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PATH STABILITY AND NONLINEAR
WEAK ERGODIC THEOREMS

YONG-ZHUO CHEN

Abstract. Let {fn} be a sequence of nonlinear operators. We discuss the
asymptotic properties of their inhomogeneous iterates fn ◦ fn−1 ◦ · · · ◦ f1 in
metric spaces, then apply the results to the ordered Banach spaces through
projective metrics. Theorems on path stability and nonlinear weak ergodicity
are obtained in this paper.

1. Introduction

The change of a phenomenon at discrete points of time can be modeled by a
discrete dynamical system defined by an operator f . If the system itself changes
over time, then we have to consider a sequence of operators {fn} and the inhomo-
geneous iterations fn ◦fn−1 ◦ · · ·◦f1, which can be considered as a generalization of
inhomogeneous products of matrices (Seneta [16]). In this paper, we are interested
in the cases where fn’s are nonlinear and certain asymptotic properties of their
inhomogeneous iterates are discussed.

Let x, y be any two points in a space. If

lim
n→∞

d(fn ◦ fn−1 ◦ · · · ◦ f1(x), fn ◦ fn−1 ◦ · · · ◦ f1(y)) = 0

or

lim
n→∞

‖fn ◦ fn−1 ◦ · · · ◦ f1(x)− fn ◦ fn−1 ◦ · · · ◦ f1(y)‖ = 0,

where d(·, ·) is some metric and ‖·‖ is some norm, then we say that fn is path stable
(Krause [12, 13]). Section 2 will be devoted to path stabilities in metric spaces.
In Section 3, we apply the results in Section 2 to the path stabilities in ordered
Banach spaces by means of Thompson’s metric.

Let Tn(x) = fn(x)
‖fn(x)‖ be the rescaled operator. If

lim
n→∞

‖Tn ◦ Tn−1 ◦ · · · ◦ T1(x)− Tn ◦ Tn−1 ◦ · · · ◦ T1(y)‖ = 0,

then we say that Tn is weakly ergodic (Fujimoto and Krause [6], Inaba [8], Nuss-
baum [15]). The weak ergodic theorems are extensively studied and applied in
population biology literature. In Section 4, we apply the results in Section 2 and
the Hilbert metric to prove several nonlinear weak ergodic theorems in the ordered
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Banach spaces. As pointed out in [4, Remark 4.2] (cf. [3, Corollary 3.2]), our op-
erators in Section 3 and Section 4 are related to the ascending operators (Fujimoto
and Krause [6], Krause [13]).

In Section 5, we explore the application of our theorems to the ranking of n
teams in a competition game.

2. Path stability in metric space

In this section, (X, d) stands for a complete metric space. A sequence of op-
erators Tn : X → X , n = 1, 2, · · · , is said to be asymptotically generalized con-
tractive (cf. Fujimoto and Krause [6], also M. A. Krasnosel’skǐı and P. P. Zabrěıko
[11, p. 206]) if for any [a, b] ⊂ (0, ∞) and ε > 0, there exists L(a, b) ∈ (0, 1) and
N = N(ε, a, b) > 0 such that

d(Tn(x), Tn(y)) ≤ L(a, b) d(x, y) + ε if d(x, y) ∈ [a, b],(1)

and d(Tn(x), Tn(y)) ≤ d(x, y) + ε otherwise, where n > N and x, y ∈ X .
First we prove a lemma which is a strengthening of [4, Lemma 2.1] (also see

Jachymski [9, Lemma 1]).

Lemma 2.1. Let {un} be a sequence of positive numbers. Suppose for any [a, b] ⊂
(0, ∞), there exists L(a, b) ∈ (0, 1), and for a given ε > 0, we have N = N(ε, a, b) >
0 such that

un+1 ≤ L(a, b)un + ε if un ∈ [a, b],(2)

and un+1 ≤ un + ε otherwise, where n ≥ N . Then either limn→∞ un = 0 or {un}
is unbounded.

Proof. Suppose that b = sup{un} < ∞. Assume that limn→∞ un = 0 is not true.
Then we can claim that there exists m > 0 such that un ≥ m for all but finitely
many n. For if not, there exists δ ∈ (0, b) such that both {n : un ≤ δ} and
{n : un > δ} are infinite sets. Let

n1 = min{n : un ≤ δ and un+1 > δ}.
Using induction, we have

nk+1 = min{n > nk : un ≤ δ and un+1 > δ}.

