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STABILITY THEORY, PERMUTATIONS OF INDISCERNIBLES,
AND EMBEDDED FINITE MODELS

JOHN BALDWIN AND MICHAEL BENEDIKT

Abstract. We show that the expressive power of first-order logic over finite
models embedded in a model M is determined by stability-theoretic properties
of M . In particular, we show that if M is stable, then every class of finite
structures that can be defined by embedding the structures in M , can be
defined in pure first-order logic. We also show that if M does not have the
independence property, then any class of finite structures that can be defined
by embedding the structures in M , can be defined in first-order logic over a
dense linear order. This extends known results on the definability of classes of
finite structures and ordered finite structures in the setting of embedded finite
models. These results depend on several results in infinite model theory. Let
I be a set of indiscernibles in a model M and suppose (M, I) is elementarily
equivalent to (M1, I1) where M1 is |I1|+-saturated. If M is stable and (M, I)
is saturated, then every permutation of I extends to an automorphism of M
and the theory of (M, I) is stable. Let I be a sequence of <-indiscernibles in a
model M , which does not have the independence property, and suppose (M, I)
is elementarily equivalent to (M1, I1) where (I1, <) is a complete dense linear
order and M1 is |I1|+-saturated. Then (M, I)-types over I are order-definable
and if (M, I) is ℵ1-saturated, every order preserving permutation of I can be
extended to a back-and-forth system.

1. Introduction

A major research current in both finite and infinite model theory has been the
classification of structures via the combinatorial objects that can be defined within
them. In infinite ‘classical’ model theory one prototypical classification program
is stability theory. One set of stability-theoretic results focuses on structures that
admit no definable order (of tuples). It is shown that these structures (the stable
structures) are much better behaved than structures that do admit orders: e.g.
the former have few types, and always admit universal domains. Another dividing
line of interest is between structures that do or do not admit an infinite paramet-
rically definable independent family: those that do not are said to be without the
independence property. This class of structures includes the stable ones, but it also
encompasses many ordered structures, such as real closed ordered fields, that have
a nicely behaved definability theory.

In finite model theory there has been a line of work with a somewhat similar
flavor: the investigation of the impact of the existence of an order relation on
logics over finite structures. For example, there has been much work comparing
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the expressivity of various predicate logics on ordered structures with that on un-
ordered structures [12], with bounding the expressive power of first-order logic and
fragments of second-order logic on ordered structures [12], and with proving the
presence of an almost sure linear order according to various probability measures
on finite structures [17].

This work aims at showing one connection between these two lines of research:
we extend results on the expressiveness of first-order logic on finite models to the
situation where finite models are embedded in a fixed infinite structure. Logics
that deal with this ‘hybrid setting’ have been studied recently in connection with
database theory. In particular, it has been shown that many interesting properties
of finite structures that are not first-order definable (such as the parity of a set or the
connectivity of a graph) remain undefinable for finite structures that are embedded
in structures satisfying appropriate conditions. Results in the literature, starting
with [29] and continuing through [6] and [4], show that under certain conditions
on the model (e.g. o-minimal in [6], quasi-o-minimal in [4]) no new queries can be
defined other than those already definable on finite ordered structures, provided
that we restrict our attention to permutation invariant queries (see the definition
of generic in Section 2). Here we extend these broader ‘collapse’ results as well to
structures without the independence property, a very broad model-theoretic class
that includes the examples of [6] and [4] and also includes all stable structures.
The connection between generic query expressibility and this class is interesting
not only due to the scope of the class, but also because of the connection of this
class with many probabilistic and algorithmic issues, such as machine learning [25].

In addition, we prove a stronger result for stable structures; we show that any
permutation-invariant queries that are definable in a stable structure are definable
not just over order but over the trivial structure, and hence are pure first-order
definable in the sense of finite model theory.

The collapse theorems above follow from results concerning ‘model theory over
a predicate’, and the paper can also be seen as a contribution to this topic. Fix
languages L− ⊂ L with the predicate P in L but not L−. Much of this work (e.g.
[31], [19], [24]) focuses on the extent to which the properties of an L−-structure N
determine the properties of an L-structure M with P (M) = N . Our work varies in
two ways. To some extent we switch the emphasis by starting with M and asking
about properties of the expansion of M obtained by adding a predicate for a sub-
set. More important, instead of considering an arbitrary subset as in the work just
described or a submodel as in ([33], [30]), we insist that the set be a collection of (or-
der) indiscernibles. We prove that in a theory without the independence property,
types over an indiscernible sequence (of a complete linear order) are order-definable
with parameters from the sequence. We show that permutations of sets of indis-
cernibles in ‘pseudo-small’ stable L+-saturated models extend to automorphisms of
the models, and we show that a pseudo-small expansion of a stable theory is stable.

Organization and quick summary. Section 2 introduces the main definitions
in this paper, gives a more detailed overview of previous work on embedded finite
structures, and states the main theorems of the paper. Section 3 presents the key
tool: a quantifier reduction theorem for models with a predicate for an indiscernible
set. In Sections 4 and 6 we prove this quantifier reduction theorem for stable
theories and theories without the independence property, respectively. As a prelude
to the second proof, a key definability result for types over ordered sequences of
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indiscernibles in theories without the independence property is proved in Section 5.
Section 7 uses these results to prove the results for embedded finite model theory.
Section 8 contains the results on infinite model theory over a predicate. Section
9 gives conclusions and discusses future work. The reader primarily interested in
applications to query languages may want to start by reading just Section 2 and
Section 7. Those interested in the pure model theory results can restrict themselves
to Sections 3–6 and 8–9.

2. Embedded finite model theory

The following basic definitions provide a framework for the model-theoretic re-
sults dealt with in this paper. Most of the terminology below comes from the
database literature; see [1] for a general discussion of the notions of genericity given
below, and [8] for a discussion of collapse results.

Let U be an infinite set, and let S be a finite relational language. A boolean query
on U, Q, is a collection of S-structures with domain a finite subset of U. Since we
will not discuss any nonboolean queries, we will drop the word boolean and just talk
about queries on U, or U-queries. Technically, we should preface ‘query’ with an S
to indicate which finite set of additional relational symbols are used in the query;
then our theorems would be about ‘all S-queries’ or (see below) ‘all order S-queries’.
Following common practice we suppress this parameter. A generic query on U is
a query that is closed under S-isomorphism. An abstract query Q is a collection
of isomorphism types of finite S-structures. Given an abstract query Q and set
U, Q defines a generic query QU by considering all finite S-structures embedded
in U whose isomorphism type is in Q. Clearly a generic query on an infinite U
determines an abstract query. Finite model theory investigates the collection of
abstract queries and (equivalently) generic queries that are definable in predicate
logics. Well-known results include that the abstract query of all even-cardinality
sets (the parity query) and the set of connected graphs are not first-order definable.

Now let L be a language disjoint from S, and let M be an L-structure with
domain U. For any S-structure A with domain contained in U, M(A) denotes the
unique L∪S-structure that expands M and agrees with A on the interpretation of
the predicates in S. Such a finite A is what we mean by an embedded finite model.

Given a first-order sentence φ in L ∪ S, the query defined by φ is the set of
S-structures A with domain a finite subset of U such that M(A) |= φ. We say
φ is generic if the query defined by it is generic. Given a U-query Q we say it is
first-order over M if there is φ ∈ L ∪ S that defines Q. An abstract query Q is
called first-order over M if there is a first-order φ ∈ L ∪ S that defines QU.

For a model M , we let FO(M) be {Q : Q is first-order definable over M},
FOGEN(M) be {Q : Q is generic and Q is first-order definable over M}.

These two classes are the basic objects of study in this paper. In particular, we
can compare the generic queries definable in different models M , since a generic
query “makes sense” in any model.

A pure first-order query is an abstract query that is definable over the structure
〈U,=〉 by an {S,=}-formula ψ. The results in [20] imply that any pure first-order
abstract query is first-order definable in the sense of finite model theory. That is, if
a set of isomorphism types is definable over the trivial infinite structure, then it is
the collection of finite models of a first-order sentence. Note that these two notions
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are a priori incomparable: in the first case the quantifiers range over U and in the
second case only over a finite set. The following easy fact was used in [6] and [28]:

Remark 2.1. If M ′ andM are elementarily equivalent L-structures and the abstract
query Q is defined by φ over M , then Q is also defined by φ over M ′.

For, if Q were not defined by φ over M ′, there would be a finite S-structure
A′ witnessing the fact. Let n = |A|, and assume A′ ∈ Q but M ′(A′) |= ¬φ. The
statement that there is an S-structure A′ of size n with the isomorphism type of
A′ such that M ′(A′) |= ¬φ can be expressed as a single L-sentence, hence it must
hold in M as well.

Using this we see that the collection FOGEN(M) is actually an invariant of the
theory of M . In this paper, we will focus on FOGEN (M) rather than FO(M).

We prove a number of collapse results by providing conditions on a structure
such that if certain kinds of generic queries are definable with the help of symbols
from L, they can be defined without them and we get the following:

First Main Result.

Theorem 2.2. Let U be infinite and M be a stable L-structure with domain U.
If Q is a first-order definable generic query over M , then Q is a pure first-order
query.

We call this a generic collapse theorem, and say that an M satisfying the above
implication, i.e an M satisfying:

If Q ∈ FOGEN (M), then Q is pure first-order exhibits generic collapse to equal-
ity. Hence our first main result is that stable theories have generic collapse to
equality.

A model M is stable if it does not admit a parametrically definable linear-order
(on tuples). More precisely, there is no φ(~x, ~y) such that it is consistent with the
theory of M that there are 〈~an : n ∈ ω〉 such that φ(~am,~an)↔ m < n.

Standard model theory references such as [3], [10], [18], [32] or [34] discuss stable
theories at length, give several alternative definitions, and give numerous examples
of stable structures. Standard examples of stable theories include algebraically
closed fields, theories of equivalence relations, and any complete theory of abelian
groups. The prototypical unstable structures are the random graph and linearly-
ordered structures, e.g. a real closed ordered field.

We now weaken the notion of genericity to deal with properties of linearly-
ordered structures.

Let S be a finite relational language. An abstract (boolean) order query Q is a col-
lection of linearly ordered S-structures which is closed under {S,<}-isomorphism.

If (U, <) is a linearly ordered infinite set, then an abstract order query induces
a query on this structure which satisfies a weaker kind of genericity. A local map is
a partial function on U. Given 〈U, <〉, an S-structure A and a local map f whose
domain contains the domain of A, fA is the image structure induced by f . A query
on 〈U, <〉, Q is locally order generic if it is preserved by local order-preserving maps
on 〈U, <〉. For any infinite linearly ordered structure O and abstract query Q, the
query QO induced on O is locally order generic. Conversely, any locally order
generic query naturally determines an abstract order query.

Let L be a language disjoint from S, let L′ = L ∪ {<}, and let M be an L′-
structure with domain U. For any S-structure A with domain contained in U,
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M(A) denotes the unique L ∪ {S,<}-structure that expands M and agrees with
A on the interpretation of the predicates in S. We say that an abstract order
query Q is first-order over M if there is a φ ∈ L ∪ {S,<} that defines Q; that is,
(A,<) ∈ Q↔M(A) |= φ.

We can now study the class FOog(M) of order-generic queries definable over
any ordered structure M . Our goal is to show that for certain ordered structures,
FOog(M) is as small as it can be. An abstract order query Q is order definable if
it is defined over the structure 〈U, <〉 by an {S,<}-formula ψ.

Second Main Result.

Theorem 2.3. Let (U, <) be an infinite linear order and M an L ∪ {<}-structure
that expands (U, <), which does not have the independence property. If Q is a first-
order definable locally order generic query over M , then Q is an order-definable
query.

Roughly, a class does not have the independence property (has NIP ) if it does
not admit an infinite parametrically defined class of definable sets which can be
satisfied independently; the formal definition is below. Theorem 2.3 generalizes
all previous collapse results, since the classes involved all satisfy NIP . Classes
without the independence property include all stable structures, all o-minimal and
quasi-o-minimal structures (e.g. additive number theory), all C-minimal structures
[26] (e.g. regular trees), and all linear orders (even with unary predicates) [32].
Particular examples of interest include the real field (with exponentiation) and the
p-adic numbers, Qp. Further, structures in NIP admit a Vapnik-Chervonenkis di-
mension, which implies that every parametrically definable family is PAC-learnable
[25]. Some other studies are found in [23] and [32]. In [34], Shelah proves a fun-
damental dichotomy: Every unstable theory either has the independence property
or the strict order property (roughly, interprets a linear order). The protypical
structure with the independence property is the random graph.

Definition 2.4. 1) The formula φ(~x, ~y) has the m-independence property in T
if there exists a set of m, lg(x)-tuples ~b1, . . .~bm such that for every X ⊆
{1, . . . ,m}, there is an ~aX such that φ(~bi,~aX) holds if and only if i ∈ X .

