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CYCLIC COVERINGS AND HIGHER ORDER EMBEDDINGS
OF ALGEBRAIC VARIETIES

THOMAS BAUER, SANDRA DI ROCCO, AND TOMASZ SZEMBERG

Abstract. In the present paper we study higher order embeddings in the
context of cyclic coverings. Analyzing the positivity of the line bundle down-
stairs and its relationship with the branch divisor, we provide criteria for its
pull-back to define an embedding of given order. We show that the obtained
criteria are sharp. Finally, we apply them to various – sometimes seemingly
unrelated–problems in algebraic geometry.

Introduction

In recent years there has been considerable interest in understanding under
which circumstances linear series on algebraic varieties restrict surjectively to zero-
dimensional subschemes and to collections of fat points. Equivalently, one asks for
the order of a given projective embedding of an algebraic variety. The concepts of
higher order embeddings are captured by the notions of k-very ampleness, intro-
duced in [6], and k-jet ampleness, studied in [9] and [15]. More geometrically, an
algebraic variety embedded in PN via a k-very ample line bundle has no (k + 1)-
secant (k−1)-plane Pk−1 ⊂ PN . The embedding given by a k-jet ample line bundle
has stronger geometrical constraints related to the higher osculating planes.

By now, the situation on surfaces is quite well understood, mainly thanks to the
availability of powerful methods such as a Reider type criterion for k-very ampleness
[6] and the use of Q-divisors in connection with the Kawamata-Viehweg vanishing
theorem [20]. In higher dimensions, however, the problem seems to be much more
difficult. While there are highly interesting general results on the separation of
jets due to Demailly [15], there is still a lack of practical criteria that allows us to
determine the order of a given embedding. The purpose of this paper is to study
higher order embeddings of cyclic coverings π : Y −→ X , via line bundles given by
pulling back “sufficiently positive” line bundles on X . Given a line bundle L on X
we relate the order of the embedding defined by π∗L to that of L and certain rank
one summands of the vector bundle L⊗ π∗OY . The main results are expressed in
the Theorems 2.1 and 3.1.

In Section 1 we recall briefly the concepts of higher order embeddings. Section
2 is devoted to an exposition of the k-jet ample case. In Section 3 we prove our
result concerning k-very ampleness. Although the proof is technically involved, we
hope that the ideas behind are fairly transparent. Finally, the examples provided
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in the last section show that our results are sharp. In Proposition 4.6 we show how
this type of result can be applied to the study of linear systems of plane curves.

We work throughout over the field C of complex numbers.
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1. Preliminaries

We start by recalling the notions of k-jet ampleness and k-very ampleness, which
capture the concept of a higher order embedding in two different ways: the first
notion requires the simultaneous separation of jets at finitely many points, whereas
the second asks for the surjectivity of the restriction to 0-dimensional subschemes
of certain length.

A line bundle L on a smooth projective variety X is called k-jet ample, if the
evaluation map

H0(X,L) −→ H0
(
X,L⊗OX/

(
mk1
y1
⊗ . . .⊗mkr

yr

))
is surjective for any choice of distinct points y1, . . . , yr in X and positive integers
k1, . . . , kr with

∑
ki = k + 1. Further, L is called k-very ample, if for every zero-

dimensional subscheme (Z,OZ) ⊂ (X,OX) of length dim(H0(Z,OZ)) = k + 1 the
natural map

H0(X,L) −→ H0 (X,L⊗OZ)

is surjective.
As the definitions suggest, k-jet ampleness implies k-very ampleness [9, 2.2], and

both notions are equivalent to global generation in the case k = 0 and to very
ampleness in the case k = 1. In the case when X = P2, the notion of k-th order
embedding is another way of dealing with “non-superabundant embeddings”. We
refer to [18] and [10] for more details.

For the purposes of the proof of Theorem 3.1 below, it will be useful to have a
slightly more general definition of k-very ampleness: A subset V ⊂ H0(X,L) will
be called k-very ample on an open subset U ⊂ X , if for every zero-dimensional
subscheme (Z,OZ) ⊂ (U,OU ) of length k + 1 the natural map

evZ : V −→ H0 (X,L⊗OZ)

is surjective. It is then obvious that if V ⊂ H0(X,L) is k-very ample on U , and if
(Z,OZ) ⊂ (U,OU ) is a 0-dimensional subscheme of length `, then the affine subset

ev−1
Z (g) ⊂ V

is (k − `)-very ample on U \ supp(Z) for every g ∈ H0(X,L⊗OZ).