For this selected {unk }, we must have lim infk→∞ unk ≥ δ
3 . Since otherwise, there

is a subsequence of {unk }, we still denote it by {unk } for simplicity, such that
unk <

δ
2 for all k. For ε1 = δ

4 , there exists N1 = N1(ε1 , δ2 , b) > 0 such that

unk+1 ≤ unk + ε1

for all nk ≥ N1. This implies that δ ≤ δ
2 + δ

4 , which is a contradiction. Hence,
without loss of generality, we can assume that unk ≥ δ

4 for all nk > N . Again by
(2), for any ε2 > 0, there exists N2 = N2(ε2, δ4 , b) > 0 such that

unk+1 ≤ L(
δ

4
, b)unk + ε2

for all nk > N2. This leads to δ ≤ L( δ4 , b)δ + ε2 due to the definition of nk . It
is impossible since L( δ4 , b) < 1 and ε2 > 0 can be arbitrary. The claim is proved.
Therefore in the following we can assume m = inf{un }.
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Given ε > 0, the contraction mapping f(x) = L(m, b)x + ε has a unique fixed
point ε

1−L(m,b) . There exists N = N(ε,m, b) > 0 such that

un+1 ≤ L(m, b)un + ε = f(un )(3)

for all n ≥ N . So

un+2 ≤ L(m, b)un+1 + ε = f(un+1 )
≤ f2(un ) (by (3) and the monotonity of f).

By induction, we have un+p ≤ fp(un ), p ≥ 1. Using the facts that inf{un } = m
and limp→∞ fp(un ) = ε

1−L(m,b) , we have m ≤ ε
1−L(m,b) . It is impossible since

ε > 0 can be arbitrary.

Remark 1. In [4, Lemma 2.1], εn → 0 uniformly for all [a, b] ⊂ (0,∞), whereas here
we require N(ε, a, b) depending on a and b.

Remark 2. To complement condition (2), we assume that un+1 ≤ un+ε, otherwise.
This is necessary. For example, consider the bounded sequence

{1, 1
2
, 1,

1
3
, 1,

1
4
, 1,

1
5
, · · · }.

It satisfies (2) since we can let L(a, b) = 1
2 for all [a, b] ⊂ (0,∞). Then for any given

[a, b] ⊂ (0,∞) and ε > 0, we can choose N(ε, a, b) > 1
a to satisfy (2). However, the

sequence is not convergent.

Theorem 2.2. Let {Tn} be a sequence of asymptotically generalized contractions
on X. Let x1 , y1 ∈ X, and define

xn+1 = Tn(xn ) and yn+1 = Tn(yn ).

Then either limn→∞ d(xn , yn ) = 0 or {d(xn , yn ) : n ≥ 1} is unbounded.

Proof. Letting un = d(xn , yn ) and an application of Lemma 2.1 yield the theorem.

We would like to remark that (1) does not imply all Tn’s are continuous. If the
condition (1) is strengthened, then we can have the following

Corollary 2.3. Let Tn : X → X, n = 1, 2, · · · . Suppose for any 0 < a < b <∞,
there exists L(a, b) ∈ (0, 1) such that

d(Tn(x), Tn(y)) ≤ L(a, b) d(x, y)(4)

for all n, where x, y ∈ X and a ≤ d(x, y) ≤ b. Let x1 , y1 ∈ X, and define

xn+1 = Tn(xn ) and yn+1 = Tn(yn ).

Then limn→∞ d(xn , yn ) = 0.

Proof. Condition (4) implies that d(xn , yn ) ≤ d(x1 , y1 ) for all n, i.e., {d(xn , yn )}
is bounded. The conclusion follows from Theorem 2.2.

A sequence of operators Tn : X → X , n = 1, 2, · · · , is said to be asymptotically
large contractive (cf. Burton [2]) if for any a > 0 and ε > 0, there exists L(a) ∈
(0, 1) and N = N(ε, a) > 0 such that

d(Tn(x), Tn(y)) ≤ L(a) d(x, y) + ε if un ≥ a,(5)

and d(Tnx, Tny) ≤ d(x, y) + ε, otherwise, where n > N and x, y ∈ X .
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To justify the introduction of the above definition, we give an example which is
asymptotically generalized but not large contractive. This example is a modification
of the one given by Boyd and Wong ([4, Remark 3]).

Example. Let X = [0, 1] ∪ {2, 3, 4, · · · }, and

d(x, y) =
{
|x− y| if x, y ∈ [0, 1],
x+ y if at least one of x, y ∈ [0, 1].

