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BLOW UP AND INSTABILITY OF SOLITARY-WAVE
SOLUTIONS TO A GENERALIZED

KADOMTSEV-PETVIASHVILI EQUATION

YUE LIU

Abstract. In this paper we consider a generalized Kadomtsev-Petviashvili
equation in the form

(ut + uxxx + upux)x = uyy (x, y) ∈ R2, t ≥ 0.

It is shown that the solutions blow up in finite time for the supercritical power
of nonlinearity p ≥ 4/3 with p the ratio of an even to an odd integer. Moreover,
it is shown that the solitary waves are strongly unstable if 2 < p < 4; that
is, the solutions blow up in finite time provided they start near an unstable
solitary wave.

1. Introduction

We are concerned in this paper with a generalized Kadomtsev-Petviashvili (KP)
equation; that is,{

ut + uxxx + upux = vy

vx = uy
(x, y) ∈ R2, t ≥ 0.(1.1)

When p = 1, the equation (1.1) is known as the KP-I equation. It is a model for the
propagation of weakly nonlinear dispersive long waves on the surface of a fluid, when
the wave motion is essentially one-directional with weak transverse effects along the
y-axis [KaPe, PeYa]. The KP-I equation has been analyzed in great detail. It can
be solved by the Inverse Scattering Transformation (IST) [AbSe, FoSu, Zh]. When
p = 2, the equation (1.1) is also a model to describe the evolution of sound waves
in antiferromagnetics [TuFa]. To some extent, the KP equation can be viewed as a
two-dimensional analog of the generalized Korteweg-de Vries (GKdV) equation.

Many rigorous results have recently appeared concerning the Cauchy problem
for the KP equation [Bou, FoSu, IsMeSt, Sa1, Sa2, Uk, Zh, To]. A general local
existence theory has been established by Ukai [Uk] and developed by Saut [Sa1]
in the classical Sobolev space Hs(R2) for s ≥ 3. As we know, one of the more
challenging issues concerning the Cauchy problem for nonlinear dispersive equations
is the possible blow-up of solutions in finite time. For instance, consider the GKdV
equation

ut + uxxx + upux = 0.(1.2)
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Though numerical simulations [BoDoKa] do show that blow-up can occur for p ≥ 4,
a rigorous proof of the blow-up for p ≥ 4 is still missing. Compared with GKdV,
the KP equation does have a blow-up solution if the energy of the initial data is
negative and the power of nonlinearity p ≥ 4. This has been proved by using a
virial identity [TuFa, Sa1]. On the other hand, by using the anisotropic Sobolev
embedding ∫

R2
|u|p+2dxdy ≤ c‖u‖

4−p
2

L2 ‖∂xu‖pL2‖v‖
p
2
L2(1.3)

which is valid only for 0 ≤ p ≤ 4, we can deduce that
∫ (

(ux)2 + v2
)
dxdy is

dominated by the conserved momentum V (u) = 1
2

∫
R2 u

2dxdy and the Hamiltonian

E(u) =
∫
R2

(
1
2
u2
x +

1
2
v2 − 1

(p+ 1)(p+ 2)
up+2

)
dxdy

if and only if p < 4
3 . It is also shown by some numerical simulations [Wi, WaAbSe]

that there are blow-up solutions for the KP equation (1.1) in finite time for p ≥ 4
3 .

Therefore, it is natural to conjecture that the solutions of the KP equation (1.1)
should blow up in finite time for p ≥ 4

3 . The purpose of this paper is to investigate
questions about blow-up solutions and instability of solutions for (1.1). We are able
to show that the solution of (1.1) blows up in finite time for p ≥ 4

3 (Theorems 4.1,
4.2). It turns out that the power of p = 4

3 is the critical power of the nonlinearity
for the existence of solutions. The critical power p = 4

3 is also observed in the study
of stability and instability of solitary waves. As we know, in the case of the GKdV
equation, the power p = 4 is the critical value for the stability and instability of the
solitary waves ϕc(x−ct) [We, BoSoSt, SoSt]. As in the case of the GKdV equation,
it is found that the critical power p = 4

3 is also linked to the stability and instability
of the solitary-wave solutions ϕc(x − ct, y) for (1.1) (see Definition 2.5). Indeed,
the solitary-wave solutions vanishing in the infinity exist if and only if 1 ≤ p < 4
[WaAbSe], [Sa1], [Sa2]. It is shown that the set of the solitary waves ϕc with c > 0
is nonlinearly stable for 1 ≤ p < 4

3 [LiuWa, BoSa3] and it is nonlinearly unstable
for 4

3 < p < 4 [WaAbSe, BoSa3]. Therefore, it is reasonable to conjecture that
the solution of the KP equation (1.1) blows up in finite time for p ≥ 4

3 provided
it begins near the solitary-wave solution ϕc (i.e., strong instability). In this paper,
we also give a satisfactory result to solve this strong instability problem (Theorem
5.1). More interestingly, it is proved in Theorem 5.1 that for the power 2 < p < 4,
solutions with initial data close to unstable solitary waves are actually bounded for
all time in energy space. However, they do blow up in finite time in some sense
(‖∂yu(·, t)‖L2 →∞ in finite time ), due to the weak transverse dispersion along the
y-axis.

In general, solutions of (1.1) satisfy the following conserved functionals.