2. Separation of simultaneous jets

In this section we prove:

Theorem 2.1. Let X be a smooth projective variety and B ⊂ X a smooth divisor.
Let M be a line bundle on X such that OX(dM) ∼= OX(B) and let π : Y −→ X be
the cyclic covering of degree d defined by M . Let L be a line bundle on X and k a
non-negative integer. If L − qM is (k − q)-jet ample for q = 0, . . . ,min(k, d − 1),
then π∗L is k-jet ample.
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Proof. Let M be the total space of M and p : M −→ X the bundle projection.
Let sB ∈ H0(X,OX(B)) be a section whose divisor of zeroes is B, and let τ ∈
H0(M,p∗M) be the tautological section. As usual, Y may be viewed as the divisor
of zeroes of the section p∗sB − τd. Letting t be the restriction of τ to Y and
π : Y −→ X the restriction of p, the projection formula gives the decomposition

H0(Y, π∗L) =
d−1⊕
q=0

tqπ∗H0(X,L− qM)(1)

corresponding to the eigenvalues of the action of the primitive covering automor-
phism ϕ (see e.g. [1, Lemma I.17.2]).

Let y1, . . . , yr ∈ Y be points and k1, . . . , kr positive integers with
∑
ki = k+ 1.

Given a simultaneous jet

J ∈
r⊕
i=1

H0(Y, π∗L⊗OY /mki
yi) = H0(Y, π∗L⊗OY /mk1

y1
⊗ . . .⊗mkr

yr ) ,

we decompose J into a sum of simultaneous jets J = J1 + . . . + Jr, where Ji =
(j1i, . . . , jii, . . . , jri), with jli the zero jet of order kl at yl for l 6= i. It is enough to
find sections si ∈ H0(Y, π∗L) such that

si mod m
k1
y1
⊗ . . .⊗m

kr
yr = Ji for i = 1, . . . , r,

since then the section s = s1 + . . . + sr has the desired jet J . We may therefore
assume J = J1. The idea is now to construct such sections si explicitly out of
sections in the line bundles L− qM , q ≥ 0. We distinguish three cases.

Case 1. Suppose first that y1 is not contained in the ramification divisor R of π,
and that none of the points y2, . . . , yr lies in the orbit π−1(π(y1)). This is the
easiest case. The desired section is obtained as a pull-back of a section in L. More
precisely we can view the jet j11 as a jet at π(y1), via the isomorphism of local
rings OY,y1

∼= OX,π(y1) induced by π. (Here and in the sequel the term ‘local ring’
is meant with respect to the complex topology.) Since L is k-jet ample, there is a
section s ∈ H0(X,L) such that

smod m
k1
π(y1) = j11

and

smod m
ki
π(yi)

= 0 for i = 2, . . . , r.

Then of course π∗smod mk1
y1
⊗ . . .⊗mkr

yr = J1.

Case 2. Suppose that y1 /∈ R, y1, . . . , yl (with l ≥ 2) lie in the orbit π−1(π(y1)),
and that the points yl+1, . . . , yr do not. This case is more difficult, since we have
to separate points in a fiber of the covering. The construction of s builds upon the
cyclic group at hand. Let k′ = max(k1, . . . , kl). Observe that

k′ ≤ k + 1− (l − 1)−
r∑

i=l+1

ki.(2)

Let ĵ11 be any preimage of the jet j11 under the surjective map

O/mk′

y1
−→ O/mk1

y1
.
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Again using the identification OY,y1
∼= OX,π(y1), as well as the fact that t(y1) 6= 0,

for 0 ≤ q ≤ l− 1 we can find sections sq ∈ H0(X,L− qM) such that

π∗s1 mod mk′

y1
= α1 · ĵ11

t · π∗s2 mod mk′

y1
= α2 · ĵ11

...
tl−1 · π∗sl mod mk′

y1
= αl · ĵ11

and

tq · π∗sq+1 mod mki
yi = 0 for 0 ≤ q ≤ l − 1 and l+ 1 ≤ i ≤ r

for any given complex numbers α1, . . . , αl. The number k′+
∑r
i=l+1 ki of conditions

imposed on each sq does not exceed the positivity of L− qM because of (2). Let ε
be a primitive dth root of unity. Now, let (α1, . . . , αl) be a solution of the system
of linear equations

α1 + . . .+ αl = 1
α1 + εβ2α2 + . . .+ ε(l−1)β2αl = 0

...
α1 + εβlα2 + . . .+ ε(l−1)βlαl = 0

(3)

where β2, . . . , βl are integers such that yi = ϕβi(y1). (Note that the determinant of
the system (3) is just the Vandermonde determinant of the numbers 1, εβ2, . . . , εβl .)
Consider the section s = π∗s1 + . . . + tl−1π∗sl. We have smod mk′

y1
= ĵ11, which

implies

smod mk1
y1

= j11,

as required. Moreover, we have

smod mk′

yi = (ϕβi)∗smod mk′

y1

= π∗s1 + εβitπ∗s2 + . . .+ ε(l−1)βitl−1π∗sl mod mk′

y1

= (α1 + εβiα2 + . . .+ (εβi)
l−1

αl)ĵ11 = 0,

so that smod mki
yi = 0 for i = 2, . . . , l, and, of course,

smod mki
yi = 0 for i = l + 1, . . . , r.