2) φ does not have the independence property in T if for some integer m, φ(~x, ~y)
does not have the m-independence property in T .

3) T does not have the independence property (T ∈ NIP ) if no φ has the inde-
pendence property in T . A model does not have the independence property
if its theory does not have it.

It is shown in [8] that the parity query is definable in the random graph; this
shows the necessity of the hypothesis in Theorem 2.3 that T does not have the inde-
pendence property. Both instability and the independence property are preserved
under taking reducts.

We also give a result comparing the generic queries definable over a modelM with
the generic queries definable over a linear-order. It is known that there are generic
queries that are expressible by making use of an order on the structure which are not
pure first-order. An example, due to Gurevich, is given in [1], and a consequence of
this example for embedded finite modeltheory is that FOGEN (〈U,=〉) is a proper
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subset of FOGEN (〈U, <〉) for any linear order <.1 However, our next main result
shows that adding extra structure beyond order does not yield new generic queries,
when the model does not have the independence property.

We will establish the following variant of Theorem 2.3.

Theorem 2.5. Let U be infinite and M be an L-structure with domain U that does
not have the independence property. If Q is a first-order definable generic query
over M , then Q is definable over any dense linear order without endpoints.

A model satisfying the second sentence of Theorem 2.5 is said to have generic
collapse to order.

Note that in the collapse result above, and in the corollaries below, there is no
assumption that the model M contains a definable (partial or total) order.

Since it is known that any abstract order query definable in an infinite linear
order is definable as a class of finite ordered structures (this follows, for example,
from the natural/active collapse result for o-minimal structures in [6], but was
probably known earlier), Theorem 2.5 yields:

Corollary 2.6. Let U be infinite and M be an L-structure with domain U that does
not have the independence property. If Q is a first-order definable generic query
over M , then the abstract order query defined by Q (i.e the class of linearly ordered
expansions of isomorphism types in Q) is definable by a formula in {S,<}.

Furthermore, we have:

Corollary 2.7. Let S contain a single binary relation symbol. If M does not have
the independence property, then the following queries are not first-order definable
over M : parity, transitive or deterministic transitive closure of a graph; maximal
matching in a bipartite graph; Eulerian cycle.

Proof. The examples are known not to be expressible over ordered structures [1].
2.7

It follows from this that parity and connectivity are not definable in abelian
groups, algebraically closed fields, and the many other stable structures. It also
follows that the separating example of Gurevich mentioned above is not expressible
in stable structures.

The study of expressibility over embedded finite structures began in connection
with a particular database formalism, constraint databases, in [21] (there are other
frameworks for studying “mixed” structures, particularly the one presented in [15]).
[21] focused on the real ordered group and ordered field. Both Theorem 2.3 and
Corollary 2.7 were proved in the special case of the real ordered group in [29]. This
result was extended to o-minimal structures in [6] and extended to quasi-o-minimal
structures in [4]. In contrast, it is easy to verify that there are models M for which
any recursive query can be expressed over M (for example, 〈N,+, ∗, <〉); hence,
collapse of any sort fails for such structures.

1Here is a slight variant on his example. Let the query language contain the similarity type
for Boolean algebras. Now in this language require that the structure is a Boolean algebra. Since

each element of a finite Boolean algebra is a join of atoms, first order quantification over the entire
structure codes monadic second order quantification over the set of atoms. Now using the order,
one can assert there are an even number of atoms by saying there is a subset X of the atoms such
that every other atom is in X.
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Many of the results on collapse in the previous literature rely implicitly or ex-
plicitly on the use of indiscernibles (the first explicit use being [28]). The results on
collapse theorems for o-minimal and quasi-o-minimal structures rely on the ‘local-
ity property’ of o-minimal/quasi-o-minimal theories; this property is used to extend
certain mappings on indiscernibles. The locality property does not apply to stable
theories, so the approach here relies instead on an analysis of expansions of models
by a set of indiscernibles.

3. Quantifier reduction in expansions by indiscernibles

The main tool for proving collapse results will be a theorem about extending
a permutation of a set of indiscernibles to a family of partial isomorphisms. This
approach to proving collapse is patterned on [6] and [28], but the extension result
we need (Theorem 7.3) requires quite a bit of machinery to prove. In this section
we outline a set of results (proved in the ensuing 3 sections) about expansions of
structures by a predicate for an indiscernible set or sequence. These results will be
used in Section 7 to prove the key result, Theorem 7.3, about extending mappings
on indiscernibles.

3.1. The Setting. We fix a first order theory T for a countable language L. Let
< be a binary relation symbol. If for some model M of T an infinite subset of M
is linearly ordered by an L-formula, we may take < to be this ordering; otherwise
it is a new symbol.

For any set of formulas ∆ and setA of elements of some model of T , p = tp∆(~b/A)
(the ∆-type of ~b over A) denotes the collection of A-instances of formulas from ∆
satisfied by ~b. If the length of ~b is r, we say p is a (∆, r)-type. If ∆ is just =, we say
p is an equality type. If ∆ is just {=, <}, we say p is an order type or <-type. If ∆
is all of L, we say L-type. For finite sequences ~t1,~t2, we write ~t1 ≡A,∆ ~t2, if ~t1 and
~t2 have the same ∆-type over A; we frequently omit ∆ if it clear from context. By
an equality formula we mean a quantifier-free formula in equality and by an order
formula we mean a quantifier-free formula in order and equality.

Definition 3.1. A set I is the (range of) a set (sequence) of (∆, L)-indiscernibles
if any ~a,~b in I which have the same ∆-type have the same L-type. If ∆ = {x = y},
then we say I is a set of pure indiscernibles ; if ∆ = {x < y, x = y}, then we say I
is a sequence of order indiscernibles.

In the rest of the paper we will prove results about ∆-indiscernibles, where ∆ is
{x = y} or {x < y, x = y}. In our results about pure indiscernibles we will always
assume that T is stable, and in results about order-indiscernibles we assume only
T ∈ NIP . Note that in the latter case we are not assuming that < is contained in
L. We will call the first case ‘the equality case’ and the second case ‘the order case’;
in the order case we will always take I to be an order-indiscernible set relative to
some dense order without endpoints.

We note that such indiscernibles always exist: there is a model M of T , which
contains an infinite linearly ordered subset I of <- indiscernibles, and the order can
be taken to be a complete dense linear order without endpoints [10]. A basic result
of stability theory (e.g. [3], V.1.3) asserts that if T is stable, I must be a set of
pure indiscernibles.
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We will assume, until noted otherwise, that:

• If T is stable, ∆ = {x = y}; otherwise ∆ = {x = y, x < y}.
• L+ is L ∪∆ plus a unary predicate P .
• M+ is M expanded to interpret P by I and < by the ordering of the indis-

cernible sequence.
• T+ denotes the theory of (M, I).

We will call the set I or, more precisely, the structure (M, I) small if further:

• M is |I|+-saturated.
• If ∆ = {=, <}, then the order type of 〈I,<〉 is a complete dense linear-order.

If the L+-structure (N, J) is elementarily equivalent to a small (M, I), J or (N, J)
is called pseudo-small, and the theory T+ of a small model is called a pseudo-small
theory, since a model of T+ ‘thinks’ the set of indiscernibles is small.

Unless explicitly denied, henceforth T+ is a pseudo-small theory.

Notes on Pseudo-smallness. Those interested in the connection of pseudo-small
structures to collapse results may want to look ahead to Lemma 7.5. In the ordered
case, the completeness of 〈I,<〉 ensures that for any model (M ′, I ′) of T+, the
reduct to L is definably complete: for any L-formula φ(x, ~y) and any ~m in M , if
{c ∈ I : φ(c, ~m)} is a bounded subset of I, then it has a least upper bound. This
holds in a small model (M, I) using completeness, and tranfers using elementary
equivalence.

The main result stated in this section is a quantifier-reduction result for each of
the theories T+. Namely, we show that if T is stable and I is a set of indiscernibles
in M |= T , then every relation on M defined by an L+-formula can be defined by
one in which only bounded quantification over the set of indiscernibles is allowed.
We show the analogous result for a theory T , which does not have the independence
property, where I is a sequence of order indiscernibles. As a corollary to this we
eventually show that T+ depends only on T and the L-types realized in I.

Definition 3.2. 1) A formula is basic if it is a Boolean combination of L-
formulas and ∆-formulas (i.e. equalities, if ∆ = {x = y}, or inequalities
and inequalities if ∆ = {x = y, x < y}).

2) An L+-formula φ is P -bounded if it is in the least collection of formulas
containing the basic formulas and closed under Boolean operations and the
quantifications ∃x ∈ P and ∀x ∈ P .

Henceforth ∀~w ∈ P abbreviates ∀w1 ∈ P . . .∀wi ∈ P .
By the usual method of obtaining prenex normal forms, every P -bounded formula

is equivalent to one consisting of a string of P -bounded quantifiers followed by a
basic formula. We want to show that every L+-definable relation is definable using
only quantification over the indiscernibles. That is, our goal is to prove

Theorem 3.3 (The Main Reduction Theorem). Let T be a stable theory (a theory
without the independence property) and let T+ be a pseudo-small extension of T .
For each formula φ(~x) ∈ L+, there is an equivalent P -bounded formula φ′(~x). That
is,

T+ |= ∀~x [φ(~x)↔ φ′(~x)].
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3.2. Some Assumptions and Reductions. The proof of Theorem 3.3 will take
up the next three and a half sections.

The following key assumption amounts to assuming our reduction result holds for
basic formulas. The definability of types over all sets is tantamount to the definition
of stability, so the assumption is clear for stable theories. Theories without the
independence property will be proved in Section 5. Our argument will use this
definability of L-types to establish Theorem 3.3 by induction on formulas.

Assumption 3.4. For every basic formula φ(~x, ~y) there is a quantifier free ∆-
formula ψ(~w, ~y) such that for every model (M, I) of T+ if I is a set of (∆, L)-
indiscernibles in M , then for every ~m ∈M there is a ~c~m ∈ I such that

∀~y ∈ P [ψ(~c~m, ~y) ≡ φ(~m, ~y)].

The following lemma shows that P -bounded formulas have defining schema,
which will be useful both in proving the reduction results and in applying them to
query collapse.

Lemma 3.5. Let M+ |= T+. For each P-bounded formula φ(~x, ~y) there is a P-
bounded formula δ(~w, ~y) that is a defining schema for φ over I: That is, for each ~m
in M there is ~c~m in I such that

M+ |= ∀~y ∈ P [φ(~m, ~y)↔ δ(~c~m, ~y)].

Proof. Let φ(~x, ~y) be normalized as (Q1z1) . . . (Qkzk) η(~x, ~y, ~z) where the Qi’s are
P -bounded quantifiers and η is a basic formula. By Assumption 3.4 there is a
defining schema η′(~y, ~z, ~w) for η(~x, ~y, ~z) over I. That is,

M+ |= ∀~x ∃~w ∈ P ∀~y ∈ P ∀~z ∈ P [η(~x, ~y, ~z)↔ η′(~y, ~z, ~w)].

Consider δ(~w, ~y) given by (Q1z1) . . . (QKzk) η′(~y, ~z, ~w). It is easy to verify that
δ(~w, ~y) is a P-bounded formula and a defining schema for φ: For each ~m ∈ M
choose ~c~m ∈ I so that ∀~y ∈ P ∀~z ∈ P (η(~m, ~y, ~z) ↔ η′(~y, ~z,~c~m)). Then δ(~c~m, ~y)
defines the φ-type of ~m over I. 3.5

Looking ahead a bit, the main application of the above result is the definability
of all L+-types over I.

Corollary 3.6 (Corollary to as-yet-unproved Theorem 3.3). For every L+-form-
ula φ(~x, ~y) there is a ∆-formula ψ(~w, ~y) such that for every ~m there is a ~c~m ∈ I
such that

∀~y ∈ P [ψ(~c~m, ~y)↔ φ(~m, ~y)].

That is, all L+-types over I are ∆-definable.

Proof. By Theorem 3.3 and Lemma 3.5 there is a P -bounded formula δ(~w, ~y) and
for each ~m in M there is ~c~m in I such that

M+ |= ∀~y ∈ P [φ(~m, ~y)↔ δ(~c~m, ~y)].

Rewrite δ(~w, ~y) as (Q1z1) . . . (Qkzk) η(~w, ~y, ~z) where the Qi’s are P -bounded
formulas bounding zi and η ∈ L. Now using the ∆-indiscernibility of I, it easy to
show by induction on quantifiers that (Q1z1) . . . (Qkzk) η(~w, ~y, ~z) is equivalent over
I to a ∆-formula. 3.6
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Definition 3.7. Fix a structure M , finite sets ∆,∆1 of formulas, and I a set
(∆, L)-indiscernibles. For A,A0, A1 finite subsets of I with A ⊆ A1 and ~n ∈ M ,
p = tp(~n/A1) ∆1-splits in A over A0 if there exist sequences ~c, ~d ∈ A which have
the same ∆-type over A0, but for some β ∈ ∆1, ~c and ~d disagree on ~n for β. (That
is, ¬[β(~n,~c)↔ β(~n, ~d)].)