E(u) =
∫
R2

(
1
2
u2
x +

1
2
v2 − 1

(p+ 1)(p+ 2)
up+2

)
dxdy (Energy)

V (u) =
1
2

∫
R2
u2dxdy (Momentum),

Φ1(u) =
∫
R2
udxdy and Φ2(u) =

∫
R2
vdxdy.
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Also, in the case of p = 1,

Φ3(u) =
∫
R2

(
3
2
u2
xx + 5u2

y +
5
6

(∂−1
x vy)2 − 5

2
uu2

x −
5
9
uv2

)
dxdy

is conserved. In fact, for p = 1, there are infinitely many conservation laws.
In this paper, we shall employ the following notations. | · |p and ‖ · ‖s will denote

the norms in Lp(R2) and Sobolev space Hs(R2) respectively. And we will borrow
the notations in [Sa1, Sa2]. Let Y be the closure of ∂x(C∞0 (R2)) with the norm

‖u‖Y = ‖∂xψ‖Y = (‖∇ψ‖2L2 + ‖∂2
xψ‖2L2)

1
2

for u ∈ Y and u = ∂xψ, where ψ ∈ Lqloc(R2), ∀2 ≤ q <∞. We also have v = ∂yψ ∈
L2 by a choice of ψ ∈ Lqloc. Let

X = {u ∈ H1(R2); ∂2
xu ∈ L2},

Xs = {u ∈ H1(R2); (ξ−1
1 û)

∨ ∈ Hs(R2)}

with the norm ‖u‖Xs = ‖u‖s + ‖(ξ−1
1 û)

∨‖s and

Ḣ−k = {u ∈ S′(R2), ξ−k1 û ∈ L2(R2)}

equipped with the norm ‖u‖−k,x = |ξ−k1 û|2, where “∧” is the Fourier transform,
“∨” is the Fourier inverse transform and ξ = (ξ1, ξ2) is the dual variable of (x, y).

Throughout this paper, we only consider the case when p = n1
n2

where n1 is any

even integer and n2 any odd integer so that
∫
R2
up+2dxdy = |u|p+2

p+2.

The main aim of the paper is to investigate properties of blow-up and instability
of the solitary-wave solutions ϕc for the critical value p ≥ 4

3 . The main theorems
in the paper are Theorem 4.1 and Theorem 5.1. The key ingredients used here are
to construct some virial identities, and study the minimization problems which are
related to the solitary waves.

The plan of this paper is as follows. In Section 2, we study the properties of the
solitary-wave solutions ϕc. In particular, we consider the associated minimization
problem and employ a refined Fatou lemma due to Lieb and Brézis [BrLi1] to obtain
the suitable minimizer, which is also known as “ground state.” In Section 3, some
invariant sets for the flow of the KP equation are constructed. With the help of
the invariant sets, we are able to establish the blow-up results in the super critical
case p > 4

3 , and a detailed proof is given in Section 4. In the last section, a strong
instability of solitary-wave solution is investigated. It is proved that for 2 < p < 4
the solution of (1.1) blows up in finite time provided it starts close to a solitary-wave
solution.

2. Solitary-wave solutions

In this section, we study some important properties of the solitary-wave solution
ϕc to the KP equation (1.1). By a solitary-wave solution of (1.1), we mean a
traveling-wave solution of (1.1) in the form u(t, x, y) = ϕc(x− ct, y) with u→ 0 as
x2 + y2 →∞. And ϕc is a ground state of the equation{

−cϕc + ∂3
xϕc − ∂yψc + 1

p+1ϕ
p+1
c = 0,

∂xψc = ∂yϕc ϕc ∈ Y, ϕc 6= 0.
(2.1)

Let Lc(u) = E(u) + cV (u). We define the ground states of (2.1) as follows.
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Definition 2.1. Let Γc be the set of the solutions of (2.1); namely,

Γc = {φ ∈ Y |L′c(φ) = 0, φ 6= 0},
and let Gc be the set of the ground states of (2.1); that is

Gc = {ϕ ∈ Γc |Lc(ϕ) ≤ Lc(φ), ∀φ ∈ Γc}.

Remark 2.2. The existence of ground states for (2.1) was proved in [WaAbSe],
[BoSa]. It is shown that Gc is not empty for any c > 0 and 1 ≤ p < 4. But
the uniqueness of the ground state is still unknown.

Remark 2.3. For p = 1, there exists an explicit traveling-wave solution of the KP
equation (1.1), which is called lump soliton φc(x− ct, y) with c > 0 [AbSe], where

φc(x, y) =
8c
(

1− c
3x

2 + c2

3 y
2
)

(
1 + c

3x
2 + c2

3 y
2
)2 .(2.2)

However, to our knowledge, it is still an open problem whether or not the lump is
a ground state.

There are many results on local existence to the KP equation (1.1). For our
purpose, we state here the local existence result by Saut [Sa1].

Lemma 2.4. Let u0 ∈ Xs, s ≥ 3, and ∂2
yyu0 ∈ Ḣ−2

x . Then there exists T > 0 such
that the equation (1.1) has a unique solution u(t) with u(0) = u0 satisfying

u ∈ C([0, T );Hs(R2)) ∩ C1([0, T );Hs−3(R2))

and

v ∈ C([0, T );Hs−1(R2)).

Moreover, the energy E(u) and the momentum V (u) are well defined and indepen-
dent of time t.

Next we state the definition of stability of the solitary waves in the following.

Definition 2.5. We say that a set S ⊂ X is X-stable, if for any ε > 0, there exists
δ > 0 with inf

w∈S
‖u0 − w‖X < δ for any u0 ∈ X ∩ Xs and ∂2

yyu0 ∈ Ḣ−2
x , s ≥ 3;

the solution u(t) of (1.1) with u(0) = u0 can be extended to a global solution in
C([0,∞);X ∩X3) and satisfies

sup
0≤t<∞

inf
w∈S
‖u(t)− w‖X < ε.

Otherwise, S is called X-unstable. Also we say that the solitary wave ϕc is unstable
if Oc = {τs,ru | s, r ∈ R2, τs,ru(x, y) = u(x + s, y + r)} is Oc-unstable. Further-
more, we say that ϕc is strongly unstable if for any ε > 0, there exists u0 ∈ Y such
that the solution u(t) of (1.1) with u(0) = u0 blows up in finite time.

Remark 2.6. The set of ground states Gc with c > 0 for (1.1) is Y -stable provided
1 ≤ p < 4

3 is proved in [LiuWa, BoSa3] and Gc is Y -unstable is also proved in
[WaAbSe, BoSa3] if 4

3 < p < 4.

To show blow up and strong instability of solutions of (1.1), we need a series of
lemmas.