Case 3. Finally, suppose that y1 ∈ R. Since B (and hence R) is smooth, there
are local coordinates u1, . . . , un at y1 and v1, . . . , vn at π(y1) such that π is locally
given as

π(u1, . . . , un) = (ud1, u2, . . . , un) = (v1, . . . , vn).

In these coordinates, the section t is given by u1 and j11 may be written as

j11 =
∑

i1+...+in≤k1

ai1,... ,inu
i1
1 · . . . · uinn

=
d−1∑
l=0

ul1
∑

i1≡lmod d

i1+...+in≤k1

ai1...in(ud1)
i1−l
d ui22 · . . . · uinn .
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This splitting reflects the fact that only jets containing powers of u1 divisible by
d arise as pull-backs of jets on X . Since L − qM is (k − q)-jet ample for q =
0, . . . ,min(d− 1, k), there are sections sq ∈ H0(X,L− qM) such that

sq mod m
k1−q
π(y1) =

∑
i1≡lmod d

i1−q
d +i2+...+in≤k1−q

ai1...inv
i1−l
d

1 vi22 · . . . · vinn ,

and

sq mod m
ki
π(yi)

= 0 for i = 2, . . . , r.

It is now easy to check that the section

s =
∑
q≥0

tqπ∗sq

has the prescribed jets.

Working as in Cases 1 and 2 of the above proof, one gets immediately the same
result for unbranched coverings:

Theorem 2.2 (Unbranched case). Let π : Y −→ X be an unbranched cyclic cov-
ering of degree d, defined by a line bundle M with OX(dM) = OX . Let L be a
line bundle on X and k a non-negative integer. If L− qM is (k − q)-jet ample for
q = 0, . . . ,min(k, d− 1), then π∗L is k-jet ample.

3. Separation of zero-dimensional subschemes

In Theorem 3.1 below, we will prove the k-very ampleness of the pull-back of
an ample line bundle L under suitable hypotheses on the line bundles L − qM ,
q ≥ 0. In order to get a useful criterion, one needs to formulate a delicate nu-
merical hypothesis. To this end, given positive integers k and `, we introduce the
abbreviations γ(k, `) = 1 if k/` is an integer, and γ(k, `) = 0 otherwise, and we set

τ(k, `) = k −
⌊
k

`

⌋
− `+ γ(k, `) + 1.

Further, we use the notation

σ(k, d, q) = max
{
τ(k + 1, `)

∣∣∣ q + 1 ≤ ` ≤ min(d, k + 1)
}
− 1

if q > 0 and σ(k, d, 0) = k. An alternative definition of the function σ, which is
useful for practical purposes, will be given in Remark 3.3.

Our result can then be stated as follows.

Theorem 3.1. Let X be a smooth projective variety and B ⊂ X a smooth divisor.
Assume that M is a line bundle on X such that OX(dM) ∼= OX(B), and let π :
Y −→ X be the cyclic covering of degree d defined by M .

Let L be a line bundle on X and k a non-negative integer. If L−qM is σ(k, d, q)-
very ample for q = 0, . . . ,min(k, d− 1), then π∗L is k-very ample.

One can prove the k-very ampleness of π∗L under the assumption that L−qM is
(k− q)-very ample for 0 ≤ q ≤ min(k, d+ 1) by arguments very similar to the ones
used in the proof of Theorem 2.1. The point, however, here is that k-very ampleness
holds already under the much weaker (but also more intricate) hypotheses involving
the numbers σ(k, d, q). For instance, if L is 2-very ample, then π∗L is also 2-very
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ample as soon as both L−M and L−2M are globally generated. If π is of degree 2,
it is enough to check that L−M is globally generated. We provide a list of explicit
values of σ(k, d, q) in Remark 3.3. We have relegated the statement and proof of
three technical lemmas needed in the proof of Theorem 3.1 to an appendix.

