
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 352, Number 11, Pages 5293–5316
S 0002-9947(00)02648-9
Article electronically published on July 18, 2000

HYPERCYCLIC OPERATORS THAT COMMUTE WITH
THE BERGMAN BACKWARD SHIFT

PAUL S. BOURDON AND JOEL H. SHAPIRO

Abstract. The backward shift B on the Bergman space of the unit disc is
known to be hypercyclic (meaning: it has a dense orbit). Here we ask: “Which
operators that commute with B inherit its hypercyclicity?” We show that the
problem reduces to the study of operators of the form ϕ(B) where ϕ is a
holomorphic self-map of the unit disc that multiplies the Dirichlet space into
itself, and that the question of hypercyclicity for such an operator depends on
how freely ϕ(z) is allowed to approach the unit circle as |z| → 1−.

Introduction

A hypercyclic operator on a Banach space is a linear operator that has a dense
orbit. Surprisingly many concrete operators have been shown to have this property,
and from this abundance of examples has arisen a lively literature on the subject.
For an excellent guide to both this body of work and its historical background in
classical analysis, see Grosse-Erdmann’s recent survey article [17].

One much-studied operator that has recently been identified as hypercyclic is
the backward shift B on the Bergman space A2 of the unit disc (see §1 below
for the definitions of B and A2, and [15] or [25, §7.4, Exercise 2] for the proof
of hypercyclicity). We initiate here the study of the “Commutant Hypercyclicity
Problem” for B:

Which operators that commute with B are also hypercyclic?
It is known that each operator on A2 that commutes with B has a natural repre-

sentation of the form ϕ(B) where ϕ is a multiplier of the Dirichlet space (Theorem
1.7 below). As we will explain in §1.10–§1.11, the problem of understanding the hy-
percyclic behavior of ϕ(B) reduces to that of understanding the special case where
ϕ(U) is a subset of U whose closure intersects the unit circle. After that we consider
only this case, for which our results indicate that whether ϕ(B) is hypercyclic or
not depends on how freely the points ϕ(z) are allowed to approach the unit circle
as |z| → 1−.

For example, we will show that ϕ(B) is hypercyclic whenever ϕ has radial limits
of modulus one on a set of positive measure (Theorem 2.8). Although sufficient, this
positive-measure condition is not necessary; we show this in §2.12 by constructing
a Dirichlet multiplier ϕ : U → U for which ϕ(B) is hypercyclic on A2, yet ϕ has
radial limit of modulus one at just a single point of ∂U.
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In the other direction we show in Corollary 3.3 that if the degree of contact
between ϕ(U) and ∂U is “limited” in a certain sense, then ϕ(B) cannot be hyper-
cyclic; in particular, this happens if ϕ(U) lies in a disk internally tangent to the
unit circle, so for example the operator (I + B)/2 is not hypercyclic on A2 (see
Corollary 3.4).

In §4 we show that there is some precision to our “positive-measure” sufficient
condition for hypercyclicity by giving examples of Dirichlet multipliers ϕ that map
the unit disc into itself such that ϕ(B) is not hypercyclic, yet for which ϕ has radial
limits of modulus one on a set of Hausdorff dimension one.

All of this contrasts sharply with what is known for the Hardy space H2, where
the backward shift is not hypercyclic (it is a contraction), and the hypercyclic
operators that commute with it are easily described (see §§1.2-1.3 below). In further
contrast with what happens in the H2 setting our present work leads into diverse
issues concerning multipliers of the Dirichlet space, Carleson sets, and regularity of
outer functions.

Our results bear some similarity with those obtained for the isolation problem
for composition operators. We comment briefly on this in §5.

1. Fundamentals

In this section we introduce the spaces of functions analytic on the unit disc that
form the infrastructure of our work. These are the Bergman space A2, the Dirich-
let space D and its pointwise multipliers, and the Hardy space H2. We indicate
why the commutant hypercyclicity problem is interesting for the backward shift
on the Bergman space, and show how it reduces to the consideration of geometric
properties of multipliers of the Dirichlet space that map the unit disc into itself.

1.1. The Bergman space. Our primary setting is the Bergman space A2 of the
open unit disc U. This is the space of functions f that are holomorphic on U and
whose moduli are square integrable with respect to Lebesgue area measure on U. A2

is a closed subspace of L2(dλ), where dλ is Lebesgue area measure on U, normalized
so as to have unit mass. Therefore A2 is a Hilbert space in the L2(dλ)-norm ‖ · ‖
defined by

‖f‖2 =
∫
U
|f |2 dλ (f ∈ A2).(1)

A2 and its norm can be described as well by Taylor coefficients. A straightforward
computation shows that if f(z) =

∑∞
n=0 f̂(n)zn is holomorphic on U, then∫

U
|f |2 dλ =

∞∑
n=0

|f̂(n)|2
n+ 1

,(2)

where now the value ∞ is allowed. Thus f belongs to A2 if and only if the series
on the right converges, in which case the sum of this series is equal to ‖f‖2.

We study bounded linear operators on A2 that commute with the backward shift
B. This is the operator on A2 defined by

Bf(z) =
f(z)− f(0)

z
=
∞∑
n=0

f̂(n+ 1)zn (f ∈ A2, z ∈ U).

B gets its name from the fact that it shifts the Taylor coefficient sequence of f
one unit to the left (and drops off the constant term). An easy calculation using
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the Taylor coefficient description of the Bergman norm shows that B is a bounded
operator on A2 with ‖B‖ =

√
2.

1.2. Commutant hypercyclicity. Work of Godefroy and Shapiro [16] suggests
that operators behaving like backward shifts tend to transfer hypercyclicity (if they
have it) to appropriate operators in their commutants. The word “appropriate” here
must be interpreted properly, since the commutant will always contain operators
that are not hypercyclic (e.g. contractions, and scalar multiples of the identity).

Carol Kitai proved in her 1982 Toronto dissertation [12] that a necessary condi-
tion for an operator on a Banach space to be hypercyclic is that every component
of its spectrum must intersect the unit circle. While clearly not sufficient for hy-
percyclicity (e.g. the identity operator, whose spectrum is the singleton {1}, is not
hypercyclic), this spectral condition has a stronger version which, for some classes
of operators, does suffice. A striking instance of this occurs in the following result
due to Godefroy and Shapiro about the backward shift on the Hardy space H2 [16,
Theorem 4.9]:

1.3. Theorem. If T is a bounded operator on H2 that commutes with the backward
shift, then the following statements are equivalent:

(a) T is hypercyclic on H2.
(b) The interior of the spectrum of T intersects ∂U.

The sufficiency part “(b) → (a)” of this result holds for very general spaces of
analytic functions, in particular for the Bergman space [16, Theorem 4.5]. However,
the converse “(a)→ (b)” fails for the Bergman space, as is shown by the backward
shift itself, which is hypercyclic, but whose spectrum is well known (and easily seen)
to be the closed unit disc.

Note that, according to Theorem 1.3, operators in the commutant of the H2-
backward shift having the same spectrum also display the same hypercyclic be-
havior. For the Bergman backward shift the commutant hypercyclicity problem is
much more delicate. We just mentioned that B itself is hypercyclic on A2 and that
its spectrum is the closed unit disc, but in §3.6 below we will present an example
of an operator that commutes with B and has spectrum equal to the closed disk,
but is not hypercyclic. Thus in the Bergman setting the spectrum alone does not
provide sufficient information to resolve the issue of hypercyclicity.

As a further complicating factor, the commutant of the Bergman backward shift
is a far more subtle object than the corresponding Hardy space commutant. It
is known that any operator commuting with B has the form ϕ(B), where ϕ is a
Dirichlet space multiplier (see §1.7–§1.9 for the details). By contrast, the corre-
sponding representation for the Hardy space commutant involves the full algebra
H∞ of bounded analytic functions (see, for example, [18, Problem 147, page 79]
for the dual version of this involving the forward shift).

1.4. The Hardy and Dirichlet spaces. Two Hardy spaces of analytic functions
arise during the course of our work. First there is H2, the space of functions f
holomorphic on U for which

‖f‖22
def=

∞∑
n=0

|f̂(n)|2 <∞.
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The norm ‖ · ‖2 makes H2 a Hilbert space. Next there is the collection H∞ of
bounded analytic functions on U, which is a Banach algebra in the “supremum
norm”

‖f‖∞ def= sup{|f(z)| : z ∈ U} (f ∈ H∞).