If A = A1, the ‘in A’ is omitted; frequently A1 will be I. (In e.g. [34] this
is called (∆,∆1)-splitting, but we will always have ∆ fixed so we write only one
parameter.) When ∆1 = {β}, we say there is a β-split for ~n over A0. Since the
second β in the phrase ‘p = tpβ(~n/A1) does not β-split’ is redundant, it is often
omitted. Note that if p = tpβ(~n/A1) does not β-split over a finite subset C of A1,
then there is a quantifier free ∆-formula δ(~w, ~y) and a ~c ∈ C such that for any
~a ∈ A1,

β(~n,~a)↔ δ(~c,~a).

Here δ is the disjunction of the finitely many, necessarily quantifier free (by quanti-
fier elimination in the theories of equality and dense-linear order), complete ∆-types
over C of elements that satisfy β. We say p = tpβ(~n/A1) is ∆-defined over C.

We now show that to prove the main quantifier reduction lemma, it suffices to
handle a certain class of ∃∀ formulas.

Proposition 3.8. Let I be a set of (∆, L)-indiscernibles in the L-structure M .
Suppose that (M, I) satisfies Assumption 3.4 and the following condition. For every
basic formula β(x1, . . . , xn, z, ~y) and for every ∆-formula δ(~w, ~y) with y1, . . . yR =
~y, the formula

γ(~x) = ∃z ∃~w ∈ P ∀~y ∈ P [β(~x, z, ~y)↔ δ(~w, ~y)]

is equivalent in M+ to a P-bounded formula.
Then every L+-formula is equivalent in T+ = Th(M, I) to a P -bounded formula.

Proof. We first observe that the assertion that every L+-formula is equivalent to a
P -bounded formula is preserved by L+-elementary-equivalence. Thus we need only
establish this assertion in (M, I) to get it as a consequence of T+. For quantifier-
free L+-formulas, the assertion follows by relativizing to P (e.g. replace ¬P (x) by
∀y ∈ P (y 6= x)). To prove the conclusion by induction on quantifier rank, it suffices
to remove one existential unbounded quantifier from the front of a P -bounded
formula. That is, to convert ρ(~x) = ∃z(Q1y1) . . . (QRyR)β(~x, z, ~y) to a P -bounded
formula. But, by Assumption 3.4, for each L-formula β and for any ∆-schema δ
defining β, ρ(~x) is equivalent to

∃z ∃~w ∈ P ∀~y ∈ P (β(~x, z, ~y)↔ δ(~w, ~y)) ∧ (Q1y1) . . . (QRyR)δ(~w, ~y).

Applying the hypothesis of this proposition and induction we can convert this
statement to a P -bounded formula; hence the proposition is proved. 3.8

Thus, to prove our main quantifier reduction result for a pseudo-small T+, we
need only show the hypothesis of Proposition 3.8 holds in an |I|+-saturated model
M of T . In the next sections we will give separate arguments for this in the stable
and nonindependence property cases.
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4. Quantifier reduction in expansions by indiscernibles: Stable case

Throughout this section we assume M is an L-structure for a stable theory T ,
I is a set of L-indiscernibles (i.e. we fix ∆ as {x = y}), and M is |I|+-saturated.
Note that since equality is in L, in this section a basic formula is just an L-formula.

We fix β(x1, . . . , xn, z, y1, . . . , yR) ∈ L; our goal will be to show the stable part
of Theorem 3.3 by showing the reduction in the hypothesis of Proposition 3.8 holds
for every equality-formula δ(~w, ~y). We begin by verifying Assumption 3.4, and
fixing some notation in the process.

The trace of a formula φ(~m, ~y) on I is the set of ~c from I satisfying φ(~m,~c). If
M is a model of a stable theory, the trace of an L-formula on an arbitrary subset is
uniformly defined with parameters in that set. If the set is a set of indiscernibles,
then the formula can be taken to involve only equality. In the next definition, we
consider a sequence ~x, z in two parts only for easy reference in the application.

Lemma 4.1. For every L-formula β(~x, z, ~y) there is a (quantifier-free) equality
formula ψ(~w, ~y) satisfying: for every ~m, b there is a ~c~m,b ∈ I such that

∀~y ∈ P [β(~m, b, ~y)↔ ψ(~c~m,b, ~y)].

Proof. By stability ([3], III.1.24), for any formula β(~x, z, ~y) there is a formula δ(~w, ~y)
such that for any ~m, b, for any set F , there is a ~c ∈ F such that for all ~f ∈ F ,
β(~m, b, ~f) ↔ δ(~c, ~f). By indiscernibility, we can find an equality formula ψ(~w, ~y)
which is equivalent, for all ~w, ~y in I, to δ. 4.1

The following definitions establish crucial notation for the remainder of the proof.

Notation 4.2 (J = Jβ). We have fixed β(x1, . . . , xn, z, y1, . . . , yR) ∈ L. Now fix
an equality formula ψ(~w, ~y) which provides a uniform definition for the trace of β
on IR. Let J = Jβ be the length of ~w.

Definition 4.3. 1) δ(~c, ~y) is correct for ~m, d on X if for every L-tuple ~e ∈ X ,
β(~m, d,~e)↔ δ(~c, ~e).

2) Two formulas φ(~x,w1, . . . wi) and φ′(~x,w1, . . . wi) are called ~w, I-equivalent if

∀~x ∀w1 ∈ P, . . . ∀wi ∈ P [φ(~x,w1, . . . , wi)↔ φ′(~x,w1, . . . , wi)].

Let C and E be subsets of I. We say tpβ(~m, d/I) splits in E over every proper
subset of C if for every proper subset C′ of C, there are tuples ~t1,~t2 ∈ E such that
~t1 ≡C′ ~t2 and ¬[β(~m, d,~t1)↔ β(~m, d,~t2)].

To establish the hypothesis of Proposition 3.8, we show the formula ∃z ∃~w ∈
P ∀~y ∈ P [β(~x, z, ~y)↔ δ(~w, ~y)] is equivalent on M+ to a P -bounded formula. We
introduce an auxiliary formula ψδ(~x, ~w).

Definition 4.4 (ψδ). For any equality-formula δ(w1, . . . , wn, y1, . . . , yR), let
ψδ(~x,w1, . . . wn) denote the L+-formula such that, for arbitrary ~m and ~c ∈ I,
ψδ(~m,~c) holds if and only if the ci are distinct and for some d,

1) δ(~c, ~y) defines tpβ(~m, d/I) and
2) tpβ(~m, d/I) splits over every proper subset of C, where C is the range of ~c.

The formula ψδ has the form (∃~z)χ(~z, ~m,~c) where χ(~z, ~m,~c) is P -bounded.

Proposition 4.5. For every ~m there exists n ≤ Jβ and an equality formula
δ(w1, . . . wn, ~y) such that for some ~c from I, ψδ(~m,~c) holds.



4948 JOHN BALDWIN AND MICHAEL BENEDIKT

Proof. First, choose any set ~c1 such that ψ(~c1, ~y) defines tpβ(~m, d/I). Then choose
a minimal subset of ~c1, enumerated by ~c, over which tpβ(~m, d/I) does not split.
Now, tpβ(~m, d/I) is, in fact, defined over ~c (by the disjunction of the equality types
over ~c of sequences ~e satisfying β(~m, d,~e)); this formula is the required δ. 4.5

Let DJ be a finite set of equality formulas such that every equality formula
δ′(w1, . . . wi, ~y) with i ≤ J = Jβ is equivalent to one in DJ . Applying Proposi-
tion 4.5, we see that for each δ(~w, ~y) there is a subset S of DJ such that for all
~m in M , we have M+ |= ∃~w ∈ P ∃z ∀~y ∈ P [β(~m, z, ~y) ↔ δ(~w, ~y)] if and only if
M+ |=

∨
δ′∈S ∃~w ∈ P ψδ′(~m, ~w). It follows that the hypothesis of Proposition 3.8

and thus Theorem 3.3 for the stable case follow from

Lemma 4.6 (Goal Lemma for Stable Case). For each L-formula β(~x, z, ~y) and
each equality formula δ(w1, . . . wn, ~y) with lg(~w) ≤ Jβ, ψδ(~x, ~w) is ~w,I equivalent
to a P-bounded formula. That is, there is a P-bounded ψ′(~x, ~w) such that

T+ |= ∀~x ∀~w ∈ I [ψδ(~x, ~w)↔ ψ′(~x, ~w)].

We will prove Lemma 4.6, by downward induction on the length of ~w, starting
at Jβ . We first need the following observation.

Proposition 4.7. If tpβ(~m, d/I) does not split over X0 ⊂ I, δ(~c, ~y) is correct for
~m, d on X ⊃ X0, and |X −X0| ≥ R, then δ(~c, ~y) defines tpβ(~m, d/I).

Proof. If tpβ(~m, d/I) does not split over X0, then tpβ(~m, d/I) is defined over X0.
This definition is equivalent to δ since every equality type of an R-tuple over X0 is
realized in X and tpβ(~m, d/I) does not split over X0. 4.7

4.1. Inductive proof of Lemma 4.6. We now start the proof of Lemma 4.6. We
have fixed β and J = Jβ in Notation 4.2. We begin with the base case, n = J . Let
J ′ = max{J +R, 2JR}+ 1.

Definition 4.8 (ψ′δ). Let ψ′δ(~x,w1, . . . , wJ) hold for ~m,~c if and only if the ci are
distinct and there exist E = {e1, . . . , eJ′} containing C, the range of ~c, and a d
such that

1) tpβ(~m, d/I) splits in E over every proper subset of C,
2) δ(~c, ~y) is correct for ~m, d on E .

Since the arbitrary d is chosen after the set E is selected from P and the condi-
tions 1) and 2) are expressible in L, ψ′δ is a P -bounded formula.

Claim 4.9. ψ′δ(~m,~c) holds if and only if ψδ(~m,~c) holds.

That is, ψ′δ holds if and only if there is some d such that δ(~c, ~y) defines tpβ(~m, d/I)
and tpβ(~m, d/I) splits over every proper subset of ~c.

Proof of Claim 4.9. The implication from ψδ to ψ′δ is immediate, since we can al-
ways witness all the necessary splittings with 2JR ≤ J ′ elements.

Suppose the converse fails. Then we have a C = {c1, . . . cJ} , E = {e1, . . . eJ′}
containing C and ~m, d satisfying ψ′δ for which the β-type of ~m, d over I is not given
by δ. By the definition of J , we know that there is a set S ⊆ I of size at most J
such that the β-type of ~m, d over I is definable over S. If S is contained in E, then
we are done by Proposition 4.7, since the size of E guarantees that it contains R
elements not in S. So assume that S − E is nonempty. Then S − C is nonempty,
and since |S| ≤ |C| = J we infer there is a c0 in C − S.
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Letting C0 = C−{c0}, we know, by assumption, that there is a splitting over C0

with witness tuples t1 and t2 lying completely in E. Let t′1 and t′2 be obtained from
t1 and t2 by replacing any occurrence of c0 with an element in E − (C ∪ S). Such
elements exist since the size of E is bigger than 2J . Since c0 6∈ S, we have ti ≡S t′i.
As tpβ(~m, d/I) does not split over S, this implies that t′1 and t′2 still witness a split
for tpβ(~m, d/I) over C0.

But t′1 and t′2 are contained in E and have the same equality type over C (they
have the same equality type over C0 since the ti’s did, and neither of them contains
c0). Hence, δ(~c, ~y) must agree on t′1 and t′2. This and the last sentence in the
previous paragraph contradict the fact that δ(~c, ~y) is correct on E. 4.9

For n = J(= Jβ) we have found an appropriate P -bounded formula ψ′δ which
is equivalent to ψδ. We turn to the induction step. Suppose we have Lemma 4.6
when lg(~w) = i, for each i with n < i ≤ J ; we will prove that ψδ(~x,w1, . . . , wn) is
~w, I-equivalent to a P -bounded formula. The required ψ′δ is the P -bounded formula
whose meaning is described in the following proposition.

Proposition 4.10. There is an n′ such that for any ~m and C = {c1, . . . cn},
ψδ(~m,~c) if and only if the ci are distinct and for every set G ⊆ I with |G| < n′,
there is a set E ⊆ I of size at most J ′′ = max(n′ + 2JR+ 1, 3J + 1) containing G
and a d such that tpβ(~m, d/I) equality splits in E over every proper subset of C,
and δ(~c, ~y) is correct for ~m, d on E.