The first lemma is called refined Fatou lemma due to Brézis and Lieb [BrLi1]
which is crucial to solve a constrained minimization problem (Lemma 2.11).
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Lemma 2.7. Let {fj} be a bounded sequence in Lr(R2) for 0 < r <∞. If fj → f
a.e. in R2, then

|fj |rr − |fj − f |rr − |f |rr −→ 0.

When r = 2, the assumption that fj → f a.e. is not necessary.

The following lemma is given in [BoSa1], Lemma 3.3.

Lemma 2.8. Let un be a bounded sequence in Y, and let R > 0. Then there is a
subsequence unk which converges strongly to some u in L2(BR), where BR is a ball
with radius R in R2.

Lemma 2.9. Let u ∈ Y such that ‖u‖Y ≤ C and µ(|u| > ε) ≥ δ > 0. Then
there exists a shift τs,ru(x, y) = u(x + s, y + r), such that for some constant δ0 =
δ0(c, δ, ε) > 0,

µ
(
B ∩ (|τs,ru| >

ε

2
)
)
> δ0(2.3)

where B is the unit ball in R2.

Proof. See Lemma 4 in [LiuWa] with the space Y.

Lemma 2.10. Suppose 1 ≤ p < 4 and c > 0. Let ϕc be a ground state. Then

a) 0 = K(ϕc) = inf{K(u) | u ∈ Y,
∫
R2

(∂xu)2 =
∫
R2

(∂xϕc)2};

b) Ic(ϕc) = inf{I(u) | u ∈ Y,
∫
R2

(u)p+2 =
∫
R2

(ϕc)p+2},

where

K(u) =
1
2

∫
R2

(cu2 + v2)− 1
(p+ 1)(p+ 2)

∫
R2
up+2,

K(ϕc) = 0 and Ic(u) =
∫
R2

(cu2 + v2 + (∂xu)2)dxdy.

Proof. See Lemma 2.1 in [BoSa1] or Theorem 1 in [LiuWa].

Lemma 2.11. Let σ = inf{Lc(u) | u ∈M}, where

M = {u ∈ Y | u 6= 0, Q(u) = 0}
and

Q(u) =
∫
R2

(
v2 + (∂xu)2 − 3p

2(p+ 1)(p+ 2)
up+2

)
dxdy.(2.4)

Assume 4
3 < p < 4. Then ϕc is a ground state for (2.1) if and only if ϕc ∈M and

Lc(ϕc) = σ.

Proof. Let ϕc be a ground state and define φλc (x, y) = λ
3
2ϕc(λx, λ2y). It is easy to

see that

Q(ϕc) =
d

dλ
Lc(φλc )|λ=1 =

〈
L′c(ϕc),

dφλc
dλ
|λ=1

〉
= 0.(2.5)

This implies that ϕc ∈M for any ϕc ∈ Gc. Now we define

L1
c(u) = Lc(u)− 2

3p
Q(u) =

c

2

∫
R2
u2 +

3p− 4
6p

∫
R2

(v2 + u2
x).(2.6)
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We claim σ = m, where

m = inf{L1
c(u) | u ∈ Y, u 6= 0, Q(u) ≤ 0}.(2.7)

In fact, suppose Q(u) < 0. Since

Q(λu) = λ2

∫
R2

(v2 + u2
x)− 3p

2(p+ 1)(p+ 2)
λp+2

∫
R2
up+2 > 0(2.8)

for some sufficiently small λ > 0, there exists λ0 ∈ (0, 1) such that Q(λ0u) = 0.
Hence we have

σ ≤ Lc(λ0u) = λ2
0

(
c

2

∫
R2
u2 +

3p− 4
6p

∫
R2

(v2 + u2
x)
)

<
c

2

∫
R2
u2 +

3p− 4
6p

∫
R2

(v2 + u2
x) = L1

c(u).

Consequently, m = σ. To show that σ = Lc(ϕc) for some ϕc ∈ Gc, it suffices to
show that m = L1(ϕc) for some ϕc ∈ Gc. In fact, we have L1

c(u) > 0 for 4
3 < p < 4.

Hence, there exists a minimizing sequence {uj} of (2.7) satisfying that {uj} is
bounded in Y, L1

c(uj)→ m and Q(uj) ≤ 0. By the anisotropic Sobolev embedding
[BeIlNi, p. 323],

|u|p+2 ≤ c‖u‖Y for 0 ≤ p ≤ 4.

It turns out that {uj} is bounded in Lp+2 for 0 ≤ p < 4. We then have some
subsequences, still denoted by {uj} and u0 ∈ Y ∩Lp+2 such that uj weakly converges
to u0 in Y and in Lp+2 for 0 < p < 4. It follows from Lemma 2.8 that uj → u0 a.e.
in R2. Now we are able to show L1

c(u0) = m and Q(u0) = 0. Toward this end, we
split the proof into the following five steps.

Step 1. inf
j
|uj |p+2

p+2 > 0.

Proof of Step 1. Suppose there exists a subsequence of {uj} such that |uj|p+2
p+2 → 0.

Then from Q(uj) ≤ 0 we obtain

|vj |22 + |∂xuj |22 → 0.

On the other hand, by the facts that Q(uj) ≤ 0 and the anisotropic Sobolev em-
bedding [To], we have

|u|p+2
p+2 ≤ C|u|

4−p
2

2 |v|
p
2
2 |∂xu|

p
2 for 0 ≤ p ≤ 4,(2.9)

with a constant C. It follows that

|vj |22 + |∂xuj |22 ≤ C|uj |
4−p

2
2 (|vj |22 + |∂xuj |22)

3p
4 ≤ C(|vj |22 + |∂xuj |22)

3p
4

or

(|vj |22 + |∂xuj|22)
(

1− C(|vj |22 + |∂xuj|22)
3p−4

4

)
≤ 0.

This implies that

1 ≤ C(|vj |22 + |∂xuj |22)
3p−4

4 .(2.10)

But it contradicts |vj |22 + |∂xuj |22 → 0, because p > 4
3 . Consequently, inf

j
|uj |p+2

p+2 > 0.