The commutant of the Bergman backward shift is intimately connected, via
duality, with yet a third space: the Dirichlet space. This is the collection D of
functions holomorphic on U whose first derivatives have square integrable modulus
over U. The norm ‖ · ‖D defined by

‖f‖2D = ‖f‖22 +
∫
U
|f ′|2 dλ(3)

makes D into a Hilbert space. The calculation used to establish (2) shows that for
each f holomorphic on U,

‖f‖2D =
∞∑
n=0

(n+ 1) |f̂(n)|2,(4)

where again the value ∞ is allowed. Thus D emerges as the space of functions
holomorphic on U whose power series coefficients make the sum on the right-hand
side of (4) finite.

Neither of the spaces D nor H∞ contains the other, but letting X denote either
space, and letting H(U) denote the space of all functions holomorphic on U , en-
dowed with the topology of uniform convergence on compact subsets of U, we have
the inclusions

X ⊂ H2 ⊂ A2 ⊂ H(U),

where all the embedding maps are continuous. In particular, a sequence that con-
verges in any of these spaces also converges uniformly on compact subsets of U.

1.5. Duality. For f ∈ A2 and g ∈ D, define

〈f, g〉 def=
∞∑
n=0

f̂(n) ĝ(n).(5)

The Cauchy-Schwarz inequality teams up with the coefficient descriptions (2) and
(4) of the norms in A2 and D to show that the sum on the right-hand side of (5)
converges absolutely. The result is a bilinear pairing between the two spaces with
respect to which each is isometrically the dual of the other. For example, a linear
functional Λ on A2 is continuous if and only if there is a function g ∈ D such that
Λ(f) = 〈f, g〉 for each f ∈ A2. Moreover, the norm of Λ is precisely the D-norm of
g.

This way of representing the dual space of A2 is more natural for studying the
backward shift than is the usual self-dual Hilbert space representation. In the
representation above the adjoint of B : A2 → A2, is easily seen to be the forward
shift Mz : D → D defined by (Mzf)(z) = zf(z) for z ∈ U and f ∈ D (the notation
“Mz” employs a standard abuse of functional notation which will show up again
later on). More precisely,

〈Bf, g〉 = 〈f, Mzg〉 (f ∈ A2, g ∈ D).
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In the same way B is the adjoint of Mz. By contrast, if we represent the dual of A2

in the standard way, as A2 itself acting through the Bergman space inner product

〈f, g〉A2
def=

∞∑
n=1

f̂(n)ĝ(n)
n+ 1

,

then the adjoint of B on A2 becomes the operator

f →
∞∑
n=1

(
n+ 1
n

)
f̂(n− 1)zn;

i.e., Mz followed by a coefficient multiplier.
For the rest of this paper we adopt the convention that if S is a bounded linear

operator on D, then S∗ denotes the adjoint of S, computed with respect to the
bilinear form (5). More precisely, S∗ is that bounded operator on A2 defined by

〈S∗f, g〉 = 〈f, Sg〉 (f ∈ A2, g ∈ D).(6)

Thus our previous discussion of the duality between the backward shift on A2 and
the forward shift on D can be summarized as (Mz)∗ = B.

1.6. Multipliers and commutants. The answer to the question: “What is the
commutant of the Bergman backward shift?” emerges, not in terms of the Dirichlet
space itself, but in terms of its multipliers. A complex valued function ϕ on U is
said to be a multiplier of D if the pointwise product ϕf is in D for every f ∈ D.
We use M(D) to denote the collection of multipliers of D.

If ϕ ∈ M(D) then, because ϕ = ϕ · 1 and the constant function 1 belongs to
D, we see that that ϕ ∈ D. Moreover, Banach algebra considerations show that
each multiplier is bounded on U [27, Theorem 10(iii), page 74], but it is known that
there are bounded functions in D that are not multipliers of D [30, Theorem 9].
ThusM(D) is a proper subset of D∩H∞. We will say more about membership in
M(D) in §1.8.

Each ϕ ∈ M(D) induces a linear transformation Mϕ : D → D defined in the
obvious way:

Mϕf = ϕf (f ∈ D).

A standard argument using the closed graph theorem, along with the fact that
convergence in D implies uniform convergence on compact subsets of U, shows
that Mϕ is a bounded operator on D. In the resulting operator norm, M(D) is a
commutative Banach algebra.

The following result characterizes the commutant of the Bergman backward shift
in terms of Dirichlet multipliers. It is well known, but in order to keep our exposition
reasonably self-contained we give a proof. Recall once again our convention that
adjoints are to be computed relative to the duality described in §1.5.

1.7. Theorem. A bounded operator T on A2 commutes with the backward shift B
if and only if T = M∗ϕ for some ϕ ∈ M(D).

Proof. We prove the equivalent dual statement:

A bounded operator T on D commutes with the forward shift Mz if and
only if T = Mϕ for some ϕ ∈ M(D).
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Only one direction deserves attention. Suppose T commutes with Mz; we claim
that T = Mϕ where ϕ = T (1). An induction shows that T also commutes with
(Mz)n = Mzn for each positive integer n, from which it follows that T (zn) = zn ϕ,
and then by linearity that Tf = ϕf for any holomorphic polynomial f . Now if
f ∈ D, then its Taylor polynomials {fn} (center at the origin) converge in D to
f , hence by the continuity of T and our observation about the polynomial case,
ϕfn = Tfn → Tf in D, and therefore uniformly on compact subsets of U. Since
ϕfn → ϕf uniformly on compact subsets of U, we see that Tf = ϕf , hence ϕ is a
multiplier of D and T = Mϕ.

The result above has more general formulations; see [27, Theorem 3(b), page 62]
for one that deals with weighted shift operators.

1.8. Sufficient conditions for multipliers. The previous result underscores the
importance of knowing just when a function holomorphic on U is a Dirichlet
multiplier. Characterization of these functions is a significant problem to which
much effort has been devoted. To illustrate the difficulty involved we note that
Cochran, Shapiro and Ullrich [9] have shown that for each f ∈ D the power series∑∞
n=0±f̂(n)zn is a Dirichlet multiplier for “almost every choice of sign ±.” Thus

Dirichlet multipliers cannot be characterized by any condition that involves only
the moduli of Taylor coefficients.

In 1980 Stegenga [29] gave a Carleson-type capacitary condition characterizing
the multipliers of D. Subsequently, Brown and Shields studied the connection
between Dirichlet multipliers and cyclic vectors of Mz acting on D. Among their
results is this one ([2, Corollary 7, page 70] and [6, Proposition 19, page 300]):

If ϕ is holomorphic on U with ϕ′ ∈ H1+ε for some ε > 0, then ϕ ∈
M(D).

It is interesting to note that this result fails if ε = 0; in [2] Axler and Shields give
an example of a Jordan domain with rectifiable boundary for which the Riemann
map (which necessarily has derivative in H1) is not a Dirichlet multiplier.

Axler and Shields [2, Theorem 3] gave further interesting geometric results about
univalent multipliers of D. One of the most useful for our purposes is this:

Every univalent mapping taking U onto a bounded starlike domain is a
Dirichlet multiplier.

(A domain G is called “starlike” if there is a point w0 ∈ G such that for any w ∈ G
the entire line segment joining w0 to w lies in G.)

1.9. A functional calculus for B . It follows quickly from the equation B = M∗z
and the “non-conjugate” bilinear nature of our duality (5) between A2 and D that
p(B) = M∗p for any holomorphic polynomial p. More generally, it is easy to check
that ‖Bn‖ =

√
n+ 1, from which it follows that if

∑
n

√
n |ϕ̂(n)| <∞ (a condition

that is fulfilled if, for example, ϕ has C2-smoothness on the closed unit disc), then
the series

∑
n ϕ̂(n)Bn converges in the operator norm of A2 to a bounded linear

operator which deserves to be called ϕ(B). The operator-norm convergence just
noted insures that the MacLaurin series of ϕ converges in the norm of M(D), so
ϕ ∈ M(D), and all this norm convergence makes it easy to check that once again
ϕ(B) = M∗ϕ.

Something like this argument works in full generality, but with the weak operator
topology replacing the norm topology. If ϕ is any function in M(D), let ϕn denote
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the n-th arithmetic mean of the sequence of Taylor polynomials of ϕ (center at the
origin). It is known that Mϕnf →Mϕf for every f ∈ D [27, Theorem 12, page 90].
Thus for every f ∈ A2 and g ∈ D,

〈ϕn(B)f, g〉 = 〈f, Mϕng〉 → 〈f, Mϕg〉 = 〈M∗ϕf, g〉

as n → ∞. In other words, ϕn(B) → M∗ϕ in the weak operator topology of A2.
This justifies the following all-encompassing definition of our functional calculus for
B:

ϕ(B) def= M∗ϕ ∀ϕ ∈M(D).(7)

The next result, which is well known, asserts that the functional calculus defined
by (7) behaves as it should relative to spectra. For the reader’s convenience we
sketch a proof.