(X, d) is a complete metric space ([1, Remark 3]). Define

Tn =
{
x− 1

2x
2 + 1

nx, x ∈ [0, 1],
x− 1 + 1

nx, x = 2, 3, · · · .
Now, for x, y ∈ [0, 1] with x− y = t > 0,

d(Tnx, Tny) = x− 1
2
x2 +

1
n
x− y +

1
2
y2 − 1

n
y

= (x− y)(1− 1
2

(x+ y)) +
1
n

(x− y)

≤ t(1− 1
2
t) +

1
n
t.

On the other hand, for x ∈ {2, 3, · · · } with x > y,

d(Tnx, Tny) = Tnx+ Tny

< x− 1 +
1
n
x+ y +

1
n
y

= d(x, y) − 1 +
1
n
d(x, y).

Define

ψ(t) =
{
t− 1

2 t
2, t ∈ [0, 1],

t− 1, t > 1.
Then

d(Tnx, Tny) ≤ ψ(d(x, y)) +
1
n
d(x, y).

For any [a, b] ⊂ (0,∞), let

L(a, b) = max { ψ(d(x, y))
d(x, y)

: a ≤ d(x, y) ≤ b},

and for any ε > 0, let N = N(ε, a, b) = [ bε ]. It follows that for all n > N , x, y ∈ X
with d(x, y) ∈ [a, b], we have

d(Tnx, Tny) ≤ L(a, b)d(x, y) + ε.

Hence {Tn} is asymptotically generalized but not large contractive since
limn→∞

ψ(d(n,k))
d(n,k) = 1 for any fixed positive integer k.

We need the following lemma which is a strengthening of [4, Lemma 3.1].

Lemma 2.4. Let {un} be a sequence of positive numbers. Suppose for any a > 0
and ε > 0, there exists L(a) ∈ (0, 1) and N = N(ε, a) > 0 such that

un+1 ≤ L(a)un + ε if un ≥ a,(6)

and un+1 ≤ un + ε, otherwise, where n ≥ N . Then limn→∞ un = 0.
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Proof. By Lemma 2.1, we only need to prove that {un} is bounded.
Assume that {un} is unbounded. Then for each positive integer k, we put

nk = inf{n : un ≥ k}. There are two possibilities for {unk−1}.
Case I. {unk−1} is bounded. This will lead to a contradiction in view of the

assumptions on {un}.
Case II. {unk−1} is unbounded. Then there exists a monotone increasing sub-

sequence of {unk−1}, which diverges to ∞ and is still denoted by {unk−1} for
simplicity. Without loss of generality, we assume unk−1 ≥ 1. For any given ε > 0,
there exists L(1) ∈ (0, 1) and N1 = N1(ε, 1) > 0 such that

unk ≤ L(1)unk−1 + ε

for all nk − 1 > N1. The selection of nk implies k ≤ L(1)k+ ε. From this we have
(1− L(1))k ≤ ε , which is impossible since k →∞.

Theorem 2.5. Let {Tn} be a sequence of asymptotically large contractions on X.
Let x1 , y1 ∈ X, and define

xn+1 = Tn(xn ) and yn+1 = Tn(yn ).

Then limn→∞ d(xn , yn ) = 0.

Proof. Letting un = d(xn , yn ) and an application of Lemma 2.4 yield the theorem.

As in [6], we can consider the sequence of lumped operators. For a given l > 1
and a given sequence {Tn} of operators on X , the sequence of lumped operators
{Fm} is defined by Fm = Tm+l−1 ◦ Tm+l−2 ◦ · · · ◦ Tm+1 ◦ Tm . An operator T on X
is called a Lipschitz operator if d(Tx, T y) ≤ r d(x, y) for all x, y ∈ X , where r > 0
is the Lipschitz constant.

Theorem 2.6. Let {Tn} be a sequence of Lipschitz operators on X with the same
Lipschitz constant r. Suppose that for some l > 1, the sequence of lumped operators
{Fm} is asymptotically generalized contractive. Let x1 , y1 ∈ X, and define

xn+1 = Tn(xn ) and yn+1 = Tn(yn ).

Then either limn→∞ d(xn , yn ) = 0 or {d(xn , yn ) : n ≥ 1} is unbounded.

Proof. Suppose that {d(xn , yn )} is bounded. Let Sm = F(m−1)l+1 and xm+1 =
Sm(xm ), ym+1 = Sm(ym ), where x1 = x1 , y1 = y1 . It is clear that {d(xm , ym )}
is bounded by assumption. Note that xm+1 = xml+1 , ym+1 = yml+1 . Let n > 0 be
given. Then there exist nonnegative integers m(n) and i such that n = m(n) l + i
with 0 ≤ i < l. We have

d(xn+1 , yn+1 ) ≤ ri d(xm(n)l+1 , ym(n)l+1 )

= ri d(xm(n)+1 , ym(n)+1 )

≤ max{1, rl} d(xm(n)+1 , ym(n)+1 ).

