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THE FARRELL-JONES ISOMORPHISM CONJECTURE
FOR FINITE COVOLUME HYPERBOLIC ACTIONS

AND THE ALGEBRAIC K-THEORY OF BIANCHI GROUPS

E. BERKOVE, F. T. FARRELL, D. JUAN-PINEDA, AND K. PEARSON

Abstract. We prove the Farrell-Jones Isomorphism Conjecture for groups
acting properly discontinuously via isometries on (real) hyperbolic n-space Hn
with finite volume orbit space. We then apply this result to show that, for any
Bianchi group Γ, Wh(Γ), K̃0(ZΓ), and Ki(ZΓ) vanish for i ≤ −1.

1. Introduction

Let Γ be a discrete group, let ZΓ denote its integral group ring, and let Ki(ZΓ)
be the algebraic K-theory groups of the ring ZΓ, where i ∈ Z. It has been conjec-
tured that these K-groups may be computed from the corresponding K-groups of
certain subgroups of Γ. More precisely, the Farrell-Jones Isomorphism Conjecture
[10] states that the algebraic K-theory of ZΓ may be computed from the algebraic
K-theory of the virtually cyclic subgroups of Γ via an appropriate “assembly map”
(see Section 2 for a precise statement and definitions), where a group G is called
virtually cyclic if it either is finite or fits into an extension 1 → Z→ G → F → 1,
with F a finite group. In [10] Farrell and Jones prove the Isomorphism Conjecture
in lower algebraic K-theory for subgroups of discrete cocompact groups contained
in virtually connected Lie groups, and for certain discrete cocompact groups acting
properly discontinuously by isometries on a simply connected symmetric Riemann-
ian manifold M with everywhere nonpositive curvature.

Let Γ be a discrete group acting properly discontinuously on hyperbolic space
Hn via isometries whose orbit space has finite volume. In particular, there is a
representation of Γ in Isom(Hm) with finite kernel K and image Γ̂ (that Γ̂ is
virtually torsion-free follows from [22] (6.11 and 13.21) and the fact that Isom(Hn)
embeds in GL(m,R) for some m). We prove in Section 3 of this paper that the
Farrell-Jones Isomorphism Conjecture holds for such a group Γ. We state this
precisely:

Theorem A. The Isomorphism Conjecture is true for the functors P∗ and PDiff∗
on the space X provided that there exists a properly discontinuous finite covolume
group action by isometries of Γ = π1(X) on a hyperbolic space Hn.
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The technique of proof consists of modifying the ends of the finite volume orbit
manifold to construct a new manifold which is compact. This modification of our
original manifold changes its sectional curvature, but we are able to control it in
such a way that it stays nonpositive. The resulting extension of the Isomorphism
Conjecture yields a wide variety of examples on which one may reduce the com-
putation of the lower K-groups to a family of proper subgroups. We mention a
particular collection of groups to which this theorem applies. Let Od denote the
ring of integers in an imaginary quadratic number field Q(

√
d), with d ∈ Z, d < 0

and square free. The Bianchi group Γd is defined as Γd = PSL2(Od) ⊂ PSL2(C);
these groups comprise a family of infinite discrete subgroups of PSL2(C). In this
paper we classify all virtually cyclic subgroups contained in Bianchi groups, then
show that the lower algebraic K-theory of all the virtually cyclic subgroups van-
ishes, obtaining the following application of Theorem A:

Theorem B. Let Γd be a Bianchi group. Then Ki(ZΓd) = 0 for i ≤ −1, K̃0(ZΓd)
= 0, and Wh(Γd) = 0.

This paper is organized as follows. In the second section we state the Isomor-
phism Conjecture of Farrell-Jones and their theorem for the case of cocompact
actions. Next we recall the concept of a warped product of two Riemannian mani-
folds, a technical device we need to extend the result. In the third section we prove
the Farrell-Jones Isomorphism Conjecture for certain actions with finite covolume.
This implies that the lower algebraic K-theory of the Bianchi groups comes from
their virtually cyclic subgroups. In the fourth section we classify these virtually
cyclic subgroups and show that their lower algebraic K-groups vanish.

We would like to express our warmest thanks to the people that have kindly
helped and encouraged us in the realization of this work, in particular Jim Davis,
F. González Acuña, S. Prassidis, and Peter Jarvis.

We also thank the referee for many valuable suggestions.

2. Preliminaries

This section has two parts. In the first part we recall the definitions, notation,
and terminology needed to state the Farrell-Jones Isomorphism Theorem. In the
second part we recall the concept of a warped product of two Riemannian manifolds.
The main references are [10], [21] and [8] for the first section; [3], [4], and [18] for
the second.