1.10. Spectral Mapping Theorem. If ϕ ∈ M(D), then the spectrum of ϕ(B)
is ϕ(U), the closure of ϕ(U) in C.

Proof. The spectrum of ϕ(B) = M∗ϕ : A2 → A2 coincides with the spectrum of
Mϕ : D → D. Thus we have only to prove that the spectrum of Mϕ is ϕ(U), and
for this it is enough to prove that Mϕ is invertible on D if and only if ϕ is bounded
away from zero on U.

For this we note an easy consequence of the product rule for differentiation: A
holomorphic function on U is a Dirichlet multiplier if and only if its derivative
multiplies D into A2. Suppose, then, that ϕ ∈ M(D) is bounded away from zero
on U. Then (1/ϕ)′ is bounded by a constant multiple of ϕ′, and since ϕ′ multiplies
D into A2, so does (1/ϕ)′. Thus 1/ϕ is a Dirichlet multiplier, so Mϕ is invertible
on D, with inverse M1/ϕ.

Conversely, suppose Mϕ is invertible on D. Let T be its inverse. Then for every
f ∈ D,

f = MϕTf = ϕTf

so 1/ϕ is a Dirichlet multiplier, and T = M1/ϕ. In particular, 1/ϕ is bounded on
U; i.e., ϕ is bounded away from zero.

The previous results transform our commutant hypercyclicity problem for the
Bergman backward shift into a study of holomorphic functions ϕ that are multi-
pliers of the Dirichlet space. Our spectral mapping theorem and Kitai’s necessary
condition for hypercyclicity (§1.2) show that if ϕ(B) is to be hypercyclic, then ϕ(U)
has to intersect the unit circle. If ϕ(U) itself intersects ∂U, then the work of Gode-
froy and Shapiro mentioned after Theorem 1.3 shows that ϕ(B) is hypercyclic on
the Bergman space. Thus we need only consider multipliers ϕ for which ϕ(U) lies
either inside U or outside U, and for which ϕ(U) ∩ ∂U 6= ∅.

One further reduction: if ϕ(U) lies outside U, then ϕ(B) is invertible (its spec-
trum ϕ(U) does not contain the origin) and the spectrum of its inverse, namely
the collection of reciprocals of points in the original spectrum, lies in U. Since
an invertible operator is hypercyclic if and only if its inverse is hypercyclic (see
Corollary 2.2 below) this reduces the formulation of our problem to the following:
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1.11. Reduced commutant hypercyclicity problem. For which multipliers ϕ
of D, with ‖ϕ‖∞ = 1, is ϕ(B) hypercyclic on A2?

We note that G. Herzog and C. Schmoeger [19] have considered the question of
hypercyclicity for f(T ) where T is a bounded operator on a Banach space, f is
holomorphic on a neighborhood of the spectrum of T , and T generalizes the notion
of backward shift in that it is surjective and the union of the null spaces of its
powers is dense. Herzog and Schmoeger show that in this case, if f has no zero
on the spectrum of T and |f(0)| = 1, then f(T ) is hypercyclic. In the special case
where T is the backward shift on A2 these hypotheses imply that f ∈ M(D) and
f(U) intersect the unit circle, so the hypercyclicity of f(T ) follows from the above-
mentioned results in [16]. This emphasizes the difference between the work of [19],
where the point is the generality of the operator T , and our work here, which aims
for precise results about functions of a very special operator.

2. Hypercyclicity for ϕ(B)

Since M(D) ⊂ D ⊂ H2, every Dirichlet multiplier ϕ has a radial limit function
ϕ∗ defined for a.e. ζ on ∂U by

ϕ∗(ζ) def= lim
r→1−

ϕ(rζ).

To avoid trivialities we will always assume our multipliers ϕ are nonconstant. Here
and throughout the rest of our work, “almost every” refers to Lebesgue measure m
on the unit circle. We normalize m to have unit mass.

In view of our previous reduction of the commutant hypercyclicity problem for
B, we are concerned with multipliers ϕ of D for which ‖ϕ‖∞ = 1. In this section
we explore the connection between hypercyclicity for ϕ(B) and the size of the
precontact set

Eϕ
def= {ζ ∈ ∂U : |ϕ∗(ζ)| = 1}

of ϕ. We show that the condition m(Eϕ) > 0 is sufficient, but not necessary, for
ϕ(B) to be hypercyclic on A2.

The hypercyclicity of B itself is the special case ϕ(z) ≡ z of our sufficient condi-
tion. More generally, ϕ(B) is hypercyclic whenever ϕ is any finite Blaschke product
(these are the only inner functions that belong to D; see [21, page 250] or [28, The-
orem 3.4]).

In a more geometric vein, suppose ϕ maps U univalently onto a starlike Jordan
domain G ⊂ U whose boundary is rectifiable and contacts ∂U in a set of positive
measure (for example G could be the top half of U). By the Axler-Shields “starlike”
theorem mentioned in §1.8, ϕ ∈ M(D). By Carathéodory’s extension theorem, ϕ
extends to a homeomorphism of U onto G. The rectifiability of ∂G insures that
ϕ′ ∈ H1, hence:

(a) The boundary function ϕ∗ is absolutely continuous on ∂U, with derivative
ieiθϕ′(eiθ) (see, for example, [11, Theorem 3.11, page 42]), and

(b) ϕ′(eiθ) cannot vanish on a set of positive measure.
Thus

0 < m(ϕ(Eϕ)) =
∫
Eϕ

|ϕ′(ζ)| dm(ζ),

which guarantees that m(Eϕ) > 0, hence ϕ(B) is hypercyclic on A2.
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Our proof of sufficiency will require a number of preliminary lemmas and con-
structions, all heading toward application of the following characterization of hy-
percyclicity (see [16, Theorem 1.2, page 233]).

2.1. Proposition. A bounded linear operator T on a Banach space X is hyper-
cyclic if and only if for every pair V,W of nonempty open subsets of X there is a
non-negative integer n such that T n(V ) ∩W 6= ∅.

Actually no linearity is required for this result: it applies equally well to con-
tinuous self-maps of complete metric spaces, in which it is known as Birkhoff’s
Transitivity Theorem (see [22, §7.2, Theorem 2.1, page 245]). The Proposition says
that there is a point in X whose orbit is dense precisely when the orbit of every
nonvoid open set is dense. The transition between orbits of points and orbits of
open sets is negotiated by the Baire Category Theorem.

Note that T n(V )∩W is nonempty if and only if the same is true of V ∩T−n(W ).
Thus Proposition 2.1 has the following corollary, which played an important role in
the reduction argument that preceded §1.11:

2.2. Corollary. If T is invertible on X, then T is hypercyclic if and only if T−1

is hypercyclic.

Our proof that m(Eϕ) > 0 is sufficient for hypercyclicity depends critically on
the properties of an operator that intertwines ϕ(B) with a certain multiplication
operator acting on L2. Here is the notation required for the discussion.

2.3. Notation. We write L2 for L2(m), and L∞ for L∞(m). For f ∈ L2 and n ∈ Z
we let f̂(n) denote the n-th Fourier coefficient of f :

f̂(n) def=
∫
∂U
f(ζ) ζ

n
dm(ζ).

Previously, when f denoted a function holomorphic in U, we used f̂(n) to denote
the n-th Taylor coefficient of f in its expansion about the origin. In what follows
we will use both conventions, allowing the context to determine the meaning. In
case f belongs to H2 and n is a non-negative integer, then f̂(n) can be correctly
interpreted either as the n-th Taylor coefficient of f or the n-th Fourier coefficient
of the radial limit function f∗.

In keeping with our setup for the Bergman-Dirichlet duality, we represent the
self-dual nature of L2, not in the usual conjugate-linear fashion involving the Hilbert
space inner product, but instead through the bilinear form

〈f, g〉 def=
∞∑

n=−∞
f̂(n)ĝ(n) =

∫
∂U
f(ζ)g(ζ) dm(ζ) (f, g ∈ L2)(8)

(note that we use the same notation as for the pairing (5) between A2 and D,
relying upon the context to determine the meaning).

In what follows, subsets of ∂U are always assumed to be measurable. For E ⊂ ∂U,
we let L2(E) denote the subspace of L2 consisting of functions that vanish almost
everywhere off of E. Relative to the duality pairing (8) the dual space of L2(E) is
L2(E), where E denotes the set of complex conjugates of points in E.

It is easy to check that if ψ ∈ L∞ then, relative to the pairing (8), the adjoint of
the multiplication operator Mψ : L2 → L2 is the multiplication operator induced by
the function ζ → ψ(ζ). In the spirit of conserving notation we simply refer to this
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reflected function as ψ(ζ), letting the context determine whether we are discussing
the function or one of its values. Thus, (Mψ)∗ = Mψ(ζ).

