, each hav-
ing side-length less than twice that of Q. Applying the construction in §2 to
each of these subcubes and summing leads to the estimate |E(α)

τ,2 | ≤ cn2−nk, when
2(k − 1) ≤ τ . The bound (41) then follows from writing

∫∞
0 (· · · ) dτ as the sum∑∞

k=1

∫ 2k

2(k−1)
(· · · ) dτ . The proof of estimate (29) for GN is similar. This settles

the last remaining step in the proof of the lemma, and the factorization theorem is
thus complete.

4. Sharpness of the asymptotic estimate

That the square root is the sharp power in the theorem follows from considering
a step function w with the value 1 +

√
ε on one side and 1 −√ε on the other side

of a hyperplane in Rn. This weight satisfies Ap(w) = 1 + O(ε), although, as we
shall presently show, regardless of how it is factored into a quotient of A1 weights,
at least one of its factors must have an A1 bound exceeding 1 +O(

√
ε).

Proposition. Let w be the step function taking the value 1+
√
ε in Rn+ and 1−

√
ε

in Rn−. Suppose that w = uv1−p for A1 weights u and v. Then

Ap(w) ≤ 1 + cε,

although

max[A1(u), A1(v)] ≥ 1 + c−1
√
ε.

The constant c depends only on the index p.

Proof. For simplicity, we first show this in the case p = 2. Divide the unit cube
Q = [−1/2, 1/2]n in half, with I = Q ∩ Rn+ and J = Q ∩ Rn−. A calculation shows
that the A2 bound of the given weight w is achieved when the averages of w and
w−1 are formed symmetrically over Q, in which case

A2(w) =
[

1 +
√
ε

2
+

1−
√
ε

2

][
1

2(1 +
√
ε)

+
1

2(1−√ε)

]
=

1
1− ε = 1 +O(ε).

Suppose that w = u/v for the pair of A1 weights u, v. If A1(u) ≤ 1 +
√
ε/4, then∫

Q

v ≥
[

1
1 +
√
ε

+
1

1−
√
ε

]
min

[∫
I

u,

∫
J

u

]
≥ 2

1− ε
1

1 +
√
ε/2

∫
I

u,
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where the last step is a simple consequence of the assumed A1 bound on u.15 In
addition,

inf
Q
v ≤ inf

I
v =

1
1 +
√
ε

inf
I
u ≤ 2

1 +
√
ε

∫
I

u.

Hence

A1(v) ≥
∫
Q
v

infQ v
≥ 1 +

√
ε

(1− ε)(1 +
√
ε/2)

≥ 1
1−
√
ε/2
≥ 1 +

1
2
√
ε.

When p > 2, the argument is similar: if A1(u) ≤ 1 +
√
ε/4 and vp−1 = u/w,

then the above estimates show that A1(v) ≥ (1 +
√
ε/2)1/(p−1) ≥ 1 +

√
ε/2. When

p < 2, it is easier to begin with an A1 weight v and to set u = wvp−1. In this case, if
A1(v) ≤ 1 +

√
ε/Cp, then A1(u) ≥ (1 +

√
ε)−1(1 + 2

√
ε/Cp)1−p; the last quantity

exceeds 1 + c−1√ε, provided that Cp is sufficiently large. This completes the proof
of the proposition.
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