2.1. Background to the Farrell-Jones Isomorphism Conjecture. The Far-
rell-Jones Isomorphism Conjecture concerns four functors from Top to Ω-Spectra.
Let P∗ (PDiff∗ ) denote the functor that maps a space X to the Ω-spectrum of stable
topological (smooth) pseudo-isotopies on X . Denote by K∗ the functor that maps
X to the algebraic K-theoretic (non-connective) Ω-spectrum for the integral group
ring Zπ1(X) (see [12], [20]), and by L−∞∗ the L−∞-surgery functor. We use S∗ to
denote any of these four functors.

Definition 1. A group G is virtually cyclic if it has a cyclic subgroup of finite
index, i.e., if it is either finite or contains an infinite cyclic subgroup of finite index.

The philosophy of the Isomorphism Conjecture is that the spectrum S∗(X)
should be computable in a simple way from the spectra {S∗(XH)}, whereH denotes
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a virtually cyclic subgroup of π1X and XH is the covering space of X corresponding
to the subgroup H .

We establish some notation. Let G = π1(X) and E(X) = X̃ ×G EFG = X̃ ×
EFG/ ∼. Here X̃ is the universal cover of X , EFG is the universal F -classifying
space for a family F of subgroups of G, and (xγ, y) ∼ (x, γy). Let ρ : E(X)→ B(X)
be projection onto the second factor, and let f : E(X)→ X be the composition of
projection onto the first factor followed by the covering map X̃ → X . The map ρ
is a stratified fibration with fibers homeomorphic to the spaces {XH , H ∈ F}.

A simplicially stratified fibration g : Y → X gives rise to an Ω-spectrum
H∗(X ;S∗(g)) and an assembly map A∗ : H∗(X ;S∗(g)) → S∗(Y ), which is the
classical assembly map A∗ : H∗(X ;S∗(pt)) → S∗(X) in the special case of g =
id : X → X (see [10], [21]; also [8] for a different formulation).

Let X be a connected CW-complex and ρ : E(X) → B(X) the simplicially
stratified fibration constructed from the family of virtually cyclic subgroups of G
= π1(X). Conjecture (1.6) from [10] states

Farrell-Jones Isomorphism Conjecture. The composite

H∗(B(X),S∗(ρ))
S∗(f)◦A∗−→ S∗(X)

is an equivalence of Ω-spectra, where A∗ is the assembly map A∗ : H∗(B(X);S∗(ρ))
→ S∗(E(X)), and S∗(f) is the image of the map f : E(X)→ X under S∗.

There is also the following stronger, “fibered” version of the conjecture:

Fibered Isomorphism Conjecture. Let X be a connected CW-complex, ξ =
Y → X a Serre fibration, and E(ξ) the total space of the pullback of ξ along the
map f : E(X) → X. Also let ρ(ξ) : E(ξ) → B(ξ) be the composition E(ξ) →
E(X)→ B(X), and f(ξ) : E(ξ)→ Y the map that covers f : E(X)→ X. Then the
composite

H∗(B(ξ),S∗(ρ(ξ)))
S∗(f(ξ))◦A∗−→ S∗(Y )

is an equivalence of Ω-spectra.

Later in [10] (2.1, A.8, 2.2.1 and 2.3) Farrell and Jones prove the following
fundamental results:

Farrell-Jones Isomorphism Theorem. The Fibered Conjecture is true for the
functors P∗ and PDiff∗ on the space X provided that there exists a simply con-
nected symmetric Riemannian manifold M with nonpositive sectional curvature ev-
erywhere such that M admits a properly discontinuous action of a group Γ via
isometries of M , with π1(X) ⊂ Γ and compact orbit space M/Γ.

Theorem 2. Let X be a connected CW-complex such that π1(X) is a subgroup of
a cocompact discrete subgroup of a virtually connected Lie group. Then the Fibered
Conjecture is true for the functors P∗ and PDiff∗ on the space X.

Proposition 3. If the Fibered Isomorphism Conjecture holds for the functor S∗
on a connected aspherical CW-complex C, then it holds for S∗ on any connected
CW-complex X with π1(X) ∼= π1(C).

In light of the above, we say the Isomorphism Conjecture is true for Γ if it is
true for some classifying space BΓ.
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The relation between P∗ and lower algebraic K-theory is given by the work of
Anderson and Hsiang [1]. They show

πj(P∗(X)) =


Kj+2(Zπ1(X)) if j ≤ −3,
K̃0(Zπ1(X)) if j = −2,
Wh(π1(X)) if j = −1.

We make use of this relationship in Theorem 7.

2.2. Warped Products. The main reference for this section is [18]. Setting up
some notation, let B be an n-dimensional Riemannian manifold, let p be a point
in B, and let u, v and w be tangent vectors in TpB. Denote by 〈u, v〉B the inner
product at TpB, and by Ruvw the curvature operator on TpM induced by the
curvature tensor R of B.