Step 2. u0 6= 0 a.e.
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Proof of Step 2. Let inf
j
|uj |p+2

p+2 = α > 0. We estimate

α ≤ |uj|p+2
p+2 =

∫
|uj |≥ 1

ε

|uj |p+2 +
∫
|uj |≤ε

|uj |p+2 +
∫
ε<|uj|< 1

ε

|uj |p+2

≤
∫
|uj |≥ 1

ε

|uj|p+2+γ

|uj |γ
+ εp

∫
|uj |≤ε

|uj|2 + (
1
ε

)p+2µ(|uj| > ε)

≤ εγ
∫
|uj |≥ 1

ε

|uj|p+2+γ + εp
∫
|uj |≤ε

|uj |2 + Cεµ(|uj | > ε)

(2.11)

where 0 < γ < 4− p. Since p+ γ < 4, we have∫
|uj |≥ 1

ε

|uj |2+p+γ ≤
∫
R2
|uj |2+p+γ ≤ C(|uj |22 + |vj |22 + |∂xuj |22)

2+p+γ
2 ≤ C1

and ∫
|uj |≥ 1

ε

|uj|2 ≤
∫
R2
|uj|2 ≤ C2

where C,C1 and C2 are some constants. Choosing ε sufficiently small, we obtain

µ(|uj | > ε) ≥ α− εγC1 − εpC2

Cε
= δ > 0.

It follows from Lemma 2.9 that µ(B ∩ (|u0| >
ε

2
)) > δ0 for the unit ball B because

uj → u0 a.e. in R2. This implies that u0 6= 0 a.e. in R2.

Step 3. m = L1
c(u0).

Proof of Step 3. By Lemma 2.7, we deduce that

Q(uj)−Q(uj − u0)−Q(u0) −→ 0,(2.12)

and

L1
c(uj)− L1

c(uj − u0)− L1
c(u0) −→ 0.(2.13)

Now suppose that Q(u0) > 0. Then from the fact that Q(uj) ≤ 0 we obtain that
Q(uj − u0) ≤ 0 as j →∞. By the definition of m, it follows that L1

c(uj − u0) ≥ m.
Since L1

c(uj)→ m, it follows from (2.13) that L1
c(u0) ≤ 0. That is,

c

2

∫
R2
u2

0 +
3p− 4

6p

∫
R2

(v2
0 + (∂xu0)2) ≤ 0.(2.14)

This contradicts u0 6= 0, a.e. Consequently, Q(u0) ≤ 0. Therefore,

m ≤ L1
c(u0) ≤ lim

j→∞
inf L1

c(uj) = m

and m = L1
c(u0).

Step 4. Q(u0) = 0.

Proof of Step 4. Suppose that Q(u0) < 0. We try to get a contradiction. Toward
this end, we choose a small λ > 0, and find that

Q(λu0) = λ2

∫
R2

(v2
0 + (∂xu0)2)− 3p

2(p+ 1)(p+ 2)
λp+2

∫
R2
up+2

0 > 0.
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It follows from the continuity that there exists λ0 ∈ (0, 1) such that Q(λ0u0) = 0.
Therefore, by the definition of m, it yields a contradiction in the following:

m ≤ L1
c(λ0u0) = λ2

0

(
c

2

∫
R2
u2

0 +
3p− 4

6p

∫
R2

(v2
0 + (∂xu0)2

)
<
c

2

∫
R2
u2

0 +
3p− 4

6p

∫
R2

(v2
0 + (∂xu0)2 = L1

c(u0) = m.

Hence it proves that Q(u0) = 0.

Step 5. u0 = ϕc ∈ Gc.

Proof of Step 5. In fact, it follows from Step 3 and Step 4 that

m = σ = inf{Lc(u) | u 6= 0, Q(u) = 0} = Lc(u0).(2.15)

Hence, there exists a constant λ ∈ R such that

L′c(u0) + λQ′(u0) = 0.

It remains to show that λ = 0 so that L′c(u0) = 0. By using Q(u0) = 0, it yields
that

0 = 〈L′(u0) + λQ′(u0), u0〉

=
∫
R2

(
cu2

0 + (∂xu0)2 + v2
0

)
− 1
p+ 1

∫
R2
up+2

0

+ λ

(
2
∫
R2

(
(∂xu0)2 + v2

0

)
− 3p

2(p+ 1)

∫
R2
up+2

0

)
=
∫
R2

(
cu2

0 + (2λ+ 1)(v2
0 + (∂xu0)2)

)
− 2(p+ 2)

3p

∫
R2

(v2
0 + (∂xu0)2)

− λ(p+ 2)
∫
R2

(v2
0 + (∂xu0)2)

=
∫
R2
cu2

0 +
(
p− 4

3p
− λp

)∫
R2

(v2
0 + (∂xu0)2).

It follows from c > 0 that
p− 4

3p
− λp < 0. On the other hand, let wη(x, y) =

η
3
2u0(ηx, η2y). It is easy to see that

0 =
〈

(L′c + λQ′)(u0),
∂wη

∂η
|η=1

〉
= ∂η(Lc + λQ)(wη)|η=1

= Q(u0) + λ

(
2
∫
R2

(v2
0 + (∂xu0)2)− 9p2

4(p+ 1)(p+ 2)

∫
R2
up+2

0

)
.

If λ 6= 0, then

2
∫
R2

(v2
0 + (∂xu0)2)− 9p2

4(p+ 1)(p+ 2)

∫
R2
up+2

0 = 0.

Since Q(u0) = 0, it follows that

0 = 2
∫
R2

(v2
0 + (∂xu0)2)− 3p

2

∫
R2

(v2
0 + (∂xu0)2) =

4− 3p
2

∫
R2
v2

0 + (∂xu0)2 < 0
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because p > 4
3 . Hence λ = 0 and L′(u0) = 0. On the other hand, suppose u ∈ Y

satisfies L′c(u) = 0. We have

Q(u) = ∂ηLc(uη)|η=1 =
〈
L′c(u),

duη

dη
|η=1

〉
= 0

where uη = η
3
2u(ηx, η2y). It follows from (2.15) that Lc(u0) ≤ Lc(u). This implies

that u0 = ϕc ∈ Gc. The proof of Lemma 2.11 is complete.