By Theorem 2.2, limn→∞ d(xm(n)+1 , ym(n)+1 ) = 0. Hence d(xn+1 , yn+1 ) → 0 as
n→∞.

Corollary 2.7. Let {Tn } be a sequence of Lipschitz operators on X with the same
Lipschitz constant r. Suppose for some l > 1, the sequence of lumped operators
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{Fm } satisfy the following: For any 0 < a < b < ∞, there exists L(a, b) ∈ (0, 1)
such that

d(Fm(x), Fm(y)) ≤ L(a, b) d(x, y)(7)

for all m, where x, y ∈ X and a ≤ d(x, y) ≤ b. Let x1 , y1 ∈ X, and define

xn+1 = Tn(xn ) and yn+1 = Tn(yn ).

Then limn→∞ d(xn , yn ) = 0.

Proof. We only need to point out that

d(xn , yn ) ≤ max{1, rl } d(x1 , y1 )

for all n, i.e., {d(xn , yn )} is bounded. Then the conclusion follows from Theorem
2.6.

Similarly, we can prove the following theorem.

Theorem 2.8. Let {Tn} be a sequence of Lipschitz operators on X with the same
Lipschitz constant r. Suppose that for some l > 1, the sequence of lumped operators
{Fm} is asymptotically large contractive. Let x1 , y1 ∈ X, and define

xn+1 = Tn(xn ) and yn+1 = Tn(yn ).

Then limn→∞ d(xn , yn ) = 0.

3. Path stability in ordered Banach spaces

In the rest of this paper, (B, ‖ · ‖) stands for a real Banach space which is
partially ordered by a closed convex cone P . Suppose the norm is monotone, i.e.,
x ≤ y implies that ‖x‖ ≤ ‖y‖. Note that P is normal iff B has an equivalent norm

which is monotone.
◦
P denotes the interior of P , and P is solid if

◦
P is not empty.

x, y ∈ P − 0 are called comparable (Nussbaum [14]) if there exist λ, µ > 0 such
that λx ≤ y ≤ µx. This partitions P − 0 into disjoint equivalent classes which are
called components of P . An operator f : D ⊂ B → B is monotone if x ≤ y implies
f(x) ≤ f(y), where x, y ∈ D.

Let C be a component of P . For x, y ∈ C, let M(x/y) = inf {λ : x ≤ λy}.
Thompson’s metric is defined by

d(x, y) = ln {max[M(x/y), M(y/x)]},
and (C, d) is a complete metric space (see Thompson [17]).

We need the following lemma.

Lemma 3.1. Let {xn } and {yn } be two sequences in B. If sup{‖xn‖} < ∞ and
limn→∞ d(xn , yn ) = 0, then limn→∞ ‖xn − yn‖ = 0.

Proof. limn→∞ d(xn , yn ) = 0 implies

lim
n→∞

max[M(xn/yn), M(yn/xn)] = 1.

Then for any ε > 0, there exists N > 0 such that

M(xn/yn) ≤ 1 + ε and M(yn/xn) ≤ 1 + ε

for all n ≥ N . Hence for n ≥ N , we have
1

1 + ε
xn ≤ yn ≤ (1 + ε)xn .
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Thus

− ε

1 + ε
xn ≤ yn − xn ≤ ε xn .

Since the norm ‖ · ‖ is monotone,

‖yn − xn‖ ≤ max { ε

1 + ε
, ε} ‖xn‖

≤ εb, n ≥ N.
Therefore limn→∞ ‖xn − yn‖ = 0.

Theorem 3.2. Let fn : C → C, n ≥ 1, be a sequence of monotone operators. Sup-
pose for each [l1 , l2 ] ⊂ (0, 1), there exists αn(l1, l2) > 0 with lim supn→∞ αn(l1, l2)
< 1 such that

y ≥ tx implies fn(y) ≥ tαn(l1,l2) fn(x) if t ∈ [l1 , l2](8)

and fn(y) ≥ tfn(x), otherwise, where x, y ∈ C. If there exists an x0 ∈ C such that
sup{‖xn‖} < ∞, where xn = fn(xn−1), n = 1, 2, · · · , then for any y0 ∈ C and
yn = fn(yn−1), we have the following trichotomy. Either

(i) {M(xn/yn)} is unbounded; or
(ii) {M(yn/xn)} is unbounded; or
(iii) limn→∞ ‖xn − yn‖ = 0.