Finally, we will no longer use a special notation for radial limits of functions in
the Hardy or Dirichlet spaces. Thus for such a function f , the notation f(z) will
denote the value of f at z if z ∈ U, and the radial limit of f at z if z ∈ ∂U. In
other words, we regard f to be extended to almost every point of the unit circle
via radial limits. If there is any danger of confusion we will write “f |∂U” to denote
this radial limit function.

2.4. The complex Riesz projection. This is the operator Q : L2 → A2 defined
by

Q[f ](z) def=
∞∑
n=0

f̂(n)zn (f ∈ L2, z ∈ U),(9)

so that Q̂[f ](n) = f̂(n) for all integers n ≥ 0. While not itself a projection, Q is
related in an obvious way to the usual Riesz projection which takes L2 orthogonally
onto the subspace of boundary restrictions of H2-functions.

2.5. Lemma: Properties of Q. (a) Q is a compact operator L2 → A2.
(b) Q∗ : D → L2 is the map g → g|∂U.
(c) For E ⊂ ∂U the adjoint of Q : L2(E)→ A2 is the operator D → L2(E) given

by

Q∗g = (g|∂U)χE (g ∈ D).

Proof. (a) Q is the composition of itself, viewed as an operator from L2 into H2

(clearly a bounded operator—in fact, a contraction) and the identity map from H2

into A2, which is easily seen to be compact.
(c) Suppose f ∈ L2(E) and g ∈ D. From (8) and the fact that f vanishes a.e.

off E we have

〈f, Q∗g〉 def= 〈Qf, g〉 =
∞∑
n=0

f̂(n)ĝ(n)

=
∫
∂U
f(ζ)g(ζ) dm(ζ)

=
∫
∂U
χE(ζ)f(ζ)g(ζ) dm(ζ)

=
∫
∂U
f(ζ)(gχE)(ζ) dm(ζ)

= 〈f, (g|∂U)χE〉,
which is the desired result.

(b) This is the special case E = ∂U of (c).

2.6. Corollary. If E ⊂ ∂U has positive measure, then the image of L2(E) under
Q is a dense subspace of A2.

Proof. It is enough to prove that the adjoint of Q : L2(E)→ A2 is one-to-one. By
Lemma 2.5 this is the operator that takes g ∈ D to χE(g|∂U). If this latter function
is identically zero, then g must vanish identically on E. Since g ∈ D ⊂ H2 and E
has positive measure, g must vanish identically on U. Thus the operator in question
is one-to-one.
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The next result shows that for each Dirichlet multiplier ϕ, the Riesz projection
Q intertwines ϕ(B) with the multiplication operator Mϕ(ζ) : L2 → L2 (a bounded
operator on L2 because ϕ ∈ H∞). The special case ϕ(z) ≡ z is particularly easy
to understand since the operator in question is now Mζ, which simply performs a
leftward shift on Fourier coefficients of L2 functions.

2.7. Proposition. ϕ(B)Q = QMϕ(ζ) for each ϕ ∈M(D).

Proof. For each g ∈ D:

(Q∗Mϕ)(g) = Q∗(ϕg) = (ϕg)|∂U = Mϕ(ζ) (g|∂U) = (Mϕ(ζ)Q
∗)(g),

where the second and the last equalities follow from part (c) of Lemma 2.5, and the
symbol Mϕ(ζ) denotes the operator of multiplication by ϕ|∂U, acting on L2. Thus
Q∗Mϕ = Mϕ(ζ)Q

∗, from which the desired result follows upon taking adjoints
(recalling that the adjoint of Mϕ(ζ) is Mϕ(ζ), and that M∗ϕ is, by definition, ϕ(B)).

We can now complete the proof of our sufficient condition for hypercyclicity. For
reference we restate it as:

2.8. Theorem. Suppose ϕ ∈ M(D) and ‖ϕ‖∞ = 1. If Eϕ has positive measure,
then ϕ(B) is hypercyclic.

Proof. We are assuming that ϕ is a Dirichlet multiplier mapping U into itself whose
precontact set Eϕ has positive measure. To simplify notation for the rest of this
proof, let T = ϕ(B). To prove that T is hypercyclic we will use Proposition 2.1;
i.e., we will show that for each pair V,W of nonvoid open subsets of A2 there is a
non-negative integer n such that T n(V ) ∩W 6= ∅.

Fix such a pair of open sets. Let Eϕ denote the set of complex conjugates of
points in Eϕ—also a subset of ∂U having positive measure. By Corollary 2.6 there
exist functions F and G in L2(Eϕ) such that Q[F ] ∈ V and Q[G] ∈ W . Since the
bounded functions in L2(Eϕ) are dense and the operator Q is continuous, we may
assume further that F and G are bounded. For n a non-negative integer let

fn
def= Q[ϕ(ζ)nF (ζ)]

and note that f0 = Q[F ] ∈ V . Our intertwining relationship (Proposition 2.7) now
shows that Tfn = fn+1 for each n; i.e., {fn} is the T -orbit of f0.

We claim that ‖fn‖ → 0 as n→∞. For this observe that, since ϕ is a self-map
of the unit disc, ϕn → 0 uniformly on compact subsets of U as n→ +∞. Since the
sequence {ϕn : n ≥ 0} is uniformly bounded on U it is bounded in H2. Because
of this and the uniform convergence on compact sets, ϕn → 0 weakly in H2, and
therefore the corresponding sequence of boundary functions converges weakly to
zero in L2. Because F ∈ L∞ the same holds for the sequence {ϕn(ζ)F (ζ) : n ≥ 0},
and therefore for the reflected sequence {ϕn(ζ)F (ζ) : n ≥ 0}. This reveals the
sequence {fn} as the Q-image of a weakly null sequence in L2, and since Q : L2 →
A2 is compact (Lemma 2.5), fn → 0 in the A2-norm as n→∞.

Informally speaking, we have produced a “forward null-orbit” {fn}, with initial
point in V . A similar argument yields a “backward null-orbit” with initial point in
W . Let

gn
def= Q[ϕ(ζ)−nG(ζ)]
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(so that, in particular, g0 = Q[G] ∈ W ), and note that, since ϕ(ζ) has modulus
one on Eϕ, the function ϕ(ζ)−n is, on Eϕ, just the complex conjugate of ϕ(ζ)n. By
the same arguments we used above, Tgn = gn−1 for each n > 0, and ‖gn‖ → 0 as
n→∞.

To complete the proof, for each non-negative integer n let hn = f0+gn. Recalling
that gn → 0 we see that hn → f0, hence hn ∈ V for all sufficiently large n. Now
the “orbit” properties of {fn} and {gn}, along with the fact that fn → 0, imply
that

T nhn = fn + g0 → g0 (n→∞),

hence T nhn ∈ W for all sufficiently large n. So if n is large enough then T nhn is
in both T n(V ) and W , and our proof is complete.

The converse of Theorem 2.8 is not true. This is a consequence of Theorem 2.12
below, which produces a Dirichlet multiplier ϕ : U→ U with Eϕ a single point, yet
for which ϕ(B) is hypercyclic on A2. Once a few prerequisites have been set out,
the construction is simple and intuitive; it was suggested to us by Fedor Nazarov.

2.9. Smoothness classes. Suppose n is a non-negative integer. We say a holo-
morphic function f on U is of class C(n) if its n-th complex derivative f (n) has a
continuous extension to U (in this context we use the notation f (0) for f itself).
We let H(n)(U) denote the collection of all such functions. It is easy to check
that the classes H(n)(U) decrease as n increases, and that H(n)(U) is the collec-
tion of functions f holomorphic on U and continuous on U for which f(eit) has
n continuous derivatives with respect to t. We denote the intersection of all the
classes H(n)(U) by H(∞)(U) (not to be confused with the space H∞ of bounded
holomorphic functions on U).

There is a natural metric topology on H(∞)(U) in which a sequence of functions
converges if and only if each derivative converges uniformly on U (or equivalently,
on U). A metric that does the job is

d(f, g) =
∞∑
n=0

2−n
‖f (n) − g(n)‖∞

1 + ‖f (n) − g(n)‖∞
(f, g ∈ H(∞)(U)).

Similarly, one can define a metric on the space C(∞)([−1, 1]) of infinitely differen-
tiable functions γ : [−1, 1]→ C (where differentiability at the endpoints is defined
in terms of one-sided limits); we leave the details to the reader. From now on we
take it for granted that the spaces H(∞)(U) and C(∞)([−1, 1]) are topologized by
these metrics.