To prove Theorem 1.1, we also need the following two lemmas.

Lemma 2.12. Let 1 ≤ p < 4 and ϕc ∈ Gc. Then

Lc(ϕc) = inf
{
Lc(u) | u ∈ Y, u 6= 0,

∫
R2
u2
x =

∫
R2

(∂xϕc)2

}
.(2.16)

Proof. Since K = Lc(u)− 1
2

∫
R2
u2
x, it follows from Lemma 2.10 that

inf
{
Lc(u) | u ∈ Y, u 6= 0,

∫
R2
u2
x =

∫
R2

(∂xϕc)2

}
= inf

{
K(u) +

1
2

∫
R2

(∂xϕc)2 | u ∈ Y, u 6= 0,
∫
R2
u2
x =

∫
R2

(∂xϕc)2

}
= inf

{
K(u) | u ∈ Y, u 6= 0,

∫
R2
u2
x =

∫
R2

(∂xϕc)2

}
+

1
2

∫
R2

(∂xϕc)2

=
1
2

∫
R2

(∂xϕc)2 = Lc(ϕc).

Lemma 2.13. Let 1 ≤ p < 4 and ϕc ∈ Gc. Then

Lc(ϕc) = inf
{
Lc(u) | u ∈ Y, u 6= 0,

∫
R2
up+2 =

∫
R2
ϕp+2
c

}
.(2.17)

Proof.

Lc(ϕc) = inf
{
Lc(u) | u ∈ Y, u 6= 0,

∫
R2
up+2 =

∫
R2
ϕp+2
c

}
=

1
2

inf
{∫

R2
(cu2 + v2 + u2

x) | u ∈ Y, u 6= 0,
∫
R2
up+2 =

∫
R2
ϕp+2
c

}
− 1

(p+ 1)(p+ 2)

∫
R2
ϕp+2
c =

1
2
Ic(ϕc)−

1
(p+ 1)(p+ 2)

∫
R2
ϕp+2
c = Lc(ϕc).

3. Invariant sets

In this section we construct some invariants for the flow of the KP equation
(1.1). Using those invariant properties of the solution and a virial identity which
has been showed in [TuFa], we are able to show the blow-up result in Section 4.
Toward this end, we begin to define the invariants in the following:

Kc
1 = {u ∈ Y | u 6= 0, Lc(u) < Lc(ϕc), Q(u) ≥ 0 } ,

Kc
2 = {u ∈ Y | u 6= 0, Lc(u) < Lc(ϕc), Q(u) < 0 } ,



200 YUE LIU

Rc1 =
{
u ∈ Y | u 6= 0, Lc(u) < Lc(ϕc),

∫
R2
u2
x ≤

∫
R2

(∂xϕc)2

}
,

Rc2 =
{
u ∈ Y | u 6= 0, Lc(u) < Lc(ϕc),

∫
R2
u2
x >

∫
R2

(∂xϕc)2

}
,

Jc1 =
{
u ∈ Y | u 6= 0, Lc(u) < Lc(ϕc),

∫
R2
up+2 ≥

∫
R2
ϕp+2
c

}
,

Jc2 =
{
u ∈ Y | u 6= 0, Lc(u) < Lc(ϕc),

∫
R2
up+2 <

∫
R2
ϕp+2
c

}
.

The following lemma is crucial to obtain the blow-up result.

Lemma 3.1 (Invariant sets). Suppose 1 ≤ p < 4 and c > 0. Let u0 be the initial
data such that the corresponding solution u(t) of KP equation (1.1) is in C([0, T );Y )
for some T > 0 and satisfies E(u(t)) = E(u0) and V (u(t)) = V (u0) for 0 ≤ t < T.
Then

a) 4
3 < p < 4, u0 ∈ Kc

i implies that u(t) ∈ Kc
i , ∀0 ≤ t < T,

b) u0 ∈ Rci implies that u(t) ∈ Rci , ∀0 ≤ t < T, and
c) u0 ∈ Jci implies that u(t) ∈ Jci , ∀0 ≤ t < T where i = 1, 2. Moreover, if

u0 ∈ Kc
2, then Q(u(t)) < − 3p

2 (Lc(ϕc)− Lc(u0)) for 0 ≤ t < T.

Proof. Here we only consider the invariance of Kc
2, since for Kc

1 the proof is similar
and the proof of invariance of Rc1 and Jci are also similar due to Lemmas 2.12 and
2.13.

Let u0 ∈ Kc
2. Since E(u(t)) = E(u0) and V (u(t)) = V (u0), we have

Lc(u(t)) = E(u(t)) + cV (u(t)) = Lc(u0) < Lc(ϕc).(3.1)

Suppose u(t0) /∈ Kc
2 for some t0 ∈ (0, T ); that is, Q(u(t0)) ≥ 0. By Q(u(0)) =

Q(u0) < 0 and the continuity of Q(u(t)) with respect to t, there exists t1 ∈ (0, t0]
such that Q(u(t1)) = 0. Therefore, applying Lemma 2.11 yields a contradiction

Lc(ϕc) > Lc(u(t1)) ≥ inf {Lc(u) | u 6= 0, Q(u) = 0 } = Lc(ϕc).

This implies that u(t) ∈ Kc
2 for 0 ≤ t < T. To prove the final inequality, we use the

definition of m and the fact

m = inf {Lc(u) | u ∈ Y, u 6= 0, Q(u) = 0 } = Lc(ϕc)

which is proved in Lemma 2.11.
Suppose u0 ∈ Kc

2. Then we have u(t) ∈ Kc
2 , i.e. Lc(u(t)) < Lc(ϕc) and Q(u(t)) <

0 for t ≥ 0. Since

Q(λu) = λ2

∫
R2

(v2 + u2
x)− 3p

2(p+ 1)(p+ 2)
λp+2

∫
R2
up+2 > 0

for some sufficiently small λ > 0, there exists λ0 ∈ (0, 1), such that Q(λ0u) = 0 and

Lc(ϕc) ≤ Lc(λ0u) = λ2
0

(
c

2

∫
R2
u2 +

3p− 4
6p

∫
R2

(v2 + u2
x)
)

<
c

2

∫
R2
u2 +

3p− 4
6p

∫
R2

(v2 + u2
x) = L1

c(u(t)).