Definition 4. Let B and F be Riemannian manifolds, and let ϕ : B → R be a
positive C∞ function. The warped product

B ×
ϕ
F

is the manifold M = B × F with the following metric: for each x ∈ TM at
(p, q) ∈ B × F

〈x, x〉M = 〈dπ(x), dπ(x)〉B + ϕ2(p)〈dσ(x), dσ(x)〉F ,

where π : M → B and σ : M → F are the corresponding projections, and 〈 〉B and
〈 〉F are the metrics on B and F respectively.

It is possible to express the curvature tensor of a warped product in terms of the
curvature tensors of each factor and the warping function. In a warped product

M = B ×
ϕ
F

we denote by R the curvature tensor on M . Let X,Y , and Z be lifts of vector fields
on B to M , and let U, V , and W be lifts of vector fields on F to M . Moreover,
denote by FR the lift of the curvature tensor of F to M . We use the following
identities (see [18], chapter 7):

RV XY = (Hϕ(X,Y )/ϕ)V, where Hϕ is the Hessian of ϕ;(1)

RVW (U) = FRV,WU −
(
〈∇ϕ,∇ϕ〉

ϕ2

)
(〈V, U〉W − 〈W,U〉V ),(2)

where ∇ denotes the gradient of ϕ.
Our next proposition is the key technical device in modifying an end (cusp) of a

hyperbolic manifold.

Proposition 5. Let ϕ : (c,∞)→ R be a positive C∞ function which is concave up
(i.e., ϕ′′(x) ≥ 0 for all x ∈ (c,∞)). Let Rn be the n-dimensional Euclidean space
with the standard metric. Then the warped product

(c,∞) ×
ϕ
Rn

has nonpositive sectional curvature everywhere.
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Proof. Recall that the sectional curvature, κ, in a manifold M is defined as

κ(v, w) = 〈Rvwv, w〉/ Q(v, w),

where v and w are linearly independent vectors in TpM , R is the curvature operator
on TpM , and Q(v, w) = 〈v, v〉〈w,w〉 − 〈v, w〉2. The sectional curvature κ does not
depend on the pair of vectors v, w as long as they span the same plane in TpM . In
order to compute the sectional curvature of our warped product, we first consider
the following two special cases in which both v and w are orthogonal unit vectors.

Case 1. Both vectors, v and w, are tangent to the Rn factor. By identity (2),
we have

κ(v, w) = 〈RnRvwv −
(
ϕ′

ϕ

)2

w,w〉 = −
(
ϕ′

ϕ

)2

≤ 0.

Case 2. The vector w is tangent to the R factor and v is tangent to the Rn
factor. Since 〈Rvwv, w〉 = −〈Rvww, v〉, identity (1) implies

κ(v, w) = −〈
(
Hϕ(w,w)

ϕ

)
v, v〉 = −ϕ

′′

ϕ
≤ 0.

We now consider the remaining case.
Case 3. v = v0 + v1 and w = w0 + w1, where the pair v0, w0 are as in Case

1 and the vectors v1, w1 are both tangent to the R factor. Since Q(v, w) > 0, it
suffices to show that

〈Rvwv, w〉 ≤ 0.

To accomplish this, expand the 4-tensor 〈Rvwv, w〉 into the 16-terms

〈Rvα(1)wα(2)vα(3), wα(4)〉.
(Here α varies over all functions from {1, 2, 3, 4} to {0, 1}.) Observe that each of
these terms is non-positive. This observation for the three terms

〈Rv0w0v0, w0〉, 〈Rv0w1v0, w1〉, 〈Rv1w0v1, w0〉
is a consequence of cases 1 and 2. The remaining 13 terms are 0. This is easily seen
by using identities (1) and (2) together with the basic symmetries of the curvature
tensor (cf. [18], pg. 75, Prop. 36, identities (1), (2), and (4)).

3. The Farrell-Jones Conjecture

for finite covolume hyperbolic actions

In this section we use the warped product construction to prove the conjecture
for discrete groups acting on hyperbolic space with finite volume quotient. Our
strategy is to manufacture a group G with cocompact action which essentially sat-
isfies the hypotheses of the Farrell-Jones Isomorphism Theorem and which contains
an isomorphic copy of our original group.

Proposition 6. Let Γ be a discrete, finite covolume subgroup of Isom(Hn+1) such
that Γ fits into an extension

1→ Π→ Γ→ G→ 1,

where Π is a torsion free subgroup and G is a finite group. Then there exist a simply
connected, complete, nonpositively curved Riemannian manifold Z and a subgroup
G ⊆ Isom(Z) with the properties that Γ ⊆ G and G acts properly discontinuously
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on Z with compact orbit space via its natural isometric action. Such a G fits into
an extension as above, 1→ Π′ → G → G→ 1, with Π′ torsion free.