2.10. Jordan domains. The plane region interior to a Jordan curve is called a
Jordan domain. For definiteness we will always parameterize Jordan curves by func-
tions defined on [−1, 1]. For 0 < n ≤ ∞ we say a Jordan domain is of class C(n) if
its boundary is parameterized by a function in C(n)([−1, 1]). Such a parameterizing
function is characterized within C(n)([−1, 1]) by the fact that it is one-to-one on
(−1, 1] and both the function and its derivatives through order n take the same
values at the endpoints −1 and 1.

Suppose G is a Jordan domain and ϕ a univalent (holomorphic) map of U onto
G. A famous result of Carathéodory asserts that ϕ extends to a homeomorphism
of U onto the closure of G (see [23, §§14.18–14.20] for example). Earlier Painlevé,
proved the existence of this extension for Jordan domains G of class C∞, in which
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case he showed that ϕ belongs to H(∞)(U). For more on the history of this result,
see the interesting expository paper [4] of Bell and Krantz.

We are going to consider the class J (∞) of C∞ Jordan curves γ : [−1, 1] → C
that surround the origin. Let Gγ denote the Jordan domain with boundary γ (so
0 ∈ Gγ), and let ϕγ be the Riemann map of U onto Gγ (ϕγ(0) = 0 and ϕ′γ(0) > 0).
We assume without change of notation that ϕγ is extended by the theorem of
Painlevé-Carathéodory to U. Thus the map γ → ϕγ takes J (∞) into H(∞)(U). It
will be important for our purposes to know that this map is continuous. This is
the content of the following:

Stability Theorem ([3, Theorem 26.1, page 112]). The map γ → ϕγ is continu-
ous when both J (∞) and H(∞)(U) have their natural C∞ topologies.

2.11. The connection with multipliers. The work of §1.9 shows that the iden-
tity map embeds the smoothness class H(2)(U) into the space M(D) of Dirichlet
multipliers, and that this embedding is continuous if each space is given its natural
norm. Recall that the map ϕ→Mϕ is an isometry ofM(D) into L(D), the space of
bounded operators on D, and that the adjoint map is an isometry on L(H) for any
Hilbert space H . Taken together, these observations show that the map γ → ϕγ(B)
takes the space J (∞) of C∞ Jordan curves that surround the origin continuously
into the (normed) space of bounded operators on A2.

With these preliminary results in hand we proceed to the construction of our
example. Here is the official statement of our result.

2.12. Theorem. There is a holomorphic map ϕ that takes U univalently onto a
C∞ starlike Jordan subdomain of U such that Eϕ is a single point, yet ϕ(B) is
hypercyclic on A2.

Proof. The idea of the proof is that if γ ∈ J (∞) impacts the unit circle in an arc,
so that ϕγ(B) is hypercyclic (by Theorem 2.8), then a very small perturbation in
the C∞ topology can produce a new γ ∈ J (∞) that impacts the circle in a much
smaller arc. The new ϕγ(B) is still hypercyclic, and the process can be repeated.
The argument below shows that this procedure can be carried out so that in the
limit we arrive at a hypercyclic operator ϕγ(B) where γ ∈ J (∞) intersects the unit
circle in a single point. We break the proof into several steps.

Step I: Choose a basis. Fix a countable basis of open subsets for the topology
of A2, and enumerate the pairs of these basis elements as {(Vj ,Wj)}∞0 (so, in this
list of pairs, each of the original basis elements will show up infinitely often in both
the first and second positions). For each index j choose an open subset W̃j of Wj

that has its closure contained in Wj .
Step II. Some starlike Jordan domains. Suppose ρ : [−1, 1] → [1

2 , 1] is a C∞

function with ρ(n)(−1) = ρ(n)(1) for each n = 0, 1, 2, . . . . We associate to ρ the
C(∞) Jordan curve γρ defined by

γρ(t) = ρ(t)eiπt (t ∈ [−1, 1]).

Then γρ bounds a C∞ Jordan domain

Gρ = {reiθ : 0 ≤ r < γρ(θ)}

that contains the origin, with respect to which it is starlike. The example we are
going to construct will be the Riemann map onto just such a domain.
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Step III. An induction. Fix a strictly decreasing sequence {θn}∞0 of positive
numbers with 0 < θn ≤ 1, θ0 = 1, and θn → 0.

We are going to produce:

(a) A sequence {ρn}∞0 of functions as in Step II such that for each n:
(i) ρn(t) = 1 ⇐⇒ t ∈ [−θn, θn],
(ii) ρn+1 ≤ ρn pointwise on [−1, 1],
(iii) d(ρn, ρn−1) < 1/2n, where d is the metric on C(∞)([−1, 1]) as defined in

§2.9.
(iv) ρn > 1/2 at each point of [1, 1] (so that ρn is actually bounded away from

1/2 on [−1, 1]).
(b) A sequence of positive integers {νn}∞0 and a sequence of vectors {fn}∞0 in A2

such that for each index n we have fn ∈ Vn and

ϕn(B)νjfj ∈ W̃j ∀ 0 ≤ j ≤ n,

where ϕj = ϕρj is the Riemann map of U onto the C∞ starlike Jordan domain
Gj = Gρj defined as in Step II.

The argument is by induction. For n = 0 let ρ0(t) ≡ 1, so that G0 = U and ϕ0 is
the identity map of U. Then ϕ0(B) = B is hypercyclic on A2, so by Proposition 2.1
there exists a non-negative integer ν0 such that ϕ0(B)ν0 (V0) ∩ W̃0 6= ∅; i.e., there
exists f0 ∈ V0 such that ϕ0(B)ν0f0 ∈ W̃0.

Suppose n ≥ 0 and that we have produced the appropriate C(∞) functions
ρ0, . . . , ρn, the positive integers ν0, . . . , νn, and the A2-functions f0, . . . , fn. To
get to the next stage, fix a non-negative C(∞) function h on [−1, 1], whose values
and all of whose derivatives coincide at both +1 and −1, and whose zero-set is the
interval [−θn+1, θn+1]. For ε > 0 let ρn+1 = ρn− εh, where ε remains to be chosen.
For ε sufficiently small, ρn+1 has the four properties of (a) listed above, with n+ 1
in place of n (the third of these comes from the fact that scalar multiplication is
continuous in the “C(∞) topology”).

Let ϕn+1 = ϕρn+1 (a map which also depends on the still-to-be-chosen parameter
ε). By the discussion of §2.10 the map ρ→ ϕρ(B) is continuous from C(∞)([−1, 1])
into L(A2), hence by choosing ε sufficiently smaller we may insure that ϕn+1 is
sufficiently close to ϕn so that ϕn+1(B)νj fj ∈ W̃j for 0 ≤ j ≤ n. Now ϕn+1(U)∩∂U
is the arc {eit : |t| ≤ θn+1}, hence (because ϕn+1 is a homeomorphism on U), the
precontact set E(ϕn+1) is also an arc of ∂U. Thus ϕn+1(B) is hypercyclic on A2

by Theorem 2.8, so there exists a vector fn+1 ∈ Vn+1 and a positive integer νn+1

such that ϕn+1(B)νn+1fn+1 ∈ W̃n+1. This completes the induction.
Step IV. Passing to the limit. We have arranged matters so that the sequence

{ρn} converges in C(∞)([−1, 1]) to a function ρ ∈ C(∞)([−1, 1]) with values in the
interval [1

2 , 1], and which takes the value 1 only at the origin. Let G = Gρ, a C(∞)

Jordan sub-domain of U that contains the disc {|z| < 1
2}, is starlike with respect to

the origin, and whose closure touches ∂U only at the point 1. Let ϕ be the Riemann
map taking U onto G, so ϕ is non-constant and extends to a C(∞) homeomorphism
taking U onto the closure of G. Thus Eϕ = ϕ−1(G∩∂U) = ϕ−1(1) is a single point.

The stability results of §2.10 show that ϕn(B) → ϕ(B) in the norm of L(A2),
so by (b) of Step III, for each non-negative integer j the vector ϕ(B)νj fj belongs
to the closure of W̃j , and therefore to Wj . Thus for each j we have fj ∈ Vj and
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ϕ(B)νjfj ∈ Wj , so ϕ(B) is hypercyclic, by Proposition 2.1. This completes the
construction of our example.

We close this section with a subordination theorem that reinforces the connection
between geometric properties of ϕ and hypercyclic behavior for ϕ(B). It shows, for
example, that if G is a simply connected subdomain of U that contains the one
promised by Theorem 2.12, and if the Riemann map ψ of U onto G is a Dirichlet
multiplier (e.g. if ∂G is sufficiently smooth, or G is starlike), then ψ(B) will be
hypercyclic on A2.