Therefore, Q(u(t)) < −3p
2

(Lc(ϕc)− Lc(u0)).
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Remark. If u0 ∈ Kc
2 ∩Jc2 , then it follows from the conservation laws E(u) and V (u)

that ‖u(t)‖Y ≤ C(ϕc, ‖u0‖Y ). Consequently, the solution u(t) of the KP equation is
bounded globally for t ≥ 0; blow-up cannot occur in finite time in Y (R2). However,
we do have a blow-up solution which is only due to the transverse dispersion; we
will state it in the next section.

4. Finite blow-up time

In Section 1, we mention that the solution of (1.1) blows up in finite time if the
initial data u0 satisfies E(u0) < 0 and p ≥ 4 [TuFa, Sa1]. Using the invariant sets,
we are able to extend this blow-up result to allow the energy E to be even positive
and also 4

3 ≤ p < 4. We start to prove the case of p > 4
3 and consider the critical

case p = 4
3 later.

Theorem 4.1 (Improved blow-up). Let 4
3 < p < 4 with p = n1

n2
, where n1 is an

even integer and n2 an odd integer. Assume
i) Let u0 ∈ Y and yu0 ∈ L2, and
ii) u0 ∈ Kc

2 ∩Rc2 ∩ Jc2 .
Let u be the solution of the KP equation (1.1) in C([0, T );Y ) with u(0) = u0,
conserved energy E and momentum V. Then there exists a blow-up time T0 < ∞
such that

lim
t→T−0

|∂yu(t)|2 =∞.(4.1)

Proof. If u(t) remains in Y, we define I(t) =
∫
R2 y

2u2(x, y, t)dxdy, where u is the
solution of the KP equation (1.1). Using the virial identity in [TuFa, WaAbSe, Sa1]
yields

d2I(t)
dt2

= 4pE(u(t)) + 2(4− p)
∫
R2
v2 − 2p

∫
R2
u2
x

= 8
(
Q(u(t))−

∫
R2
u2
x +

p

(p+ 1)(p+ 2)

∫
R2
up+2

)
.

(4.2)

It follows from Lemma 3.1 that
d2I(t)
dt2

< 8
(
−3p

2
(Lc(ϕc)− Lc(u0))−

∫
R2

(∂xϕc)2

+
p

(p+ 1)(p+ 2)

∫
R2
ϕc

p+2

)
= −12pε0

(4.3)

where ε0 = Lc(ϕc)− Lc(u0). In the last step of the above proof, we used the fact∫
R2

(∂xϕc)2 =
p

(p+ 1)(p+ 2)

∫
R2
ϕp+2
c(4.4)

which can be obtained from
∂

∂λ
Lc(ϕλc )|λ=1 = 0 where ϕλc = λϕc(λx, λy). Therefore,

it follows that lim
t→T0

I(t) = 0 for some T0 < ∞, And the blow-up result can be

deduced from the conserved momentum V (u) and the classical inequality

|u|22 ≤ 2|yu|2|∂yu|2.
The proof of Theorem 4.1 is complete.
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Remark 1. If u0 ∈ Rc2 ∩ Jc2 and p ≥ 2, then E(u0) > 0. This can be verified as
follows.

Since ∫
R2

(∂xu0)2 >

∫
R2

(∂xϕc)2,

∫
R2
up+2

0 <

∫
R2
ϕp+2
c ,

and ∫
R2

(∂xϕc)2 =
p

(p+ 1)(p+ 2)

∫
R2
ϕp+2
c ,

we have

E(u0) =
1
2

∫
R2

(∂xu0)2 +
1
2

∫
R2
v2

0 −
1

(p+ 1)(p+ 2)

∫
R2
up+2

0

>
1
2

∫
R2

(∂xϕc)2 +
1
2

∫
R2
v2

0 −
1

(p+ 1)(p+ 2)

∫
R2
ϕp+2
c

=
∫
R2
v2

0 +
p− 2

2p

∫
R2

(∂xϕc)2 ≥ 1
2

∫
R2
v2

0 > 0.

Remark 2. Since E(ϕc) =
3p− 4

6p
(|∂xϕc|22+|∂−1

x ∂yϕc|22) and E(ϕc) > 0 when p > 4
3 ,

we are able to choose u0 = ϕλc which is sufficiently close to ϕc such that E(u0) > 0.

Remark 3. A similar blow-up result can be obtained for a generalized Kadomtsev-
Petiashvili (KP) equation in the three-dimensional case [Liu]

ut + uxxx + upux = vy + wz

vx = uy

wx = uz

(x, y) ∈ R3, t ≥ 0.(KP-3D)

The solution of KP-3D blows up in finite time for all p ≥ 1.

Next, we consider the critical case p = 4
3 .

Theorem 4.2. Let p = 4
3 . Assume

i) u0 ∈ Y, ∂yu0 ∈ L2 and yu0 ∈ L2,
ii) u0 ∈ Rc2 ∩ Jc2 , and
iii) E(u0) < 0.

Let u be the solution of the KP equation (1.1) in C([0, T );Y ) with u(0) = u0 and
satisfy E(u(t)) = E(u0) and V (u(t)) = V (u0). Then there exists a blow-up time
T0 <∞ such that

lim
t→T0

|∂yu(t)|2 =∞.

In order to show Theorem 4.2, we need the following basic lemma.

Lemma 4.3. Let p = 4
3 . Then E(ϕc) = 0 for ϕc ∈ Gc, and

2
∫
R2

(∂xϕc)2 =
4− p

(p+ 1)(p+ 2)

∫
R2
ϕp+2
c .