Proof. The method of this proof is to start with a finite volume manifold with
cusps. We flatten the cusps, truncate them, then glue the resulting manifold with
boundary to a copy of itself. We perform these operations so that the resulting
doubled manifold is compact and has nonpositive sectional curvature.

We start with M = Hn+1/Π. This is a complete finite volume Riemannian man-
ifold with constant curvature −1. Let µ be the Margulis constant for n-dimensional
manifolds of nonpositive curvature (see [3] or [4]). This splits M into two parts:
M1, the thin part, and M2, the thick part. By picking a suitable ε smaller than µ
we can assume that M1 consists entirely of a finite number of disjoint unbounded
components, and that each component is isotopic to Ui = (c,∞) ×

e−t
Nn
i , for some

flat compact n-dimensional manifold Nn
i (see [4], section D.3). Thus

M1 =
s⊔
i=1

Ui.

Now rescale the Riemannian metrics on Nn
i so that each has volume equal to 1.

Then

Ui = (di,∞) ×
e−t

Nn
i

for certain numbers d1, d2, . . . , ds. Choose real numbers c1 and c2 such that c1 >
c2 > max{di}. Let c3 ∈ (c2, c1). Using an elementary real variable argument, we
construct ϕ : R → R, a positive C∞ function which equals e−t for t ≤ c2, equals
e−c3 for t ≥ c1, and is concave up everywhere.

For each Ui we “cut off” the end

(c2,∞) ×
e−t

Nn
i

and replace it with the warped product

(c2,∞) ×
ϕ(t)

Nn
i .

This yields an open (n+ 1)-manifold Ỹ n+1, homeomorphic to M but with different
curvature. Locally Ỹ n+1 is either Hn+1 or the warped product

R ×
ϕ
Rn,

where ϕ satisfies the hypotheses of Proposition 5. As sectional curvature is a local
concept, it follows that Ỹ has nonpositive sectional curvature everywhere. This
new manifold Ỹ also has ends of the form

(c1,∞) ×
d
Ni,

where d is a constant function.
Intuitively it is clear how to construct the double of Ỹ . We take two disjoint

copies of Ỹ and cut off each cusp at c1 + 1 (in the first coordinate) to form a collar
which is the product [0, 1] × Ni. We then glue corresponding truncated cusps of
Ỹ together in twos along their boundaries. The resulting Riemannian manifold Y
is compact, as there are only finitely many cusps, and it is clearly complete with
nonpositive sectional curvature everywhere.
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Let Z be the universal cover of Y . Then Z is a simply connected complete Rie-
mannian manifold. Consider π1(Y ), regarded as the group of deck transformations.
Notice that π1(Y ) ⊆ Isom(Z), it acts cocompactly and properly discontinuously
on Z, and that π1(M) = Π and injects into π1(Y ). Thus Z seems to be a good
candidate for the manifold in this proposition.

We have a couple of details left to prove. The elements of G, the quotient of
Γ, act on M . We need to show that these are isometries of Ỹ , then show that
the doubling contruction respects the action of these elements, so that they induce
isometries of Y .

From Section 10 in [3], given a component Ui of M1 and an element γ ∈ Γ,
either γUi = Ui or γUi ∩ Ui = ∅. Take an element g ∈ G, and also denote by g the
isometry it determines on M . Then g acts on the ends Ui, perhaps by permuting
them. Assume first that g · Ui = Ui, and consider the geodesic

α(t) = (t, x)

for a fixed point x ∈ Ni, and t0 ≤ t < ∞ where t0 > di. Then g · α is also a
geodesic, as g is an isometry. Define (t1, x1) ∈ (di,∞)×Nn

i by

(t1, x1) = g(α(t0)).

Comparing g · α to the geodesic β defined by

β(t) = (t+ (t1 − t0), x1),

we see they start at the same point. We lift these geodesics to Hn+1, the universal
cover of M , and observe that they determine two geodesics that go through some
point x0, and that determine the same point at infinity. Thus these geodesics
coincide, i.e., we have β(t) = g · α(t).

Hence g preserves the foliation of Ui by the set of lines {(di,∞)× x | x ∈ Nn
i }.

Consequently, g also preserves the perpendicular foliation {t × Nn
i | t ∈ (di,∞)},

since g acts isometrically. But each leaf t × Nn
i has a different volume, so g must

map t×Nn
i to t×Nn

i . Thus the action of g on

Ui = (di,∞) ×
e−t

Ni

is only on the Ni factor, and is also an isometry of

(di,∞) ×
ϕ
Ni.