Proof of Theorem 3.1. Let (Z,OZ) ⊂ Y be a zero-dimensional subscheme of length
k + 1, defined by the ideal IZ , and supported on the points y1, . . . , yr. Let ki =
length(OZ,yi). Given an element

g = (g1, . . . , gr) ∈
r⊕
i=1

H0(π∗L⊗OZ,yi) = H0(π∗L⊗OZ),

we will construct a section s ∈ H0(Y, π∗L) whose image in H0(π∗L⊗OZ) is g.
The strategy here is different from the proof of Theorem 2.1. Roughly speaking,

for q ≥ 0, we will approximate s by building a sequence of affine subsets

· · · ⊂ V q2 ⊂ V
q

1 ⊂ V
q
0 ⊂ H0(X,L− qM)

consisting of sections sq,i ∈ H0(X,L− qM) such that the length of the subscheme
of Z where

∑
tqπ∗sq,i mod IZ agrees with g increases with i reaching length Z in

the last step. First, we take care of subschemes of Z supported in the ramification
locus of π. Starting with a fiber containing most of the points yi, we deal then
with subschemes of Z supported in regular fibers of π. Each step consists now
of fixing sections in V qi for q appropriately big and imposing new conditions on
sections in V qi for lower q thus defining subsets V qi+1. The positivity assumptions
of the theorem guarantee that we never run out of sections.

Let us now turn to the details. After reordering the points y1, . . . , yr, we may
assume that

y1, . . . , yn1−1 ∈ R

yn1 , . . . , yn2−1 ∈ π−1(x1)
...

ynm , . . . , ynm+1−1 = yr ∈ π−1(xm)

for distinct points x1, . . . , xn ∈ X \B. Letting li = ni+1 − ni, we may also assume
that l1 ≤ · · · ≤ lm and kni = max(kni , . . . , kni+1−1). Thus there are li points in the
fiber over xi and the point in the fiber with the lowest index is the ”fattest” one. We
will use the abbreviations Ii = IZ,yi for i = 1, . . . , r and Ki = kni + · · ·+ kni+1−1

for i = 1, . . . ,m.
Identifying the local rings of the points in the same fiber by means of π, we

consider the ideals

Ji =def Ini+1 ∩ · · · ∩ Ini+1−1 ⊂ OY,yni .

and for i = 1, . . . ,m we denote by

ρi : OY,yni/(Ini ∩ Ji) −→ OY,yni/Ji
and

ηi : OY,yni/(Ini ∩ Ji) −→ OY,yni/Ini
the quotient maps. Applying Lemma A.1, we get the inequalities
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length(OX,xi/Ji) ≤ τ(Ki, li)(4)

for all i ∈ {1, . . . ,m} with li ≥ 2.
First, we take care of points on the ramification divisor. Let yi be one of the

points y1, . . . , yn1−1 on the ramification divisor R, and let Wi be the restriction of
Z to yi. Choosing coordinates u1, . . . , un at the point yi as in Case 3 of the proof
of Theorem 2.1, we have a decomposition

IWi =
d−1⊕
q=0

uq1π
−1

ai,q,

where the ai,q are ideals in OX,π(yi). We observe that the non-trivial part of this
decomposition sits in the range 0 ≤ q ≤ min(d− 1, ki). So we get an isomorphism

OWi
∼=

d−1⊕
q=0

OX/ai,q.(5)

Note that ai,q ⊂ ai,q+1 for q = 0, . . . , d− 2, giving a cofiltration

OX/ai,0 � OX/ai,1 � · · ·� OX/ai,d−1 → 0.

This implies length(OX/ai,q) ≤
⌊
ki
q+1

⌋
. Under the isomorphism (5), the element

gi corresponds to a d-tuple (gi,0, . . . , gi,d−1) for i = 1, . . . , n1 − 1. Since L− qM is
σ(k, d, q)-very ample, the subset

V q0 = {s ∈ H0(X,L− qM) | smod ai,q = gi,q for i = 1, . . . , n1 − 1}

is at least σ0(k, d, q)-very ample on X \R, where

σ0(k, d, q) = σ(k, d, q)−
n1−1∑
i=1

⌊
ki

q + 1

⌋
for q = 0, . . . ,min(k, d − 1). Lemma A.3 assures that σ0(k, d, q) is non-negative
and, in particular, implies that V q0 is non-empty. For any section s of the form

s = π∗s0 + tπ∗s1 + · · ·+ tmin(k,d−1)π∗smin(k,d−1)

with sq ∈ V q0 we then have

smod Ii = gi in OY,yi
for i = 1, . . . , n1 − 1. This completes the construction for the points on the ramifi-
cation locus.

From now on we proceed in m steps. The recursive procedure works so that the
i-th step takes care of what we generate in the fiber over xm−i+1.