2.13. Theorem. Suppose ϕ and ψ belong to M(D), both are univalent self-map-
pings of U, and ϕ(U) ⊂ ψ(U). If ϕ(B) is hypercyclic on A2, then so is ψ(B).

Proof. ω = ψ−1◦ϕ is a univalent self-map of U, so it induces a bounded composition
operator Cω : D → D defined by

Cωf = f ◦ ω (f ∈ D).

A little calculation shows that CωMn
ψ = Mn

ϕCω for each non-negative integer n
hence, upon taking adjoints,

ψ(B)nC∗ω = C∗ωϕ(B)n (n = 0, 1, 2, . . . ).(10)

Now Cω is one-to-one on D so its adjoint, viewed as an operator on A2, has dense
range. Thus if f ∈ A2 is hypercyclic for ϕ(B), then equation (10) shows that C∗ωf
is hypercyclic for ψ(B).

3. Non-hypercyclicity and degree of contact

In this section we give a criterion for ϕ(B) to be non-hypercyclic, and we apply
it to show that if the closure of ϕ(U) touches the boundary of the unit circle at
just finitely many points, and approaches those points in a certain “exponentially
limited” way, then ϕ(B) is not hypercyclic. This limitation holds if, for example,
ϕ(U) lies in a subdisc of U that is tangent to ∂U at a single point; hence our result
shows, in particular, that the operator (I + B)/2 is not hypercyclic on A2. Note
that we have already seen an extreme case of this phenomenon: if ϕ(U) does not
approach the unit circle at all; i.e., if ‖ϕ‖∞ < 1, then ϕ(B) is not hypercyclic
because its spectrum (the closure of ϕ(U)) does not intersect the unit circle.

Our argument hinges on the following simple observation:

3.1. Lemma. Suppose X is a Banach space and T a bounded linear operator on
X. If there exists Λ 6= 0 in X∗ such that the orbit {T ∗nΛ}∞0 is bounded in X∗,
then T is not hypercyclic.

Proof. Our assumption is that there is a positive numberM such that ‖T ∗nΛ‖ ≤M
for every non-negative integer n. Let x be any vector in X . Then

|Λ(T nx)| = |(T ∗nΛ)(x)| ≤ ‖T ∗nΛ‖‖x‖ ≤M ‖x‖;

i.e., the sequence of complex numbers {Λ(T nx)}∞0 is bounded. Thus the orbit
{T nx}∞0 is not dense in X , so x cannot be a hypercyclic vector for T . Since x is
arbitrary, T is not hypercyclic.

This lemma leads to a useful sufficient condition for non-hypercyclicity of oper-
ators in the commutant of B.
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3.2. Theorem. Suppose ϕ ∈ M(D) with ‖ϕ‖∞ = 1, and that there exists a func-
tion f ∈ D\{0} and a positive number β such that

|f(z)| ≤ β(1 − |ϕ(z)|) ∀z ∈ U.(11)

Then ϕ(B) is not hypercyclic on A2.

Proof. We will show that the orbit {Mn
ϕf}∞0 is bounded in D, from which the non-

hypercyclicity of ϕ(B) = M∗ϕ on A2 will follow from Lemma 3.1. The argument
begins with a simple estimate that is easily derived from the chain rule, the Cauchy-
Schwarz inequality, and the fact that ‖ϕ‖∞ = 1:

‖ϕnf‖D ≤ 2‖f‖D + n

(∫
U
|ϕ|2(n−1)|f |2|ϕ′|2 dλ

)1/2

.

This, along with condition (11), yields

‖ϕnf‖D ≤ 2‖f‖D + β n

(∫
U

[
|ϕ|n−1(1− |ϕ|)

]2 |ϕ′|2 dλ)1/2

≤ 2‖f‖D + β ‖ϕ‖D,

where the last inequality follows from the fact that xn−1(1−x) < 1/n for 0 ≤ x ≤ 1.
Thus the Mϕ-orbit of f is bounded in D, as promised.

Our first application of Theorem 3.2 requires some descriptive terminology. Sup-
pose G is a subset of U and η ∈ ∂U lies in the closure (in C) of G. Then we say
G contacts the unit circle at η. If there exist an open disc ∆ centered at η and
positive constants α, β, and γ such that

exp
{
−α

|η − w|γ

}
≤ β(1 − |w|) (w ∈ G ∩∆),

then we say G has exponential contact with ∂U of order ≤ γ at η.
To get some intuition for what this definition is saying, suppose more generally

that h : [0, 2] → [0,∞) is a non-negative, continuous, strictly increasing function
with h(0) = 0, and let us say that G approaches η h-tangentially if there exists an
open disc ∆ with center at η such that

h(|η − w|) ≤ 1− |w| ∀w ∈ G ∩∆.

The faster h approaches 0 as x → 0+, the more closely G is allowed to contact
the unit circle at η. In the case of exponential contact, h(x) = β−1 exp(−α/xγ),
whereas if G were confined to a subdisc of U with boundary tangent to the unit
circle at η, then we could do no better than h(x) = βx2 for some β > 0.

More generally, we say G has finite order contact with ∂U at η if its approach
to η is h-tangential with h(x) = βxα for some α, β > 0. If, for example, G were
confined to a triangle in U with a vertex at η, then the definition of finite order
contact at η would be satisfied with α = 1. The point here is that “exponential
contact” allows significantly closer approach to the boundary than does finite order
contact.

3.3. Corollary. Suppose ϕ ∈ M(D) with ‖ϕ‖∞ = 1 and that ϕ(U) contacts the
unit circle at only a finite number of points. If, at each of these points, ϕ(U) has
exponential contact with the circle of order < 1, then ϕ(B) is not hypercyclic.
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Proof. Suppose first that ϕ(U) contacts ∂U at just one point, which without loss
of generality we may assume is the point 1. Then our hypothesis on ϕ is that there
exist positive numbers α and β, and 0 < γ < 1, such that

exp
{

−α
|1− ϕ(z)|γ

}
≤ β(1− |ϕ(z)|) ∀z ∈ U.(12)

We claim that for a suitable a > 0 the function f defined below belongs to D and
satisfies inequality (11):

f
def= exp

{
− a

(1− ϕ)γ

}
.

The key here is that Re (1− z)−1 > 0 (in fact it is > 1/2) for each z ∈ U . Thus
the same is true of Re (1−ϕ(z))−1, and so for the argument of (1−ϕ(z))−1 we may
choose a unique value t(z) in the open interval (−π/2, π/2). Consequently, every
z ∈ U ,

Re
1

(1 − ϕ(z))γ
=

cos(γt(z))
|1− ϕ(z)|γ ≥

cos(γπ/2)
|1− ϕ(z)|γ ,

whereupon

|f(z)| = exp
{

Re
−a

|1− ϕ(z)|γ

}
≤ exp

{
−a cos(γπ/2)
|1− ϕ(z)|γ

}
.(13)

Upon using the chain rule to compute f ′, taking absolute values, and then sub-
stituting inequality (13) into the result, we obtain

|f ′(z)| ≤ |ϕ′(z)| a

|1− ϕ(z)|γ+1
exp

{
−a cos(γπ/2)
|1− ϕ(z)|γ

}
for each z ∈ U. Since ϕ ∈ D we have ϕ′ ∈ A2. Note that on the right-hand side
of the last inequality, the term that multiplies |ϕ′(z)| is bounded on U. Thus also
f ′ ∈ A2; i.e., f ∈ D for every a > 0.

Finally, set a = α/ cos(γπ/2) and observe that, thanks to (12) and (13), the
function f now satisfies condition (11). Thus all the hypotheses of Theorem 3.2 are
satisfied, and therefore ϕ(B) is not hypercyclic.

Suppose now that ϕ(U) contacts ∂U at just the n points η1, η2, . . . , ηn. Then
we can choose α, β > 0, γ < 1, and open discs ∆1, . . . ,∆n, with ∆j centered at
ηj , so that if h(x) = β−1 exp(−α/xγ), then for each j,

h(|ηj − ϕ(z)|) ≤ 1− |ϕ(z)| ∀z ∈
n⋃
j=1

∆j .

Let

fj = exp
{

−a
(ηj − ϕ)γ

}
,

where, as before, a = α/ cos(γπ/2). Then by the previous argument, each fj has
derivative with modulus that is bounded on U by a constant multiple of |ϕ′|, so the
same is true of

f
def= f1f2 · · · fn

(because each fj is bounded on U). Thus f ∈ D. Finally, for each index j we know
that |fj | < 1 on U, and that fj satisfies (11) whenever ϕ(z) ∈ ∆j . Since ϕ(z) is
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bounded away from the unit circle for z in the complement of ϕ−1
(⋃n

j=1 ∆j

)
, it

follows that f satisfies (11) on all of U, possibly with different constants. Thus once
again f and ϕ satisfy the hypotheses of Theorem 3.2, so ϕ(B) is not hypercyclic.