It is also possible that g · Ui = Uj , i 6= j, and a similar argument shows that g
acts only on the right factor

g : (di,∞) ×
e−t

Ni → (dj ,∞) ×
e−t

Nj

(note this implies that di = dj). Then g is also an isometry

g : (di,∞) ×
ϕ
Ni → (dj ,∞) ×

ϕ
Nj ,

so the action of G on M is also an action by isometries on Ỹ . Also, since the
action restricted to

⊔
i Ui is only on the fiber and not on the leaf (the R factor), all

the glueings required in the construction of the double can be completed smoothly.
Therefore G ⊆ Isom(Y ).

We define the group G ⊆ Isom(Z) to consist of all possible lifts of g : Y → Y
to ḡ : Z → Z, where g ∈ G ⊆ Isom(Y ). Set Π′ in this proposition equal to π1(Y ).
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A covering space argument, making use of van Kampen’s theorem, produces a
subgroup of G that is isomorphic to Γ.

We now complete the proof of the Farrell-Jones Conjecture for discrete finite
covolume groups.

Theorem A. The Isomorphism Conjecture is true for the functors P∗ and PDiff∗
on the space X, provided that there exists a properly discontinuous finite covolume
group action by isometries of Γ = π1(X) on a hyperbolic space Hn.

Proof. Such a Γ satisfies the hypotheses of Proposition 6. Hence Γ embeds in
G, where the group G acts cocompactly and properly discontinuously on Z via
isometries and Z is a complete non-positively curved simply connected Riemannian
manifold. If Z were a symmetric space, then Theorem A would be an immediate
consequence of these facts and the Farrell-Jones Isomorphism Theorem as stated in
Section 2. Unfortunately, Z is not a symmetric space. But Theorem A still follows
directly from the variant of the Farrell-Jones Isomorphism Theorem where the word
“symmetric” is replaced by “complete.” It is also required that the image of the
representation of Γ in Isom(Z) be virtually torsion free. The proof of this variant for
Z constructed above then follows almost word for word that given for Proposition
2.3 in [10] (substituting Z for M and G for π1(X)). As a consequence, the Fibered
Isomorphism Conjecture 1.7 of [10] holds for any space with fundamental group G.
The proof of Theorem A follows from A.8 of [10] since Γ ⊂ G, and from Proposition
3.

4. Algebraic K-theory of Bianchi groups

As an application of our extension of the Farrell-Jones Isomorphism Theorem,
consider the Bianchi groups, mentioned in the introduction. The Bianchi groups
satisfy the hypotheses of Theorem A; we use this to calculate their lower algebraic
K-groups.

Theorem 7. Let Γ be a group for which the Isomorphism Conjecture holds for the
functor P∗, and suppose, for every virtually cyclic subgroup G of Γ, that Wh(G),
K̃0(ZG), and Ki(ZG) for i ≤ −1 all vanish. Then Wh(Γ), K̃0(ZΓ), and Ki(ZΓ)
for i ≤ −1 all vanish.

Proof. This essentially follows from [10], Section 1.6.5. If the Isomorphism Conjec-
ture for P∗ holds for Γ, then, using the correspondence of [1],

πn(H∗(B(X),P∗(ρ))) ∼= πn(P∗(X)) ∼= Whn+2(π1(X)) = Whn+2(Γ)

for n ≤ −1, where Wh0(Γ) means K̃0(ZΓ) and Whn(Γ) = Kn(ZΓ) for n negative.
There is a spectral sequence converging to πi+j(H∗(B(X),P∗(ρ))) whose E2

i,j -term
involves homology with coefficients in πj(P∗(ρ)) (see [21]). If Whn(G) vanishes for
n ≤ 1 for all virtually cyclic subgroups G of Γ, then, using [1] again, πj(P∗(ρ)) = 0
for j ≤ −1. Thus E2

i,j = 0 for j ≤ −1, and so πn(H∗(B(X),P∗(ρ))) = 0 for n ≤ −1.
Consequently Whn(Γ) = 0 for n ≤ 1.

We now prove

Theorem B. Let Γd be a Bianchi group. Then Ki(ZΓ) = 0 for i ≤ −1, K̃0(ZΓ) =
0, and Wh(Γ) = 0.
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The proof requires two steps. We must classify all of the virtually cyclic sub-
groups of the Bianchi groups. We then need to show that their lower algebraic
K-theory vanishes. Once we have done this, the result follows at once from The-
orem A and Theorem 7. We accomplish these remaining steps in the next two
sections.

4.1. Virtually cyclic subgroups of Bianchi groups. In this section we classify
up to isomorphism all possible virtually cyclic groups G which occur as subgroups
of Bianchi groups. In particular we list all such subgroups in the five Euclidean
Bianchi groups, Γd, for d = −1,−2,−3,−7,−11.