Step 1. For every q ≥ lm such that V q0 6= H0(X,L− qM) we fix a section sq ∈ V q0 .
For i = 1, . . . , lm we denote by hi the image

(ϕβ(nm,nm+i−1))∗(
∑
q≤lm

tqπ∗(sq)) mod Inm ∩ · · · ∩ Inm+1−1

in the local ring OY,ynm . We choose preimages ĝi of gnm+i−1 in OY,ynm/Inm ∩· · ·∩
Inm+1−1. For q ≤ lm − 1, we let V q1 be the subset of V q0 of sections sq satisfying
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the following conditions in OY,ynm :

tlm−1π∗slm−1 modJm = αlm−1,1ρm(ĝ1 − h1) + · · ·+ αlm−1,lmρm(ĝlm − hlm)
...

tπ∗s1 modJm = α1,1ρm(ĝ1 − h1) + · · ·+ α1,lmρm(ĝlm − hlm)
π∗s0 mod Inm ∩ Jm = α0,1(ĝ1 − h1) + · · ·+ α0,lm(ĝlm − hlm),

(6)

where αi,j are solutions of the Vandermonde type systems of linear equations

α0,i + · · ·+ αlm−1,i = δ1i

α0,i + εβ(nm,nm+1)α1,i + · · ·+ εβ(nm,nm+1)αlm−1,i = δ2i

...
α0,i + ε(lm−1)β(nm,nm+1−1)α1,i + · · ·+ ε(lm−1)β(nm,nm+1−1)αlm−1,i = δlmi.

(7)

We observe that (4) implies that V q1 remains at least σ1(k, d, q)-very ample, where
for q ≥ 1,

σ1(k, d, q) = σ0(k, d, q)− τ(Km, lm)

and for q = 0,

σ1(k, d, 0) = σ0(k, d, 0)−
nm+1−1∑
i=nm

Ki =
nm−1∑
i=1

ki.

Let s be of the form π∗s0 + · · · + tlπ∗sl, where sq ∈ V q1 , for q ≤ lm − 1. Then in
the local ring OY,ynm+i−1 we have

smod Inm+i−1 = (ϕβ(nm,nm+i−1))∗smod Inm
= (ϕβ(nm,nm+i−1))∗(π∗s0 + · · ·+ tlπ∗sl) mod Inm .

Applying the definition of ϕ we get the relation

smod Inm+i−1

= π∗s0 + εβ(nm,nm+i−1)tπ∗s1 + · · ·+ ε(lm−1)β(nm,nm+i−1)tlm−1π∗slm−1

+ (ϕβ(nm,nm+i−1))∗(
∑
q≥lm

sq) mod Inm .

Taking (6) and the definition of ηm into account we obtain

smod Inm+i−1

= α0,1ηm(ĝ1 − h1) + · · ·+ α0,lmηm(ĝlm − hlm) + · · ·+
+ εβ(nm,nm+i−1) (α1,1ηm(ĝ1 − h1) + · · ·+ α1,lmηm(ĝlm − hlm))
...

+ ε(lm−1)β(nm,nm+i−1)(αlm−1,1ηm(ĝ1 − h1) + · · ·+ αlm−1,lmηm(ĝlm − hlm))

+ ηm(hi).

Collecting the terms ηm(ĝi − hi) for i = 1, . . . , lm, we obtain as coefficients terms
satisfying (7) and finally arrive at

smodInm+i−1 = gnm+i−1

as desired.
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Step i. Proceeding as in Step 1, we fix sections sq ∈ V qi−1 for lm−i+1 ≤ q < lm−i+2

and we construct subspaces

V qi ⊂ V
q
i−1

for q < lm−i+1, such that for all sq ∈ V qi one has
l∑

q=0

tqπ∗sq mod Ij = gj

for all nm−i+1 ≤ j < nm−i+2. Then V qi is still σi(k, d, q)-very ample, where by (4)

σi(k, d, q) = σi−1(k, d, q)− τ(Ki, li) = σ0(k, d, q)−
m∑

ν=i+1

τ(Kν , lν)

for q ≥ 1 and

σi(k, d, 0) = σ0(k, d, 0)−Ki =
nm−i+1−1∑

ν=1

kν .

After m− 1 steps, by Lemma A.2, the space V qm−1 is still σm−1(k, d, q)-very ample
with

σm−1(k, d, q) ≥ τ(K1, l1)

for 1 ≤ q < l1 and

σm−1(k, d, 0) ≥ K1.

This guarantees that we can find sections s1, . . . , sl1 such that

s =def

l∑
q=0

tqπ∗sq

satisfies smod IZ = g. This completes the proof of the theorem.

As in section 2 we get immediately the same result for unbranched coverings.

Theorem 3.2. Let X be a smooth projective variety. Let M be a line bundle on
X such that OX(dM) ∼= OX and let π : Y −→ X be the cyclic covering of degree d
defined by M . Let L be a line bundle on X and k a non-negative integer. If L−qM
is σ(k, d, q)-very ample for q = 0, . . . ,min(k, d− 1), then π∗L is k-very ample.

Remark 3.3. For concrete applications of Theorem 3.1 one needs to compute the
numbers σ(k, d, q) appearing in the hypothesis there. We found the following alter-
native formula useful for practical purposes:

σ(k, d, q) =



k if q = 0,

k + 1−
⌊

k+1

b√k+1c

⌋
−
⌊√
k + 1

⌋
+ γ(k + 1,

⌊√
k + 1

⌋
)

if 1 ≤ q <
⌊√
k + 1

⌋
,

k − q −
⌊
k+1
q+1

⌋
+ γ(k + 1, q + 1) if

⌊√
k + 1

⌋
≤ q.