In case ϕ is analytic in a neighborhood of a point ζ0 of its precontact set, then
there is this dichotomy: either ϕ(U) has finite order contact with ∂U at ϕ(ζ0), or
|ϕ| ≡ 1 on some arc centered at ζ0.

To see why this is so, suppose (without loss of generality) that ζ0 = 1, and
that ϕ(U) does not have finite order contact with ∂U at ϕ(1). We are assuming
that ϕ is analytic in a disc ∆ centered at 1. Let I = log(∆ ∩ ∂U), where we
use the principal branch of the logarithm. For t ∈ I (so that eit ∈ ∆ ∩ ∂U) set
g(t) = 1 − |ϕ(eit)|2. Then g is real-analytic on I, and our contact hypothesis
guarantees that for each fixed positive integer n there exists a real sequence tj → 0
such that |g(tj)| = o(|ϕ(eitj )−ϕ(1)|n) as j →∞. Since ϕ is analytic at 1 we know in
addition that |ϕ(eit)−ϕ(1)| = O(|t|) for eit ∈ I with t→ 0, hence |g(tj)| = o(|tj |n)
as j → ∞. Thus the n-th derivative of g vanishes at 0. Since n is an arbitrary
positive integer and g is real-analytic on I, this shows that g is constant on I. But
also g(0) = 0, so g ≡ 0 on I, as promised.

3.4. Corollary. Suppose ϕ ∈M(D) is a holomorphic self-map of U for which Eϕ
is a finite set at each point of which ϕ is analytic. Then ϕ(U) makes finite order
contact with ∂U at each point of ϕ(Eϕ), and therefore ϕ(B) is not hypercyclic.

Proof. If ϕ(U) does not make finite order contact with ∂U at ϕ(ζ0) for some ζ0 ∈ Eϕ
then we saw above that |ϕ| ≡ 1 on an arc of ∂U about ζ0, contradicting the
hypothesis that Eϕ is finite.

We have an even stronger dichotomy in case ϕ is analytic across every point of
the unit circle.

3.5. Corollary. If ϕ ∈M(D) is a self-map of U that is analytic in a neighborhood
of the closed unit disc, then ϕ(B) is hypercyclic on A2 if and only if ϕ is a finite
Blaschke product.

Proof. If ϕ is a finite Blaschke product, then it is analytic in a neighborhood of U
and therefore a multiplier of D. Since |ϕ| ≡ 1 on ∂U, it follows from Theorem 2.8
that ϕ(B) is hypercyclic.

Conversely, if ϕ(B) is hypercyclic, then by Corollary 3.4 Eϕ must have infinitely
many points, hence the function g(t) = 1− |ϕ(eit)|2, which is now real-analytic on
the whole real line, vanishes on a set having a finite limit point, and therefore on
all of R. Thus |ϕ| ≡ 1 on ∂U, so in view of its analyticity across the entire unit
circle, ϕ must be a finite Blaschke product.

To this point we have shown that limited geometric contact between ϕ(U) and
∂U leads to non-hypercyclicity. Thus limited contact between the spectrum of
ϕ(B) and ∂U leads to non-hypercyclicity. The next result shows that, even if ϕ is
univalent, the geometry of the spectrum of ϕ(B) cannot tell the whole story.

3.6. Example. There exists a univalent Dirichlet multiplier ϕ : U → U such that
ϕ(U) is dense in U (so that the spectrum of ϕ(B) is U), yet for which ϕ(B) is not
hypercyclic on A2.
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Proof. First we need another sufficient condition for non-hypercyclicity. Suppose
that ϕ ∈M(D) maps U into itself, and that∫

U

|ϕ′(z)|2
(1− |ϕ(z)|2)2

dλ(z) <∞.(14)

We claim that ϕ(B) is not hypercyclic on A2.
For this it is enough to show, by Lemma 3.1, that the orbit {(Mϕ)n1} = {ϕn}

is bounded in D. The calculation proceeds along the lines of the proof of Theorem
3.2. For each positive integer n we have from the definition (3) of the norm in D
and the chain rule

‖ϕn‖2D = ‖ϕn‖22 + n2

∫
U
|ϕ|2(n−1)|ϕ′|2 dλ

= ‖ϕn‖22 + n2

∫
U

[
|ϕ|(n−1)(1− |ϕ|2)

]2 |ϕ′|2
(1− |ϕ|2)2

dλ

≤ 1 + 4
∫
U

|ϕ′|2
(1− |ϕ|2)2

dλ,

where in the last line we have used the fact that xn−1(1− x2) ≤ 2/n for 0 ≤ x ≤ 1.
Thus the orbit {Mn

ϕ1} is a bounded subset of D, as promised.
Now we can give our example; this one comes directly from [5], where it is used

to construct a compact composition operator on the “little Bloch space” for which
the image of the inducing map is dense in U. Let {ωk : k = 1, 2, . . .} be a countable
dense subset of ∂U, and let {hn} be a sequence of positive numbers less than (say)
1/2, such that

∑∞
k=1 hk < ∞. For each positive integer k let Ek denote the open

region in the right-half disk bounded between the curve y = hk(x − 1)2 and its
reflection in the x-axis. An easy estimate using polar coordinates based at the
point 1 shows that ∫

Ek

dλ(w)
(1 − |w|2)2

= O(hk) as k →∞.(15)

Set G =
(

1
2U
)
∪ (
⋃∞
k=1 ωkEk) , and observe that G is star-like with respect to the

origin. Thus G is simply connected, and upon letting ϕ denote a univalent mapping
of U onto G we see from [2, Theorem 3] that ϕ ∈ M(D). Now G contains the ray
{rωk : 0 ≤ r < 1} for each k, and since {ωk} is dense in ∂U it follows that G is
dense in U.

Nevertheless, we claim that ϕ satisfies the integrability condition (14) above, so
that ϕ(B) is not hypercyclic on A2. To see this, use the univalence of ϕ to effect a
change of variable that begins the following chain of estimates:∫

U

|ϕ′(z)|2
(1− |ϕ(z)|2)2

dλ(z) =
∫
G

dλ(w)
(1− |w|2)2

≤
(∫

1
2U

+
∑
k

∫
ωkEk

)
dλ(w)

(1− |w|2)2

≤ 1
3

+ const.
∑
k

hk

<∞,
where the next-to-last line follows from (15), and the last one from the choice of
the sequence {hk}.
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We remark that condition (14) asserts that ϕ(U) has finite hyperbolic area, where
the multiplicity of the mapping is figured into the calculation. This same condition
is easily seen to characterize the Hilbert-Schmidt composition operators on the
Dirichlet space.

4. Non-hypercyclicity with large precontact sets

In this section we construct a class of non-hypercyclic ϕ(B)’s where the precon-
tact set of ϕ is, in the sense of Hausdorff dimension, as large as possible.

Recall that in Theorem 2.8 we saw that if ϕ ∈ M(D) with ‖ϕ‖∞ = 1, and if the
precontact set Eϕ has positive measure, then ϕ(B) is hypercyclic on A2. We will
show below (Theorem 4.3) that in this result the condition “m(Eϕ) > 0” cannot
be replaced by “Eϕ has Hausdorff dimension one.” Our construction depends on
Carleson’s characterization of the boundary zeros of analytic functions in U that
extend smoothly to the boundary, and on the following corollary of Theorem 3.2.

4.1. Proposition. Suppose ϕ ∈ M(D) and∫
∂U

log(1 − |ϕ∗|) dm > −∞.(16)

If there exists f ∈ D with |f∗| = 1− |ϕ∗| a.e. on ∂U, then ϕ(B) is not hypercyclic
on A2.

Proof. Suppose f is a function that satisfies the hypotheses of the proposition. In
view of Theorem 3.2 it will be enough to show that

|f(z)|+ |ϕ(z)| ≤ 1 ∀z ∈ U.(17)

Fix z ∈ U and choose γ ∈ ∂U such that

|f(z)|+ |γϕ(z)| = |f(z) + γϕ(z)|.(18)

Now f and ϕ are both bounded analytic functions, so f +γϕ is a bounded analytic
function which, because its radial limit function has modulus ≤ 1 a.e. on ∂U, is
itself ≤ 1 at every point of U. The desired inequality (17) follows from this and
(18).

Remark. The referee suggested an idea that led to this proof. One might be tempted
to draw the desired conclusion about |f |+|ϕ| simply from the fact that it is a positive
subharmonic function on U whose radial limit function is 1 a.e. on the boundary.
But the unbounded function z → Re {2/(1 − z)} also has these properties, so
something more—in this case boundedness on U—is needed. A careful treatment
of such “generalized maximum principles” for subharmonic functions can be found
in the short paper [14] of G̊arding and Hörmander.