Proof. Define φλc = λϕc(λx, λy). It can be easily verified that

0 =
d

dλ
Lc(ϕλc )|λ=1 =

∫
R2

(∂xϕc)2 − p

(p+ 1)(p+ 2)

∫
R2
ϕp+2
c ;
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that is,

2
∫
R2

(∂xϕc)2 =
2p

(p+ 1)(p+ 2)

∫
R2
ϕp+2
c =

4− p
(p+ 1)(p+ 2)

∫
R2
ϕp+2
c

because p = 4
3 . To prove E(ϕc) = 0, it follows from the fact Q(ϕc) = 0 that

E(ϕc) + cV (ϕc)

=
c

2

∫
R2

+
1
2

∫
R2

((∂−1
x ∂yϕc)2 + (∂xϕc)2)− 1

(p+ 1)(p+ 2)

∫
R2
ϕp+2
c

=
c

2

∫
R2

+
3p− 4

6p

∫
R2

((∂−1
x ∂yϕc)2 + (∂xϕc)2) =

c

2

∫
R2

= cV (ϕc).

This implies that E(ϕc) = 0.

Proof of Theorem 4.2. By Lemma 3.1, the solution u(t) ∈ Rc2 and u(t) ∈ Jc2 for
0 ≤ t < T ; that is, |u(t)|p+2

p+2 < |ϕc|
p+2
p+2 and |∂xu(t)|22 > |∂xϕc|22 where ϕc ∈ Gc. It

follows from the viral identity and Lemma 4.3 that

I ′′(t) = 16E(u(t))− 8
∫
R2
u2
x +

4(4− p)
(p+ 1)(p+ 2)

∫
R2
up+2

< 16E(u0)− 8|∂xϕc|22 +
4(4− p)

(p+ 1)(p+ 2)

∫
R2
ϕc

p+2 = 16E(u0).
(4.5)

Since E(u0) < 0, the inequality (4.4) implies lim
t→T0

I(t) = 0 for a finite time T0 <∞.
Therefore,

lim
t→T0

|∂yu(t)|2 =∞.

This completes the proof of Theorem 4.2.

5. Strong instability of solitary waves

In the proof of Theorem 4.1, we find that one assumption for the blow-up u0 ∈
Rc2 ∩ Jc2 can be relaxed to u0 ∈ Nc, for 2 < p < 4, where

Nc = { u ∈ Y | u 6= 0, Lc(u) < Lc(ϕc), P (u) > 0 }
and

P (u) =
∫
R2
u2
x −

p

(p+ 1)(p+ 2)

∫
R2
up+2.

A strong instability of solitary-wave solutions ϕc. can be obtained in the following.

Theorem 5.1. Let 2 < p < 4 with p = n1
n2
, where n1 is an even integer and n2 an

odd integer. Suppose ϕc ∈ Y is the solitary-wave solution of the KP equation (1.1)
with c > 0. For any δ > 0, there is an initial data u0 ∈ Y with ‖u0−ϕc‖Y < δ, such
that the solution u of (1.1) with u(0) = u0 blows up in finite time. More precisely,

lim
t→T−

|∂yu(t)|2 =∞.

To prove Theorem 5.1, we need the following lemmas.

Lemma 5.2. Let τ = inf{Lc(u) | u 6= 0, P (u) = 0}. Suppose 2 < p < 4. Then
ϕc ∈ Gc if and only if P (ϕc) = 0 and τ = Lc(ϕc).

Since the proof is similar to that of Lemma 2.11, we only give a sketch of the
proof.
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Sketch of the proof. P (ϕc) = 0 is given by the equation (4.4). Let

L2
c(u) = Lc(u)− 1

p
P (u).

Then we have

L2
c(u) =

c

2

∫
R2
u2 +

1
2

∫
R2
v2 +

p− 2
2p

∫
R2
u2
x > 0

when 2 < p. It can be shown that τ = m1 where

m1 = inf{L2
c(u) | u ∈ Y, u 6= 0, P (u) ≤ 0 }.

In fact, suppose P (u) < 0. There exists a small number λ ∈ (0, 1) such that
P (λ0u) = 0 and

τ ≤ Lc(λ0u) = λ2
0

(
c

2

∫
R2
u2 +

1
2

∫
R2
v2 +

p− 2
2p

∫
R2
u2
x

)
< L2

c(u).

This implies that τ = m1. On the other hand, since L2
c(u) > 0, there exists a

minimizing sequence of {uj}, uj 6= 0, ∀j such that P (uj) ≤ 0, L2
c(uj) → m1, and

uj → u0 weakly in V (R2) as well as in L2+p. In next step, we need to show
inf
j
|uj |p+2

p+2 > 0, so that u0 6= 0, a.e. In fact, if |uj |p+2
p+2 → 0, then by P (uj) ≤ 0, we

deduce that |∂xuj |2 → 0. It follows from the anisotropic Sobolev embedding that

|∂xuj|22 ≤ |uj |
4−p

2
2 |vj |

p
2
2 |∂xuj |

p
2 ≤ C|∂xuj |

p
2.

Because p > 2, it yields a contradiction 1 ≤ C|∂xuj|p−2
2 . To show the rest of the

proof, we use the weak convergence lemma (Lemma 2.7) and follow the proofs in
Step 3, Step 4 and Step 5 of Lemma 2.11.

By the proof of Lemma 3.1, we are also able to obtain the following lemma.

Lemma 5.3. Nc is invariant for the solution of the KP equation (1.1). That is,
u0 ∈ Nc implies that the corresponding solution u(t) ∈ Nc for t ≥ 0.

Now by using Lemmas 5.2 and 5.3, it is easy to obtain the following lemma which
is crucial to prove the instability of solitary waves (Theorem 5.1).

Lemma 5.4. Let 2 < p < 4. Assume
i) u0 ∈ Y and yu0 ∈ L2, and
ii) u0 ∈ Kc

2 ∩Nc.
Let u be the solution of the KP equation (1.1) in C([0, T );Y ) with u(0) = u0, E(u(t))
= E(u0) and V (u(t)) = V (u0). Then there exists a blow-up time T0 <∞ such that

lim
t→T0

|∂yu(t)|2 =∞.(5.1)

Proof. It follows from the proof of Theorem 4.1 that

d2I

dt2
= 8(Q(u(t))− P (u(t))).