We can omit the elementary proof.
Now, in order to convey some feeling for the numbers σ(k, d, q), we include a

table for d = 15 and 0 ≤ k ≤ 15. (The k-th column lists the values σ(k, 15, q) for
0 ≤ q ≤ k.) For instance, π∗L is 2-very ample if L is so and both L − M and
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Table 1. Values of the function σ(k, d, q) for d = 15 and 0 ≤ k ≤ 15

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L− 1M 0 0 1 1 2 2 3 4 4 5 6 6 7 8 9
L− 2M 0 0 1 2 2 3 4 4 5 6 6 7 8 9
L− 3M 0 0 1 2 3 3 4 5 6 6 7 8 9
L− 4M 0 0 1 2 3 4 4 5 6 7 8 8
L− 5M 0 0 1 2 3 4 5 5 6 7 8
L− 6M 0 0 1 2 3 4 5 6 6 7
L− 7M 0 0 1 2 3 4 5 6 7
L− 8M 0 0 1 2 3 4 5 6
L− 9M 0 0 1 2 3 4 5
L− 10M 0 0 1 2 3 4
L− 11M 0 0 1 2 3
L− 12M 0 0 1 2
L− 13M 0 0 1
L− 14M 0 0

L − 2M are globally generated, and it is 4-very ample if L is so and L −M and
L− 2M are very ample and L− 3M and L− 4M are globally generated.

4. Examples and applications

This section serves two purposes. First, we give a number of examples showing
that the assumptions in our results cannot be dropped. Secondly, we provide an
application to the study of linear series of plane curves.

Theorems 2.1 and 3.1 state, roughly speaking, that under suitable assumptions
on the bundles L − qM the positivity of a pull-back π∗L is at least as high as the
positivity of L. It is then natural to ask whether the converse statement is also
true. The following example shows that this is not the case:

Example 4.1. Let (X,L) be a principally polarized abelian variety. A d-torsion
point M ∈ Pic0(X) gives rise to a cyclic covering π : Y −→ X such that (Y, π∗L)
is an abelian variety of type (1, . . . , 1, d). If d is sufficiently large, then π∗L will be
very ample. (One knows by work of Debarre-Hulek-Spandaw [13] that it is enough
to take d > 2g.) But L is not even globally generated. In the surface case, where
the generation of jets and the k−very ampleness is well understood (see [3]), one
can even give explicit values dk (resp. d′k) for every k > 0 such that π∗L is k-jet
ample (resp. k-very ample) whenever d ≥ dk (resp. d ≥ d′k).

The previous example shows that the positivity can very well increase after
taking a pull-back. In general, however, it does not need to increase at all, as the
following example shows:

Example 4.2. Consider a product of elliptic curves X = E1 × · · · × En, n ≥ 2,
and the product polarization

L = OX

(
n∑
i=1

pr∗i (0)

)
,

where pri is the i-th projection. The choice of a d-torsion point on En determines a
covering Ẽn −→ En, which in turn induces a cyclic covering Y = E1×· · ·×En−1×
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Ẽn −→ X such that

π∗L = OY

(
n−1∑
i=1

pr∗i (0) + d · pr∗n(0)

)
.

The line bundles OX((k + 2)L) and OY ((k + 2)π∗L) are then k-jet ample (by [2]),
but neither of them is `-jet ample (or even `-very ample) for any ` > k, since the
restricted bundles OX((k+2)L)|E1 and OY ((k+2)π∗L)|E1 are only of degree k+2
(cf. [8, Proposition 1.4]).

Even if L is positive, the positivity of π∗L may drop if the assumptions on
the line bundles L − qM are not satisfied. The following example illustrates their
importance.

Example 4.3. Let X ∼= Pn and let r and d be integers greater than or equal to
2. Let M = OPn(r) and let B be a smooth member of |dM |. Let π : Y −→ X be
the cyclic covering defined by B and let L = OPn((d− 1)r). Then L is d-jet ample,
but π∗L fails to be that positive. The reason is that L− qM fails to be (d− q)-jet
ample for q = d− 1. Indeed, as in the proof of the case 3 in Theorem 2.1 let y ∈ R
be a point on the ramification divisor R ⊂ Y and u1, . . . , un be local coordinates
such that R is locally defined by u1 = 0. From the decomposition

H0(π∗L) ∼= H0(OPn((d− 1)r))⊕ u1 ·H0(OPn((d− 2)r)) ⊕ · · · ⊕ ud−1
1 ·H0(OPn)

we infer that no section of π∗L generates a jet of the form ud−1
1 ui for i = 2, . . . , n.