The question of how to determine the regularity of an analytic function from the
regularity of its boundary-modulus has drawn much attention. For outer functions
F , Carleson [7] has given a condition on |F ∗| that is necessary and sufficient for
F ∈ D. Although Carleson’s condition is often difficult to verify, Aleksandrov,
Džrbašjan, and Havin [1] succeeded in using it to show that if h : ∂U→ [0,∞] has
integrable logarithm and is absolutely continuous on ∂U with derivative in L2(m),
then the outer function with boundary-modulus equal to h lies in D. This result,
along with Proposition 4.1, yields the following:
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4.2. Corollary. Suppose ϕ is a holomorphic self-map of U that obeys the logarith-
mic integrability condition (16). If, in addition, ϕ′ ∈ H2, then ϕ ∈ M(D) and
ϕ(B) is not hypercyclic on A2.

Proof. Recall from §1.8 that the condition ϕ′ ∈ H2 guarantees that ϕ is a Dirichlet
multiplier. It also renders the radial limit function ϕ∗ absolutely continuous on
∂U, with derivative in L2. Thus the same is true of 1 − |ϕ∗|2, so the result of
Aleksandrov, Džrbašjan, and Havin guarantees that the outer function F with
boundary-modulus 1− |ϕ∗|2 lies in D. The argument we gave to prove Proposition
4.1 goes through almost word-for-word to show that |F | ≤ 1 − |ϕ|2 ≤ 2(1 − |ϕ|)
at every point of U. Thus the non-hypercyclicity of ϕ(B) follows once again from
Theorem 3.2.

We remark in passing that condition (16) characterizes those functions ϕ on the
unit sphere of H∞ that are not extreme points of the closed unit ball (see [11,
Theorem 7.9, page 125], for example).

With these preliminaries out of the way we can finally move on to the main
result of this section:

4.3. Theorem. There exists ϕ holomorphic on U with ‖ϕ‖∞ = 1 and ϕ′ ∈ H2

such that Eϕ has Hausdorff dimension one, yet ϕ(B) is not hypercyclic on A2.

The proof of this result depends critically on the structure of zero sets of holo-
morphic functions possessing significant boundary smoothness. Such sets were char-
acterized by Carleson in [8]. Suppose E is a closed subset of ∂U and that E has
Lebesgue measure zero. Then the complement of E is a disjoint union of at most
countably many open subarcs {In}. If∑

n

m(In) logm(In) > −∞,

then E is called a Carleson set. Not every set of measure zero has this property;
non-Carleson sequences can be easily constructed. Nevertheless, the Cantor middle-
thirds set is Carleson, and by varying the ratio of dissection properly one can
produce Carleson sets of Hausdorff dimension d for any 0 ≤ d ≤ 1.

Carleson showed that the sets bearing his name are precisely the boundary zero-
sets of functions that are analytic on U and extend to be Lipschitz on U, or even
Cn-differentiable there (n = 1, 2, . . . ) [8, Theorem 1]. Most important for our
purposes is this part of his argument:

Given any Carleson set E there is an outer function F that extends C2

to U, and vanishes precisely on E.
Other investigators later refined Carleson’s construction to produce outer functions
with infinite differentiability on U having E as zero-set, but we will not need this
extra precision. Carleson’s outer function provides the crucial step in the following
result, from which Theorem 4.3 follows immediately.

4.4. Theorem. Suppose E ⊂ ∂U is a Carleson set. Then there exists ϕ holo-
morphic on U with ‖ϕ‖∞ = 1 and ϕ′ ∈ H2 such that Eϕ = E and ϕ(B) is not
hypercyclic on A2.

Proof. Let F denote a “Carleson” outer function with C2-smoothness on U that
vanishes precisely on E. Upon multiplying by an appropriate constant, if necessary,
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we may additionally assume that

|F (z)| ≤ 1/
√

2 ∀z ∈ U.(19)

In what follows it will be convenient to retain the notation F ∗ for the restriction
of F to ∂U. The boundary-smoothness of F guarantees that |F ∗|2 ∈ C2(∂U), and
because of (19) this smoothness transfers to

w
def= log(1− |F ∗|2).

In particular, w is integrable on ∂U, so we may form the outer function ϕ with
boundary-modulus ew = 1− |F ∗|2. We claim that ϕ furnishes the desired example.

For this, note that ϕ = eh where h is the holomorphic completion of the Poisson
integral of w; i.e., for each z ∈ U:

h(z) =
∫
∂U

ζ + z

ζ − zw(ζ) dm(ζ) = ŵ(0) + 2
∞∑
n=1

ŵ(n)zn,(20)

where ŵ(n) is the n-th Fourier coefficient of w. Now the values of the function
1 − |F ∗|2 all lie in the interval (0, 1], so its logarithm w is ≤ 0 on ∂U. It follows
that

|ϕ| = exp(Re h) = exp(P [w]) ≤ 1 on U,

with equality precisely when w = 0, i.e. on E. Thus we have established that ϕ is
a holomorphic self-map of U with precontact set Eϕ equal to E.

The next order of business is to show that ϕ′ ∈ H2. For this recall that since
w ∈ C2(∂U) we know that

∑∞
−∞ |n ŵ(n)|2 <∞, so by the last equality of (20) we

also have
∑∞

0 |n ĥ(n)|2 <∞, (where now ĥ(n) is a Taylor coefficient); i.e., h′ ∈ H2.
Thus |ϕ′| = |h′ϕ| ≤ |h′| on U, so ϕ′ ∈ H2.

It remains to prove that ϕ(B) is not hypercyclic; for this we will verify that ϕ
satisfies the hypotheses of Proposition 4.1. To check logarithmic integrability, recall
that ϕ is the outer function with boundary-modulus 1− |F ∗|2, so 1− |ϕ∗| = |F ∗|2
on ∂U. Thus ∫

∂U
log(1− |ϕ∗|) dm = 2

∫
∂U

log |F ∗| dm > −∞,

the integrability of log |F ∗| being a standard fact about analytic functions with
some boundary regularity (in fact, for this it suffices merely to have F belong to
some Hardy space, or even to the Nevanlinna class [11, Theorem 2.2, page 17]).

At this point we could quote Corollary 4.2 to finish the proof, but in order to
keep the exposition as self-contained as possible we prefer to use Proposition 4.1.
For this it remains only to show that there is a function in D with boundary-
modulus 1 − |ϕ∗|. Now the definition of ϕ has been arranged so that 1 − |ϕ∗| is
the boundary-modulus of F 2, so we need only know that F 2 belongs to D. This
too is obvious: F has C2-regularity on U, hence so does F 2, and this is more than
enough to guarantee that F 2 ∈ D.

5. Final remarks

The results we have obtained here—especially Theorem 2.8, Corollaries 3.3–3.5
(14), and the examples of §2.12 and §3.6—indicate that there is a theorem waiting
to be proved giving a function-theoretic characterization of hypercyclicity for ϕ(B)
on A2 in terms of how freely the point ϕ(z) is allowed to approach the unit circle
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as |z| → 1− (ϕ is, as usual, a holomorphic self-map of U that is also a Dirichlet
multiplier). A similar question arises for composition operators on the Hardy and
Bergman spaces, both when one tries to characterize which of these operators are
non-compact (see [10, §3.2], [24], [25]), and when one tries to characterize which ones
are isolated from the other composition operators in the operator-norm topology
(see [10, §9.3] and [26]). Our results on the commutant hypercyclicity problem
resemble most closely those obtained in [26] for the isolation problem, although
why there should be such a connection remains mysterious.

Particularly striking is the association with extreme points of the H∞ unit ball,
which we recall are characterized for all bounded analytic functions ϕ with ‖ϕ‖∞ =
1 by failure of the logarithmic integrability condition (16). In [26] it is proved that if
Cϕ is isolated from other composition operators on H2, then ϕ must be an extreme
point (but not conversely). We do not know if the analogous result holds for our
present problem:

If ϕ ∈ M(D) is a holomorphic self-map of U and ϕ(B) is hypercyclic
on A2, is ϕ an extreme point of the unit ball of H∞?

Corollary 3.3 can be regarded as providing evidence in favor of an affirmative answer
to this question: For the class of mappings considered there, “exponential contact
of order 1” can be thought of as a sort of dividing line between extreme points and
non-extreme points. Does it also divide hypercyclic from non-hypercyclic? In this
regard it would be especially interesting to see if the construction of §2.12 could
be refined to produce a univalently induced hypercyclic example where ϕ(U) has
exponential order of contact 1 with the unit circle.
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