Since the clauses after ‘and a d such that’ are definable in L, this proposition
provides a P -bounded formula equivalent to ψδ.

Proof of Proposition 4.10. The implication from ψδ(~m,~c) is immediate for any n′

taking E to be G plus 2JR witnesses for splitting. We will choose n′ below so the
converse holds.

We first need some further notation to employ the induction hypothesis. For
n < j ≤ J , let DEF (j) denote the set of equality formulas δ′(w1, . . . , wj , ~y) in
w1, . . . , wj and y1, . . . , yR. Note that up to equivalence DEF (j) is finite.

Let p(n, r) be a function such that for any finite subset A of I there is a set
A′ ⊆ I with |A′| < p(|A|, r) such that all ({=}, r)-types over A are realized in A′.
It is easy to see that for equality one such function is n+ r.

For each δ′ ∈ DEF (j) we know that ψδ′(~x, ~w) is ~w, I-equivalent to a P -bounded
formula. By Lemma 3.5, each ψδ′(~x, ~w) type over I has a P -bounded defining
schema. Let m′ be the number of parameters which occur in any of these definitions,
Now choose n′ = p(m′ + J,R). We show that this n′ suffices for Proposition 4.10.

Let ~a = 〈a1, . . . , am′〉 (not necessarily distinct) from I be such that for each
δ′ ∈ DEF (j), the ψδ′(~x, ~w)-type of ~m over I is definable (by an equality-formula)
over a1, . . . , am′ . Such an ~a exists because the trace on I of a P -bounded formula
is definable in equality (as shown in the proof of Corollary 3.6).

Let G be a finite set of size at most n′ such that every ({=}, R + J)-type over
~a~c is realised in G.

We now apply the hypothesis of Proposition 4.10 to this G. Then we have
~a~c ⊂ G ⊂ E ⊂ I, and a d such that tpβ(~m, d/I) splits in E over every proper
subset of ~c and δ(~c, ~y) is correct for ~m, d on E. We claim that δ(~c, ~y) is correct for
~m, d on I so ψδ(~c,m) holds. Suppose not. Then δ(~c, ~y) does not define tpβ(~m, d/I).
By Proposition 4.7, since δ(~c, ~y) is correct on G and G contains ~c as well as R
elements not in ~c, there must be a β-split for ~m, d over c1, . . . , cn.
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We now note the following:

Claim 4.11. There are cn+1, . . . , cH , with H ≤ J , such that tpβ(~m, d/E) splits
over every proper subset of c1, . . . , cH but not over c1, . . . , cH .

Proof of Claim 4.11. We know that there is S = {s1, . . . , sH} with H ≤ J such
that tpβ(~m, d/E) is equality-defined over S. We will show that each ci for i ≤ n
must be in this set S so for i > n we can take si for the required ci. Suppose not,
fix c in C but not in S. Let ~e1, ~e2 in E realize a splitting over C − {c}; that is, ~e1

and ~e2 have the same equality type over C − {c} but ¬[β(~m, d,~e1)↔ β(~m, d,~e2)].
We first show that ~e1, ~e2 can be taken to exclude c. Since there is no splitting for

tpβ(~m, d/E) over S and c 6∈ S, we can replace c in the ~ei’s by any other element of
E distinct from c and the other elements of S without changing the truth value of
β(~m, d,~ei). So we may assume that the original ~e1, ~e2 do not contain c. Hence we
now know ~e1, ~e2 have the same equality type over C, since they agree on C − {c}
and neither contains c.

But there is no splitting for tpβ(~m, d/E) over C either, since δ(~c, ~y) is correct
on E; hence we can uniformly replace any elements of ~e1 and ~e2 that are in S −C
by elements of E − (C ∪ S) without changing the truth value of β(~m, d,~ei) (note
that there are at most |S| ≤ J elements to replace, and E − (C ∪ S) contains more
than J elements to replace these elements with). Thus, we can assume that ~e1 and
~e2 contain only elements of S that are in C. However, we now have that ~e1 and ~e2

agree on all elements of S, since they agree on C and have no elements from S−C.
This contradicts the fact that tpβ(~m, d/E) does not equality-split over S. 4.11

Note that tpβ(~m, d/I) is defined by δ′(c1, . . . , cH , ~y), where δ′ is an equality
formula.

Claim 4.12. Fix any {bn+1, . . . bH} ⊆ I and d such that tpβ(~m, d/I) is defined
over C+ = {c1, . . . , cn, bn+1, . . . , bH} by δ′(c1, . . . , cn, bn+1, . . . , bH , ~y). For any
sequence of distinct elements ~f of length R in I, if ~f ∩ {bn+1, . . . , bH} ⊆ G, then
[β(~m, d, ~f)↔ δ(c1, . . . , cn, ~f)].

Proof. Consider a counterexample ~f : ~f ∩ {bn+1, . . . , bH} is contained in G and
¬[β(~m, d, ~f) ↔ δ(c1, . . . , cn, ~f)]. Since there is no β-split for ~m, d over C+, we
know ¬[β(~m, d, ~f ′) ↔ δ(c1, . . . , cn, ~f ′)] for any ~f ′ ∈ I with ~f ′ ≡C+ ~f . Since E
realizes every R + J type over C, we can choose an ~f ′ ∈ E with ~f ′ ≡C ~f and
~f ∩ G = ~f ′ ∩ G. But ~f ∩ {bn+1, . . . , bH} is contained in G. So ~f ′ ≡C+ ~f . This
contradicts the hypothesis that δ(~c, ~y) is correct for ~m, d on E. 4.12

Now we claim:

Claim 4.13. Given any finite subset S of I, there is a dS in M such that for all
~f ∈ S, β(~m, dS , ~f)↔ δ(c1, . . . , cn, ~f) holds.

Proof of Claim 4.13. Fix any finite S ⊂ I. Replace all elements in {cn+1 . . . cH}−G
by distinct elements of I not in ~a∪{c1 . . . cn}∪S to choose hn+1, . . . , hH such that
hn+1, . . . , hH ≡~a~c cn+1, . . . cH and H = {hn+1, . . . , hH} − G is disjoint from S.
(This is easy since ~a∪ {c1 . . . cn} is contained in G.) Then, ψδ′(~m, c1, . . . , cn, hn+1,
. . . , hH) holds, since the ψδ′ -type of ~m does not equality-split over ~a. By the
definition of ψδ′ , there is a dS such that for any tuple of distinct elements ~f ∈ I, |=
[β(~m, dS , ~f) ↔ δ′(c1, . . . , cn, hn+1, . . . , hH , ~f)]. Claim 4.12 implies β(~m, dS , ~f) ↔
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δ(c1, . . . , cn, ~f) holds whenever ~f ∩H is empty. But S ∩H = ∅, so β(~m, dS , ~f)↔
δ(c1, . . . , cn, ~f) holds for all ~f ∈ S as required; this completes the proof of Claim
4.13. 4.13

Claim 4.13 and compactness and the saturation of M provide a d to witness
ψδ(~m, c1, . . . , cn). Hence we now have a proof of Proposition 4.10, and hence a
proof of Lemma 4.6 and Theorem 3.3 for the stable case. 4.10

5. Type definability in theories without the independence property

In this section we prove a definability result for types over sequences of order
indiscernibles in models of a theory without the independence property. This result
is a step to proving Theorem 3.3 for the ordered case. It is also of independent
interest and does not depend on the hypotheses and conventions stated earlier;
hence we suspend our various conventions and state explicitly the hypotheses of
this section. We will apply the result in the next section to verify Assumption 3.4.

Definition 5.1. 1) The formula φ(~x, ~y) has the m-independence property in T
if there exists a set of m, lg(x)-tuples ~b1, . . . ,~bm such that for every X ⊆ m,
there is an ~aX such φ(~bi,~aX) holds if and only if i ∈ X .

2) φ does not have the independence property in T (lacks IP, for short) only if
for some integer m, φ(~x, ~y) does not have the m-independence property in T .

3) T does not have the independence property if no φ has the independence
property in T . A model does not have the independence property if its theory
does not have it.

We work with T , a complete countable L-theory which does not have the in-
dependence property. M is an arbitrary model of T . We have a set I from M
linearly ordered by <, such that 〈I,<〉 is a sequence of order indiscernibles and is a
complete dense linear order. Nothing is asserted about the properties of < on the
rest of M , and we do not assume that < is in L.

The trace of a formula φ(~m, ~y) on I is the set of ~c from I satisfying φ(~m,~c). We
noted in Lemma 4.1 that if M is a model of a stable theory, the trace of an L-
formula on a set of indiscernibles is uniformly defined by an equality formula with
parameters in that set. We now prove the analogous result in a theory without
the independence property: defining the trace of a formula on a sequence of order
indiscernibles by an order formula with parameters from the indiscernibles. It
appears that this definability result is new even in the extremely restricted case
that one assumes T is an o-minimal theory and I is a sequence of indiscernibles
that is complete for the given order. The definability result is:

Theorem 5.2. If M lacks IP and I is order-indiscernible with order type a com-
plete dense linear order, then for every L-formula φ(~x, ~y) there is a quantifier-free
<-formula ψ(~w, ~y) such that for every ~m there is a ~c~m ∈ I such that

∀~y ∈ P [ψ(~c~m, ~y) ≡ φ(~m, ~y)].

Note: We prove the lemma above assuming that I is ordered by a complete
dense linear order. However, the above statement is a property of the theory of
(M, I), and so it remains true in any model (M ′, I ′) elementary equivalent to such
an (M, I). Thus, we can apply it to any pseudo-small structure.

Marker and Steinhorn [27] and Pillay [30] proved an analogous result: in an
o-minimal theory, types over a model which is Dedekind complete are definable.
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We ask whether this result holds for any theory without the independence property
where the models are linearly ordered.

The following definitions are needed before beginning the proof of Theorem 5.2.
Let S ⊆ In for some n. We say ~e ∈ In is a boundary point of S if there are points in
S and Sc in every neighborhood of ~e in the product topology on In: i.e. if it is on
the topological boundary of S in the usual sense. Given a finite set of points F in
In, an equivalence class for F is the set of points in In satisfying some order type
over F ; i.e. a maximal set of points in In satisfying all the same inequalities over
F . If ~c1, . . . ,~ci−1 is a sequence of vectors from IR, we denote by Ci the union of
the ranges of the ~cj , for j < i. Note that an equivalence class for F is definable in <
over F and is a connected (in the product topology) subset of In. This is because
a complete dense linear order is connected (completeness implies that every open
set S is a union of disjoint intervals that are maximal in S. This plus density easily
implies connectedness). To show any equivalence class in In is connected, proceed
by induction. For any X ⊆ In and ~a ∈ In−1, let X~a = {b : ~ab ∈ X}. Suppose for
contradiction that both U and its complement in S are open in S. Then for each
~a either (S ∩ U)~a = S~a or (S ∩ U)~a = ∅. But if both {~a : (S ∩ U)~a = S~a} and
{~a : (S ∩ U)~a = ∅} are nonempty the induction hypothesis is violated.

The key definition is: A coherent sequence of boundary points for a set S is a
(finite or infinite) sequence of vectors ~c1, . . . ,~cm . . . from In such that any ~ci is a
boundary point of S ∩ Ei relative to the subspace topology in Ei, where Ei is the
equivalence class of ~ci over Ci. Put another way: a sequence is coherent if for any
neighborhood O of ~ci in In, O ∩ Ei intersects both S and Sc.

A boundary point cover for S is a maximal coherent sequence of boundary points
for S.

We say the m-tuples 〈pi : i < ω〉 are pairwise disjoint if their ranges are disjoint.
We actually prove the following proposition, which entails Theorem 5.2.

Proposition 5.3. Let S be an L-definable subset of IR, where I is a sequence of
indiscernibles in a model M without the independence property. Then the following
hold:

1) Every finite coherent sequence of boundary points for S extends to a finite
boundary point cover for S.

2) If C is a finite boundary point cover for S, then S is definable from < over
C, and hence S does not split over the union of all elements in C.

3) For any formula θ(~x, ~y) from L, there is an integer Kθ that bounds the size
of a coherent set of boundary points for the set {~y : θ(~y, ~m)}, uniformly for
every ~m in M .

The following (which does not require completeness of the order) is the key result.