In fact Theorem 2.1 implies that π∗L is (d− 1)-jet ample.

Remark 4.4. More generally, in the case of branched coverings, using the decompo-
sition (1) one can show as in the previous example that if L− qM fails to generate
(k − q)-jets at the points of the branched locus, π∗L fails to be k-jet ample.

Now we want to show that the assumptions of Theorem 3.1 cannot be weakened.

Example 4.5 (Geiser involution). Let B ⊂ X ∼= P2 be a smooth plane quartic and
let π : Y −→ X be the double covering branched over B. Then Y is the Del Pezzo
surface of degree 2 and −KY

∼= π∗OP2(1), (see [7, 10.2.4]). Theorem 3.1 states that
−kKY is k-very ample for k ≥ 2. This reproves a result of [16]. Moreover, in [16]
it was shown that −kKY is not (k+ 1)-very ample. This implies that our theorem
is sharp.

Next, we want to apply our results to determine the dimension of certain linear
systems of plane curves. Given general points P1, . . . , Pr ∈ P2 and an r-tuple
m = (m1, . . . ,mr) of integers, one is interested in the dimension, lm(d), of the
linear system

|OP2(d) ⊗m
m1
P1
⊗ · · · ⊗m

mr
Pr
|.

This problem has a long history; see [19] for a survey. The expected dimension,
em(d), of the above system is

em(d) = max

(
−1,

d2 + 3d
2

−
r∑
i=1

mi(mi + 1)
2

)
,

where −1 is the dimension of the empty space. In other words, one expects that the
conditions imposed by general “fat points” are independent. A natural question is
whether lm(d) actually equals em(d). This problem has been intensively explored
recently. In particular one knows that lm(d) = em(d), if



888 THOMAS BAUER, SANDRA DI ROCCO, AND TOMASZ SZEMBERG

• (d+ 3)2 > 10
9

∑r
1(mi + 1)2 (Xu [22]);

• d ≥ m1 +m2 +m3 and all mi ≤ 4 (Mignon [21]);
• m1 arbitrary and m2 = · · · = mr ≤ 3 (Ciliberto-Miranda [12]).

Here we show that a further result in this direction can be proved using the results
of the present paper.

Proposition 4.6. Let k ≥ 2 and

m = (3k + 2, . . . , 3k + 2︸ ︷︷ ︸
8

, k − 2, k10, . . . , kr)

with
∑r

i=10 ki = k + 1. Then for d = 9k + 6 we have lm(d) = em(d).

Note that for numerical reasons none of the above criteria applies.

Proof. It is enough to show the proposition for points in a special position, since the
function lm(d) is upper-semicontinuous in (P2)r \ diagonals and is at least em(d).
Then let P1, . . . , P8 be in general position and let P9 be the unassigned base point of
|OP2(3)−P1−· · ·−P8|. Let P9+1, . . . , P9+r be any points distinct from P1, . . . , P9.
The assertion means that the ideal I = m

3k+2
P1
⊗· · ·⊗m

3k+2
P8
⊗m

k−2
P9
⊗m

k10
P10
⊗· · ·⊗m

kr
Pr

imposes independent conditions on the linear series |OP2(d)|. Hence it is enough to
show that the mapping

H0(OP2(d)) −→ H0(OP2(d) ⊗OP2/I)

is surjective. This will follow (see [10]) if we show that the line bundle

L = f∗OP2(d)− (3k + 2)E1 − · · · − (3k + 2)E8 − (k − 2)E9

is k-jet ample, where f : X −→ P2 is the blowing up of P2 in P1, . . . , P9. Let
g : S −→ P2 be the Del Pezzo surface obtained from P2 by blowing up P1, . . . , P8.
Then | −KS| has a base point x = g−1(P9) and | − 2KS| is globally generated and
defines a 2 : 1 mapping p : S −→ Q onto a quadric cone Q ⊂ P3. It is known (cf. [7,
10.4.3]) that p is branched over a smooth curve, the intersection of a cubic surface
with Q, and the vertex v = p(x) of Q. Let τ : F2 −→ Q be the blowing up of Q at
v with the exceptional divisor D and let σ : X −→ S be the blowing up of S at x
with the exceptional divisor E9. Then the following diagram