Proof. For x, y ∈ C with d(x, y) ∈ [a, b] ⊂ (0, ∞). Without loss of generality,
assume M(x/y) ≥ M(y/x). Then ea ≤ M(x/y) ≤ eb. Since y ≥ [ 1

M(x/y) ]x, we
have

fn(y) ≥ [
1

M(x/y)
]αn(e−b,e−a) fn(x) by (8).

On the other hand, x ≥ [ 1
M(y/x) ] y ≥ [ 1

M(x/y) ] y. Again, (8) implies

fn(x) ≥ [
1

M(x/y)
]αn(e−b,e−a) fn(y).

It follows that

M(fn(x)/fn(y)) ≤M(x/y)αn(e−b,e−a)

and

M(fn(y)/fn(x)) ≤M(x/y)αn(e−b,e−a).

Hence

d(fn(x), fn(x)) ≤ αn(e−b, e−a) d(x, y).(9)

Let L(a, b) = lim supn→∞ αn(e−b, e−a) < 1. Then for any given ε > 0, there
exists N > 0 such that

αn(e−b, e−a) ≤ L(a, b) +
ε

b

for all n > N . By (9), we have

d(fn(x) , fn(y)) ≤ (L(a, b) +
ε

b
) d(x, y)

≤ L(a, b) d(x, y) + ε

for all n > N .
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For x, y ∈ C with d(x, y) ∈ [a, b], by a similar argument, we have d(fn(x) , fn(y))
≤ d(x, y) due to fn(y) ≥ tfn(x).

Let x0 ∈ X be the point with the bounded path {xn } and y0 be any point
in X . Suppose that both cases (i) and (ii) are not true. Then {d(xn , yn )} is
bounded. Hence limn→∞ d(xn , yn ) = 0 by Theorem 2.2. Using Lemma 3.1, we
have limn→∞ ‖xn − yn‖ = 0.

Lemma 3.3. Let φn : (0, 1)→ (0, 1), n ≥ 1, be a sequence of lower semicontinuous
functions. If lim infn→∞ φn(t) > t for all t ∈ (0, 1), then for each [a, b] ⊂ (0, 1),
lim infn→∞ mint∈[a,b]

φn(t)
t > 1.

Proof. Assume that lim infn→∞ mint∈[a,b]
φn(t)
t ≤ 1 under the given conditions.

Then for a given ε > 0, there exists a subsequence of natural numbers {nk} such
that mint∈[a,b]

φnk (t)

t < 1 + ε. Hence for each nk , we can find tk ∈ [a, b] which
satisfies φnk(tk ) < (1 + ε)tk . There exists a subsequence of {tk}, which is still
denoted by {tk} for simplicity, such that limk→∞ tk = t0 ∈ [a, b]. By the lower
semicontinuity of φnk , we have φnk(t0 ) < (1 + ε)t0 for each nk . Since ε > 0 can
be arbitrary, φnk(t0 ) ≤ t0 , which contradicts that lim infn→∞ φn(t) > t for all
t ∈ (0, 1).

In the following corollary, we will apply Theorem 3.2 and Lemma 3.3 to a se-
quence of operators which are related to the ascending operators in [6].

Corollary 3.4. Let fn : C → C, n ≥ 1, be a sequence of monotone operators, and
φn : (0, 1) → (0, 1), n ≥ 1, be a sequence of lower semicontinuous functions and
φn(t) ≥ t. Suppose that lim infn→∞ φn(t) > t for all t ∈ (0, 1), and

y ≥ tx implies fn(y) ≥ φn(t) fn(x)(10)

for all t ∈ (0, 1), x, y ∈ C. If there exists an x0 ∈ C such that sup{‖xn‖} < ∞,
where xn = fn(xn−1), n = 1, 2, · · · , then for any y0 ∈ C and yn = fn(yn−1), we
have the following trichotomy. Either

(i) {M(xn/yn)} is unbounded; or
(ii) {M(yn/xn)} is unbounded; or
(iii) limn→∞ ‖xn − yn‖ = 0.

Proof. We show that condition (10) implies condition (8).
For each n, since φn(t) is lower semicontinuous, logt φn(t) is upper semicontinu-

ous on (0, 1). Hence for each [a, b] ⊂ (0, 1), logt φn(t) attains its maximum αn(a, b)
on [a, b].