Lemma 5.4. Suppose γ(x1 . . . xR, ~y) does not have the independence property in
T . There is K such that for any ~a, there cannot be a coherent sequence 〈~pi : i < K〉
of boundary points for D = {~b ∈ IR : γ(~b,~a)}.
Proof of Lemma 5.4. Suppose γ does not have the m-independence property.
Choose K large enough so that for any sequence 〈~pi : i ∈ K〉 we can choose a
subsequence with length m whose elements all realize the same <-type over the
empty set and such that the type of the ordered pair of vectors 〈~pi, ~pj〉 is inde-
pendent of i and j (subject to i < j). Such a K exists by Ramsey’s theorem,
and we claim that this K works. Suppose not, and consider a coherent sequence
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〈~pi : i ∈ K〉 for a set D ⊂ IR of the form {~b : γ(~b,~a)}. Replace the sequence with a
subsequence 〈~pi : i ∈ m〉 satisfying the additional restrictions just described. Note
that coherence implies that any neighborhood of ~pi contains elements of D and Dc

that are of the same type as ~pi over Pi−1.
Let Ei be the equivalence class of ~pi over Pi−1. Let s be the set of indices k < R

such that ~pi(k) = ~pi+1(k) holds for some (hence all, by the property of the chosen
subsequence) i. Let t = sc, let ~g be the common value of the ~pi|s, and let D~g be
{~f ∈ It : ~f ∪ ~g ∈ D}. Since 〈~pi : i ∈ m〉 is a coherent sequence of boundary points
for D, we get ~pi|t is a coherent sequence of boundary points for D~g. Moreover,
since every pair 〈~pi, ~pj〉 for i < j has the same type, the ~pi|t are pairwise disjoint.
(If ~pi(k) = ~pj(n) for some i 6= j, k 6= n, then ~pi(k) = ~pj(n) for all i 6= j, and
hence ~pi(k) = ~pj(k), which implies k is in s.) The fact that ~pi|t are a pairwise
disjoint coherent sequence of boundary points for D~g allows us to easily construct
for any subset X of m a sequence ~qXi of elements of It such that the order type of
〈~qXi : i < m〉 over the empty set does not depend on X but ~qXi ∈ D~g if and only if
i ∈ X .

But now, by concatenating the above ~qXi with ~g, we get for any subset X of m
a pXi in IR such that the order type of 〈~pXi : i < m〉 over the empty set does not
depend on X but γ(~pXi ,~a) if and only if i ∈ X .

This observation and the order indiscernibility of I shows that for each X ⊂ m
there are ~e1 . . . ~em and ~aX such that γ(~ei,~aX) if and only if i ∈ X , which contradicts
the assumption that T does not have the m-independence property. 5.4

We use the following simple topological observation at several other stages in
the main argument.

Observation 5.5. For any R, if X is a connected (in the product topology) subset
of IR and Y is a subset of IR such that both X ∩ Y and X ∩ Y c are nonempty,
then X contains a boundary point of Y .

Proof. If no point in X is a boundary-point of Y we could partition X into two open
(in the product topology) sets; namely, points with an open set around them con-
tained in Y , and points with an open set around them contained in the complement
of Y . This contradicts the connectedness of X . 5.5

The following is an observation about complete dense orders:

Lemma 5.6. Suppose that 〈I,<〉 is a complete dense linear order. If Bi =
{~b1, . . . ,~bi} is a coherent sequence of boundary points of D ⊆ IR, then either D is
quantifier-free definable in the structure 〈I,<〉 from parameters in (the union of the
ranges of) Bi, or we can add a new element ~bi+1 and extend the coherent sequence.

Proof. Fix such a coherent sequence B = {~b1, . . . ,~bi}. Partition the tuples in IR

according to their type over {~b1, . . . ,~bi}, and let E be the corresponding equivalence
relation. The equivalence classes are definable from Bi, so if D is not definable,
there must be some equivalence class C that contains both points in D and points
not in D.

Define ~g as follows. Let t ⊆ R be {j : for some ~c ∈ C there is k ≤ i with
~bk(j) = ~c(j)}. For j ∈ t, let ~g(j) = e if for some k ≤ i and some (equivalently all,
since the elements of C are indiscernible over Bi) ~c ∈ C, ~bk(j) = ~c(j) = e. Since C
has at least two points, we must have t 6= R. Let s denote the complement of t in
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R. Let D~g be the collection of functions ~r ∈ Is such that ~r ∪ ~g is in D and let C~g
be those ~r mapping s to I, such that ~r ∪ ~g ∈ C.

Since C~g is all realizations of a type over Bi ∪ ~g, it is an equivalence class and
is thus connected (using the completeness, as remarked in the beginning of this
section); by Observation 5.5 there is a D~g-boundary-point ~f in C~g. Let ~bi+1 =
~g ∪ ~f (considered as functions). Then ~bi+1 is a boundary-point of D ∩ C in C as
required. 5.6

This establishes all three parts of Proposition 5.3. Since T does not have the
independence property, for each formula θ(~x, ~y) there is, by Lemma 5.4, a bound Kθ

on the length of a coherent sequence of boundary points for D = {~i ∈ I : θ(~m,~i)}.
By Lemma 5.6 every coherent sequence of boundary points extends to a maximal
coherent sequence, and D is definable by a quantifier free order formula over the
elements in this sequence, since the sequence is a boundary point cover. 5.3

We can remove the restriction that (I,<) be a complete dense linear order if we
weaken the definability conclusion. Recall that a linear order is weakly o-minimal
if every definable subset is a disjoint union of convex sets.

Corollary 5.7. If M lacks IP and I is a densely ordered sequence of order-indis-
cernibles, then for every L-formula φ(~x, ~y) the trace of φ on (I,<) is a disjoint
union of convex sets. That is, the induced structure on (I,<) is weakly o-minimal.

Proof. Since I is a sequence of order indiscernibles we can find an elementary ex-
tension N of M and a sequence of order indiscernibles J ⊂ N such that (J,<) is
the completion of (I,<). Now applying Theorem 5.2, every definable subset of J
is a union of intervals. Thus, the trace on I is a union of convex sets. 5.7

6. Quantifier reduction in expansions by indiscernibles:

Theories without the independence property

6.1. Preliminaries. Let T be an L-theory without the independence property.
Fix an |I|+-saturated model M of T and a complete densely ordered sequence I of
order indiscernibles in M . Let M+ = (M, I,<) be the result of expanding M by
interpreting < as < and P as I. There is no assumption that (M, I) does not have
the independence property. Throughout this section T+ is the theory of M+.

Our goal is to show the ‘order part’ of Theorem 3.3. In the context of this
section, a basic formula is a Boolean combination of formulas in < and in L. Note
that the trace on I of a basic formula is a Boolean combination of order formulas
and the traces of L-formulas. Since Theorem 5.2 implies the latter are definable by
a quantifier-free order formula, we have Assumption 3.4. Hence it suffices to show
that the hypothesis of Proposition 3.8 holds.

We fix a basic formula β(~x, d,~c), with the goal of showing that the reduction in
the hypothesis of Proposition 3.8 holds.

Definition 6.1. For any ~m, d in M let B~m,d denote {~c ∈ I : β(~m, d,~c)}. Fix
K = Kβ so that for any ~m, d, a coherent sequence of boundary points for B~m,d has
at most K elements.

Definition 6.2 (νδ). Let δ(w1, . . . , wn, y1, . . . , yR) be a quantifier-free order for-
mula and let νδ(~x,w1, . . . , wn) be the L+-formula such that, for arbitrary ~m and ~c ∈
I we have that νδ(~m,~c) holds if and only if for some d, δ(~c, ~y) defines tpβ(~m, d/I).
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We say a sequence ~b1 . . .~bn is σ-good if the union of the ranges of the ~bi is
ordered so that ~b1 . . .~bn is a boundary point cover for the set of ~c ∈ I such that
σ(~b1, . . . ,~bn,~c) holds.

To prove the hypothesis in Proposition 3.8, and hence to complete the proof
of Theorem 3.3 it clearly suffices to show each νδ is equivalent to a P -bounded
formula. We will actually deal not with νδ directly, but with a “boundary-point”
version, that is easier to induct upon.

Definition 6.3 (ρσ). Let σ(~w1 . . . , ~wn, y1, . . . yR) be a quantifier-free order for-
mula in L with no parameters. Let ρσ(~x, ~w1, . . . , ~wn) hold for ~m,~b1 . . .~bn if and
only if there is d in M such that ~b1 . . .~bn form a boundary-point cover for B~m,d,
and σ(~b1, . . . ,~bn, ~y) defines tpβ(~m, d/I).

We will prove by downward induction on n that for any <-formula σ, ρσ is
equivalent to a P -bounded formula. It follows from this that every νδ is equivalent
to a P -bounded formula, since

Proposition 6.4. νδ(~x,w1, . . . , wn) holds for ~m, c1, . . . cn iff there are i ≤ K,
~b1 . . .~bi from I and σ(w1, . . . , wi, ~y) such that

1) δ(~c, ~y) and σ(~b, ~y) are equivalent on I,
2) ρσ(~m,~b1 . . .~bi) holds,
3) ρσ(~m,~b′1 . . .~b′i) holds for any ~b′1 . . .~b′i ≡~c ~b1 . . .~bi.

Proof of Proposition 6.4. For one direction, suppose that νδ(~x,w1, . . . , wn) holds
for ~m, c1, . . . , cn, with d a witness. Proposition 5.3 implies that there is a boundary
point cover ~b1, . . . ,~bi for the set B~m,d with i ≤ K and a (quantifier-free) order
formula σ(~b, ~w) defining B~m,d. Suppose ~b′1, . . . ,~b

′
i is such that ~b′1 . . .~b

′
i ≡~c ~b1 . . .~bi.

The statement that~b1, . . . ,~bi is a boundary point cover for the set defined by δ(~c, ~y)
is equivalent, by quantifier elimination in 〈I,<〉, to a quantifier-free order formula
in ~c,~b. As ~b′1 . . .~b

′
i,~c also satisfies this formula, ~b′1 . . .~b

′
i is also a boundary point

cover for B~m,d.
For the other direction, if the conclusion holds, δ(~c, ~y) and σ(~b, ~y) are equivalent

on I and ρσ(~m,~b1 . . .~bi) holds; thus νδ(~m,~c) holds. 6.4

We prove the following lemma by reverse induction on n, the number of w
variables.

Lemma 6.5 (Goal Lemma for Order Case). Every ρσ(~x, ~w) is ~w, I equivalent to a
P -bounded formula.

Since K is the limit on the size of a boundary point cover, ρσ is clearly equivalent
to false when the number of variables n is greater than K. So we can use n = K+1
as an easy base case of our induction. We proceed to the induction step.

We now assume that for each σ(~w1, . . . , ~wi, ~y) with i > n, ρσ(~x, ~w1, . . . , ~wi) is
~w, I equivalent to a P -bounded formula. Here we show the same for σ(~w1, . . . , ~wn, ~y).
Letting Ei denote the equivalence class of ~bi over ~b1, . . . ,~bi−1, the proof of the in-
duction step will follow from:

Proposition 6.6. Suppose σ(~w1, . . . , ~wn, ~y) is an order formula. Then there are
n′, p′ such that for any ~m and ~b = 〈~b1, . . . ,~bn〉, ρσ(~m,~b) holds if and only if ~b1 . . .~bn
is σ-good and for every set G with |G| < n′, and for every set of neighborhoods Ni
around ~bi, there exist:
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1) for 1 ≤ i ≤ n, ~fi, ~gi in Ni ∩ Ei,
2) a set E with |E| < p′ realizing all (<,R)-types over the union of G with the

~fi, ~gi and the endpoints of Ni,
3) a d in M

such that σ(~b1, . . . ,~bn, ~y) is correct for ~m, d on E and ¬[β(~m, d, ~fi) ≡ β(~m, d,~gi)].

Using this proposition, it is clear that ρσ is equivalent to a P -bounded formula;
since, fixing such an n′ and p′, the formula expressing the conclusion can be ex-
pressed as a P -bounded formula.

Let m′ be the sum of the sizes of the defining schema for each ρ′σ, as σ varies over
<-formulas with variables ~w1, . . . , ~wK and y. Such an m′ exists by the induction
hypothesis and Lemma 3.5.

Let n′ = m′ + n + 1. Let p(n, r) be a function such that for any finite subset
A of I there is a set A′ ⊆ I with |A′| < p(|A|, r) such that all ({<}, r)-types over
A are realized in A′. Let p′ = p(m′, r). We will show that this n′, p′ witness
Proposition 6.6. For this n′ and p′, denote the formula expressing the conclusion
of Proposition 6.6 by ρ′σ(~m,~b).

It is easy to see that ρσ implies ρ′σ; the required witness d can always be taken
to be the witness for ρσ and the existence of E and ~f,~g follow from the size of p′

and the fact that ~b1 . . .~bn is σ-good.
We now start the proof of the other implication. Suppose that ρ′σ holds. Let η(x)

denote the L-type over ~m∪I such that η(d) asserts that d is such that σ(b1, . . . bn, y)
defines the β type of ~m, d over I. It will take several pages to prove

Claim 6.7. The type η is finitely satisfiable.

Proof of Claim 6.7. Let η0 be a finite subset of η, and let S be all the constants men-
tioned in η0. Choose G so that~b = 〈~b1, . . . ,~bn〉 is contained in G and for each i with
K ≥ i > n and every i-variable <-formula σ(~w1, . . . , ~wi, ~y), the ρσ(~x, ~w1, . . . , ~wi)-
type of ~m over I is definable over G.