By Lemma 5.3, we obtain that P (u(t)) > 0, for t ≥ 0. Hence

d2I

dt2
< 8Q(u(t)) < −12pε0(5.2)

and a blow-up time T0 can easily be deduced. Using this lemma we are able to
prove Theorem 5.1.
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Proof of Theorem 5.1. We define u0(x, y) = χω(x, y) = σa(ω)ϕω(σbx, σey), where
σ2a−b−e(ω) = |ϕc|22

|ϕω|22
, b = ap

2 + η, e = ap− ε − η with ε, η > 0 and a < 0. It is easy
to see that |χω|22 = |ϕc|22, χc = ϕc, and σ(c) = 1. On the other hand,

σ′(ω)|ω=c =
−d′′(c)

d′(c)(2a− b− e) =
−d′′(c)

1
2 |ϕc|22(4−3p

2 a− ε)
> 0

for small ε. By the smooth of χω with respect to ω, it is found that χω is sufficiently
close to ϕc as ω → c. Let u(t) be the solution of the KP equation (1.1) with u(0) =
u0. By the smooth of ϕω [BoSa2], the solution u ∈ C([0, T );Y ) has the conserved
energy E and the momentum V. By Lemma 5.3, it remains to show χω ∈ Kc

2 ∩Nc
as ω → c. More precisely, Q(χω) < 0, P (χω) > 0, and Lc(χω) < Lc(ϕc) for some
ω > c. By a simple computation, we have

Q(χω) =
(

1
2
σ2a+e−3b(ω) + σ2a+b−e(ω)− 3

2
σa(p+2)−e−b(ω)

)
|ϕω |22.

At ω = c, we have Q(χω)|ω=c = 0 and the differentiation of Q(χω) with respect to
ω at ω = c yields

dQ(χω)
dω

|ω=c =
(

1
2

(2a+ e− 3b) + (2a+ b− e)− 3
2

(a(p+ 2)− e− b)
)
σ′(c)|∂xϕc|22

= (e+ b− 3
2
ap)σ′(c)|∂xϕc|22 = −εσ′(c)|∂xϕc|22 < 0.

This implies that Q(χω) < Q(χc) = Q(ϕc) = 0 for ω > c. Next, we have

P (χω) = σ1+2b(1 − σap−2b)|∂xϕω|22
and at ω = c

dP

dω
|ω=c = (2b− ap)σ′(c)|∂xϕc|22 = 2ησ′(c)|∂xϕc|22 > 0.

This implies that P (χω) > P (χc) = P (ϕc) = 0 for ω > c.
Finally, we need to show Lc(χω) < Lc(ϕc) for ω > c. Let Lω(u) = E(u)+ωV (u).

A simple computation yields

Lω =
ω

2
σ2a−b−e|ϕω|22 +

1
2
σ2a−3b+e|∂−1

x ∂yϕω|22

+
1
2
σ2a+b−e|∂xϕω |22 −

1
(p+ 1)(p+ 2)

σa(p+2)−b−e|ϕω |p+2
p+2

=
(

4− p
4p

σ2a−b−e +
1
4
σ2a−3b+e +

1
2
σ2a+b−e − 1

p
σa(p+2)−b−e

)
|∂xϕω|22.

In the above computation, we use the fact that

|∂−1
x ∂yϕω|22 =

1
2
|∂xϕω |22,

ω

2
|ϕω|22 =

p− 4
4p
|∂xϕω|22,

1
(p+ 1)(p+ 2)

|ϕω |p+2
p+2 =

1
p
|∂xϕω |22, and d(ω) =

1
2
|∂xϕω|22.

Differentiation of Lω(χω) with respect to ω at ω = c yields the formulae

dLω(χω)
dω

|ω=c = d′(c) =
1
2
|ϕc|22
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and

d2Lω(χω)
dω2

|ω=c = d′′(c) +
(

1
2

(2a+ b− e)2 +
4− p

4p
(2a− b − e)2

+
1
4

(2a− 3b+ e)2 − 1
p

(a(p+ 2)− b − e)2

)
2d(c)(σ′(c))2

= d′′(c) +
(

1
2

(2a+ b− e)2 +
4− p

4p
(2a− b− e)2

+
1
4

(2a− 3b+ e)2 − 1
p

(a(p+ 2)− b − e)2

)
2

(2a− b− e)2

4− 3p
4− p d

′′(c)

=
2(4− 3p)

(2a− b− e)2(4− p)g(ε, η)d′′(c),

where

g(ε, η) =
1
2

(
4− p

2
a+ ε + 2η)2 − (4− p)2

4p(3p− 4)
(
4 − 3p

2
aε)2

+
1
4

(
4− 3p

2
a− 4ε− η)2 − 1

p
(
4 − p

2
a+ ε)2.

Now, we claim d2Lω(χω)
dω2 |ω=c < 0. Since d′′(c) < 0 and 4−3p < 0, it suffices to show

that g(ε, η) < 0 for small ε and η. In fact, g(0, 0) = 0,

∂g

∂η
(0, η) = 2(

4− p
2

a+ 2η)− 1
2

(
4− 3p

2
a− η),

and ∂g
∂η (0, 0) = 1

4 (12−p)a < 0. This implies that g(0, η) < g(0, 0) = 0 for small η > 0

and therefore g(ε, η) < 0 for small ε > 0 and η > 0. It follows from d2Lω(χω)
dω2 |ω=c < 0

that

Lc(χω) = Lω(χω) + V (ωω)(c− ω) = Lω(χω) + V (ϕc)(c− ω)

< Lc(ϕc) +
d

dω
Lω(χω)|ω=c(ω − c) + V (ϕc)(c− ω)

= Lc(ϕc) + V (ϕc)(ω − c) + V (ϕc)(c− ω) = Lc(ϕc)

for ω sufficiently near c. Therefore the result of strong instability of solitary waves
can be obtained by Lemma 5.4.
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