We claim that lim supn→∞ αn(a, b) < 1. For if not, then
lim supn→∞ αn(a, b) ≥ 1, i.e.,

lim sup
n→∞

max
t∈[a,b]

logt φn(t) ≥ 1,

which implies that

lim inf
n→∞

min
t∈[a,b]

φn(t)
t
≤ 1.

It is impossible due to Lemma 3.3.
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Now, if y > tx, where t ∈ [a, b], then

fn(y) ≥ φn(t) fn(x)

= tlogt φn(t) fn(x)

≥ tαn[a,b] fn(x).

Hence fn’s satisfy condition (8). When t ∈ [a, b], φn(t) ≥ t implies that fn(y) ≥
tfn(x). An application of Theorem 3.2 concludes the proof.

Corollary 3.5. Let fn : C → C, n ≥ 1, be a sequence of monotone operators.
Suppose for each [l1 , l2 ] ⊂ (0, 1), there exists α(l1 l2 ) < 1 such that

y ≥ tx implies fn(y) ≥ tα(l1 l2 ) fn(x)(11)

for all n ≥ 1, t ∈ [l1 , l2 ], and x, y ∈ C. If there exists an x0 ∈ C such that
sup{‖xn‖} <∞, where xn = fn(xn−1), n = 1, 2, · · · , then for any y0 , z0 ∈ C, and
yn = fn(yn−1), zn = fn(zn−1), we have limn→∞ ‖yn − zn‖ = 0.

Proof. Condition (11) and the argument leading to (9) tell us that d(xn , yn ) ≤
d(x1 , y1 ), i.e., {d(xn , yn )} is bounded. Therefore, both {M(xn/yn)} and
{M(yn/xn)} are bounded. By Theorem 3.2, limn→∞ ‖xn − yn‖ = 0. Simi-
larly, limn→∞ ‖xn − zn‖ = 0. It follows that limn→∞ ‖yn − zn‖ = 0 due to
‖yn − zn‖ ≤ ‖xn − yn‖+ ‖xn − zn‖.

Theorem 3.6. Let fn : C → C, n ≥ 1, be a sequence of operators. Suppose that
there exists αn > 0 with lim supn→∞ αn < 1 such that

y ≥ tx implies fn(y) ≥ tαn fn(x)(12)

for all t ∈ (0, 1] and x, y ∈ C. If there exists an x0 ∈ C such that sup{‖xn‖} <∞,
where xn = fn(xn−1), n = 1, 2, · · · , then for any y0 , z0 ∈ C, and yn = fn(yn−1),
zn = fn(zn−1), we have limn→∞ ‖yn − zn‖ = 0.

Proof. Note that (12) implies that fn is monotone (put t=1). By a proof similar
to the proof of Theorem 3.2 but using Theorem 2.5 instead of Theorem 2,2, we
have limn→∞ ‖xn − yn‖ = 0. Similarly, limn→∞ ‖xn − zn‖ = 0. It follows that
limn→∞ ‖yn − zn‖ = 0 by the triangle inequality.

4. Weak ergodic theorems

The absolute magnitudes of the inhomogeneous iterates may approach infinity.
To get the results in Section 3, we imposed the boundedness condition on the path
of the sequence of operators at at least one point. Another way to control the
growth of the magnitude is to consider the rescaled operators. For f : P → P with
f(x) 6= 0, the rescaled operator to f is defined by Tx = f(x)

‖f(x)‖ . The Hilbert metric
is a convenient tool to handle the rescaled operators.

Let x, y ∈ C, where C is a component, and

M(x/y) = inf {λ ≥ 0 : x ≤ λy} and m(x/y) = sup {µ ≥ 0 : µy ≤ x}.

The Hilbert metric is defined by

d(x, y) = ln
M(x/y)
m(x/y)

,
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which is a pseudo-metric since d(x, y) = 0 if and only if y = λx for some λ > 0. We
have the following inequality (Nussbaum [15, (1.20a)])

‖x− y‖ ≤M ed(x,y)−1 for ‖x‖ = ‖y‖ = 1,(13)

where M is a constant.
We denote S = {x ∈

◦
P : ‖x‖ = 1}. Then (S, d) is a complete metric space (see

Guo and Lakshimikantham [5, Theorem 1.5.2]).

Theorem 4.1. Let fn : S → S, n ≥ 1, be a sequence of operators. Suppose for
each l ∈ (0, 1], there exists αn(l) > 0 with lim supn→∞ αn(l) < 1 such that

y ≥ tx implies fn(y) ≥ tαn(l) fn(x) if t ∈ [l, 1](14)

and fn(y) ≥ tfn(x), otherwise, where x, y ∈ S. Then for any x0 , y0 ∈ S and xn =
Tn(yn−1), yn = Tn(yn−1), where Tn is the rescaled operator to fn and n = 1, 2, · · · ,
we have the following trichotomy. Either

(i) {M(xn/yn)} is unbounded; or
(ii) {M(yn/xn)} is unbounded; or
(iii) limn→∞ ‖xn − yn‖ = 0.