Choose rectangular neighborhoods Ni of the ~bi for 1 ≤ i ≤ n to separate the ~bi’s
from the elements of G∪S that are distinct from ~bi: that is, choose both the upper
~ui and lower endpoints ~li of Ni so that no element of G∪S lies in (~li(m),~bi(m)) or
(~bi(m), ~ui(m)).

Applying the hypothesis of Proposition 6.6 to this G and 〈Ni : i ≤ n〉, and by
the choice of p′, we get the corresponding ~fi, ~gi, E and d0. That is, ~fi, ~gi ∈ Ni ∩ ei,
σ(~b1, . . . ,~bn, y) is correct for B~m,d0 on E and E realizes all (<,R)-types over G+ =
G∪

⋃
i{~fi, ~gi,~li, ~ui}, where Ni = (~li, ~ui) and ¬σ(~b, fi)↔ σ(~b, gi). Let N denote the

collection of all components of the endpoint vectors of the Ni.
Note that since ~b is σ-good, it is a coherent sequence of boundary points for

σ(~b, ~y).

Lemma 6.8. There is a coherent sequence of boundary points ~b′i : i ≤ n for B~m,d0

such that ~b′i ∈ Ni.

Proof. We define the~b′i inductively. Since B~m,d changes sign on N1, Observation 5.5
implies that N1 contains a boundary point~b′1. Let E′i+1 denote the equivalence class
of ~bi+1 over ~b′1, . . . ,~b

′
i. Given ~b′1, . . . ,~b

′
i, we show that there is ~b′i+1 ∈ Ni+1 which

is a boundary point for B~m,d ∩ E′i+1. To do this, it suffices (by Observation 5.5)
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to show that Ni+1 ∩ E′i+1 contains two points which disagree on B~m,d. We will do
this by showing that ~fi+1 and ~gi+1 are in the same equivalence class for ~b′1, . . . ,~b

′
i.

Let Bi denote the union of the ranges of the ~bk for k ≤ i. We know that they are
in the same class Ei+1 over ~b1, . . . ,~bi.

Let s be the set of indices j such that ~bi+1(j) = ~bm(n), for some m < i, n ≤ R

and let ~e = ~bi+1|s. Then ~bi+1 is a boundary point of the set H of ~h ∈ B~m,d

which extend ~e and Ei+1 ⊆ H . In addition, ~fi+1,~gi+1, and ~bi+1 all have the same
restriction to s. Let t = sc. Then the range ~bi+1|t is disjoint from the ranges of the
~bj for j ≤ i.

Our choice of 〈Nj : j ≤ i〉 guarantees that for each fixed j ≤ i, the endpoints
~lj and ~uj of Nj satisfy the same inequalities over ~bi+1|t that ~bj satisfies. Hence all
points in Nj have the same type as ~bj over ~bi+1|t. So ~b′j , in particular, has the same
type as ~bj over ~bi+1|t. Thus B′j is disjoint from ~bi+1|t.

Now, the definition of Ni+1 guarantees that for all points ~p in Ni+1, ~p|t satisfies
the same inequalities over B′i that ~bi+1|t does. In particular, B′i is disjoint from ~a|t
for every ~a in Ni+1. Further, ~fi+1|t and ~gi+1|t both satisfy the same inequalities
over B′i that ~bi+1 does. Thus, ~fi+1 and ~gi+1 are in the same equivalence class over
B′i as required. 6.8

Fix, by Lemma 6.8, ~b′ = 〈~b′i : i ≤ n〉 with ~b′i ∈ Ni and ~b′ a coherent sequence of
boundary points for B~m,d0 .

We argue that if ~b′ is a maximal coherent sequence of boundary points for B~m,d0,
then d0 realizes η. For then, there is no splitting for B~m,d0 over b′1, . . . , b′n (i.e.
tpβ(~m, d0/I) does not split over b′1, . . . , b′n). This implies σ(~b, y) is correct for ~m, d0

on S. To see this implication, choose for ~q ∈ S an ~e ∈ E which realizes the same <-
type as ~q does over G+. Note that, in particular, ~e and ~q have the same <-type over
N and the same <-type over ~b. But now the fact that the Ni separates elements
of S −B from B (where B is the range of ~b) and the fact that ~b′i lies in Ni gives us
that tp<(~e/~b′) = tp<(~q/~b′): e.g. if ~e(j) > ~b′i(k), then there is an endpoint ~u of Ni
such that ~e(j) > ~u(j) >~b′i(k) and hence ~q(j) > ~u(j) >~b′i(k), since ~e and ~q have the
same order-type over N . Now, tp<(~e/~b) = tp<(~q/~b) implies σ(~b, ~q) ↔ σ(~b, ~e) and
σ(~b, ~e) holds if and only if ~e ∈ B~m,d0 as σ(~b, ~y) is correct for ~m, d0 on E. Since there
is no splitting for B~m,d0 over b′1, . . . , b

′
n, tp<(~e/~b′) = tp<(~q/~b′) implies ~e ∈ B~m,d0 if

and only if ~q ∈ B~m,d0 . Thus, σ(~b, ~y) is correct for ~m, d0 on S and so d0 realizes η
as required.

Hence, we assume ~b′1, . . . ,~b′n are not boundary point covers for B~m,d0 . By Propo-
sition 5.3, 1), these extend to a boundary point cover B+ = {~b′1 . . . b′H} for B~m,d0,
with n < H ≤ K. By choosing B′ = {b′n+1, . . . , b

′
H}, some σ′(b′1, . . . ,~b′H , ~y) defines

tpβ(~m, d0/I).
We now want to make use of our induction hypothesis on σ′(b′1, . . . ,~b

′
H , ~y).

Namely, we know that since H > n, the ρσ′ type of ~m over I is definable over
G. This will be eventually applied in Claim 6.11. Before continuing the argument,
we establish a canonical representation for equivalence classes with respect to the
order. An equivalence class for some set W , i.e. a complete order type in variables
y1 . . . yR over W , is specified by a list of intervals {Ik : k ≤ R} with endpoints in
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W where each Ik is either open or a singleton, plus an ordering among the vari-
ables y1 . . . yR. This specifies that the class is the intersection of a product of the
{Ik : k ≤ R}, with the set of R-tuples satisfying the type over ∅ given by the
ordering. Given an equivalence class t, we will call the sequence {Ik : k ≤ R} the
interval sequence for t. Note that in the above definitions, we are talking about
intervals Ik in the ordering on I, not subsets of IR as in the previous paragraphs.
We will refer to an interval with endpoints that are consecutive elements si, si+1

from some set S = {s1 < . . . < si < si+1 < . . . < sp} as an S-interval. Given an
S-interval I and a function f with domain S, we will talk about the f -image of the
interval; namely, the interval whose endpoints are the f -images of the endpoints of
I, and which is of the same type as I (half-open, open, etc.). Given a point x in I,
the S-interval of x means the smallest S-interval that contains x.

We call a G~b′ interval which is either open or a singleton and that contains an
element of E a nice interval. We now note the following

Lemma 6.9. 1) If e is an equivalence class for G~b′, and the interval sequence
for e contains only nice intervals, then σ′(~b′, ~y) agrees with σ(~b, ~y) on e.

2) Suppose we have a map f on G~b′ that is the identity on G and maps ~b′ bijec-
tively onto ~b′′, and such that tp<(~b′/G) = tp<(~b′′/G). If e is an equivalence
class for G~b′′, and the interval sequence for e contains only intervals that are
the f -images of nice intervals, then σ′(~b′′, ~y) agrees with σ(~b, ~y) on e.

Proof of Lemma 6.9. To see part 1), notice that σ′(~b′, ~y) and σ(~b, ~y) are constant
on any G~b′ equivalence class, in particular, on e. Since the interval sequence for
e contains only nice intervals, e contains a tuple from E, and σ′(~b′, ~y) and σ(~b, ~y)
must agree on this tuple; hence, they agree on the whole class.

Part 2) follows from 1) by transferring from G~b′ to G~b′′, noting that the assertion
that σ′(~b′, ~y) and σ(~b, ~y) agree on specified intervals with endpoints in G~b′ is part
of the type of ~b′ over G~b. 6.9

Now we will construct a sequence ~b′′ and a function f so that we can apply part
2) to get the equivalence of σ(~b′′, ~y) and σ(~b, ~y) on all R-tuples from S. We define
a function f fixing G (and thus fixing ~bi for i ≤ n) and mapping ~b′j to f(~b′j) = ~b′′j .
Let {g1, . . . , gs} enumerate G in increasing order, and let g0 = −∞, gs+1 = ∞.
We will define f by cases, looking at the part of G~b′ in each interval (gi, gi+1). For
i ≤ s+ 1 do the following:

Find a nice G~b′ interval contained in the interval (gi, gi+1). Such an interval
(l, u) exists, since E realizes all (<,R)-types over G. If l is not gi, then let f(l) be
an element in I lying above gi but below all elements of S in (gi, gi+1). Similarly,
if u is not gi+1, then let f(u) be an element in I lying below gi+1 but above all
elements of S in (gi, gi+1). Define f on the rest of the elements of ~b′ in (gi, gi+1)
so that the order type of G~b′ is preserved. That is, preserve the ordering among
the elements of ~b′ but move all of the elements of ~b′ ∈ (gi, gi+1) that were strictly
below l to the interval (gi, f(l)) and move all ~b′ ∈ (gi, gi+1) that were above u to
the interval (f(u), gi+1). Let f be the identity on the endpoints gi, gi+1.

This completes the construction of b′′. The construction for (g1, g2) is illustrated
in Figure 1.
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Figure 1. The Construction of the mapping f from G~b′ to G~b′′.

It is clear that the resulting ~b′′ has the same type as ~b′ over G. We now note the
crucial property of this construction.

Observation 6.10. For every R-tuple ~h from S, let the G~b′′ equivalence class of
~h have interval sequence J1, . . . , JR. Then each Jk is the image under the function
f of a nice interval.

Proof. Let i ≤ R be given. We will show that ~h(i) is in the image of a nice interval.
If ~h(i) is in the interior of its G-interval, then the construction guarantees that the
G~b′′-interval containing ~h(i) is the image of a nice interval. If ~h(i) is an endpoint
of its G-interval, then ~h(i) is in G, hence in E, hence {~h(i)} is itself a nice interval.
The construction guarantees that f maps every element of ~b′ ∩ G to itself, hence
~h(i) is again in the f -image of a nice interval. 6.10

We now put these constructions together to show the finite satisfiability of η.

Claim 6.11. For any finite subset S of I and set of neighborhoods Ni about ~bi for
i ≤ n, there is a dS in M and a sequence ~fi, ~gi for i ≤ n in Ni such that for all
~f ∈ S, β(~m, dS , ~f)↔ σ(b1, . . . , bn, ~f) holds and ¬[σ(~b, ~fi)↔ σ(~b,~gi)] holds for each
i ≤ n.

Proof of Claim 6.11. The ~fi, ~gi for i ≤ n that are required in the conclusion of the
claim are the ~fi, ~gi : i ≤ n chosen at the beginning of the proof of Claim 6.7. Let
~b′′ be as constructed just before Observation 6.10.

We argue that ρσ′(~m,~b′′1 , . . . ,~b′′n,~b′′n+1, . . . ,
~b′′H) holds. The ρσ′ -type of ~m over I

is definable by a P -bounded formula over G, by the defining property of G, and
since G ⊂ I, this formula is equivalent over I to a <-formula. Hence the ρσ′ -type
of ~m over I does not <-split over G. But ρσ′(~m,~b′1, . . . ,~b

′
H) holds, and hence
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ρσ′(~m,~b′′1 , . . . ,~b
′′
n,
~b′′n+1, . . . ,

~b′′H) does also, since ~b′′ and ~b′ have the same <-type
over G.

Now, by the definition of ρσ′ , we get a dS such that for any tuple of distinct
elements ~f ∈ I, |= [β(~m, dS , ~f) ↔ σ′(~b′′, ~f)]. Since ~g,~b′1, . . . ,~b

′
H and ~g,~b′′1 , . . . ,~b

′′
H

satisfy the same quantifier free order type, σ′(~b′′, ~y) agrees with σ(~b, ~y) on the
image of the ~g~b′-equivalence classes on which σ′(~b′, ~y) agrees with σ(~b, ~y). By
the construction of ~b′′, these classes include every R-tuple from S. So we have
β(~m, dS , ~f) ↔ σ(~b1, . . . ,~bn, ~f) holding for all ~f ∈ S. This completes the proof of
Claim 6.11. 6.11

Claim 6.11 implies Claim 6.7, the type η is finitely satisfiable, which completes
the proof of Proposition 6.6. This finishes the proof that the hypothesis of Propo-
sition 3.8 is satisfied. Hence Theorem 3.3 for theories without the independence
property is proved. 6.7, 6.6, 3.3

7. Applications of the quantifier reduction results to query

collapse theorems

We now apply the results on reductions of indiscernibles proved in the previ-
ous sections. We apply them to prove the expressivity results on embedded finite
structures stated in Section 2, and also to prove a number of other interesting facts
about expansions of models by indiscernibles. We start in Subsection 7.1 by stat-
ing a consequence of the reductions that captures all we actually need from the
previous sections for the query collapse statements. Subsection 7.2 starts the appli-
cations to query collapse; we present a lemma allowing us to concentrate a number
of finite partial counterexamples into a single infinite counterexample. Then we
combine that result with the extension result of the previous section to prove the
main collapse results stated at the beginning of the paper.