Recall that a virtually cyclic group either is finite or fits into an extension 1→
Z→ G→ F → 1. The finite subgroups of Bianchi groups are well-known: 1, Z/2,
Z/3, D2 (the elementary abelian group of order 4), S3 (the symmetric group on
three letters), and A4 (the alternating group on four letters) [13].

To classify the infinite virtually cyclic subgroups we use the following structure
theorem due to P. Scott and T. Wall:

Theorem 8 ([24]). The following conditions on a finitely generated group G are
equivalent:

TF1 G contains an infinite cyclic subgroup of finite index.
TF2 G contains a finite normal subgroup with quotient isomorphic to Z or D∞.
TF3 G is isomorphic to an HNN extension of the form F ∗

F
with F a finite group

when the quotient is Z, and to an amalgamated product

A ∗
F
B

where F is finite and |A : F | = |B : F | = 2 when the quotient is D∞.

Condition TF1 gives the usual definition of a virtually infinite cyclic group. In
our case, condition TF2 yields a significant reduction in the problem of classifica-
tion, as only the five non-trivial finite groups listed above appear as subgroups of
the Bianchi groups.

Consider the virtually cyclic groups that fit into short exact sequences with finite
kernel and D∞ as a quotient. By TF3 above, there are only three possibilities: the
amalgamated products Z/2 ∗

1
Z/2 ∼= D∞, D2 ∗

Z/2
D2
∼= D∞ × Z/2, and S3 ∗

Z/3
S3.

These subgroups do in fact appear in various Bianchi groups.
Virtually cyclic groups that arise from extensions of the form 1 → F → G →

Z → 1 are a little harder to classify. We first show that the kernel of this short
exact sequence cannot equal either D2 or A4. We will need a couple of lemmas.

The following is well-known (see [14]):

Proposition 9. Two non-trivial elements f and g of PSL2(C) commute if and
only if either

(i) they have exactly the same fixed point set, or
(ii) each is elliptic of order two, and each interchanges the fixed points of the

other.

Although elements of PSL2(C) are matrices, they may also be thought of as
fractional linear transformations, a subgroup of isometries of the complex plane.
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Specifically, (
a b
c d

)
←→ z 7−→ az + b

cz + d
.

The advantage of this point of view is that it allows us to use geometry in
describing algebraic properties of PSL2(C). For example, recall that fractional
linear transformations are triply transitive, that is, they can send any three complex
values to any other three complex values. In fact, this uniquely determines the
transformation.

Lemma 10. If G is a subgroup of PSL2(C) which fits into an extension 1→ F →
G→ Z→ 1 where F is a finite group, then F is abelian.

Proof. First we observe that any such G has a subgroup isomorphic to Z× F . Say
Z = 〈t〉. Then t acts on F by conjugation and has finite order, say n. Notice that tn

acts trivially on (commutes with) F , so 〈tn, F 〉 ∼= Z×F . Let g and h be non-trivial
elements of F . Since g and tn commute and tn has infinite order, by Proposition
9, g and tn must have the same fixed point set. By an identical argument, h and
tn have the same fixed point set. Therefore g and h have the same fixed point set,
so they must commute, and so F is abelian.

To limit the possibilities even further,

Lemma 11. The group PSL2(C) does not contain a subgroup isomorphic to G =
Z×D2.

Proof. The subgroup G is generated by an element t of infinite order and two
elements a, b of order two, and they all commute. We claim that a and b do not
share fixed points. A non-identity element of order two in PSL2(C) is of the form(
α β
γ −α

)
with determinant one. Considered as a fractional linear transformation,

the fixed points of this element are α±i
γ . It is now easy to confirm that only one

element of order two has these fixed points. Thus case (i) in Proposition 9 does
not apply, so a and b are as in case (ii), with each interchanging the other’s fixed
points.

Now for t to commute with both a and b it must, by (ii), share their fixed points.
However there are four of them, forcing t to be the identity element.

Corollary 12. The finite groups D2, S3 and A4 do not appear as kernels of 1→
F → G→ Z→ 1.

The only possibilities left are F = Z/2 or Z/3. We note that the classifying
space of Z is S1. Therefore, H2(Z;A) = 0 for any coefficients A. This implies that
each action of Z on F will yield a split extension which is unique up to equivalence
in the sense of Brown [6].
Case 1: F = Z/2. The quotient Z acts trivially on Z/2, and H2(Z;Z/2) = 0. The
only possibility is G ∼= Z× Z/2.
Case 2: F = Z/3. The finite group Z/3 has two possible Z-module structures, the
trivial action and the action that sends a generator of Z/3 to its square. Thus either
G ∼= Z× Z/3 (trivial action), or G ∼= Z/3o Z (twisting action). We summarize:

Theorem 13. Any infinite virtually cyclic subgroup of a Bianchi group must be
isomorphic to one of the following seven groups: Z,Z × Z/2,Z × Z/3,D∞,D∞ ×
Z/2,Z/3o Z, and S3 ∗

Z/3
S3.
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For the five Euclidean Bianchi groups, we provide a specific list below.