Proof. First note that (14) implies that fn is monotone (put t = 1). Let x, y ∈ S
with d(x, y) ∈ [a, b] ⊂ (0, ∞). Then

ea ≤ M(x/y)
m(x/y)

≤ eb.(15)

Note that ‖x‖ = ‖y‖ = 1 implies m(x/y) ≤ 1 ≤M(x/y). It follows from (15) that

1 ≤M(x/y) ≤ eb and e−b ≤ m(x, y) ≤ 1.

Using (14),

fn(y) ≥ [
1

M(x/y)
]αn(e−b) fn(x)

and

fn(x) ≥ m(x/y)αn(e−b) fn(y),

where αn(e−b) > 0. Therefore,

M(fn(x)/fn(y)) ≤M(x/y)αn(e−b)

and

m(fn(x)/fn(y)) ≥ m(x/y)αn(e−b).

Now

d(fn(x), fn(y)) = ln
M(fn(x)/fn(y))
m(fn(x)/fn(y))

≤ ln
M(x/y)αn(e−b)

m(x/y)αn(e−b)

= αn(e−b) ln
M(x/y)
m(x/y)

= αn(e−b) d(x, y).

Hence,

d(Tn(x), Tn(x)) ≤ αn(e−b) d(x, y).
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Let L(a, b) = lim supn→∞ αn(e−b) < 1. Then for any given ε > 0, there exists
N = N(ε, a, b) such that

αn(e−b) < L(a, b) +
ε

b− a
for all n > N . Thus

d(Tn(x) , Tn(y)) ≤ L(a, b) d(x, y) + ε

for all n > N .
Suppose that both cases (i) and (ii) are not true. Then {d(xn , yn )} is bounded by

noting that m(xn/yn) = 1
M(yn/xn) . Hence limn→∞ d(xn , yn ) = 0 due to Theorem

2.2. It follows from (13) that limn→∞ ‖xn − yn‖ = 0.

Corollary 4.2. Let fn : S → S, n ≥ 1, be a sequence of operators. Suppose for
each l ∈ (0, 1], there exists α(l) < 1 such that

y ≥ tx implies fn(y) ≥ tα(l) fn(x)(16)

for all n ≥ 1, t ∈ [l, 1], and x, y ∈ S. Then for any x0 , y0 ∈ S, and xn = Tn(xn−1),
yn = Tn(yn−1), where Tn is the rescaled operator to fn and n = 1, 2, · · · , we have
limn→∞ ‖xn − yn‖ = 0.

Proof. A similar argument as in the proof of Theorem 4.1 yields

d(Tn(x), Tn(y)) ≤ L(a, b) d(x, y)

for all n, where x, y ∈ S and d(x, y) ∈ [a, b] ⊂ (0,∞). An application of Corollary
2.3 finishes the proof.

Theorem 4.3. Let fn : S → S, n ≥ 1, be a sequence of operators. Suppose that
there exists αn > 0 with lim supn→∞ αn < 1 such that

y ≥ tx implies fn(y) ≥ tαn fn(x)(17)

for all t ∈ [0, 1] and x, y ∈ S. Then for any x0 , y0 ∈ S, and xn = Tn(xn−1),
yn = Tn(yn−1), where Tn is the rescaled operator fn and n = 1, 2, · · · , we have
limn→∞ ‖xn − yn‖ = 0.

Proof. The proof is similar to the proof of Theorem 4.1 but using Theorem 2.5
instead of Theorem 2.2.

5. An application to the ranking problem

In this section we consider the change of the ranks of n teams of a paired compe-
tition game over time, e.g., football, baseball, etc. There are a variety of methods
of paired comparisons being used. In [10] , Keener proposed a nonlinear scheme
to improve the ranking results. We are going to modify his scheme to study the
history of ranks of n teams over discrete points of time.