7.1. Extending Maps on Indiscernibles. We need to fix some notation. Recall
that a partial L-isomorphism from a structure A to a structure B is an injective
map from a subset of A to B which preserves relations from L. We recall the term
‘partially isomorphic’ from [12] and [10], which is also referred to as ‘back-and-forth
equivalence’ [18].

Definition 7.1. For any language L, two L-structures A and B are partially L-
isomorphic, written A ≈L,p B if there exists a non-empty family J of partial L-
isomorphisms which have the back and forth property: for each j ∈ J and x in A
or B there is j′ ∈ J that extends j with x in the domain or range of the graph of
j′.

Note that if A ≈L,p B, then A and B are elementarily equivalent in any sublan-
guage of L.

Notation 7.2. Let I be a subset of N and let L∗ be the expansion of L+ by
constants {cα : α < |I|}. Fix a permutation g of I and an enumeration {aα : α <
|I|} of I. Then Ng

1 is the expansion of N where cα is interpreted as aα and Ng
2

is the expansion of N where cα is interpreted as g(aα). We will omit the g if it is
fixed in context.

Note that N1 ≈L∗,p N2 implies that the partial isomorphisms in the back-and-
forth system can be taken to extend all g.



STABILITY THEORY 4961

Here is the result that is relevant for collapse theorems:

Theorem 7.3. Let N be a model that is stable (does not have the independence
property) and let I be a set (sequence) of (order) indiscernibles. Suppose that (N, I)
is pseudo-small and that (N, I) is ω1-saturated.

For any permutation g on I (order-preserving permutation of I),

Ng
1 ≈L∗,p N

g
2 .

Proof. We use ∆ to mark whether we are in the order or equality case. Note that
in the order case, pseudo-small requires the (N, I) to be elementarily equivalent
to (N ′, I ′), where I ′ is an order-indiscernible sequence of complete dense order
type. The quantifier-reduction results proved in Section 6 are all properties of the
L+-theory, and hence carry over from small (N ′, I ′) to pseudo-small (N, I).

It suffices to show the collection of pairs of finite sequences 〈~a,~b〉 such that 〈N1,~a〉
is L∗-elementary equivalent to 〈N2,~b〉 form a back-and-forth system. So suppose
〈N1,~a〉 is L∗-elementarily equivalent to 〈N2,~b〉, and a′ is an element of N1. We
shall find b′ such that 〈N1,~a, a

′〉 is L∗-elementarily equivalent to 〈N2,~b, b
′〉.

It suffices to find, a b′ such that for each ρ(x, ~w,~v) in L+, the g-image of the
ρ(x, ~w,~v)-type of a′,~a over I is the same as the ρ(x, ~w,~v)-type of b′,~b over I.

By Corollary 3.6, we know that there is a quantifier-free ∆-formula γρ(~v,~v′) such
that the ρ-type of a′,~a over I is definable by an instance of γρ. That is, there is
~iρ ∈ I such that for each ~c ∈ I, γρ(~c,~iρ) holds if and only if ρ(a′,~a,~c). Let ~jρ be
g(~iρ). Since 〈N1,~a〉 is L∗-elementarily equivalent to 〈N2,~b〉, and 〈N1,~a〉 satisfies
∃x∀~v ∈ P (γρ(~v,~iρ) ↔ ρ(x, ~w,~v)), we have 〈N1,~b〉 satisfies ∃x∀~v ∈ P (γρ(~v,~jρ) ↔
ρ(x, ~w,~v)). Let I0 be the union of the ranges of all the sequences ~iρ and let q(x)
be the type over I0 ∪ {~a} containing the formulas ∀~v ∈ P (γρ(~v,~iρ)↔ ρ(x,~a,~v)) for
all L+-formulas ρ. Then I0 is countable and the type g1(q) (where g1 = g ∪ 〈~a,~b〉)
over the countable set J0 ∪ {~b}, where J0 = g1(I0), is also consistent. So by ω1-
saturation of (N, I) we can choose b′ to realize g1(q) and complete this part of the
back-and-forth. The other direction of the back-and-forth is done by a symmetric
argument, completing the theorem. 7.3

7.2. Connecting Query Collapse to Indiscernibles, and Proof of the Main
Collapse Theorems. We state the connection between indiscernibles and query
collapse results. Specifically, we give a general model theoretic argument that ap-
plies in both the stable and nonindependence property case, and which connects
the query collapse questions mentioned in the introduction to results about indis-
cernibles. This technique is implicit in [6] and is explicit—in a slightly different
formalism – in [4]. The proofs presented here use elementary extension arguments
patterned directly on the proof of Lindstrom’s theorem reported in [13] and some-
what reminiscent of [4], rather than nonstandard analysis as in [6].

We then use the connection results (Lemma 7.5) and the results in the previous
section on definability of types over I in L+ to prove the expressivity results on
embedded finite structures stated in Section 2. As before, we will use a parameter
∆ to mark whether we are in the order or unordered case: ∆ is either {=} or
{=, <}.

Let M be an L∪∆-structure with an infinite domain U. Let ~An, ~Bn be a sequence
of finite relations interpreting the symbols of S in U. We will sometimes write An or
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dom ~An for the stucture whose universe is the union of the domains of the relations
~An (the active domain).

For any two S-structures A and B we write A =n,S,∆ B or say the structures
are n, S,∆ equivalent if the two structures agree on the first n sentences of the
language with vocabulary {S ∪ ∆}. Two frequent uses of this notation will be
(U, ~An) =n,S,∆ (U, ~Bn) and An =n,S,∆ Bn where ~An, ~Bn are finite relations on
U. We will often omit ∆ when it is equality and just write =n,S. Note that the
expressions (M, ~A) and M(A) mean the same thing.

Remark 7.4. Since the relativization of any ∆-sentence to dom ~A can be expressed
as a sentence about (U, ~A), we have the following equivalence. For every n, there
exist An, Bn with (U, ~An) =n,S,∆ (U, ~Bn) and An |= φ but Bn |= ¬φ if and only if
for every n, there areA′n, B

′
n with finite domains contained in U such thatA′n =n,S,∆

B′n, A′n |= φ, and B′n |= ¬φ.

Recall from the first section that M = 〈U, . . . 〉 exhibits collapse to equality if
every ∆-generic query definable over M is definable in the structure 〈U,=〉.

We will consider various ‘collapse theorems’. In each case a failure to collapse
will yield a family of finite structures as in the hypotheses of the next lemma. We
will apply this lemma to produce a single infinite counterexample. Then we will
apply the definability of types to eliminate that counterexample. In Lemma 7.5,
when < is in ∆ , we know only that < is a linear order of the indiscernibles; nothing
is known about the behavior of < on the rest of the model.

Lemma 7.5 (Concentration Lemma). Let I be a set of (∆, L) indiscernibles in a
structure M with universe U. Suppose ~An, ~Bn are finite ∆∪S-interpretations with
domAn, domBn ⊆ I such that (M, ~An) |= φ and (M, ~Bn) |= ¬φ but (I,∆, ~An) =n,S

(I,∆, ~Bn).
Then there is a model M ′ of Th(M), a set of ∆-indiscernibles I ′ in M ′ with

(M, I) ≡L+ (M ′, I ′), two infinite S-interpretations ~T and ~U with domains in I ′,
and a map f on I ′ such that f is an isomorphism from (I ′, ~T ,∆) to (I ′, ~U,∆) but
M ′(~T ) |= φ and M ′(~U) |= ¬φ.

Proof. Let L+ = L ∪∆ ∪ {P} where P is a new unary predicate symbol, and let
〈M, I〉 be the L+-structure where P is interpreted by I. Form L++ by adding
further predicate symbols ~T, ~U corresponding to the symbols in S and, for each n,
two n+ 2-ary functions symbols fn and gn.

The following sentences describe approximations to a back-and-forth. Let
χi(x1, . . . , xn, x) for i < ω enumerate the n + 1-ary formulas in ∆ ∪ ~T and
χ′i(x1, . . . , xn, x) for i < ω enumerate the associated n+ 1-ary formulas in ∆ ∪ ~U.
Then for any r < ω, let θn,r(P, ~T, ~U, fn,gn) contain the assertion that fn and gn
act within P and the conjunction of

∀~x ∈ P, ∀~y ∈ P, ∀x ∈ P

(
∃y ∈ P

( ∧
0<i<r

[χi(~x, x)↔ χ′i(~y, y)]

)

→
∧

0<i<r

[χi(~x, x)↔ χ′i(~y, fn(~x, ~y, x))]

)
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and

∀~x ∈ P, ∀~y ∈ P, ∀x ∈ P

(
∃y ∈ P

( ∧
0<i<r

[χi(~x, x)↔ χ′i(~y, y)]

)

→
∧

0<i<r

[χi(~x,gn(~x, ~y, y))↔ χ′i(~y, y)]

)
.

Let Γ∗ be a collection of L++-sentences which assert:

1) dom ~T ⊂ P, dom ~U ⊂ P;
2) the L+-theory of (M, I,∆);
3) φ(~T), ¬φ(~U);
4) for each n, r, θn,r(P, ~T, ~U, fn,gn).

The consistency of finite subsets of item 4 follows from (I,∆, ~An) =n,S (I,∆, ~Bn).
Let M ′ be a countable model of Γ∗ and suppose I, ~U, ~T , fn, gn interpret P, ~U, ~T,
fn,gn. Then, the fn and gn determine a back-and-forth system which guarantees
that (P,∆, ~U ) and (P,∆, ~T ) are isomorphic ∆∪S-structures, giving us the required
isomorphism f . 7.5

We combine Theorem 7.3 with Lemma 7.5 to get the collapse results. We begin
with stable T and generic queries.

Theorem 7.6. Let M |= T where T is stable. Every generic query Q which is
L ∪ S-definable by a formula φ in M is S-definable in M .

Proof. If Q is not defined by any formula θ in S, for each n, there are finite relations
~An, ~Bn with domAn, domBn ⊆ U with (U, ~An) =n,S (U, ~Bn) and M(An) |= φ and
M(Bn) |= ¬φ. By Remark 7.4 we have (possibly rechoosing the An, Bn) that
An =n,S Bn. Fix a countable set of indiscernibles I = {i0, i1, . . . } in M . By
Remark 2.1, we can replace M by an |I|+-saturated model and thus assume (M, I)
is pseudo-small. Let ~A′n ( ~B′n) be the image of ~An ( ~Bn ) under an injective map
taking the domain of ~An ( ~Bn) to finite subsets of I. Then we have ~A′n =n,S

~B′n,
M( ~A′n) |= φ and M( ~B′n) |= ¬φ. The first statement follows from the fact that we
are taking isomorphic images of all relations in S, and the second from the genericity
of φ. Reversing the use of Remark 7.4, we may assume, (I, ~A′n) =n,S (I, ~B′n).

We now have the hypotheses of Lemma 7.5 with ∆ = {x = y} (for (I, ~A′n),
(I, ~B′n)); we apply that result to get a model (M ′, I ′). Let the infinite S-structures
~T , ~U and the function f on I ′ witness the conditions onM ′ guaranteed in Lemma 7.5.
Let N∗ be an ω1-saturated model of Th(M ′, I ′, ~T , ~S, f). So in N∗ we have (I, ~U)
and (I, ~T ) are S-isomorphic but φ(~T) and ¬φ(~U) hold; moreover, N+ = N∗|L+ is
pseudo-small. Expand N+ to models N1 and N2 for the language L∗ as defined in
Notation 7.2.

Now, we apply Theorem 7.3: this tells us exactly that there is a family of partial-
isomorphisms between N1 and N2 that each extend f . Since f is an S-isomorphism
and ~U, ~T are contained in I, the back and forth system shows, in fact, that (N1, ~T )
and (N2, ~U) are L∗∪S-elementarily equivalent. Now we have a contradiction, since
the reducts of these models to L ∪ S disagree on the sentence φ. 7.6
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We can now derive immediately the following:

Theorem 2.2: Let U be infinite and M be a stable L-structure with domain U. If
Q is a first-order definable generic query over M , then Q is a pure first-order query.