Theorem 14. Up to isomorphism, the following is a complete list of the infinite
virtually cyclic subgroups G of Γd for d = −1, −2, −3, −7, −11:

d G
−1 Z,Z× Z/3, D∞, G2

−2 Z,Z× Z/2,Z× Z/3, D∞, G1

−3 Z,Z× Z/2, D∞
−7 Z,Z× Z/2,Z× Z/3, D∞
−11 Z,Z× Z/2,Z× Z/3, D∞

where G1 = D∞ × Z/2 and G2 = S3 ∗
Z/3

S3.

Proof. To verify the results listed in the table, we construct infinite virtually cyclic
subgroups by examining the normalizers and centralizers of conjugacy classes of tor-
sion elements. We give an overview of the case Γ−1; full information on normalizers
and stabilizers for the five Bianchi groups can be found in [5].

For Γ−1, the existence of subgroups Z and Z × Z/3 follows directly from the
computations in [5]. The subgroups G ∼= Z × Z/2 and D∞ × Z/2 do not occur,
as every element of order two in Γ−1 has finite centralizer. Let A1 =

(
0 −1
1 0

)
and A2 =

(−i −1+i
0 i

)
be elements in Γ−1. Then it is immediate to verify that

G = 〈A1, A2〉 ∼= D∞. On the other hand, let C =
(

0 −1
1 1,

)
, A =

(−1−2i 1−2i
2 1+2i

)
,

and D =
(−i −i

0 i

)
be elements in Γ−1. Then 〈A,C〉 ∼= S3, 〈C,D〉 ∼= S3, and

〈A,C,D〉 ∼= S3 ∗
Z/3

S3. The explicit calculations in [5] show that these are the

only possible virtually cyclic subgroups.

4.2. Algebraic K-theory of the virtually cyclic subgroups of Γd. In this
section we provide the final step in proving Theorem B: the K-theory vanishing re-
sult for the virtually cyclic subgroups classified in the last section. The calculations
require a variety of techniques, so we either supply a summary of the calculation
or a reference. In what follows, F2 and F3 are the fields with 2 and 3 elements
respectively.

Proposition 15. Let G be any virtually cyclic subgroup of a Bianchi group. Then
K̃0(ZG) = 0, Wh(G) = 0, and Ki(ZG) = 0 for i ≤ −1.

Proof. From our classification theorem, G is either one of the six finite groups:
1, Z/2, Z/3, D2

∼= Z/2⊕Z/2, S3
∼= D3, A4; or one of the seven infinite virtually

cyclic groups: Z, Z×Z/2, Z×Z/3, Z/3oZ, D∞ ∼= Z/2∗Z/2, D∞×Z/2, S3 ∗
Z/3

S3.

The finite groups 1, Z/2, Z/3, D2, S3, A4.
The Whitehead groups Wh(G) are trivial for H cyclic of order 1, 2, and 3 by

[25]. For the other finite groups, a result of Bass and Murthy [2] states that Wh(G)
= Zy ⊕ SK1(ZG), where y is the number of irreducible real representations of G
minus the number of irreducible rational representations of G. For G = D2, S3,
and A4, y is zero, and a result of Oliver [17] proves that SK1(ZG) vanishes for each
of these three groups as well.

For the other K-groups, Carter shows in [7] that the groups Ki(ZG) vanish for
i < −1. The formula given in ([2], p. 695) shows that K−1(ZG) is zero for the finite
abelian subgroups listed. Carter’s formula [7] applied in [19] shows that K−1(ZS3)
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= 0, and Dress induction as used in Theorem 11.2 of [17] shows that K−1(ZA4)
= 0. Finally, Reiner shows in [23] that K̃0(ZG) = 0 for all the finite subgroups in
question.

The infinite virtually cyclic groups Z, Z×Z/2, Z×Z/3, Z/3oZ, D∞, D∞×
Z/2, S3 ∗

Z/3
S3.

When G is infinite virtually cyclic, Farrell and Jones show in [11] that Ki(ZG)
is zero for i < −1 and that K−1(ZG) is generated by the images of K−1(ZF )
where F ranges over all finite subgroups F ⊂ G. As discussed above, K−1(ZF ) is
trivial for all such possible F , so all that remains is to show that K̃0(ZG) = 0 and
Wh(G) = 0 for all the infinite virtually cyclic subgroups in the classification. This
result is well-known for the cases G = Z and D∞ = Z/2 ∗ Z/2.