Let r(t) ∈ Rn be the ranking vector at time t, t = 0, 1, 2, · · · . Its components
rj(t) are positive and represent the strength of the jth team at time t. Suppose
that Rn is partially ordered by the cone Rn+ = {x ∈ Rn : xj ≥ 0, 1 ≤ j ≤ n}
and the norm ‖x‖ = max1≤j≤n |xj |. We propose to calculate the strengths of the
n teams at time t+ 1 from the strengths of the n teams at time t and the outcomes
of the games at time t as follows:

ri(t+ 1) =
1

ni(t)

n∑
j=1

f(eij(t)rj(t)),(18)
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where i = 1, 2, · · · , n, eij(t) ≥ 0 is a number that is determined from the out-
come of the game between team i and j at time t, ni(t) is the number of games
played by team i at time t, f : [0,∞)→ [0, 1] is continuous and strictly increasing,
limx→∞ f(x) = 1 and

f(cx) > cf(x) for all c ∈ [0, 1).(19)

There are different ways to assign the values to eij(t)’s. For example, at a particular
time t, we may let eij(t) = 1, if team i beat team j, eij(t) = 1

2 , if team i and j tied,
and eij(t) = 0, otherwise, (eii(t) = 0).

From the above formulas, one can see that r(t + 1) is the rankings of n teams
before the games at time t+ 1 and can help to predict the outcomes of the games
at time t+ 1.

Lemma 5.1. Let B be a compact set in [0,∞) and f be defined as above. Then
for each [l1 , l2 ] ⊂ (0, 1), there exists α(l1 , l2 ) ∈ (0, 1) such that

f(cx) ≥ cα(l1,l2)f(x)

for all c ∈ [l1 , l2 ] and x ∈ B.

Proof. Let [l1 , l2 ] ⊂ (0, 1) be given. [l1 , l2 ]×B is compact with Cartesian product
topology. Let

m(l1, l2) = min{f(cx)
cf(x)

: (c, x) ∈ [l1 , l2 ]×B}.(20)

It is well defined since f(0) > 0 (put c = 0 in (19)) and f is strictly increasing.
Furthermore,m(l1, l2) > 1 since f(cx) > cf(x). Let α(l1, l2) = 1+logl1 m(l1, l2) and
we claim that α(l1, l2) ∈ (0, 1). First logl1 m(l1, l2) < 0 implies that α(l1, l2) < 1.
Second, (20) implies that m(l1, l2)cf(x) ≤ f(cx) < f(x), so that m(l1, l2)c < 1.
This in turn implies m(l1, l2)l1 < 1, hence logl1 m(l1, l2) + 1 > 0, i.e., α(l1, l2) > 0.
The claim is proved.

Using (20), we have

f(cx) ≥ m(l1, l2)cf(x)

= l
α(l1,l2)−1
1 cf(x)

≥ cα(l1,l2)−1cf(x)

= cα(l1,l2)f(x),

where c ∈ [l1, l2].

Now we have the following theorem.

Theorem 5.2. Let

r(t+ 1) = F (t)(r(t)),

where F (t) is defined by (18). Suppose that there exist two positive constants M
and m, M > m, such that

M ≥ eij(t) ≥ m for all i, j and t.(21)

If x0 and y0 are any two initial ranking vectors, and xt = T (t)xt−1, yt = T (t)yt−1,
where t = 1, 2, · · · . Then limt→∞ ‖xt − yt‖ = 0.
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Proof. This theorem is proved in several steps.
(i) Let e ∈ Rn be the element with all its components equal to 1. Then for all

r ∈ Rn+ , (18) implies

f(0)e < F (t)r < ne.(22)

It follows that sup{‖xt‖} ≤ n, and without loss of generality, we can assume that
F (t) : [f(0)e, ne]→ [f(0)e, ne].

(ii) Since only the iterates of f are concerned, (21) and (22) imply that we can
assume

M n ≥ eij(t)rj ≥ mf(0).(23)

(iii) For each [l1, l2] ⊂ (0, 1) and c ∈ [l1, l2], in view of (23), we can apply Lemma
5.1 and have

F (t)(cr) = (
1

ni(t)

n∑
j=1

f(eij(t)crj) )i=1,...,n

≥ (
1

ni(t)

n∑
j=1

cα(l1,l2)f(eij(t)rj) )i=1,...,n

= cα(l1,l2)(
1

ni(t)

n∑
j=1

f(eij(t)rj) )i=1,...,n

= cα(l1,l2)F (t)(r).

(iv) Combining (i)–(iii), we have limt→∞ ‖xt − yt‖ = 0 by Corollary 3.5.

This theorem deals with the long term behavior of the nonlinear scheme proposed
in [10], and tells us that using our modified scheme, the rankings of the teams
will solely depend on the outcome of the games in the long run, no matter what
the initial rankings are. It suggests us that the ranking error or inaccuracy of a
particular year can be corrected over time under our scheme.
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