X
π //

σ

��

F2

τ

��

S
p

// Q

is commutative and π is a double covering branched over a smooth divisor homol-
ogous to 2(2D + 3F ), where F denotes the pull-back of the ruling on Q by τ . We
observe that L = −(3k+2)KX+(2k+2)E = (3k+2)σ∗(−KS)−(k−2)E, but since
the jet ampleness of −sKS is not known, we cannot apply the results from [10] di-
rectly. On the other hand, −(3k+2)KX+(2k+2)E = (3k+2)π∗F+(2k+2)π−1(D).
This suggests we look for the positivity of the line bundles coming from F2 via π.
We recall that a line bundle L = aD+ bF is k-jet ample on F2 (equivalently k-very
ample, cf. e.g. [17], [8]) if and only if L.D = −2a+ b ≥ k and L.F = a ≥ k. Then
H = (3k + 2)F + (k + 1)D is k-jet ample and H −M = (3k − 1)F + (k − 1)D is
(k − 1)-jet ample. Then Theorem 2.1 implies that L = π∗H is k-jet ample.
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Finally, we remark that the results of our paper can be applied both to show the
positivity of certain line bundles, e.g. the jet ampleness of tensor powers of ample
and spanned line bundles on Calabi-Yau varieties [11], and – what is even more
interesting – to verify that certain line bundles are not k-jet or k-very ample; for
instance, Proposition 5.2 of [4] follows immediately from Theorems 2.1 and 3.1.

Appendix A. Technical lemmas

In this appendix we state and prove three lemmas needed in the course of the
proof of Theorem 3.1. We begin with an elementary observation on local rings:

Lemma A.1. Let (O,m) be a local ring, and let I1, . . . , I`, ` ≥ 2, be ideals con-
tained in m such that lengthO/I1 ≥ lengthO/Ii for all i. Let K =

∑`
i=1 lengthO/Ii.

If k <∞, then

lengthO/I2 ∩ · · · ∩ I` ≤ τ(K, `) .

Proof. We have

lengthO/(I2 ∩ · · · ∩ I`)
= lengthO/I2 − lengthO/(I2 + I3 ∩ · · · ∩ I`) + lengthO/(I3 ∩ · · · ∩ I`)
= . . .

= [lengthO/I2 − lengthO/(I2 + I3 ∩ · · · ∩ I`)] + . . .

+ [lengthO/I`−1 − lengthO/(I`−1 ∩ I`)] + lengthO/I`
≤ K − lengthO/I1 − (`− 2).

The assertion follows now from the fact that the length of O/I1 is at least bK/`c+
1− γ(K, `).

The next two lemmas concern further properties of the function τ(·, ·).
Lemma A.2. Let `1, . . . , `m, K1, . . . ,Kr and q be positive integers, and let K =∑r
i=1 Ki. If `i ≥ 2 for all i, then
m∑
i=1

τ(Ki, `i) +
r∑

i=m+1

⌊
Ki

q + 1

⌋
≤ max

{
τ(K, `)

∣∣∣ min(`1, . . . , `q, q + 1) ≤ `
}
.

Proof. First we note that it is enough to prove
m∑
i=1

τ(Ki, `i) +
r∑

i=m+1

⌊
Ki

q + 1

⌋
≤ τ(K, `)(8)

with ` = max(`1, . . . , `m). Due to the fact that⌊
Ki

q + 1

⌋
≤ Ki −

⌊
Ki

2

⌋
− 1 + γ(Ki, 2) = τ(Ki, 2)

we may assume r = m (by setting li = 2 for m < i ≤ r). Then (8) reads∑r
i=1 τ(Ki, `i) ≤ τ(K, `) and it suffices to prove it for r = 2. We may also as-

sume `1 ≤ `2 = `. From⌊
K1

`1

⌋
≥
⌊
K1

`

⌋
+ γ(K1, `1) ·min(1, `− `1)

and ⌊
K1

`

⌋
+
⌊
K2

`

⌋
≥
⌊
K

`

⌋
− 1 + γ(K1, `) + γ(K2, `)− γ(K1, `) · γ(K2, `)



890 THOMAS BAUER, SANDRA DI ROCCO, AND TOMASZ SZEMBERG

we get

τ(K1, `1) + τ(K2, `2) ≤ K −
⌊
K

`

⌋
− `+ γ(K1, `) · γ(K2, `) + 1

+ [2− `1] + [γ(K1, `1)− γ(K1, `)− γ(K1, `1) ·min(1, `− `1)].

Now the assertion follows by observing that γ(K1, `) · γ(K2, `) ≤ γ(K, `) and that
the terms in the square brackets are non-positive.

Lemma A.3. Let a ≥ b ≥ 2 be positive integers. Then
⌊
a
b

⌋
≤ τ(a, b).

Proof. Since 2
⌊
a
b

⌋
− γ(a, b) ≤ 2ab − 1, we have⌊a

b

⌋
− τ(a, b) ≤ b+ 2

a

b
− a− 2.

Let f(b) = b2 + 2a − ab − 2b. It is now enough to show that f(b) ≤ 0 for b in
the given range. Since f is a quadratic function it is in fact enough to check that
f(2) ≤ 0 and f(a) ≤ 0, which is obvious.
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