The cases G = Z × Z/2 or D∞ × Z/2. Let G equal either Z or D∞. Then one
can build a Rim square

Z[G× Z/2] −−−−→ ZGy y
ZG −−−−→ F2[G]

with all maps surjective. This results in a Mayer-Vietoris sequence of K-groups.
The terms Ki(F2[G]) can be easily computed with the Bass-Heller-Swan Funda-
mental Theorem when G = Z and with the Gersten-Stallings-Waldhausen theorem
for free products when G = D∞. In either case, Whi(G) is zero for G ∼= Z × Z/2,
D∞ × Z/2 for i ≤ 1.

The case G = Z×Z/3. We write Z[Z×Z/3] as Z[Z/3][Z], and apply the Funda-
mental Theorem of K-theory (following the notation of Bass [2]):

Ki(Z[Z × Z/3]) ∼= Ki(Z[Z/3])⊕Ki−1(Z[Z/3])⊕ 2NKi(Z[Z/3]).

To compute NKi(Z[Z/3]) for i = 0 or 1, let ξ3 be a primitive third root of unity
and use the Rim square (see, for example, [15]):

Z[Z/3] −−−−→ Z[ξ3]y y
Z −−−−→ F3.

This square induces a long exact sequence on Nil-groups (see [2], p. 677). As all
the other terms in the square are regular rings, their Nil terms are zero; hence the
NKi(Z[Z/3]) are also zero. Thus

K1(Z[Z× Z/3]) ∼= K1(Z[Z/3])⊕K0(Z[Z/3]) ∼= Z/3⊕ Z,
K0(Z[Z× Z/3]) ∼= K0(Z[Z/3])⊕K−1(Z[Z/3]) ∼= Z,

so both Wh(Z× Z/3) and K̃0(Z[Z× Z/3]) vanish.

The case G = Z/3 o Z. We use a twisted version of the previous square. Let R
= Z[ξ3], and let α be the automorphism of R defined by α(ξ3) = ξ3

−1. We have
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Z[Z/3 o Z] −−−−→ Rα[Z]y y
Z[Z] −−−−→ F3[Z],

which again yields a Mayer-Vietoris sequence of K-groups.
The projection map pr∗ : Ki(Z) → Ki(F3) is an isomorphism for i = 0, 1 and

is a surjection for i = 2. The same is true for pr∗ : Ki(Z[Z]) → Ki(F3[Z]), due to
the naturality of the Fundamental Theorem and the fact that Z and F3 are regular
rings.

Thus the Mayer-Vietoris sequence shows that Ki(Z[Z/3 o Z]) → Ki(Rα[Z]) is
an isomorphism for i = 0, 1. As R = Z[ξ3] is a Dedekind domain and a regular
ring, Ki(Rα[Z]) can be computed in a straightforward manner. Farrell and Hsiang
prove in [9] that K1(Rα[Z]) ∼= X ⊕ C̃(R,α)⊕ C̃(R,α−1), and that

0→ K1(R)/I(α∗)→ X → (K0(R))α∗ → 0 is exact,

where I(α∗) = {γ − α∗(γ) | γ ∈ K1(R)}. Furthermore, it is stated in [9] that
the exotic terms C̃(R,α) and C̃(R,α−1) vanish when R is a regular ring. In our
situation, then,

0→ K1(R)/I(α∗)→ K1(Rα[Z])→ (K0(R))α∗ → 0 is exact.

The map α∗ acts trivially on K0(R) ∼= Z, K1(R) ∼= Z/6, and the order of I(α∗)
is 3. Hence K1(Z[Z/3oZ]) = Z⊕Z/2; one easily deduces that Wh(Z/3oZ) = 0.

The vanishing of K̃0(Z[Z/3 o Z]) is easier to show. From [9], if R is a regular
ring, then the inclusion map K̃0(R) → K̃0(Rα[Z]) is a surjection. Since K̃0(R)
vanishes for R = Z[ξ3], we have the desired result.

The case G = S3 ∗
Z/3

S3. We thank S. Prassidis, who kindly informed us of the

following results and made them accessible. In [16] he and Munkholm show that if
G = G1 ∗

Z/p
G2, then there is a Mayer-Vietoris exact sequence

Wh(Z/p)→Wh(G1)⊕Wh(G2)→Wh(G)→ K̃0(Z[Z/p])→ · · · .

Applying this to G = S3 ∗
Z/3

S3, it immediately follows that Wh(G) and K̃0(ZG)

are trivial.

Remark. We note that the vanishing result for the case G = S3 ∗
Z/3

S3 can also

be deduced independently of [16] from our previous vanishing results (i.e., those
demonstrated above for the other virtually cyclic subgroups of Bianchi groups) and
[11], Section 2.
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