We now show the analagous results to Theorem 7.6 for collapse to order. We
first have

Theorem 2.3: Let (U, <) be an infinite linear order and M an L ∪ {<}-structure
with domain U, which does not have the independence property. If Q is a first-order
definable locally order generic query over M , then Q is an order definable query.

Proof. Suppose not and let φ witness that M does not have locally-generic collapse
to order (i.e. φ ∈ L ∪ S defines a locally-generic query Q but Q is not definable
over the reduct (U, <)). Since Q is not defined over (U, <), for each n, there are
finite relations ~An, ~Bn with domAn, domBn ⊆ U with (U, ~An) =n,S,< (U, ~Bn) and
M( ~An) |= φ and M( ~Bn) |= ¬φ. As in the proof of Theorem 7.6, we may assume
An =n,S,< Bn. And, again by Remark 2.1, we may assume M is ω1-saturated and
contains a countable set I that is order indiscernible and complete densely ordered
by the original order <. Thus, (M, I) is pseudo-small. Let ~A′n ( ~B′n) be the image of
~An ( ~Bn ) under an order-preserving injective map taking the domain of ~An ( ~Bn) to
a finite subset of I. Then we have ~A′n =n,S,<

~B′n. M( ~A′n) |= φ and M( ~B′n) |= ¬φ.
The first statement follows from the fact that we are taking images of all relations
in S and preserving order, and the second from the local genericity of φ.

Invoking Remark 7.4 again, we have the hypotheses of Lemma 7.5 with ∆ as
{x = y, x < y}. We get a model with a sequence of order indiscernibles which
contains S ∪ {=, <}-isomorphic (I,∆, ~T ) and (I,∆, ~U), but with M(T ) |= φ and
M(U) |= ¬φ. We finish the proof exactly as in the the last paragraph of the
proof of Theorem 7.6, using Theorem 7.3 for theories without the independence
property. 2.3

Finally, we derive

Theorem 2.5: Let U be infinite and M be an L-structure with domain U that does
not have the independence property. If Q is a first-order definable generic query
over M , then for any dense linear order (without endpoints) 〈D,<〉, Q is definable
over 〈D,<〉.

Proof. Suppose Q is not definable over some dense linear order 〈D,<〉, but Q is
defined by φ ∈ L∪{S} over M . Let I be a set of indiscernibles in M that is ordered
by a dense linear order without endpoints (not necessarily in L). By the genericity
of Q and the completeness of the theory of dense-linear order without endpoints,
we know that Q is not definable in the structure 〈I,<〉.

Once again there are finite relations An, Bn with domAn, domBn ⊆ I and
(I,<, ~An) =n,S,< (I,<, ~Bn) and M(An) satisfies φ while M(Bn) doesn’t satisfy
φ (where the latter follows from the definability of Q by φ). Again, we have the
hypotheses of Lemma 7.5 and we construct (M ′, I ′). We now have a model (M ′, I ′)
which is pseudo-small and in which I is linearly ordered by < (although we know
nothing of < on the rest of M). Moreover, there are S ∪ {<}-isomorphic (I,∆, ~T )
and (I,∆, ~U), but with M(T ) |= φ and M(U) |= ¬φ.
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By applying Theorem 7.3, we get that this isomorphism extends to a family of
partial-isomorphisms of (M ′, I ′), and this gives a contradiction exactly as in the
proof of Theorem 7.6. 2.5

We have shown that models without the independence property exhibit generic
collapse to order. One can ask if the converse holds: are there models with the
independence property that also have generic collapse? The answer is yes: generic
collapse requires only that the model be well-behaved locally: e.g. within some
definable or∞-definable set. A model that is the disjoint union of a stable structure
and the badly-behaved structure 〈N,+, ∗, <〉 will thus still exhibit generic collapse.

The following result crystalizes the principle behind the arguments of this section
and indicates a wider but difficult to specify collection of generalizations.

Theorem 7.7. Let M be a structure which contains an infinite set I of (order)-
indiscernibles such that any (order)-permutation of I can be extended to a back-
and-forth system. Then M exhibits generic collapse to equality (order).

Two interesting open problems are: does generic collapse to order hold in a
model if and only if some definable set has NIP ; does generic collapse to equality
hold if and only if the model has nonempty stable part (defined in [23]).

8. The theory of the expanded structure

Let (M, I) be pseudo-small. We prove a number of results about T+, the theory
of (M, I). We have studied pseudo-small theories. A priori, each |I|+-saturated
model determines its own theory T+ which is pseudo-small. Our first result is that
for stable theories T and theories without the independence property, the complete
theory of a pseudo-small expansion depends only on the ‘type’ (which we define
next) of the indiscernible sequence.

If I is a set of (∆, L)-indiscernibles in a model M the type Φ of I is the collection
types pn(~x) where pn is realized by any n (properly ordered) elements of I.

Theorem 8.1. Suppose the complete countable theory T is stable (does not have
the independence property). Let M1,M2 be models of T and Ii is a set of (∆, L)-
indiscernibles (sequence of order-indiscernibles) in Mi such that I1 and I2 realize
the same type. If (M1, I1) and (M2, I2) are pseudo-small, then

1) for every L+-formula φ, there is a P -bounded formula φ′(x) which is equiva-
lent to φ(x) on both (M1, I1) and (M2, I2);

2) Th(M1, I1,∆) = Th(M2, I2,∆).

Proof. The first statement depends on the observation that the reductions in Sec-
tions 3, 4, or 6 never depended on the specific model M but only on the types of
the (∆, L)-indiscernible set. The second then follows by proving by induction on
the quantifier rank of the P -bounded formulas that for any P -bounded φ(~x) and
any (properly ordered) sequences of distinct elements ~a ∈ I1, ~b ∈ I2,

M1 |= φ(~a) if and only ifM2 |= φ(~b).

The base step of the induction holds as I1 and I2 realize the same types and the
induction is trivial. 8.1

We now show that T+, the theory of pseudo-small expansions of models of T is
stable and then that if (M, I) is any model of T+ such that (M, I) is saturated, any
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permutation of I extends to an automorphism of M . Note that in earlier sections
we required only that M be saturated; for this extension result we need (M, I)
saturated. We require one definition and a corollary to our elimination results.

Definition 8.2. Let p ∈ S(C) and f be an elementary bijective map from C to D.
Then f p denotes {φ(x, f~c) : φ(x,~c) ∈ p}.
Lemma 8.3. If (N,P ) |= T+, with P (N) = I, C ⊆ N and α is an L-elementary
permutation of IC which fixes C pointwise, then for any ~e,~e′ ∈ N , if tpL(~e′/IC) =
α tpL(~e/IC), then tpL+(~e′/C) = tpL+(~e/C).

Proof. We want to show that for any L+-formula φ(~x,~c), M+ |= [φ(~e,~c)↔ φ(~e′,~c)].
By Theorem 3.3, we may assume φ is P -bounded. So we show by induction on the
number of P -quantifiers that for all P -bounded φ, M+ |= [φ(~e,~c) ↔ φ(~e′,~c)].
Since tpL(~e′/C) = tpL(~e/C), the initial stage holds. Now suppose that for L+

formulas ψ(~w,~c) with less than n P -quantifiers, the lemma holds. Let M+ |= (∃z ∈
P )θ(~e′, z,~c) where θ has fewer than n P -quantifiers. Then this is witnessed by some
e0 ∈ I: M+ |= θ(~e′, e0,~c). Now tpL(~e′/IC) = α tpL(~e/IC) implies tpL(~e′e0/IC) =
α tpL(~eα(e0)/IC). So by induction M+ |= θ(~e, α(e0),~c) and the result follows.

8.3

Corollary 8.4. If T is λ-stable, then T+ is λ-stable.

Proof. We first show that T+ is stable, i.e. stable in some cardinality κ. Since T is
stable, T is stable in each κ with κω = κ. Fix such a κ and a model (N, I) of T+

which is a κ+ saturated L+-structure. Let C0 ⊆ N have power κ. We can expand
C0 to C with |C| = |C0| such that I − C is an indiscernible set over C. It suffices
to show that only κ one types over C are realized in N . Let E be a complete set
of representatives of realizations of the L+-types over C. Define an equivalence
relation on E by e ∼ e′ if for some elementary permutation α of CI which fixes C
pointwise, tpL(e′/IC) = α tpL(e/IC).

For any e, there is a countable subset Ie of I such that tpL(e/IC) does not fork
over IeC, tpL(e/IeC) is stationary, and tpL(e/IC) is the unique nonforking exten-
sion of tpL(e/IeC). If tpL(Ie/C) = tpL(Ie′/C), there is an elementary permutation
α of IC which fixes C pointwise and maps Ie′ to Ie. If tp(e′/IeC) = α tp(e/IeC) =
q, then tpL(e′/IC) and α tpL(e/IC) are both nonforking extensions of q. Thus,
they are equal and e ∼ e′. Thus the ∼ equivalence class of an element e depends
only on i) tpL(Ie/C) and ii) tpL(~e/IeC). Now there are κω choices for i) and κ for
ii) by stability, so there are only κ equivalence classes. But by Corollary 8.3, each
equivalence class determines an L+-type so we establish stability in L+.

To extend this result to all κ (in which T is stable) we may first assume that T
is superstable. This implies that in the second paragraph Ie can be chosen finite.
So, κω at the end of the paragraph becomes κ and the result follows. 8.4

Now we show that every permutation of a set of indiscernibles of a saturated
model M+ of T+ extends to an automorphism of M .

Theorem 8.5. Let T be a stable theory, M a model of T , and I a set of indis-
cernibles in M with (M, I) saturated and (M, I) pseudo-small. Then every permu-
tation of I extends to an automorphism of M .

Proof. Since (M, I) is pseudo-small by Corollary 3.6 we have every L+-type over I
is defined by an equality formula. Let g be a permutation of I. We proceed exactly
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as in the proof of Theorem 7.3. The only distinction is that the type g1(q) is over
J0 ∪ {~b} where ~b now can have any cardinality less than |M |; here we rely on full
saturation of the model. 8.5

In the language of [19] and [24] we have shown that if (M, I) is saturated and
pseudo-small, M is symmetric over I; the last argument is essentially the same as
Theorem 8 of [24].

Note: It is essential that we extend a permutation of a single set—not a partial
isomorphism between two sets of indiscernibles. For example, consider an equiv-
alence relation with two infinite classes. If one set of indiscernibles exhausts one
class, while a second of the same size omits a few points of the other class, then
no bijection of the two sets can be extended to make the associated M1 and M2

partially isomorphic, let alone to an automorphism.

9. Conclusions

There are several questions on the scope of the P -bounded reduction theorems
proved in this paper. Can we characterize the assumptions on the model and
predicate P that allow P -bounded reduction to hold for more general expansions by
unary predicates, not just indiscernibles? The results in [6], [4] and [14] are relevant
here, since they give sufficient conditions for such reductions over expansions by
arbitrary pseudo-finite sets. There are a number of analogies with Poizat’s theory
of beautiful pairs [33]. Casanovas and Ziegler [9] have provided a generalization of
our results here and of Poizat’s theory to show that if (M,A) is small and A does
not have the finite cover property, then (M,A) is stable.

The above work is entirely in a stable context. In the order context we have the
following conjecture.

Conjecture 9.1. If T does not have the independence property, then T+ does not
have the independence property.

The proofs of the bounded-quantifier collapse result here rely on approximation
arguments: we approximate a formula asserting the existence of a witness for many
elements of I by a particularly nice conjunction of first-order L formulas. In this
sense, they seem to be extensions of the results in [22]. We are also interested in
seeing if the results here on theories without the independence property can be
proved using the techniques of [23]. We are interested in using the techniques to
expand a stable theory to get stronger collapse results, such as those given for more
restricted theories in [6].

Belegradek, Stoubouskin, and Tsaitlin conjecture in [4] that if M is an expansion
of (Z,+, <) and locally order-generic queries on M do not collapse to order, then
the theory of M is undecidable. In view of Theorem 2.3, this conjecture can be
reformulated as: any expansion of (Z,+, <) that has the independence property is
undecidable.

The structure M is called symmetric over I if every permutation of I extends
to an automorphism of M . We have shown that if I is pseudo-small and (M, I) is
saturated, then M is symmetric over I. One naturally hopes

Conjecture 9.2. If (M, I) is pseudo-small and M is an uncountable saturated
model, then M is symmetric over I.
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Even more strongly we speculate: If M is an uncountable saturated model of a
stable theory and I is an indiscernible set, then M is symmetric over I.

The results here show that this conjecture is true if 〈M, I〉 is elementary equiva-
lent to 〈M0, I0〉, where M0 is |I0|+-saturated. The result holds by standard stability
arguments if T is superstable and the average type of the indiscernibles is regular.
This was pointed out to us by Hrushovski and verified with Pillay and Casanovas.
However, the conjecture remains open even for the general superstable case.
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